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ABSTRACT

Grid computing, a next leap in communication technology, a new trend in distributed
computing system that enables utilization of idle resources existing worldwide, to solve data intensive
and computational intensive problems. The resources may either be homogeneous or heterogeneous in
nature and they are shared from multiple administrative domains. The problem is divided into
independent tasks and the tasks are executed by the resources available in grid. Scheduling these tasks
to various resources in a grid is a very important problem and it is NP Complete. Hence we need a good
task scheduling strategy to utilize the grids effectively such that overall completion time (make span) is
minimized, In literature, many heuristic approaches for scheduling are available that give near optimal
solution.

In this project we propose a weighted QoS (Quality of Service) factor enabled ant colony
algorithm for scheduling independent tasks on heterogeneous grid resources. The main contributions of

our work are to minimize the makespan (overall completion time) with QoS satisfaction and the results
are compared with hybrid genetic algorithm and other heuristic algorithms such as min-min, max-min,

minimum expected time, minimum completion time.
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CHAPTER 1

INTRODUCTION

1.1. Overview of Grid Computing

Over the past few years the popularity of the Intemet has been growing by leaps and
bounds. The growth of Internet along with availability of powerful computers and high speed
networks as low cost commodity components is changing the way the scientists and
engineers do computing and how society in general manages the information. Often called
the “next big thing” in global Internet technology, Grid Computing takes collective advantage
of the vast improvements in microprocessor speeds, optical communications, raw storage
capacity, World Wide Web and the Internet that have occurred over the last few years . The
last few years we have witnessed the emergence of Grid Computing as an innovative
extension to distributed computing technology, for computing resource sharing among
participants in a virtualized collection of organizations. These new technologies have enabled
the clustering of a wide variety of geographically distributed resources such as super
computers, storage systems, data sources at the exact time it is needed (on demand) for

solving computation-intensive and data-intensive problems.
Grid Computing

Grid computing is a form of distributed computing that involves coordinating and
sharing computing, application, data storage or network resources across dynamic and
geographically dispersed organizations. Grid technologies promise to change the way

organizations tackle complex computational problems.

Grid computing enables the virtualization of distributed computing and data resources
such as processing, network bandwidth and storage capacity to create a single system image,

granting users and applications seamless access to vast IT capabilities.

The emergence of open standards has a great influence on this computing technology,
especially in providing seamless Grid interoperability and Grid integration facilities. We
could find that technologies of Grid computing are still evolving; however the alignment with

industry-wide open standards and the commercial interests quickly placed this technology

1



into a forerunning state for infrastructure and technology development. The most notable

standard we have seen in the area of Grid is the Global Grid Forum’s Open Grid Services
Architecture (OGSA) which enables communication across heterogeneous, geographically

dispersed environments.

What is Grid Computing?

“Grid computing is a term referring to the combination of computer resources from

multiple administrative domains to reach a common goa - Wikipedia

“A Grid is a collection of distributed computing resources available over a local or

wide area network that appears to an end user or application as one large virtual computing
system.” — IBM

“Conceptually, a grid is quite simple. It is a collection of computing resources that

perform tasks. In its simplest form, a grid appears to users as a large system that provides a

single point of access to powerful distributed resources.” — Sun

“Grid computing is computing as a utility - you do not care where data resides or
what computer processes your requests. Analogous to the way utilities work, clients request

information or computation and have it delivered — as much as they want and whenever they

want.” — Oracle

The Grid can be thought of as a distributed system with non-interactive workloads
that involve a large number of files. Grids are a form of distributed computing whereby a
“super virtual computer” is composed of many networked loosely coupled computers acting
together to perform very large tasks. “Distributed” or “grid” computing in general is a special
type of parallel computing that relies on complete computers (with onboard CPUs, storage,
power supplies, network interfaces, etc.) connected to anetwork (private, public or
the Intemet) by a conventional network interface, such as Ethernet. This is in contrast to the
traditional notion of a supercomputer, which has many processors connected by a local high-

speed computer bus.

Grid computing represents an enabling technology that permits the dynamic coupling
of geographically dispersed resources for performance-oriented distributed applications in

science, engineering, medicine and e-commerce. However, it is difficult task to agree on a

2



concrete definition of Grid Computing, as different commercial and academic
implementation use the word for a fairly wide spectrum of architectures. It is generally
agreed in the literature that there are two important goals which are the driving force behind
grid computing.

The first goal is to build up a computational and networking infrastructure that is
designed to provide pervasive, uniform and reliable access to data, computational and human

resources distributed over wide area environments.

The second and more distant goal behind grid computing is the delivery of

computing power as a utility, like the electrical system.

Actually the name ‘Grid’ comes from an analogy from power grids that supply
electricity. When somebody needs electricity, he plugs in a device to the system which uses
as much resources as it needs. The end user is not concerned with the details like which
power plant is supplying the electricity at that moment or lack of power if he buys a hi-fi
system. By analogy the home computer in the future will have only Human Computer

Interface (HCI) and the computing power will be provided by the grid.

Computational Grid is a collection of distributed, possibly heterogeneous resources
which can be used as an ensemble to execute large-scale applications. What distinguishes
grid computing from conventional high performance computing systems such as cluster
computing is that grids tend to be more loosely coupled, heterogeneous and geographically
dispersed. Although a grid can be dedicated to a specialized application, it is more common
that a single grid will be used for a variety of different purposes. Grids are often constructed
with the aid of general-purpose grid software libraries known as middleware.

Grid technology has been applied to computationally intensive scientific,

mathematical, and academic problems through volunteer computing, and it is used in
commercial enterprises for such diverse applications as drug discovery, economic

forecasting, seismic  analysis, andback office data processing in support fore-

commerce and Web services.



Grid applications include
o Distributed Supercomputing

> Distributed Supercomputing applications couple multiple computational

resources- supercomputers and workstations
¢ High-Throughput Applications

» Grid used to schedule large numbers of independent or loosely coupled tasks
with the goal of putting unused cycles to work. High-throughput applications

include RSA key cracking, deletion of extra telecommunication.
+ Data-Intensive Applications

» Focus is on synthesizing new information from large amounts of physically
distributed data. Examples include European Union Data Grid Project for real
data intensive computing applications such of High Energy Physics, Biology
and Medical Image Processing and Earth Observation

Grid construction
There are three main issues that characterize computational grids:

Heterogeneity: a grid involves a multiplicity of resources that are heterogeneous in nature

and might span numerous administrative domains across wide geographical distances.

Scalability: a grid might grow from few resources to millions.

Dynamicity or Adaptability: with so many resources in a Grid, the probability of some

resources is naturally high.

The steps necessary to realize a computational grid include:

e The integration of individual software and hardware components into a

combined networked resource,

e The implementation of middleware to provide a transparent view of the

resources available.



e The development of tools that allows the management and control of grid

applications and infrastructure.
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Figure 1.1 Grid Architecture
A layered grid architecture and its relationship to the Internet protocol architecture.

The above diagram illustrates the component layers of the architecture with specific

capabilities at each layer. Each layer shares the behavior of the component layers. Each of
these component layers is compared with their corresponding Internet protocol Layers, for

purposes of providing more clarity in their capabilities.
Fabric Layer: Interface to Local Resources

This defines the resources that can be shared. This could include computational
resources, data storage, networks, catalogs and other system resources. These resources can

be physical resources or logical resources by nafure. Example for logical resources are

distributed file systems, computer clusters etc.,
Basic capabilities are

e Provide an “inquiry” mechanism whereby it allows for the discovery against its own

resource capabilities, structure and state of operations.



e Provide appropriate “resource management” capabilities to control the QoS the grid

solution promises or has been contracted to deliver.

Connectivity Layer: Manages Communications

This defines the core communication and authentication protocol required for grid-
specific networking services transactions. It includes networking transport, routing and

naming. Characteristics to be considered are Single sign on, Delegation, User-Based trust

relationships and Data Security.
Resource Layer: Sharing of a Single Resource

This utilizes the communication and security protocol defined by the networking
communications layer, to control the secure negotiation, initiation, monitoring, metering,

accounting, and payment involving the sharing of operations across individual resources.

The Collective Layer: Coordinating Multiple Resources

While the Resource layer manages an individual resource, the Collective layer is
responsible for all global resource management and interaction with a collection of resources.

Collective services are Discovery Services, Co allocation, Scheduling and Brokering

Services, Monitoring and Diagnostic Services, Data Replication Services etc.,
Application Layer: User- Defined Grid Applications

These are user applications, which are constructed by utilizing the services defined at
cach lower layer. Such an application can directly access the resource, or can access the

resource through the Collective service interface APIs (Application Provider Interface)
OGSA Architecture and Goal:

OGSA architecture is a layered architecture with clear separation of the functionalities

at each layer. The core architecture layers are OGSI, which provides the base infrastructure
and OGSA core platform services which are a set of standard services including policy,
logging, service-level management and so on. The high level applications and services use

these lower layer core platform components and OGSI that become part of resource sharing

grid.



More specialized and domain-
specific services

OGSA Platform Services (CMM,
Service Domain, Policy, Security,

Logging, Metering/Accounting)

Open Grid Service Infrastructure
(OGsl)

A ) A

Hosting Environment Protocol J

Figure 1.2 OGSA Platform Architecture
The major OGSA goals are i
o Identify the use cases that can drive OGSA platform components.
o Identify and define the core OGSA platform components
e Define hosting and platform-specific bindings
e Define resource models and resource profiles with interoperable solutions
OGSA Basic Services
Some of the most notable and interesting basic services of OGSA are
e Common Management Model
e Service Domains
e Distributed data access and replication
e Policy
s Security

e Provisioning and resource management



e Accounting/metering

s Common distributed logging
¢ Monitoring

o Scheduling

Open Grid Services Infrastructure (OGSI)

The base component of OGSA architecture is the OGSI. The OGSl is a grid software
infrastructure standardisation initiative, based on emerging Web services standards that are

intended to provide maximum interoperability among OGSA software components.

Based on the OGSI specification, a grid service instance is a web service that
conforms to a set of conventions expressed by the WSDL as service interfaces, extensions

and behaviours. A grid service provides the controlled management of the distributed and

often long-lived state that is commonly required in sophisticated distributed applications.
According to the definition of OGSI, every grid service is a web service; however , the

cohverse need not be true.

The OGSI specification defines:
o How grid services instance are named and referenced
e How the interfaces and behaviours are common to all GRID services
e How to specify additional interfaces, behaviours and their extensions

The grid services specification does not address the common service hosting behaviours,
including how grid services are created, managed and destroyed in a hosting environment.
Rather, the specification recommends message-level interoperability, whereby any grid
service client following the OGSI standard can interact with every grid service hosted by any
hosting environment. This message-level interoperability is the core feature of this standard

and it is achieved by using XML as the core message format and schema.
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Figure 1.3 Web service and grid service in OGSI

The above figure introduces a number of concepts surrounding OGSI, and its relation to Web

Services as
e Grid services are layered on top of web services.

e Grid services contain application state factors and provide concepts for exposing the

state, which is referred to as the service data element.

e Both grid services and web services communicate with its client by exchanging XML

messages.
e Grid services are described using GWSDL, which is an extension of WSDL..
Grid Components

Grid Fabric: It comprises all the resources geographically distributed and accessible from
anywhere on the Internet. They could be computers, clusters, storage devices, databases and

special scientific instruments such as a radio telescope.



Grid Middleware: It offers core services such as remote process management, co-allocation
of resources, storage access, information, security, authentication, and Quality of Service

(QoS) such as resource reservation and trading.

Grid Development Environment and Tools: These offer high-level services that allow
programmers to develop applications and brokers that act as user agents that can manage or

schedule computations across global resources.

Grid Applications and Portals: They are developed using grid-enabled languages such as

HPC++ and message-passing systems such as MPI. Applications, such as parameter

simulations and grand-challenge server they are accessing on a UNIX or NT platform.
Types of grids
National-Grids

National Grids provide a strategic “computing reserve” and will allow substantial

computing resources to be applied to large problems in times of crisis, such as to plan
responses to a major environmental disaster, earthquake or terrorist attack. They will act as a
“national collaborators”, supporting collaborative investigations of complex scientific and
engineering problems, such as global climate change, space station design and environmental

cleanup.

Private-Grids

Private Grids can be useful in many institutions (hospitals, corporations, small firms,
etc). They are characterized by a relatively small scale, central management and common

purpose and in most cases; they will probably need to integrate low-cost commodity
technologies.

Project-Grids

Project Grids will likely be created to meet the needs of a variety of multi-institutional

research groups and multi-conﬁaany “virtual teams”, to pursue short- or medium-term
projects (scientific collaborations, engineering projects). A Project Grid will typically be built

ad hoc from shared resources for a limited time and focus on a specific goal.

10



Goodwill-Grids

Goodwill Grids are for anyone owning a computer at home who wants to donate some

computer capacity to a good cause.

Peer-to-peer-Grids

Peer-to-peer technology depends on people sharing data between their computers. The

name Peer-to-peer suggests that there is no central control.

Consumer Grids

In a Consumer Grid, resources are shared on a commercial basis, rather than on the
basis of goodwill or mutual self-interest. A big issue in such Grids will be “resource
marketing”: a user has to find the resources needed to solve his particular problem and the

supplier must make potential users aware of the resources he has to offer.
Key benefits of the Grid computing model

Consolidation

From servers to applications to whole sites, consolidation is a key benefit of the Grid

computing model, especially in the data center. Consolidation not only minimizes the
infrastructure necessary to meet an enterprise’s business demands, but also reduces costs by

migrating from proprietary or single-use systems to commercial off-the-shelf (COTS) —based

systems that can be shared by multiple applications.
Modular Computing

Modular computing, especially in the data center, minimizes and simplifies the

infrastructure using building blocks that address higher density, lower power, lower thermals,
simplified cabling and ease of upgrading and management. Blade servers are an excellent

example of modularity.

Virtualization

By creating pools of resources enabled by highly automated management capabilities,

virtualization can enable an IT system administrator to utilize far more of the resources in the

11



data center, making the resources accessible to more than a single application sitting on a

single physical server.
Utility Computing

Utility Computing allows an infrastructure to be managed analogously to an electric
utility, applying a pay-per-use model, thereby optimizing and balancing the computing needs

of an enterprise and allowing it to run at maximum efficiency.

The following summarizes the merits of Grid computing

—

Exploiting underutilized resources
2. Parallel CPU capacity
3. Virtualization
4, Scalability
5. Reliability
6. Resource balancing
7. Management
8. Cost-effective use of computing resources
9. Reduces upfront cost
10. Pay per use (on need basis)
End users of Grid computing

There are hundreds of computer grids around the world. Many grids are used for e-

science: enabling projects that would be impossible without massive computing power.

> Biologists are using grids to simulate thousands of molecular drug candidates on their

computer, aiming to find a molecule able to block specific disease proteins.

> Earth scientists are using grids to track ozone levels using satellites, downloading

hundreds of Gigabytes of data every day (the equivalent of about 150 CDs a day).

12



» High energy physicists are using grids in their search for a better understanding of
the universe, relying on a grid of tens of thousands of desktops to store and analyze
the 10 Petabytes of data (equivalent to the data on about 20 million CDs!) produced
by the Large Hadron Collider each year. Thousands of physicists in dozens of

universities around the world want to analyse this data.

> Engineers are using grids to study alternative fuels, such as fusion energy.

> Artists are using grids to create complex animations for feature films (check out

Kung Fu Panda for example).

» Social scientists are using grids to study the social life of bees, the makeup of our

society, the secrets of history.

Grid computing not only provides the resources that allow our scientists to cope with
vast collections of data, it also allows this data to be distributed all over the world, which
means scientific teams can work on international projects from the comfort of their own

laboratories.

Grid computing is powering science from around the globe, providing the technology
to explore new ways of doing science. Scientists can now share data, data storage space,
computing power, and results. Together, researchers can tackle bigger questions than ever
before: from disease cures and disaster management to global warming and the mysteries of

the universe.
1.2. Applications of Grid Computing

Oppeortunities for Grid computing in Bio- and Health-Informatics

Biology provides some of the most important, as well as most complex, scientific
challenges of our times. These problems include understanding the human genome,
discovering the structure and functions of the proteins that the genes encode and using this
information efficiently for drug design. Most of these problems are extremely intensive from

a computational perspective.

One of the principal design goals for the Grid Framework is the effective logical
separation of the complexities of programming a massively parallel machine from the

complexities of bioinformatics computations through the definition of appropriate interfaces.
13



Encapsulation of the semantics of the bioinformatics computations methodologies means that
the application can track the evolution of the machine architecture and explorations of

various parallel decomposition schemes can take place with minimal intervention from the

domain experts or the end users.

For example, understanding the physical basis of protein function is a central
objective of molecular biology. Proteins function through internal motion and interaction
with their environment. An understanding of protein motion at the atomic level has been
pursued since the earliest simulations of their dynamics. When simulations can connect to
experimental results, the microscopic examinations of the different processes (via simulation)
acquire more credibility and the simulation results can then help interpret the experimental
data. Improvements in computational power and simulation methods facilitated by the Grid
framework could lead to important progress in studies of protein structure, thermodynamics,

and kinetics.
Grid computing in Petroleum exploration

Grid will become the information infrastructure of workflow in the petroleum
industry. Advances in grid computing will meet the tremendous and scalable demands of
petroleum E & P (Exploration & Production) for high performance computing. The

petroleum industry needs the grid computing to set up the information infrastructure of

workflow, enable information, data, knowledge, storage, computing power, software sharing

and collaboration, etc.

Application of grid computing in the petroleum industry would bring the following effects
and benefits:

« Improving the utilization of the existing resources by sharing and integrating of them

o Improving the available computing performance and supporting the new computing

intensive technology widely applied reducing the processing cycle
e Improving the processing quality

o Improving the flexibility to realize the on-demand computing and form the flexible

data processing service cost and price system

14



o Forming new operating mode and service mode

Some petroleum companies such as Royal Dutch Shell, Venezuela PDVSA, and Latin

America petrolesm companies have developed the research of the grid application, and have

achieved some practical application effects. When the petroleum industry met some problems
and challenge, the Royal Dutch Shell petroleum company carried out the research and
development of the grid application to increase the data processing ability, increase the
production efficiency, reduce the cost and the time of seismic data processing, realize the
cooperation across the organizations in order to meet the demand of high performance power
and managing the computing resource, and increase the accuracy of seismic data processing

and oil reservoir modelling.

1.3. Issues in Grid Computing

A grd is a distributed and heterogeneous environment. A heterogeneous
environment involves dynamic arrival of tasks where the tasks and resources can be from

various administrative domains. Both of these issues require are the source of challenging

design problems.

Being heterogencous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid may have
different hardware configurations, operating systems and software configurations. This

makes it necessary to have right management tools for finding a suitable resource for the task

and controlling the execution and data management.

A grid may also be distributed over a number of administrative domains. Two or more
institutions may decide to contribute their resources to a grid. In such cases, security is a main
issue. The users who submit their tasks and their data to the grid wish to make sure that their
programs and data is not stolen or altered by the computer in which it is running. Of course
the problem is reciprocal. The computer administrators also have to make sure that harmful

programs do not arrive over the grid.

Another important issue is scheduling. Scheduling a task to the correct resource
requires considerable effort. The picture is further complicated when we consider the need to

access the data. In this project, we have assumed that the capacity of the machines and the
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execution time of the tasks are known in advance and no jobs arrive dynamically. In case ofa

dynamic scenario, the chances of failure are high.

Grid computing environment may also involve the service level agreements (SLA)

which are service based agreements rather than customer based agreements. SLA 1s a

negotiation mechanism between resource providers and task submitting sources.

1.4. Job Scheduling in Grid Computing

The job scheduling system is responsible to select best suitable machines in a grid for

user jobs. The management and scheduling system generates job schedules for each machine

in the grid by taking static restrictions and dynamic parameters of jobs and machines into

consideration.

Job Scheduling in Grids:

A grid scheduler should:

« Find suitable execution site(s) possibly at multiple locations, i.e., co-allocation

« Transfer the application and if required input files to the sites an run it

» Return results

In a Grid system

1.

4.

It schedules the resources for higher utilization.
Complex as many machines with local policies involved.
Resources are either fixed or resources may join or leave randomly

One job scheduler or two job schedulers.

Types of Job Scheduling Infrastructures

There are two different types of scheduler systems namely,

e The local scheduler and

o The global scheduler (Meta-Scheduler).
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The local scheduler schedules the jobs within its own managed site. Typically, these
local schedulers cannot schedule jobs to some other available sites, rather it has localized

control. The most popular local schedulers are: Load Sharing Facility (LSF), the Open
Portable Batch System (PBS), Sun Grid Engine (SGE)and Condor.

On the other hand Meta-Scheduler manages jobs among available sites in the grid

environment. Although there are already available methods for Meat-scheduler, there 1s still a
need to improve the scheduling techniques because the number of jobs running on grid has

increased that cause the system to degrade.

Therefore, our focus is to optimize the efficiency of the Meta-Scheduler by providing
more enhanced techniques. The task of the scheduler is to dynamically identify and
characterize the available resources and to allocate the most appropriate resources for the
given jobs. The resources are typically heterogeneous, locally administered and accessible
under different local access policies and hence there is a issue in determining how to select
the best site for submitting the underlying jobs and how many jobs the system should be

submit each time.

Few other types of scheduler are,

Centralized: Single job scheduler on one instance, all information collected here.
Hierarchical: Two job schedulers, one at global and other at local Ievel.

Decentralized: No central instance, distributed schedulers interact and commit resources.
Centralized Job scheduling

Multi Site Scheduling

A job can be executed on more than one machine in parallel. As job-parts are running

on different machines, latency is important, different job-parts are started synchronously on

all machines.
Single Site Scheduling

A job is executed on a single parallel machine. This means that system boundaries are

not crossed. Efficient as communication inside a machine is fast.
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Advantages of centralized job scheduling

Efficiency: The scheduler is conceptually able to produce very efficient schedules, because

the central instance has all necessary information on the available resources. Centralization is

useful e.g. at a computing center, where all resources are used under the same objective. Due

to this fact even communication bottlenecks can be ignored.

Hierarchical job scheduling

Jobs are submitted to the central scheduler; in turn jobs are submitted to low level
machines. In addition, every machine uses a local job scheduler. Basically they are

centralized as there is one giobal instance.

Main advantage of this scheduling is that different policies can be used for global and

local scheduling. Meta-scheduler redirects submitted jobs to local schedulers for resources

based on some policy.

Decentralized Scheduling

No central instance is responsible. Distributed schedulers interact with each other and
decide the allocations for each job to be performed. Information about state of all systems is
not collected at a single point. Local job schedulers may have different but compatible

scheduling policies.
Advantages of Decentralized Scheduling
» No communication bottleneck.
e Scalable to greater exten';.
o Failure of single component doesn’t affect whole metasystem.

e Better fault tolerance and reliability than centralized systems which have no back-ups.

e Site-autonomy for scheduling can be achieved easily as the local schedulers can be

specialized on the needs of the resource provide or the resource itself.
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Disadvantages of Decentralized scheduling

e The lack of a global scheduler, which knows all job and system information at every

time instant, usually leads to sub-optimal schedules.

e The support for multi-site applications is rather difficult to achieve.

e As all parts of a parallel program must be active at the same time, the different
schedulers must synchronize the jobs and guarantec simultaneous execution

decentralized scheduling with direct communication.

e The local schedulers can send/receive jobs to/from other schedulers directly. Either
schedulers have a list of remote schedulers they can contact or there is a directory that
provides information of others systems. If a job start is not possible on the local

machine immediately, the local scheduler is searching for an alternative machine.

e If a system has been found, where an immediate start is possible, the job and all its

data is transferred to the other machine/scheduler.

e It can be parameterized which jobs are forwarded to another machine, this affects the

local queue. This can also affect the performance of some scheduling algorithms.

Scheduling onto the Grid is NP-Complete, so there is no best scheduling algorithm for
all grid computing systems. An alternative is to select an appropriate scheduling algorithm to
use in a given grid environment because of the characteristics of the tasks, machines and
network connectivity. Job scheduling is one of the key research area in grid computing. The
goal of scheduling is to achieve highest possible system throughput and to match the

application need with the available computing resources.

For running applications, resource management and job scheduling are the most
crucial problems in grid computing systems. In recent years, the researchers have proposed
several efficient scheduling algorithms that are used in grid computing to allocate grid

resources with a special emphasis on job scheduling. With further development of grid
technology, it is very likely that corporations, universities and public institutions will exploit

grids to enhance their computing infrastructure.
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Basic Grid Model

The basic grid model generally composed of a number of hosts, each composed of
several computational resources, which may be homogeneous or heterogeneous. The four

basic building blocks of grid model are user, resource broker, Grid Information Service (GIS)
and lastly resources. When user requires high speed execution, the job is submitted to the

broker in grid. Broker splits the job into various tasks and distributes to several resources
according to user’s requirements and availability of resources. GIS keeps the status
information of all resources which helps the broker for scheduling.

Grid Information Service

Details of Grid Resources

Resource status

. d Computational
e Grid Applicatio
-—

Computation
result

Grid resources
Resource Broker

h Basic Grid Model

Job scheduling algorithms

Job scheduling is the process of mapping jobs into specific available physical
resources, trying to minimize some cost function specified by the user. This is a NP-complete
problem and different heuristics may be used to reach an optimal or near optimal solution.

Jobs are submitted to scheduler either in batch/offline or online mode. Effective computation
and job scheduling is rapidly becoming one of the main challenges in grid computing and is

seen as being vital for its success.
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The state of the art: A review of traditional scheduling methodologies

Gnid scheduling could benefit from several traditional scheduling methodologies.
These methodologies have achieved successful results in a wide range of scheduling

applications. Therefore, it worth to start to investigate their performance in Grid scheduling.

These methodologies are described below.

1.4.1. Heuristics

A Heuristic is a technique that seeks good solutions at a reasonable computational
cost without being able to guarantee either feasibility or optimality, or even in many cases to
state how close to optimality a particular feasible solution is. Dispatching rules are example
of heuristics; they are used to select the next job to process on the resource whenever the
resource becomes free. Dispatch rules include EDD (Earliest Due Date) and FCFS ( First

Come First Served).
1.4.1.1. Meta-heuristics: tabu search, simulated annealing and evolutionary algorithms

Meta-heuristics are high-level heuristics that guide local search heuristics to escape
from local optima. Meta-heuristics such as tabu search, simulated annealing and genetic

algorithms improve the local search algorithms to escape local optima by either accepting
worse solutions, or by generating good starting solutions for the local search in a more

intelligent way than just providing random initial solutions

1.4.1.2. Knowledge-based systems

Knowledge-based systems focus on capturing the expertise or the experience of the
scheduling expert and an inference mechanism is used to derive conclusions or

recommendations regarding the scheduling problem.
1.4.1.3. Case-based reasoning

Case-Based Reasoning (CBR) is an artificial intelligence methodology in which a
new problem is solved by reusing knowledge and experience gained in solving previous
problems. A case contains a description of the problem, and its solution. Cases are stored in a
case base. The CBR process is divided into four phases: retrieval of the case most similar to
the new problem, reuse and revision of its solution, and inclusion of the new case in the case

base.
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1.4.1.4, Dynamic scheduling

Dynamic scheduling is the problem of scheduiing in dynamic environments. Grid
scheduling systems operate in dynamic environments subject to various unforeseen and
unplanned events that can happen at short notice. Such events include the breakdown of
computers, arrival of new jobs, processing times are subject to stochastic variations, etc. It
turns out that the performance of a schedule is very sensitive to these disturbances, and it is
difficult to execute a predictive schedule generated in advance. These real-time events not
only interrupt system operation but also upset the predictive schedule that was previously
established. Consequently the resulting schedule may neither be feasible nor nearly optimal

anymore. Dynamic scheduling is arguably of practical importance in Grid Scheduling to

generate robust schedules.

1.4.1.5. Fuzzy methodologies

Fuzzy systems consist of a variety of concepts and techniques for representing and
inferring knowledge that is imprecise, uncertain, or unreliable. Scheduling models based on
fuzzy methods have recently attracted interest among the scheduling research community. A
fuzzy set is a very general concept that extends the notion of a standard set defined by a
binary membership to accommodate gradual transitions through various degrees. Since the
original introduction of fuzzy sets by Lotfi Zadeh in 1965, the notion has been extended to a
complete framework of fuzzy methodology incorporating aspects such as fuzzy numbers,
fuzzy arithmetic and fuzzy relations, and fuzzy reasoning. Previous work has investigated the
representation of uncertainty in processing time and due time by fuzzy numbers, the
representation of flexible constraints by fuzzy measures, fuzzy job precedence relations or

machine breakdowns, but these have been in isolation.

Even once an SLA has been agreed, there are many ways in which it might need
renegotiation:(compute and other) resources may fail unpredictably, sub-jobs may fail due to
user error, more important (high-priority) jobs may be submitted, user-requirements might
change, etc. In a busy Grid environment, SLAs would be constantly being added, altered or
withdrawn, and hence scheduling would need to be a continual, dynamic and uncertain
process. Some preliminary work has been carried out to examine whether fuzzy methods can
be used in the evaluation of Grid performance contract violations, but this has been very

simplistic (based on 2 fuzzy rules with 2 variables).
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1.4.1.6. Agents and multi-agent systems

Recently, multi-agent systems are one of the most promising approaches to building
complex, robust, and cost-effective next-generation manufacturing scheduling systems
because of their autonomous, distributed and dynamic nature, and their robustness against
failures. An agent is a computer system that is situated in some environment, and that is
capable of flexible and autonomous action in this environment in order to meet its design
objectives. By flexible we mean that the system must be responsive, proactive, and social. A
Multi-Agent System is a system composed of a population of autenomous agents, which
interact with each other to reach common objectives, while simultaneously each agent

pursues individual objectives
Job Scheduling in a Heterogeneous Grid Environment

Computational grids have the potential for solving large-scale scientific problems
using heterogeneous and geographically distributed resources. However, a number of major

technical hurdles must be overcome before this potential can be realized. One problem that is

critical to effective utilization of computational grids is the efficient scheduling of jobs.

One of the primary goals of grid computing is to share access to geographically
distributed heterogeneous resources in a transparent manner. There will be many benefits
when this goal is realized, including the ability to execute applications whose computational
requirements exceed local resources and the reduction of job turnaround time through
workload balancing across multiple computing facilities. The development of computational
grids and the associated middleware has therefore been actively pursued in recent years.
However, many major technical (and political) hurdles stand in the way of realizing these
benefits. Although numerous researchers have proposed scheduling algorithms for parallel
architectures, the problem of scheduling jobs in a heterogeneous grid environment is

fundamentally different.
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Classification of Static Task-Scheduling algorithms

Static Task-Scheduling Algorithms

Heuristic Based

Guided Random Search Based

Genetic algorithms
Simulated Annealing
LocalSearchTechnique

List Scheduling Heuristics

Modified Critical Path
Dynamic Critical Path
Dynamic Level Scheduling
Mapping Heuristic

Task Duplication Heuristics

Critical path Fast Duplication
Duplication Scheduling Heuristic
Bottom-up Top-Down Heuristic
Duplication First and Reduction Next

Clustering Heuristics

Mobility Directed

Dominant Sequence Clustering

Linear Clustering
Optimisation criteria

Various optimisation criteria such as

e Minimization of overall computation time

s Minimization of the maximum waiting time

e Minimization of the cost to the user

e Maximization of the profit to vendor and user

e Maximization of resource utilization

e Minimization of broken SLA’s

can be taken as the objective function for scheduling jobs in grids.
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CHAPTER 2

'LITERATURE SURVEY

2.1. An Approach to Grid Scheduling by Using Condor-G Matchmaking Mechanism

Emir Imamagic, Branimir Radic, Dobrisa Dobrenic. In Journal of Computing and
Information Technology —CIT 14,2006, 4, pages 329-336

Grid middleware (GMW) is a set of services and protocols that enables seamless
integration of resources in grid. It provides a layer of abstraction that hides differences in
underlying technologies (e.g. computer clusters, storage managers, application servers).
Numerous standards are being defined for grid protocols and services majority of them within
Global Grid Forum (GGF) organization. Basic functionalities of grid middleware are
security, information, job and data management. Most widely used solutions that provide

these basic functionalities are Globus Toolkit and UNICORE.

Execution of jobs in grid consists of following activities

¢ Users submit their jobs described by using a description language to the grid
scheduler(1)

e Scheduler uses grid middlewares’ information systems to discover and

evaluate resources (2)

e Once the scheduler has defined where the job will be executed, execution is
started and managed by using available gridmiddleware components (e.g. job

and data management systems) (3).
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Figure 2.1 Grid Scheduling Architecture

Grid scheduling issues

Grid scheduling differentiates from classical cluster batch scheduling in many ways.
In case of grid, a scheduler does not have full control over resources, information about

resources is usuaily unreliable and stale, application behaviour is difficult to predict. Due to

the complexity of grid environment, grid scheduling raises numerous issues.

Today, there are many grid middlewares that provide basic set of functionalities. Some of
them are implemented in accordance with grid standards (e.g. Globus Toolkit 4.0) and some
have become de facto standards (e.g UNICORE and Globus Toolkit 2.4). Grid scheduling

system should be able to utilize as many grid middlewares as possible.

Few existing solutions for particular subsystems

e Security management: Globus Grid Security Infrastructure (GSI), UNICORE
Security, Virtual Organization Membership Service (VOMS)

e Information systems: Globus Monitoring and Discovery System (MDS) 2 and MDS
4, Ganglia, Network Weather Service.

¢ Job management: Globus Grid Resource Allocation and Management (GRAM) 2 and
GRAM), UNICORE, Condor

o Data management: GlobusGridFTP and Reliable FileTransfer (RFT) , UNICORE File

Management.
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Ability to refresh proxy certiﬁéates in environments that utilize Globus Toolkit as grid

middleware is preferred. The most widely used solution to this proble is using MyProxy

credential repository.

Grid scheduler should support various job fypes. Basic types are serial and parallel jobs.
Serial job is an application that demands single processor for execution. Parallel job requires

more than one processor for execution (typically MP1 applications). Some of the complex job

types are job arrays and workflows. Job array comprises multiple executions of the same job

(usually initialized with different parameters) and the workflow is a set of dependent tasks.
The functionalities of a job management system that should be supported are

o Check pointing — ability to store job’'s current state, which can be used

afterwards to reconstruct the job.

e Pre-emption — ability to evict one job from one resource, in favour of another

with higher priority.

o Job migration — ability to dynamically move active job from one resource to
another. '

 Rescheduling jobs on alternative resources. This ability is important in cases

when job does not execute property on specific resources.

‘e Fault tolerance — ability to automatically recover from job or resource failure.

o Advance reservation of resources for a specific period of time.

A scheduler should be capable of assigning priorities to jobs and resources. In
addition, resource owners should be able to define which jobs they prefer. In the same way,
users should be able to rank the resources and request specific features (e.g. libraries or

hardware capabilities).Users should be able to define custom scheduling algorithms. Besides

support for custom algorithm development, most common algorithms implementations

should be provided.

Scheduling system should make use of local job management system’s advance
reservations mechanism. By using advance reservations, grid execution system enables users
to run their applications in explicitly defined timeframe. In addition, by using advance
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reservations, parallel applications distributed over multiple clusters can be guaranteed

synchronous start-up of processes on all clusters.

A scheduler should take into account data location and movement (dataaware
scheduling) and characteristics of network links. An example of data-aware scheduling is
assigning jobs to resources closer to the data instead of moving large data over network.
System scalability is very important due to the nature of grid system. For example, grid
scheduling system should be capable of handling continuous and massive load. Condor-G

satisfy most of the features
Condor

Condor is a distributed environment developed at the University of Wisconsin,

designed for High Throughput Computing (HTC) and CPU harvesting. CPU harvesting is a
process of exploiting nondedicated computers (e.g. desktop computers) when they are not

used. Condor architecture as shown below.

Condor
users

Figure 2.2 Condor architecture

Heart of the system is Condor Matchmaker. Users describe their applications with
ClassAds language and submit them to Matchmaker. ClassAds allows users to define custom
attributes for resources and jobs. On the other side, resources publish information to
Matchmaker. Condor Matchmaker then matches job requests with available resources.
Condor provides numerous advanced functionalities, such as job arrays and workflows

support, checkpointing, job migration, rescheduling, fault recovery. It enables users to define
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resource requirements and rank resources and mechanism or transferring files to/from remote

machines.

Although utilized for integration of resources, Condor is intended to be used in
smaller scale environments and should be seen more as a local job management system than a

grid middleware.

Condor-G

Condor-G is the Condor extension that enables using Condor tools for submitting jobs
to grid. Currently supported gridmiddlewares are: Globus Toolkit versions 2.4, 3 and 4,
UNICORE and NorduGrid. Additionally, Condor-G can useMyProxy server for storing user
credentials in case of long running jobs. However, Condor-G cannot schedule jobs; it simply
executes the job on remote resource by using grid middleware. Condor-G Matchmaking
mechanism extends Condor-G with the ability to use matchmaking algorithm to schedule jobs
to grid. Condor-G Matchmaking inherits almost all advantages of standard Condor system
and Condor- G. It enables job scheduling based on complex job requirements. For example, a

user can easily define specific requirements, such as storage space required, required

libraries, etc. In addition, a user can prefer specific set of resources to others, by giving them
a higher rank. Furthermore, using multiple Condor-G Matchmakers are supported. This
feature enables distribution of workload, which is important for achieving greater scalability

of the system.

One of the disadvantages of Condor-G Matchmaking is lack of support for parallel
jobs. In current version users can submit parailel jobs, however Condor-G Matchmaker will
not be aware of jobs parallelism. It will simply assume that it is dealing with serial jobs.
Furthermore, there is no implicit data-aware scheduling, although users can explicitly define
resources, closer to input data are preferred. Also, in current version, it is not possible to
define custom scheduling algorithm. Another issue is that Condor-G Matchmaking lacks
integration with grid information systems. In order to use Condor-G Matchmaking, one has to
develop a custom system that will provide information about resources to Condor-G
Matchmaker.
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Figure 2.3 Condor-G matchmaking in CRO-Grid (Croatian Grid)

1. The user describes the job with ClassAds as in standard Condor system and uses

Condor tools to submit it.

2. Condor-G matchmaker assigns set of grid resources to the job for execution. Condor-

G utilizes appropriate underlying grid middleware components to execute the job.

3. If needed, Condor-G enables refreshing of user’s certificate by using MyProxy server.
Our User interface component enables the user to retrieve additional, grid-specific

information about the job.

2.2. Heuristic Techniques for Job Scheduling

Job scheduling is a fundamental issue in achieving high performance in grid
computing systems. However, it is a big challenge for efficient scheduling algorithm design
and implementation. Unlike scheduling problems in conventional distributed systems, this
problem is much more complex as new features of Grid systems such as its dynamic nature.
And the high degree of heterogeneity of jobs and resources must be tackled. Job scheduling

in computational grids is a multi-objective optimization problem.
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Scheduling Algorithms

Genetic algorithms (GA) maintain a pool of solutions rather than just one. The process of

finding superior solutions mimics that of evolution, with solutions being combined or

mutated to alter the pool of solutions, with solutions of inferior quality being discarded.

Simulated annealing (SA) is a related global optimization technique which traverses the
search space by generating neighboring solutions of the current solution. A superior neighbor
is always accepted. An inferior neighbor is accepted probabilistically based on the difference
in quality and a temperature parameter. The temperature parameter is modified as the

algorithm progresses to alter the nature of the search.

Tabu search (TS) is similar to simulated annealing in that both traverse the solution space by
testing mutations of an individual solution. While simulated annealing generates only one

mutated solution, tabu search generates many mutated solutions and moves to the solution
with the lowest fitness of those generated. To prevent cycling and encourage greater
movement through the solution space, a tabu list is maintained of partial or complete
solutions. It is forbidden to move to a solution that contains elements of the tabu list, which is

updated as the solution traverses the solution space.

Artificial immune system (AIS) algorithms are modeled on vertebrate immune systems. It is
a source of constant inspiration to various computing systems. It is concerned with
abstracting the structure and function of the immune system to computational systems, and
investigating the application of these systems towards solving computational problems from

mathematics, engineering, and information technology

Particle Swarm Optimisation (PSO), a Swarm intelligence method. Particle Swarm
Optimization in its basic form is best suited for continuous a variable, that is the objective

function can be evaluated for even the tiniest increment. The method has been adapted as a

binary PSO to also optimize binary variables which take only one of two values.

Ant Colony Optimization (ACO), a Swarm intelligence method. Ant Colony optimization
algorithms have been applied to many combinatorial optimization problems, ranging from

quadratic assignment to fold protein or routing vehicles and a lot of derived methods have

been adapted to dynamic problems in real variables, stochastic problems, multi-targets and
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parallel implementations. It has also been used to produce near-optimal solutions to the

travelling salesman problem.

ACO for Grid scheduling

Ant Colony algorithm is a new heuristic algorithm; it is based on the behaviour of
ants. When the blind insects, such as ants look for food, every moving ant lays the
pheromone on the path, then the pheromone on the shorter path will be increased quickly, the
quantity of the pheromone on every path will effect the possibility of other ants to select path.
At last all the ants will choose the shortest path.

Ant algorithm has been successfully used to solve many NP-Problems. The algorithm
has inherent parallelism and we can validate its scalability. So it’s obvious that ant colony
algorithm is suitable to be used in Grid computing task scheduling. The factors that affects
the state of resources can be described by pheromone and we can get the predictive results

very simple and quickly.
Steps in ACO:

i. The initial pheromone value of each resource for each job is equal to the pheromone
indicator. The pheromone indicator of each resource for each job is calculated by

adding the estimated transmission time and execution time of a given job when

assigned to this resource.

2. The estimated transmission time can be easily determined by My/Bandwidth; where M;
is the size of a given job; and Bandwidth; is the bandwidth available between the

scheduler and the resource.

3. The other parameter, job execution time, is hard to predict. Depending on the type of
programs, many methods can be used to estimate the program execution time. The
method used here is generation of Expected Time to Compute (ETC) matrix, E[i,]]

with the pheromone indicator defined by
PI ; = [My/Bandwidth; +Ty/CPU_speed;]”
Where Pl j is the pheromone indicatore for job i assigned to resource J,

M, is the size of a given job 1,

32



T ; is the CPU time needed of job i,
CPU_speed; and Bandwidth; are the status of the resource.

4. The pheromone indicator tells that when a job is assigned to a resource, we consider

the resource status, the size of the jobs and the program execution time in order to
select a suitable resource for execution. The larger the value of PI j is, the more

efficient it is for resource j to execute this job i.

Assume that there are n resources and m jobs. We have the PI matrix as follows

PI = Pl,, Plp ... Pl

Plm Plm ... Pl g

5. In each iteration, we need to select the largest entry from the matrix. Assuming PI ;is
selected then job i assigned to a resource j; we apply the formula to the resource
selected for each unassigned jobs in the PI matrix. This step is done to recalculate the
entire PI matrix. When a job is completed we apply the formula along with which we
multiply (1-P;) further where 1> P; =0

Ant colony optimization algorithms have been applied to many combinatorial
optimization problems, ranging from quadratic assignment to fold protein or routing vehicles
and a lot of derived methods have been adapted to dynamic problems in real variables,

stochastic problems, multi-targets and parailel implementations. It has also been used to

produce near-optimal solutions to the travelling salesman problem.

They have an advantage over simulated annealing and genetic algorithm approaches
of similar problems when the graph may change dynamically; the ant colony algorithm can
be run continuously and adapt to changes in real time. This is of interest in network routing

and urban transportation systems.
2.3 Existing Algorithms

There are various algorithms proposed in literature for scheduling jobs in grids such
as, Min-Min, Max-Min, MCT (Minimum Completion Time) and MET (Minimum Execution

Time) etc.
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2.3.1. MET (Minimum Execution Time)

MET assigns each task to the resource that performs it in the least amount of

execution time, no matter whether this resource is available or not at that time. This heuristic
can cause a severe load imbalance across the resources. However, this is one of the heuristics

that is implemented in SmartNet.

2.3.2. MCT (minimum Completion Time)

MCT assigns each task to the resource which obtains earliest completion time for that
task. This causes some tasks to be assigned to resources that do not have minimum execution

time for them, This heuristic is also implemented in SmartNet.

2.3.3. Min — Min algorithm

Min-Min begins with the set MT of all unassigned tasks. It has two phases. In the first
phase, the set of minimum expected completion time (such that task has the earliest expected
completion time on the corresponding machine) for each task in MT is found. In the second
phaée, the task with the overall minimum expected completion time from MT is chosen and
assigned to the corresponding resource. Then this task is removed from MT and the process 18

repeated until all tasks in the MT are mapped.
2.3.4 Max- Min algorithm

Max-Min is very similar to Min-Min, except in phase 2. Max-Min assigns task with

maximum expected completion time to the corresponding resource, in phase 2.
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CHAPTER 3

METHODOLOGY

3.1. Overview of ACO

General ant behaviour:

The ants in an ant colony go in search of food. It secretes a pheromone fluid in its
path. When any one of the ants finds the food resource, the other ants follow the ant’s path by
its pheromone. When another ant finds another path which is shorter that this path, more
pheromone is secreted in that path than any other path and every ant follows that shorter path

and the pheromone in the other parts gets evaporated.

Figure 3.1 General ant behaviour

3.2 Architecture of the System

The clients use the portal interface for job execution. The Network Weather Service
reports system information to the Information server periodically. The job scheduler selects
the most appropriate resources to execute the request according to the proposed ACO

algorithm. Finally the results will be sent back to the user.
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Figure 3.2 System Architecture
Ant system —Grid System Mapping:
In order to map the ant system to the grid system

1. Anant - an ant in the ant system is a job in the grid system

2. Pheromone - pheromone value on a path in the ant system is equivalent for a

weight for the resource in the grid system

A resource with a larger weight value means the resources has a better computing power. The
scheduler collects data from the information server and uses the data to calculate a weight
value of resource. The (weight) of each resource is stored in the scheduler and the scheduler

uses it as a parameter for ACO algorithm and sends the job to the selected resource.
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3.3. Problem Definition

Given a set of tasks(n) and a set of heterogeneous machines(m) such that( m<n), the
main objective is to use ACO approach to allocate tasks to the machines based on the QoS
satisfaction parameters, so that the overall completion time (makespan) is minimized and the

resource or the machine utilization is maximized.

3.4, ETC Matrix Generation

It is assumed that an accurate estimate of the expected execution time for each task on
each resource is known prior to execution and contained within an Expected Time to
Compute (ETC) matrix. One row of the ETC matrix contains the estimated execution times
for a given task on each machine. Similarly, one column of the ETC matrix consists of the
estimated execution times of a given machine for each task in the meta-task. Thus, for an
arbitrary task t, and an arbitrary machine m, ETC (t;, m) is the estimated execution time of t;

on m.

For cases when inter-machine communications are required. ETC (t;, m;) could be
assumed to include the time to move the executables and data associated with task t, from
their known source to machine m. For cases when it is impossible to execute task t, on
machine m; (e.g., if specialized hardware is needed), the value of ETC (t;, m) can be set to
infinity, or some other arbitrary value. For this study , it is assumed that there are inter-task
communication each task it can execute on each machine, and estimated expected execution
time of each task on each machine following method are known. The assumption that these
estimated expected execution times are known is commonly made when studying mapping

heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used were
generated using the following method. Initially, a t x 1 baseline column vector, W, of ﬂoatiﬁg
point values is created. The baseline column vector is generated by repeatedly selecting
random numbers x| and multiplying them by a constant ‘a’ letting W () = (xw x a) for 0=i<
t. Next, the rows of the ETC matrix are constructed. Each element ETC (t;, my) in row 1 of the
ETC matrix is created by taking the baseline value, W (i), and multiplying it by a vector X
(§). The vector X (§) = (x4 x b) is created similar to the way W (i) is created. Each row i of the
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ETC matrix can then be described as ETC (;, mj) = B (i) x X (j) for 0 = j <m. (The baseline
column itself does not appear in the final ETC matrix). This process is repeated for each row

until the t x m ETC matrix is full.

The variation along a column of an ETC matrix is referred to as the task
heterogeneity. This is the degree to which the task execution times vary for a given machine.
Task heterogeneity was varied by changing the value of constant ‘a’ used to multiply the
elements of vector W (i). The variation along a row is referred to as the machine
heterogeneity; this is the degree to which the machine execution times vary for a given task
[4].Machine heterogeneity was varied by changing the value of constant ‘b’ used to multiply
the elements of vector X (j). The ranges were chosen in such a way that there is less

variability across execution times for different tasks on a given machine than the execution

time for a single task across different machines.

To further vary the ETC matrix in an attempt to capture more aspects of realistic
mapping situations. Different ETC matrix consistencies were used. An ETC matrix is said to
be consistent if whenever a machine m; executes any task t; faster than machine my , then
machine m; executes all the task faster than my . Consistent matrices were generated by
sorting each row of the ETC matrix independently, with machine mo always being the fastest
and machine mgy.1); the slowest. In contrast: inconsistent matrices characterize the situation
where machine m ; may be faster than the machine my for some tasks, may be slower for
others. These matrices are left in the unordered, random state in which they were generated
(i.e., no consistence is enforced). Partially-consistent matrices are inconsistent matrices that
include a consistent sub matrix. For the partially-consistent matrices used here , the row
elements in column positions {0,2,4,...} of row I are extracted sorted, and replaced in order ,
while the row elements in column positions {1,3,5...} remain unordered (i.e., the even

columns are consistent and odd columns are in general inconsistent).

A system’s machine heterogeneity is based on a combination of the machine
heterogeneities for all tasks (rows). A system comprised mainly of workstations of similar
capabilities can be said to have “low” machine heterogeneity. A system consisting of
diversely capable machines, ¢.g., a collection of SMP’s, workstations, and supercomputers,
may be said to have “high” machine heterogeneity. A system’s task heterogeneity is based on

a combination of the task heterogeneities for all machines (columns). “High” task
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heterogeneity may occur when the computational needs of the tasks vary greatly, e.g., when

both time-consuming simulations and fast compilations of small programs are performed.

“Low” task heterogeneity may typically be seen in the jobs submitted by users solving
problems of similar complexity (and hence have similar Execution times on 2 given
machine). Based on the above idea, four categories were proposed for the ETC matrix in : (a)
high task heterogeneity and high machine heterogeneity, (b) high task heterogeneity and low
machine heterogeneity, (c) low task heterogeneity and high machine heterogeneity, and (d)

low task Heterogeneity and low machine heterogeneity.

Sample ETC Matrix (for 8 Tasks and 8 Machines — Low Task Low Machine

Heterogeneity Inconsistent)
1.097707 2.989389 3.004404 0.68733  2.280924 2.081497 2.415987 0.738158
0.642505 1.749737 1.758525 0.402305 1335061 1.218333 1.414115 0.432056
1.013353 2.759668 2.773529 0.634512 2.105646 1.921543 2230329 0.681434
3.517587 9.579454 9.627568 2.20254 7.30919  6.670126 7.741994 2.365418
0.162561 0.442702 0.444925 0.101787 0.337784 0.308251 0.357786 0.109315
1.55419  4.232531 4.253789 0.973158 3.22945 2.94709 3.420678 1.045122
1.74766  4.759408 4.783312 1.094299 3.631461 3.313952 3.846493 1.175222
3.570314 9.723048 9.771883 2.235556 7.418752 6.770109 7.858045 2.400874

3.5. Weighted QoS Ant Colony Optimisation algorithm (W QACO)

WQACO inherits the basic ideas from ACO algorithm to minimise makespan of jobs
in grid environment and it also considers the job allocation to a particular resource satisfies

the QoS factors such as cost, RAM and deadline.

3.5.1. Formulation of WQACO

Generally, the WQACO is described as follows. There are n tasks to be processed by m

machines where n>m. The following assumptions are made

e All jobs are independent of each other and no priorities are among them.
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e All machines and jobs are simultaneously available at the initial time

e One machine can only process an operation of a job at the same time and the

processing cannot be interrupted before an operation is completed.

e The transportation time of a job from one machine to another is negligible and the

machine setup time for an operation is included in its processing time
3.5.2. WQACO Definition and Methodology

The pheromone indicator.of the ant system represents the weight of resource in the
grid system, which is the capability of the resource; the value represents the QoS satisfaction
of the resource. A resource with a larger weight value means that the resource has better QoS

satisfaction.

The scheduler or resource broker collects data from GIS or the information server and
uses the data to calculate the weight value of a resource. The pheromone (weight) value is

stored in the scheduler and the scheduler uses it as the parameter of WQACO algorithm. At

last, the scheduler selects a resource by scheduling algorithm and sends the task to the

selected resource.

Let us assume n tasks are scheduled in m machines where n>m. The ETC (Expected
Time to Compute) matrix is of form, n x m, where ETC;; represents accurate estimate of

expected execution time for each task; on machine;.

Machine Capability matrix for each machine;, indicates the QoS factors associated with

machine; for each job;. Let k indicates the number of QoS factors. Hence the machine

capability matrix for a machine; will be of the order n x k

'QO:‘;n Qos‘iz--- Qo§1k

(MachineCapabilityu);=| ¢05n2 @05nz2 - QoS

For each machine the MachineCapability;, values are calculated. Job requirements matrix

represents the user requirements of QoS factors for executing the particular job.

Qo5 QD.S'}-‘. QO-?ii:

JobRequirementsy= \@05n1 Q05nz ~ Q05nk
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Since we manipulate multiple QoS factors, we assign a guided probability value for each

QoS factor. Hence,

W =< Wy.. Wy = 0 5%’;; £1

Vt’izl

4
=1

We introduce satisfy operator 7 . Rj? Ji means that the resource Rj can satisfy the job J1

and guarantees QoS parameters.

k
Qos-jobﬂequ:remaﬂ:si
RimuJi = Z TachimeCasabiin X W1 2 1
= o5 g

(k = the number of QoS parameters) --——--1

If all the QoS factors are satisfied then, the initial pheromone indicator value is
calculated based on the QoS factor values in machine capability and Job requirements matrix

and guided probability value as,

PI i QOS,’obquuirsms-n:si w 1

= i e * 1) L3 e

“ QOSM achineCapability; 1 ETC,, + MachineAvailability;
=1 Y

Where PI; indicates the pheromone indicator value for job; assigned to maching;.
JobRequirements; represents the value of user expectation of QoS factor, (Cost, RAM and
deadline) for each job;. (MachineCapability)x represents the value of machine capability
matrix, for the particular machine j, the MachineCapability; indicates the QoSfactor; of
machine for executing job;, Hence for m jobs and n machines, PI matrix will be of the order

(n x m).

In each iteration we select the largest entry from the matrix, for instance if PI 1, is the
largest entry in the matrix and if no other job; is allocated to the machine; already, then the
job i is allocated to machine j else the job is allocated to the next machine that has the next
highest pheromone value. After a job is allocated to a machine a local pheromone (column)

update is made. The local pheromone update is given by the formula,
PI; =(1-7) PI; + 2. U/N, - 3

Where PI; indicates the PI values on the machine j where the job is allocated. ? indicates

the evaporation rate of the pheromone (0<?<1) , N; indicates the number of resources or
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machines in the grid. Local update is made in order avoid same machine to be over loaded

with multiple jobs and to avoid stagnation.

After the job is completed on the machine, global update is made to the entire PI matrix.

The PI matrix is modified with an update function based on the availability value of the

machine; after completing the jobi,

PImodiﬁed=(1"?)PIinitia]* 1/MachineAvailability; -4
3.5.3. Algorithm
1. Input: ETC matrix of sizenxm

Job Requirement matrix, Machine capability matrix for K QoS parameters

2 Method:  First check for the QoS Requirement satisfaction for all K QoS parameters using the

equation I.
Calculate the initial pheromone value using the equation 2

Select the machine which has highest pheromone value and QoS satisfied Assign  that
machine to the corresponding job.
Update the local pheromone value using the equation 3

After completion of the job update the global pheromone  value using the

equation 4

3. Repeat the step 2 until all jobs are assigned
4. Calculate the makespan
5. End

3.6. Overview of Genetic Algorithm

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing
area of artificial intelligence. GAs are excellent for all tasks requiring optimization and is
highly effective in any situation where many inputs (variables) interact to produce a large
number of possible outputs (solutions). It can quickly scan a vast solution set. Genetic
algorithms are a class of search techniques inspired from the biological process of evolution
by means of natural selection. GA is an iterative procedure that consists of a constant-size
population of individuals, each one represented by a finite string of symbols, known as the
genome, encoding a possible solution in a given problem space. This space, referred to as the
search space, comprises all possible solutions to the problem at hand. Generally speaking, the

genetic algorithm is applied to spaces which are too large to be exhaustively searched.
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A genetic algorithm (GA) is an iterative search procedure widely used in solving
optimization problems, motivated by biclogical models of evolution. In each iteration, a
population of candidate solutions is maintained. Genetic operators such as mutation and
crossover are applied to evolve the solutions and to find the good solutions that have a high

probability to survive for the next iteration.

Start with a set of possible solutions (represented by chromosomes) the population.
Solutions from one population are taken and used to form a new population. This is

motivated by a hope that the new population will be better than the old one. New solutions

(offspring) are selected according to their fitness ~ the more suitable they are the more
chances they have to reproduce by mating (crossover). Repeat the cycle until some condition

is satisfied.
3.6.1. Steps in Genetic Algorithm
o Generate a random population of n chromosomes which are suitable solutions.

e TFEstablish a method to evaluate the fitness f(x) of each chromosome x in the

population

e Create a new population by repeating the following steps until the new population is

complete

o Selection — select from the population according to some fitness scheme.

o Crossover — New offspring formed by a crossover with the parents.

o Mutation — With a mutation probability mutate new offspring at each locus

(position in chromosome).

o Use the newly generated population for a further run of algorithm
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3.7. Hybridization of Genetic Algorithm with ACO as initial seed

In our hybrid genetic algorithm, the steps followed are as

3.7.1. Chromosome Presentation

Chromosome presentation or Order Vector (OV) [11] of length equal to n, (The
number of tasks to be scheduled) composed of collection of genes. The efficiency of GA
depends on chromosome presentation. In this paper each gene represents the job;, executed on

resource; and the corresponding ETC;;
OV[i] =]
3.7.2. Population Initialization, cross over and mutation

Initial seeds are generated based on the WQACO and Max-Min heuristic. Single point
cross over process is applied with the probability uc=0.9 for the initial seeds in order to get

the global minimum makespan. The resulting chromosomes undergoes mutation process with

probability ;= 0.05 in order to avoid locally minimum makespan.
3.7.3. Selection with Fitness Function

For the selection process, we introduce a criterion called QoS factors satisfaction.
Resource Capability matrix for each resource;, indicates the QoS factors associated with

resource; for each job;. Hence the resource capability matrix for a resource; is given by,
Q0S1, Q0S1z Q05ix

(ResourceCapabilityy); = {@05x: Q05xz {05 -1

n indicates the number of jobs and k indicates the number of QoS factors
Job requirements matrix represents the user requirements of QoS factors for executing the

particular job.

"-7".511 Qo?u QO{Sm

JobRequirements; = {@05r1 Q05x5 Q05w -2

A resource is said to be satisfying a QoS Parameter for a particular job only when,
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Qo < ResourceCapability;;

Qosjobkaquiremants“ >1 -3
Let w indicates the guided probability value for each QoS factor,
4
w=<uy..uy = 0Ew, £1 ZW:' =1
=1 -4
The QoS Satisfaction matrix will be generated based on the formula,
L3 Qogfr:s}cﬂsq-uiramsn Ts;
MackinaCapabiiity . X W
] . _ 3 J;
QoSSatisfactiony= < i=1 \€0
(if egn 3 is satisfied for all the QoS factors)
Otherwise
—5

In each chromosome, for each job; we identify the resource; that has highest QoS satisfaction

and replace the gene value for that job; pointing to that particular resource; and the makespan

is calculated.

Fitness function is given by,

1
f(x) = makespan -6

The top 2 chromosomes that have the highest f(x) are given as the initial seeds to the next
step in the evolutionary process until the chromosomes converge. After this evolutionary

process, the makespan and resource utilisation factor for WQACO and Hybrid GA were

calculated and the results are plotted in the graph.
3.7.4. Hybrid GA algorithm

1. Input: ETC matrix of size n x m, Job Requirement matrix, Resource capability matrix for k

QoS parameters, initial seed (orderVector) of size n from Min-Min and Min-Max algorithm.
Constants: cross over probability p.=0.9, mutation probability pm=0.05

2. Method:

Stepl: Perform crossover process to the initial seeds based on the crossover probability value.
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Step2: Perform mutation process to each of the seeds thus obtained from stepl based on the
mutation probability value. After mutation process, each of the seed undergoes selection and

fitness function

Step3: For the selection criterion, generate the QoS satisfaction matrix as given in the
equation 5. From the QoS satisfaction matrix for each job; identify a resource; that has the
highest QoS satisfaction value and allocate the particular job; to that resource;. If all the
resources didn’t satisfy QoS for a particular job, then we assign that job to the resource that

has the lowest ETC for that job. For each seed the makespan is calculated.

Step4: Fitness function, f(x) as given in equation 6 is calculated for each seed and the top 2

order vectors will be given to the step] as a initial seed and the process is repeated until the

seeds converges.
Step3: calculate the makespan.

Step6: End
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CHAPTER 4

EXPERIMENTATION RESULTS

The experimentation is-done with 12 different ETCs based on the combinations of

heterogeneity of task (low, high), heterogeneity of machines (low, high) and consistency

(consistent, inconsistent and partial) and are repeated by varying the number of tasks such as

200,300,400 etc and the makespan and the resource utilization factors are calculated for each

of them and they are plotted in the graph as shown below.
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Low Task Low Machine Heterogeneity - Partially
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Low Task High Machine Heterogeneity - Inconsistent
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High Task Low Machine Heterogeneity - Consistent
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High Task Low Machine Heterogeneity - Partial
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Resource Utilisation Graphs:
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Low Task Low Machine Heterogeneity - Partial
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LowTask High Machine Heterogeneity - Inconsistent

100 -
90
80
=
g 70
] u Min-Min
= 60
% 50 - uMCT
& & Max-Min
E 40
5 20 o MET
20 mGA
10 - m ANt
0
200 300 400 512
No. of Tasks
Low Task High Machine Heterogeneity - Partial
Consistent
100
90
= 80
£
2 70 w Min-Min
z MCT
= 5o "
E 40 B Max-Min
-]
3 30 W MET
20 »GA
10 W ANt
0
200 300 400 512
No. of Tasks

55



High Task Low Machine Heterogeneity - Consistent
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High Task Low Machine Heterogeneity - Partial
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

Experimenta) studies show that in all combinations of heterogeneity of task and
machine, our proposed WQACQ algorithm gives better results in terms of makespan and
resource utjlization when compared to the existing algorithms. In this paper, the proposed

algorithm chooses the best suited resource which satisfies the user requirement and also

completes the task with minimum expected time to compute.
5.2. Future Work

In future, we will change the QoS parameters and also the selection function with
any other parameters which we don’t take into account on our definitions. We will also
improve upon the cross over operation to get better performance in makespan reduction.
We will also experiment the genetic algorithm with different combinations of heuristics as

initial seeds.
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CHAPTER 6

APPENDIX

6.1. SAMPLE SOURCE CODE

import min.*;

import max.*;

import ant.*;

import java.io.*;

import java.util.*;

import java.io.]JOException;
public class input

{

public static void main(String args[])throws Exception
{
int options;
DatalnputStream in=new DatalnputStream (System.in);
System.out.print("ENTER NO. OF no_tasks:");
int no_no_tasks=Integer.parseInt(in.readLine());
calc c=new calc(no_no_tasks);
int i=0;
do

{
System.out.println("1-->low low 2-->low high 3-->high low 4-->high

high 5-->Exit");
System.out.println("Enter the option:");
options=Integer.parseInt(in.readLine());
for(i=0;i<100;i++)
{

input.options(c,options,no_no_tasks,i);

}

}while(true),
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static void options(calc c,int options,int no_tasks,int i) throws Exception
{

DatalnputStream in=new DatalnputStream (System.in);

double task[][]=new double[512]{3];

double task1[][J=new double[512][3];

double task2[][]=new double[512][3];

double temp[][]=new double[512][17];

double trmp[][][J=new double[16][512](3];

double trmp1[1[1[}=new double[512][17](3];

double trmp2[][1[}=new @9ub16[512][17] [3];

double mach1[][J[J=new double[16](512][3];

double 11{]{]=new double[512][17];

double llsort[j[J=new double[512][17];

double llpart[][]=new double[512][17];

double 1h[][]=new double[512][17];

double lhsort[][J=new double[512][17];

double hpart[][]=new double[512][17];

double hi[]{]=new double{512][17];

double hlsort[][]=new double[512][17];

double hlpart[][J=new double[512][17];

double hh[][}=new double[512][17];

double hhsort[][]=new double[512][17];

double hhpart[][]=new double[512][17];

double min=0.0,avg=0.0;

double temp4{l=new double[819200];

double sblow=5.00,sbhigh=10.00,srlow=>5.00,srhigh=1 0.00;

int no_machines=16;

int antordervector[]J=new int[512];

int antordervectorl[]=new int[512];

int antordervector2{]=new int[512];

ga gal=new ga(});



min mini=new min(};

max max =new max();

MET meti=new MET(),

met mctl=new mct();

antpi antl=new antpi(};

int num;

char type;

String mac=null tas=null,llinc=null,minms=null,maxms=null;
String macl=null,tas1=null,llc=null,minms] =null,maxms1=null;
String ma02=nu11,tas2=null,11p=nu1l,minm32=null,maxm32=null;
String gafile=null,gafile]1=null,gafile2=null;

String metms=null, metms1=null,metms2=null;

String mctms=null,mctms] =null,mctms2=null;

String metutil=null,metutill =nuil,metutil2=null;

String mctutil=null, mctutil 1=null, mctutil2=null;

String minutil=null,minutil1 =null,minutil2=null;

String maxutil=null,maxutil1=null,maxutil2=null;

String gautil=null,gautil1=null,gautil2=null;

String ip=nu11,pi=null,assign=nu11,antuti=nu11,antmakespan=nu11,piﬁnal=null;
String ipl=null,pil=null,assi gnl-—“null,antutil=null,antmakespan1=null,piﬁnal 1=null;
String ip2=nu11,pi2=nu11,assigr12=null,antut12=nu11,antmakespan2=null,piﬁna12=nu11;

switch(options)

{

case 1:

/*.. LOW TASK AND LOW MACHINE HETEROGENITY...*/
//System.out. printin("INCONSISTENT MATRIX");

mac="d:\\hybrid\\case] \\inconsistent\\machinecapability.txt";
tas="d:\\hybrid\\case1\\inconsistent\\taskrequirement.{xt";
lline="d:\\hybrid\\case1\\inconsistent\\inconsistentetc.txt";
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uti);

minms="d:\\hybrid\\case1\\inconsistent\\minmakespan.txt";
minutil="d:\\hybrid\\case1\\inconsistent\\minutilisation.txt“;
maxutil="d:\hybrid\\case] \\inconsistent\\maxutilisation.txt";
maxms="d:\t\hybrid\case1\\inconsistent\\maxmakespan.txt";
metms="d:\\hybrid\\case1\\inconsistent\\metmakespan.txt";
metutil="d:\hybrid\\case1\\inconsistent\\metutilisation.txt";
metms="d:\\hybrid\\case1\\inconsi stent\\mctmakespan.txt”;
metutil="d:\hybrid\\case1\\inconsistenf\\mctutilisation.txt";
gaﬁle="d:,\\hybrid\\casel\\inconsistent\\gamakespan.txt”;

gautil="d:\\hybrid\\case1\\inconsistent\\gautilization.txt";

antmakespan="d:\\hybrid\\casel \\inconsistent\\antmakespan.txt",
antuti="d:\\hybrid\\case1\\inconsistent\\antuti.txt";
ip="d:\\hybrid\\case1\\inconsistent\\initpi.txt";
pi="d:\hybrid\\case1\\inconsistent\\pi.txt";
assign="d:\\hybrid\\case1\\inconsistent\\assign.txt";
pifinal="d:\hybrid\\casel\\inconsistent\\pifinal.txt";

ll=c.matrix(min,sblow,srlow};

c.display(1L,llinc,1);

task=c.initialise(temp);

c.display1(task,tas,i);

trmp=c.machinecap(mach1,11);

c.display2(trmp,mac,i);
min!.minmin(ll,no_tasks,minms,minutil);
max1.maxmin(ll,no_tasks,maxms,maxutil);

metl .metcalc(ll,no_tasks,no__rnachines,metrns,metutil);

mctl .mctcalc(ll,no_tasks,no_machines,mctms,mctutil);

antordervector=ant1.piinit(trmp,task,1L,no_tasks,ip,pi,assi gn,antmakespan,pifinal,i,ant
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gal.gacalo(trmp,task,ll,no_tasks,no_machines,i, gafile,gautil,antordervector);

//System.out.println("Consistent matrix: "H);
macl="d:\\hybrid\\casel \\consistent\\machinecapability.txt";
tas1="d:\\hybrid\\casel\\consistent\\taskrequirement.txt";
lle="d:\hybrid\\case]\\consistent\'consistentetc.txt";

minmslﬁ"d:\\hybrid\\casel\\consistent\\minmakespan.txt“;

maxms]="d:\\hybrid\\case1\\consistent\\imaxmakespan.txt";
minutill="d:\\hybrid\\case1\\consistent\\minutilisation. txt";
maxutil1="d:\\hybrid\\case1\\consistent\\maxutilisation.txt";
metms1="d:\\hybrid\\casel\\consistent\\metmakespan.txt";
metutill="d:\\hybrid\\case]1\\consistent\\metutilisation.txt":
metms]="d:\\hybrid\\case1\\consistent\\mctmakespan.txt";
mctutil1="d:\\hybrid\\case1\\consistent\\mctutilisation. txt":
gafilel ="d:\\hybrid\\case1\\consistent\\gamakespan. txt";
gautil1="d:\\hybrid\\case1\\consistent\\gautilization.txt";

antmakespanl="d:\\hybrid\\case1\\consistent\\antmakespan.txt";
antutil="d:\\hybrid\\case 1\\consistent\\antuti.txt";
ip1="d:\\hybrid\\casel \\consistent\\initpi.txt";
pil="d:\\hybrid\\case1\\consistent\\pi.txt";
assignl="d:\\hybrid\\case1\\consistent\\assign.txt";
pifinal1="d:\\hybrid\\case1\\consistent\\pifinal.txt";

llsort=c.sort(Il);

c.display(lisort,lic,i);

task1=c.initialise(temp);
c.displayl(taskl,tasl,i);
trmpl=c.machinecap(machl,ll};
c.display2(trmpl,macl,i);
mini.minmin(llsort,no_tasks,minms1,minutil 1);

max1l.maxmin(llsort,no_tasks,maxms1,maxutill);
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met1.metcalc(llsort,no_tasks,no_machines,metms1,metutil1);

mctl.mctcale(lisort,no_tasks,no_machines,mctms] ;mctutill);

antordervectori=ant1.piinit(trmp1,task1,llsort,no_tasks,ip1,pil,assignl ,antmakespanl
,pifinall,iantutil);

gal.gacalc(trmpl,taskl Alsort,no_tasks,no_machines,i,gafilel,gautill ,antordervectorl);

//System.out.println("Partially consistent: "+i);

mac2="d:\hybrid\\case1\\partialconsistent\\machinecapability.txt";
tas2="d:\\hybrid\\case1\\partialconsistent\\taskrequirement.txt";
lip="d:\hybrid\\case \\partialconsistent\\partialconsistentetc.txt";
minms2="d:\hybrid\\case1\\partialconsistent\\minmakespan.txt";
maxms2="d:\\hybrid\\case1\\partialconsistent\\maxmakespar.txt";
minutil2="d:\hybrid\\case1\\partialconsistent\\minutilisation.txt";
maxutil2="d:\hybrid\\case1\\partialconsistent\\maxutilisation.txt";
metms2="d:\\hybrid\\case1\\partialconsistent\\metmakespan. txt";
metutil2="d:\hybrid\\case1\\partialconsistent\\metutilisation.txt";
metms2="d:\hybrid\\case1\\partialconsistent\\mctmakespan.txt";
metutil2="d:\hybrid\\case1\\partialconsistent\\mctutilisation.txt";
gaﬁ162="d:\\hybrid\\case1\\partialconsistent\\gamakespan.txt";
gaut112="d:\\hybrid\\casel\\partialconsistent\\gautilization.txt";

antmakeépaan-——"d:\\hybrid\\case1 \\partialconsistent\\antmakespan.txt";
antuti2="d:\\hybrid\\case1\\partialconsistent\\antuti.txt";
ip2="d:\\hybrid\\casel\\partialconsistent\\initpi.txt";
pi2="d:\\hybrid\\casel \\partialconsistent\\pi.txt";
assign2="d:\\hybrid\\case1\\partialconsistent\\assign.txt";
piﬁna12="d:\\hybrid\\case1\\partialconsistent\\piﬁnal.txt";

llpart=c.partsort(ll);
c.display(llpart,llp.i);
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task2=c.initialise(temp);

c.displayl(task2,tas2,1);

trmp2=c.machinecap(mach1,1l);

c.display2(trmp2,mac2,i);
minl.minmin(llpart,no_tasks,minms2,minutil2);
max1.maxmin(llpart,no_tasks,maxms2,maxutil2);
metl.metcalc(llpart,no_tasks,no_machines,metms2,metutil2);

mctl .mctcalc(llpart,no_tasks,no_machines,mctrnsZ,mctutilZ);

antordervector2=ant] .piinit(trmpZ,taskZ,1lpart,no_tasks,ip2,pi2,assignZ,antmakespan}l

,pifinal2,i,antuti2);

gal. gacalc(trmp2,task2,llpart,no_tasks,no_machines,i, gafile2,gautil2 antordervector2);

case 2:

break;

/. LOW TASK AND HIGH MACHINE HETEROGENITY...*/
mac="d:\hybrid\\case2\\inconsistent\\machinecapability.txt";
tas="d:\hybrid\\case2\\inconsistent\\taskrequirement.txt";
llinc="d:\\hybrid\\case2\\inconsistent\\inconsistentetc.tx "
minms="d:\\hybrid\\case2\\inconsistent\\minmakespan.txt";
maxms="d:\hybrid\\case2\\inconsistent\\maxmakespan.txt";
minutil="d:\hybrid\\case2\inconsistent\\minutilisation.txt";
maxutil-——“d:\\hybﬂd\\caseZ\\inconsistent\\maxutilisation.txt" ;
metms="d :\\hybrid\\caseZ\\inconsistent\\metmakespan.txt" ;
metutil="d:\hybrid\\case2\\inconsistent\imetutilisation.txt";
metms="d:\hybrid\\case2\\inconsistent\\mctmakespan.txt";
mctuti1="d:\\hybrid\\caseZ\\inconsistent\\mctutilisation.txt";
gafile="d:\hybrid\\case2\\inconsi stent\\gamakespan.txt";

gautil="d \\hybrid\\case2\\inconsistent\\gautilization.txt";

antmakespan="d:\\hybrid\\caseZ\\inconsistent\\antmakespan.txt";
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antuti="d:\hybrid\\case2\\inconsistent\\antuti.txt";
ip="d:\\hybrid\\case2\\inconsistent\\initpi.txt";
pi="d:\\hybrid\\case2\\inconsistent\\pi.txt";
assign="d:\\hybrid\\case2\\inconsistent\\assign.txt";
pifinal="d:\hybrid\\case2\\inconsistent\\pifinal.ixt";

lh=c.matrix(min,sblow,srhigh);

c.display(lh,llinc,i);

task=c.initialise(temp);

c.displayl (task,tas,1);

trmp=c.machinecap(machl,lh);

c.display2(trmp,mac,i);
min}.minmin(lh,no_tasks,minms,minutil),
max1.maxmin(lh,no_tasks,maxms,maxutil);
metl.metcalc(lh,no_tasks,no_machines,metms,metutil);

metl.metcale(lh,no_tasks,no_machines,mctms,metutil);

antordervector=ant1l .piinit(trrnp,task,lh,no_tasks,ip,pi,assign,antmakespan,piﬁnal,i,ant

uti);
gal .gacalc(trmp,task,lh,no_tasks,no_machines,, gafile,gautil,antordervector);
/{System.out.println("Consistent matrix: "+1};

mac1="d:\\hybrid\\case2\\consistent\machinecapability.txt";
tas1="d:\\hybrid\\case2\\consistent\\taskrequirement.txt";
lle="d:\\hybrid\\case2\\consistent\\consistentetc.txt";
minmsi="d :\\hybrid\\case2\\consistent\\minmakespan.txt" :
maxms1="d:\hybrid\\case2\\consistent\\imaxmakespan.txt";
minutil1="d:\hybrid\\case2\\consistent\\minutilisation.txt";
maxutil1="d:\\hybrid\\case2\\consistent\\maxutilisation.txt";
metms1="d:\\hybrid\\case2\\consistent\umetmakespan.txt";
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metutil 1="d:\hybrid\\case2\\consistent\imetutilisation.txt";
metms1="d:\\nybrid\\case2\\consistent\\imctmakespan.txt";
metutil1="d:\hybrid\\case2\\consistent\\mctutilisation.txt";
gafile]="d:\\hybrid\\case2\\consistent\\gamakespan.txt";
gautil1="d:\\hybrid\\case2\\consistent\\gautilization.txt";

antmakespan1="d:\\hybrid\\case2\\consistent\\animakespan.txt";
antutil="d:\\hybrid\\case2\\consistent\\antuti.txt";
ipl="d:\\hybrid\\case2\\consistent\\initpi.txt";
pil="d:\\hybrid\\case2\\consistent\\pi.txt";
assign1="d:\\hybrid\\case2\\consistent\\assign.txt";

pifinal 1="d:\\hybrid\\case2\\consistent\\pifinal.txt";

lhsort=c.sort(lh);

c.display(ihsort,llc,i);

taski=c.initialise(temp);

c.display1(task],tasl,i);

trmpl=c.machinecap(machl,lh);

c.display2(trmp1,macl,i);
minl.minmin(ihsort,no_tasks,minms1,minutill);
max].maxmin(lhsort,no_tasks,maxms1,maxutill);
met1.metcale(lhsort,no_tasks,no_machines,metms1,metutill);

mctl .mctéélc(lhsort,no_tasks,no__machines,mctms1 Jmctutill);

antordervector]=ant1.piinit(trmp1,task1,lhsort,no_tasks,ipl,pil,assignl,antmakespan
1,pifinall,i,antutil);

gal.gacalc(trmp],task!l Jhsort,no_tasks,no_machines,i,gafilel,gautill ,antordervectorl);

//System.out.printIn("Partially consistent: "+1);

mac2="d:\hybrid\\case2\\partialconsistent\\machinecapability.txt";
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tas2="d:\\hybrid\\case2\\partialconsistent\\taskrequirement.txt";
1ip="d:\\hybrid\\case2\\partialconsistent\\partialconsistentetc.txt";
minms2="d:\\hybrid\\case2\\partialconsistent\\minmakespan.txt";
maxms2="d:\hybrid\\case2\\partialconsistent\\imaxmakespan.txt";
minutil2="d:\hybrid\\case2\\partialconsistent\\minutilisation.txt";
maxutil2="d:\\hybrid\\case2\\partialconsistent\\maxutilisation.txt";
metms2="d:\\hybrid\\case2\\partialconsistent\\metmakespan.txt";
metutil2="d:\hybrid\\case2\\partialconsistent\\metutilisation.txt";
metms2="d:\hybrid\\case2\\partialconsistent\mctmakespan.txt";
metutil2="d:\\hybrid\\case2\\partialconsistent\\mctutilisation.txt";

gafile2="d:\\hybrid\\case2\\partialconsistent\\gamakespan.txt";
gautil2="d:\\hybrid\\case2\\partialconsistent\\gautilization.txt";

antmakespan2="d:\hybrid\\case2\\partialconsistent\\antmakespan.txt";
antuti2="d:\\hybrid\\case2\\partialconsistent\\antuti.txt";
ip2="d:\\hybrid\\case2\\partialconsistent\\initpi.txt";
pi2="d:\\hybrid\\case2\\partialconsistent\ipi.txt";
assign2="d:\\hybrid\\case2\\partialconsistent\\assign.txt";
pifinal2="d:\hybrid\\case2\'partialconsistent\\pifinal .txt";

1hpart=c_.partsort(lh);

c.display(lhpart,llp,i);

task2=c.initialise{temp);

¢c.displayl(task2,tas2,i);

trmp2=c.machinecap(mach1,lh);

c.display2(trmp2,mac2,i);
minl.minmin(lhpart,no_tasks,minms2,minutil2);
max1.maxmin(lhpart,no_tasks,maxms2,maxutil2},
met].metcalc(lhpart,no_tasks,no_machines,metms2,metutil2);

mctl.metcale{lhpart,no_tasks,no_machines,mctms2,mctutil2);
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antordervector2=ant1.piinit(trmp2,task2,lhpart,no_tasks,ip2,pi2,assign2,antmakespan

2,pifinal2,i,antuti2);

gal .gacalc(trmp2,task2,1hpart,hb_tasks,no_machines,i, gafile2,gautil2,antordervector2);

case 3:

break;

/*. . HIGH TASK AND LOW MACHINE HETEROGENITY...*/
mac="d:\hybrid\\case3\\inconsistent\\machinecapability.txt";
tas="d:\\hybrid\\case3\\inconsistent\\taskrequirement.txt";
llinc="d:\\hybrid\\case3\\inconsistent\\inconsistentetc.txt";
minms="d:\\hybrid\\case3\\inconsistent\\iminmakespan.txt";
maxms="d:\\hybrid\\case3\\inconsistent\\maxmakespan.txt";
minutil="d:\\hybrid\\case3\\inconsistent\\minutilisation.txt";
maxutil="d:\hybrid\\case3\\inconsistent\\maxutilisation.txt";
metms="d:\hybrid\\case3\\inconsistent\\metmakespan.txt";
metutil="d:\\hybrid\\case3\\inconsistent\\metutilisation.txt";
mctms="d:\\hybrid\\case3\\inconsistent\\imctmakespan.txt";
metutil="d:\\hybrid\\case3\\inconsistent\\mctutilisation.txt";
gaﬁle="d:}\hybrid\\case.%\\inconsistent\\gamakespan.txt“;
gautil="d:\\hybrid\\case3\\inconsistent\\gautilization.txt";

antmakespan="d:\hybrid\\case3\\inconsistent\\antmakespan.txt";
antuti="d:\\hybrid\\case3\\inconsistent\antuti.txt";
ip="d:\\nybrid\\case3\\inconsistent\\initpi.txt";
pi="d:\\hybrid\\case3\\inconsistent\\pi.txt";
assign="d:\\hybrid\\case3\\inconsistent\\assign.txt";
pifinal="d:\hybrid\\case3\\inconsistent\\pifinal.txt";

hl=c.matrix(min,sbhigh,srlow),

c.display(hl,llinc,1);
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uti);

task=c.initialise(temp};

c.displayl(task,tas,i);

trmp=c.machinecap(mach1,hl);

¢ display2(trmp,mac,i);
minl.minmin(hl,no_tasks,minms,minutil);
max1.maxmin(hl,no_tasks,maxms,maxutil);

metl .metcalc(hl,no_tasks,no_machines,metms,metutil);

mct].mectcale(hi,no_tasks,no_machines,mctms,mctutil);

antordervector=ant] piinit(trmp,task.hl,no_tasks,ip,pi,assi gn,antmakespan,pifinal,i,ant

gal .gacalc(trmp,task,hl,no_tasks,no_machines,1', gafile,gautil,antordervector);

// System.out.println("Consistent matrix: "+1);

macl="d:\hybrid\\case3\\consistent\\machinecapability.txt";
tas1="d\\hybrid\\case3\\consistent\\taskrequirement.txt";
lic="d:\\hybrid\\case3\\consistent\\consistentetc.txt";
minms1="d:\hybrid\\case3\\consistent\\minmakespan.txt";
maxms1=" d:\\hybrid\\case3\\consistent\\maxmakespan.txt" ;
minutil1="d:\\hybrid\\case3\\consistent\\minutilisation. txt";
maxutil1="d:\hybrid\\case3\\consistent\\maxutilisation. txt";
metmsi="d:\\hybrid\\case3\\consi stent\imetmakespan.txt"”;
metutil1="d:\hybrid\\case3\\consistent\umetutilisation. txt";
metmsi="d:\hybrid\\case3\\consistent\\mctmakespan.txt";
mctutil 1=" d:\\hybrid\\case3\\consistent\\mctutilisation.txt" ;
gafilel ="d:\hybrid\\case3\\consistent\\gamakespan.txt";
gautil1="d \\hybrid\\case3\\consistent\\gautilization.txt";

antmakespa.nl="d:\\hybrid\\case3\\consistent\\antmakespan.txt“'

antutil="d:\hybrid\\case3\\consistent\\antuti.txt";
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ip1="d:\\hybrid\\case3\\consistent\\initpi.txt";
pil="d:\\hybrid\\case3\\consistent\\pi.txt";
assign1="d:\hybrid\\case3\\consistent\\assign.txt";
pifinal1="d:\\hybrid\\case3\\consistent\\pifinal.txt";

hlsort=c.sort(hl);

c.display(hlsort,llc,i);

task1=c.initialise(temp);

c.displayl(task],tasl,i);

trmp1=c.machinecap(mach1,hl);

c.display2(trmpl,macl.i);
minl.minmin(hlsort,no_tasks,minmsi,minutill);

max 1. maxmin(hlsort,no_tasks,maxms1,maxutill});
met].metcalc(hlsort,no_tasks,no_machines,metmsl Jmetutill);

met1.mctcale(hlsort,no_tasks,no_machines,mctmsl ;mctutill);

antordervectorl=antl .piinit(trmp1,task1,hlsort,no_tasks,ipl,pil,assignl ,antmakespan

1,pifinall,i,antutil);
gal.gacalc(trmp] taskl Jhlsort,no tasks,no_machines,i,gafilel,gautill ,antordervectorl);

//System.out.printin("Partially consistent: "+1);

mac2="d:\hybrid\\case3\\partialconsistent\\imachinecap ability.txt";
ta32=“d:\\hybrid\\case3\\partialconsistent\\taskrequirement.txt";
llp="d:\\hybrid\\case3 \\partialconsistent\\partialconsistentetc.txt";
minms2="d:\hybrid\\case3\\partialconsistent\\minmakespan.txt";
maxms2="d:\hybrid\\case3\\partial consistent\\maxmakespan.txt";
minuti12="d:\\hybrid\\case3\\partialconsistent\\minutilisation.txt";
maxutil2="d:\hybrid\\case3\\partialconsi stent\imaxutilisation.txt";
metm52=“d:\\hybrid\\case3\\partia1consistent\\metmakespan.txt";
metuti12=="d:\\hybrid\\case3\\pa:rtialconsistent\\metutilisation.txt“;
metms2="d:\hybrid\\case3\\partialconsistent\\mctmakespan.txt";
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metutil2="d:\\hybrid\\case3\\partialconsistent\\mctutilisation.txt";

gaﬁ162=“d:)\hybrid\\case3\\partialconsistent\\gamakespan.txt";
gauti12="d:\\hybrid\\case3\\partialconsistent\\gautilization.txt";

antmakespan2="d:\\hybrid\\case3\\partialconsistent\\antmakespan.txt "

antuti2="d:\\hybrid\\case3\\partialconsistent\\antut1.txt";
ip2="d:\\nybrid\\case3\\partialconsistent\\initpi.txt";
pi2="d:\hybrid\\case3\\partialconsistent\\pi.txt";

assign2="d:\\hybrid\\case3\\partialconsistent\\assign.txt";
pifinal2="d:\hybrid\\case3\\partialconsistent\\pifinal txt";

hipart=c.partsort(hl);

c.display(hlpart,lip,i},

task2=c.initialise(temp);

c.displayl(task2,tas2,i);

trmp2=c.machinecap(mach1,hl);

c.display2(trmp2,mac2,i});
minl.minmin(hlpart,no_tasks,minms2,minutil2};
max1.maxmin(hlpart,no_tasks,maxms2,maxutil2);

metl .metcalc(hlpart,no_tasks,no_machines,metms2,metutil2);

mctl .mctcalc(hlpart,no_tasks,no_machines,mctmsZ,mctuti12);

antordervector2=ant1 piinit(trmp2,task2 hlpart,no_tasks,ip2,pi2,assi gn2 antmakespan

2,pifinal2,i,antuti2);

gal. gacalc(trmpZ,task2,hlpart,no_tasks,no_machines,i,gaﬁlez, gautil2 antordervector2);

case 4.

break;

/*._HIGH TASK AND HIGH MACHINE HETEROGENITY...*/

mac="d:\\nybrid\\case4\\inconsistent\\machinecapability.txt";

tas="d:\\hybrid\\case4\\inconsistent\\taskrequirement.txt";
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tuti);

11inc="d:\\hybrid\\case4\\inconsistent\\inconsistentetc.txt“;
minms="d:\\hybrid\'\case4\\inconsistent\\minmakespan.txt";
maxms="d:\hybrid\\case4\\inconsistent\\maxmakespan.txt";
minutil="d:\\hybrid\\case4\\inconsistent\\minutilisation.txt";
maxutil="d:\\hybrid\\case4\\inconsistent\\maxutilisation.txt";
metms="d:\\hybrid\\case4\\inconsistent\\metmakespan.txt";
metuti1="d:\\hybrid\\case4\\inconsistent\\metutilisation.txt“;
metms="d:\hybrid\\case4\\inconsistent\\imctmakespan.txt";
metutil="d:\\hybrid\\case4\\inconsistent\\mctutilisation.txt";

gaﬁle=“d:\\hybrid\\case4\\inconsistent\\gamakespan.txt";

gauti1="d:\\hybrid\\case4\\inconsistent\\gautilization.txt";

antmakespan="d:\\hybrid\\case4\\inconsistent\\antmakespan.txt";

antuti="d:\hybrid\\case4\\inconsistent\\antuti.txt";
ip="d:\\hybrid\\case4\\inconsistent\initpi.txt";
pi="d:\hybrid\\case4\\inconsistent\pi.txt";
assign="d:\\hybrid\\case4\\inconsistent\\assign.txt";
pifinal= "d:\hybrid\\case4\\inconsistent\\pifinal.txt";

hh=c.matrix{min,sbhigh,sthigh);

c.display(hh,llinc,i);

task=c.initialise(temp);

c.displayl (task.tas,i);

trmp=c.machinecap(mach1,bh});

c.display2(trmp,mac,i};
minl.minmin(hh,no_tasks,minms,minutil);
max1.maxmin(hh,no_tasks,maxms,maxutil);
metl.metcal c(hh,no_tasks,no_machines,metms,metutil);

mctl .mctcalc(hh,no_tasks,no_machines,mctms,mctutil);

antordervector=ant1 .piinit(tnnp,task,hh,no__tasks,ip,pi,assi gn,antmakespan,pifinal,i,an

74



gal. gacalc(trmp,task,hh,no_tasks,no_machines,i, gafile,gautil,antordervector);
//System.out.printIn("Consistent matrix: "+i};

macl="d:\hybrid\\case4\\consistent\\machinecapability.txt";
tas1="d:\\hybrid\\case4\\consistent\\taskrequirement.txt",
llc="d:\\hybrid\\case4\\consistent\\consistentetc.txt";
minms1="d:\\nybrid\\case4\\consistent\uminmakespan.txt";
maxms]="d:\hybrid\\case4\\consistent\\maxmakespan.txt";
minutil1="d:\\hybrid\\case4\\consistent\\minutilisation.txt";
maxutil1="d:\hybrid\\case4\\consistent\\maxutilisation.txt";
metms1="d:\\hybrid\\cased\\consistent\\metmakespan.txt";
metutil1="d:\hybrid\\case4\\consistent\umetutilisation.txt";
metms1="d:\hybrid\\case4\\consistent\\mctmakespan.txt";
metutil 1="d:\\hybrid\\case4\\consistent\imctutilisation.txt";
gafile]1="d:\\hybrid\\case4\\consistent\\gamakespan.txt";
gautill =';d:\\hybrid\\case4\\consistent\\gautilization.txt";

antmakespani="d:\\nybrid\\case4\\consistent\\antmakespan.txt";
antuti1="d:\\hybrid\\case4\\consistent\\antuti.txt";
ipl="d:\thybrid\\case4\\consistent\\initpi.txt";
pil="d:\\hybrid\\case4\\consistent\\pi.txt";
assignl="d:\\hybrid\\case4\\consistent\\assign.txt";
pifinal1="d:\\hybrid\\case4\\consistent\\pifinal.txt";

hhsort=c.sort(hh);
c.display(hhsort,lic,i);
task1=c.initialise(temp);
c.displayl(taskl,tasl,i);
trmpl=c.machinecap(mach1,hh};
c.display2(trmpl,macl,i);

minl.minmin(hhsort,no_tasks,minms1,minutill);



max | .maxmin{hhsort,no_tasks,maxms1,maxutill),
metl.metcalc(thsort,no_tasks,no_machines,metms1,metutill);

mctl.mctcalc(hhsort,no_tasks,no_machines,metms1 ,mctutill);

antordervectorl=ant1.piinit(trmp1,task1,hhsort,no_tasks,ip1,pil,assignl ,antmakespan
1,pifinall,i,antutil);

gal.gacalc(trmp]l,taskl “hhsort,no_tasks,no_machines,i,gafilel,gautiil ,antordervectorl);

//System.out.printIn("Partially consistent: "+1);

mac2="d:\\hybrid\\case4\\partialconsistent\\machinecapability.txt";
tas2="d:\hybrid\\case4\\partialconsistent\\taskrequirement.txt";

11p="d:\\hybrid\\case4\\partialconsistent\\panialconsistentetc.txt“;
minms2="d:\\hybrid\\case4\\partialconsistent\\iminmakespar.txt";

maxms2="d:\hybrid\\case4\\partialconsistent\\maxmakespan.txt";
minutil2="d:\hybrid\\case4\\partialconsistent\\minutilisation.txt";
maxutil2="d:\\hybrid\\case4\\partialconsistent\maxutilisation.txt";
metms2="d:\hybrid\\case4\\partialconsistent\\metmakespan. txt";
metutil2="d:\hybrid\\case4\\partialconsistent\\metutilisation.txt";
metms2="d:\hybrid\\case4\\partialconsistent\umctmakespan. txt";
mctutii2="d:\hybrid\\case4\\partialconsistent\\mctutilisation.txt";
gafile2="d:\nybrid\\case4\\partialconsistent\\gamakespan.xt";
gauti12="d:\\hybrid\\case4\\pa11ialconsistent\\gautilization.txt" ;

antmakespan2="d:\\hybrid\\case4\\partialconsistent\\antmakespan.txt" ;

antuti2="d:\\hybrid\\case4\\partialconsistent\\antuti.txt";
ip2="d:\\hybrid\\case4\\partialconsistent\\initpi.txt";
pi2="d:\\hybrid\\case4\\partialconsistent\\pi.txt";

assign2="d:\\hybrid\\case4\\partialconsistent\\assi gn.txt";
piﬁna12="d:\\hybrid\\case4\\partialconsistent\\piﬁnal.txt";

hhpart=c.partsort(hh);
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c.display(hhpart,llp,i),

task2=c.initialise(temp);

c.display1(task2,tas2,i);

trmp2=c.machinecap(mach1,hh);

c.display2(trmp2,mac2,1);
min1.minmin(hhpart,no_tasks,minms2,minutil2);

max] .maxmin(hhpart,no_tasks,maxmsZ,maxuti12);

metl .metcalc(hhpart,no__tasks,no_machines,metmsZ,metutilZ);

met1.metcalc(hhpart,no_tasks,no_machines,metms2,metutil2);

antordervector2=antl .piinit(trmpZ,task2,hhpart,n0_tasks,ip2,pi2,assi gn2,antmakespan

2,pifinal2,i,antuti2);

gal.gacalc(trmp2,task2 Jhhpart,no_tasks,no_machines,i,gafile2, gautil2,antordervector2);

}

break;

case 3:
System.exit(0);
break;

class calc

{

int no_tasks,no_machines,i,j,k;

double w{]=new double[512];

double x[]=new double[512];

double y[](J=new double[512][17];
double z[][]=new double[512][17];
double temp!{][J=new double[512][3];
double ¢=0.5,ra=0.25,d=0.25,a=0;
public calc(int nno_tasks)

{

no_tasks=rmo_tasks;
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}
public double[][] matrix(double min,double sb,double sr)

{
for(i=0;i<no_tasks;i++)
{
for(j=0;j<16;j++)
{
y[i][j}=round((min+Math.random()*sb),4);
}
ki
for(i=0;i<16;i++)
{
x[i]=round((min+Math.random()*sr),4),
}
for(i=0;i<no_tasks;i++)
{
for(j=0;j<16;j++)
{
z[i]{j]=round((y[iln]*x01),4);
}
b
return z;
}

/***************************MACHINE CAPABILITY************************’/
public double[][][1 machinecap(double mac[][][],double et[]{])throws Exception
{

double min1=1.0,max1=10.0;
double min2=5.0,max2=10.0;
for(i=0;i<16;i++)
{
double cost=round({minl-+Math.random()*(max1-mini)),4);

double ram=round((min2+Math.random()*(max2-min2}),4);

78



for(j=0;j<no_tasks;j++)
{
for(k=0;k<3;k++)
{
1f(k==0)
mac[i][jl{k]=round(((et[j][i]) *cost),4);//COST
IS MULTIPLIED BY A CONSTANT
else if(k==1)//RAM=2
macfi][j]{k]=ram;
else
mac[i][j][k]=round((et[j][i]),4);/DEADLINE IS
RETRIEVED FROM ETC MATRIX

}

}

return mac;

}

/*******************USER INPUTS***********************/

public double[][] initialise(double arr[][]) throws Exception

{
double min1=800.00,max1=1200.00;

double min2=80.0,max2=120.00;
double min3=1.00,max3=6.00;
for(i=0;i<no_tasks;i++)
{
for(j=0;j<13j++)
{
double cost=round((min!+Math.random()*(max1-min1)},4);
arr[i][j}=cost;
double ram=round((min3+Math.random()*(max3 -min3)),4);
arr[i][j+1]=ram;
double deadline=round((min2+Math random{()*(max2-min2)).4);
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arr[i][j+2]=deadline;

}
}
for(i=0;i<no_tasks;i++)
{
for(j=05j<l1;j++)
{
temp1[i][j]=round((arr[i][j]).4);
temp1[i][j+1]=round((arr[i](j+11),4);
temp1 [1]{j+2]=round((arr[i][j+2]).4);
}
}
return templ;

;*************************** DISPLAYS WEIGHT MATRIX ***************/
public void display1(double disp{][],String s,int count)throws Exception
{
String sn1="\r\n";
OutputStream out=new FileOutputStream(s,true);
BufferedOutputStream bfo=new BufferedOutputStream(out);
String ETCCount = "\nlteration";
String disp1= ETCCount.concat(Integer.toString(count));
byte b[]=disp1.getBytes(),
bfo.write(b);
bfo.write(snl.getBytes());
for(i=0;i<no_tasks;i++)
{
String s2="null";
for(j=0;j<3;j++)
{
Double fObj = new Double(disp[i][j]);
String s1 = fObj.toString();

s2=sl.concat("\t");
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}

byte by[]=s2.getBytes();
bfo.write(by);

}
String sn="\r\n";

bfo.write(sn.getBytes());

}
bfo.write(snl.getBytes());

bfo.close();

/******************************Display machine Capability*********************/

public void display2(double trmp{][][],String s,int count)throws Exception

{

QutputStream out=new FileOutputStream(s,true);

BufferedOutputStream bfo=new BufferedOutputStream(out);

String sn="\r\n";
String ETCCount = "\nlteration “;

String displ= ETCCount.concat(Integer.toString(count));

byte b[]=disp1.getBytes(),

bfo.write(b);

bfo.write(sn.getBytes());

for(i=0,i<16;i++)

{
String bl = Integer.toString(i);
String b2="Machine";
String b3=b2.concat(bl),
byte byl[]=b3.getBytes();
bfo.write(byl);
bfo.write(sn.getBytes(});
for(j=0;j<no_tasks;j++)

{

String al = Integer.toString(j);

String a2="Task";
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;

String a3==a2.concat(al);
String a4=a3.concat("\t");
byte by2[]=a4.getBytes();
bfo.write(by2);
String s2="null";
for(k=0;k<3;k++)
{
Double fObj = new Double(trmpli][j](k]);
String s1 = fObj.toString();
s2=s1.concat{"\t");
byte by[]=s2.getBytes();

bfo.write(by);
}
bfo.write(sn.getBytes());
}
bfo.write(sn.getBytes());
!
bfo.close();

/‘****************************MATRIX DISPLAY***************************/

public void display(double[][] arr,String s,int count)throws Exception

{

OutputStream out=new FileOutputStream(s,true};
BufferedOutputStream bfo=new BufferedOutputStream(out);
String ETCCount = "nETC",

String disp= ETCCount.concat(Integer.toString(count));
byte b[J=disp.getBytes();

bfo.write(b);

String $3="\r\n";

String s4="\t";

bfo.write(s3.getBytes());

bfo.write(s4.getBytes());

for(int k=0;k<16;k++)
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String b1 = Integer.toString(k);
String b2="M";
String b3=b2.concat(bl);
String b4=b3.concat("\t\t"),
byte by2[]=b4.getBytes();
bfo.write(by2);
3
bfo.write(s3.getBytes());
for(int i=0;i<no_tasks;i++)
{
String c1 = Integer.toSiring(1);
String ¢2="Task";
String c3=c2.concat(cl);
String c4=c3.concat("\t");
byte by3[]=c4.getBytes();
bfo.write(by3);
String s2 = null;
for(int j=0;j<16;++)
{
Double fObj = new Double(arr[i][3]);
String s1 = fObj.toString();
s2=sl.concat("\t");
byte by[]=s2.getBytes();
bfo.write(by);//WRITES THE MATRIX TO THE FILE

3
bfo.write(s3.getBytes());
}
bfo.write(s3.getBytes());
bfo.close();
}
(L MATRIX SORTING-CONSISTENCY .....ccooourirvcrrcrics */

public double[][] sort(double arr[][1)



double tmp;

for(int i=0;i<no_tasks;i++)

{
for(int j=0;j<165++)
{
for(int k=j+1:k<16:k++)
if(arr{i][j}arr[i][k])
{
tmp=arr{i](jl;
arr{i}pj]=arr{i]{k];
, arr[1][k]=tmp;
3
3
}
return art;

}
/*...... MATRIX SORTING-PARTIALLY CONSISTENCY.......*/

public double[][] partsort(double art[][])
{

double tmp;

for(int i=0;i<no_tasks;i++)

{
for(int j=0;j<16;1++)
{
if(j%2!=0)
continue;
for(int k=i+1;k<no_tasks;k++)
{
if(arr{i]{j]>arr{k][])
{

tmp=arr{i}[j];
arr[i][j}=arr(k](];
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arr[k][j]=tmp;

}

return arr;

3
/*************************** ROUND OFF FUNCTION ook sk ok ok ok ke ke deok sk ok ok

public static double round(double val, int places)

{
long factor = (long)Math.pow(10,places);
val = val * factor;
long tmp = Math.round(val);
return {double)tmp / factor,
}
}
6.2. SNAPSHOTS
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