pP-3597

ENHANCING ON-DEMAND MULTICAST ROUTING
PROTOCOL IN MOBILE ADHOC NETWORKS

PROJECT REPORT
Submitted by
M.BHARATHIDASAN 0710108007
A.GOWTHAM 0710108014

In partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University of Technology, Coimbatore)

COIMBATORE - 641 049

APRIL 2011

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE-641 049
BONAFIDE CERTIFICATE

Certified that this project report entitied “ENHANCING ON-DEMAND
MULTICAST ROUTING PROTOCOL IN MOBILE ADHOC NETWORKS” is
the bonafide work of M.Bharathidasan and A.Gowtham who carried out the research
under my supervision. Certified also, that to the best of my knowledge the work
reported here in does not form part of any other project report or dissertation on the
basis of which a degree or award was conferred on an earlier occasion on this or any

other candidate.

SIGNATURE SIGNATURE
Mrs.R.Kalaiselvi, MLE., Mrs.P.Devaki, M.E.,
SUPERVISOR HEAD OF THE DEPARTMENT

Assistant Professor

Department of Computer Department of Computer

Science and Engineering Science and Engineering
Kumaraguru College of Technology Kumaraguru College of Technology
Coimbatore-641049 Coimbatore-641049

The candidate with University Register Nos. 0710108007 and 0710108014 were examined
by us in the project viva—voce examination heldon 20 .0k _.20W
/{ PN
NTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project entitled “ENHANCING ON-DEMAND
MULTICAST ROUTING PROTOCOL IN MOBILE ADHOC NETWORKS”
is a record of original work done by us and to the best of our knowledge, a similar
work has not been submitted to Anna University or any Institutions, for fulfillment of

the requirement of the course study.

The report is submitted in partial fulfillment of the requirement for the award
of the Degree of Bachelor of Computer Science and Engineering of Anna University

of Technology, Coimbatore.

Place: Coimbatore

Date: 19. 0k .20n

M - ; ffjo@w"n

(M.BHARATHIDASAN)

R

(A.GOWTHAM)

ACKNOWLEDGEMENT

We are intend to express our heartiest thanks to our chairman Arutselvar
Dr.N.Mahalingam, B.sc., F.LLE and the correspondent M.Balasubramaniam,

M.com., M.B.A,, for given us this opportunity to embark on this project.

We extend our sincere thanks to our Principal, Dr. S.Ramachandran,
Kumaraguru College of Technology, Coimbatore, for being a constant source
of inspiration and providing us with the necessary facility to work on this

project.

We would like to make a special acknowledgement and thanks to
Dr. S. Thangasamy, Dean of Research and Development, for his support and

encouragement throughout the project.

We are indent to express my heartiest thanks to Mrs.P.Devaki, MLE,
Project coordinator, Head of the Department of Computer Science
&Engineering, for her valuable guidance and useful suggestions during the

course of this project.

We express deep gratitude and gratefulness to our guide
Mrs.R.Kalaiselvi M.E, Assistant Professor Department of Computer Science
& Engineering, for his supervision, enduring patience, active involvement and

guidance.

We would like to convey our honest thanks to all Faculty members of
the Department for their enthusiasm and wealth of experience from which we

have greatly benefited.

We also thank our friends and family who helped us to complete this

project fruitfully.

TABLE OF CONTENTS

JAPTER NO. TITLE PAGE NO.
ABSTRACT il
LIST OF FIGURES Iv
LIST OF ABBREVIATIONS v
1 INTRODUCTION 1

1.1 WIRELESS AD-HOC NETWORK
1.2 SALIENT FEATURES OF MANET
1.3 CLASSIFICATION OF ROUTING PROTOCOLS IN MANET
2 LITERATURE SURVEY
2.1 ODMRP
2.2 ADVANTAGES OF ODMRP
2.3 GENERAL TERMS
2.4 PROTOCOL OVERVIEW
2.4.1 Multicast Route and Mesh Creation
2.4.2 Data Forwarding
2.4.3 Soft State
2.4.4 Adapting The Refresh Interval Via Mobility Prediction
2.4.5 Network Model
2.4.6 Data Structures
3 PROBLEM DEFINITION
4 PROPOSED SYSTEM
4.1 PROPOSED TECHNIQUE
4.2 QUEUEING ANALYSIS
4.3 MAXIMAL SCHEDULING

oo o0 S0 =1 ~1 =1 W=

—_ e ek e e e e b e
= - N NV TR VS S S N s

4.4 DELAY ANALYSIS
4.5 FLOW CONTROL
4.6 SOFTWARE ENVIRONMENT
4.6.1 Features of NET
4.6.2 The .NET Framework
4.6.3 Common Type System
4.6.4 Common Language Specification
4.6.5 The Class Library
4.6.6 Languages Supported by NET
CONCLUSION
APPENDICES
Al. SAMPLE CODING
A2. SCREENSHOTS
REFERENCES

18
19
20
20
21
22
22
22
23
24
25
25
61
65

i

ABSTRACT

With the advance of wireless communication technology, portable computers
with radios are being increasingly deployed in common activities. Applications such
as conferences, meetings, lectures, crowed control, search and rescue, disaster
recovery, and automated battlefields typically do not have central administration. In
Adhoc networks, each host must act as a router since routes are mostly multi hop.
Nodes in such a networks move arbitrarily, thus network topology changes
" frequently. The protocol termed ODMRP is a mesh-based instead of tree based,
multicast protocol that provides richer connectivity among multicast members. The
major strengths of ODMRP are its simplicity. This project further improves its
performance. New techniques to enhance the effectiveness and efficiency of
ODMRP are provided in this project. Primary Goals of Enhanced ODMRP are to
improve hop-by-hop transmission reliability, reduce delay and eliminate route

acquisition latency.

it

Figure No.

1.1
1.2
2.1
2.2
2.3
24
4.1
Al
A2
A3
A4

LIST OF FIGURES

Figure Name

Classification on routing protocols for MANETS
Multicast: Data packet replicated by the network
JOIN REPLY

ODMRP mesh reply

Forwarding group concept

Distance calculation

NET Framework

Maximal scheduling main screen

Node 1 initiating data transfer

Setting data size after splitting

Scheduling the data transfer

Page No.

11
11
13
21
61
62
63
64

v

LIST OF ABBREVIATIONS

AODV Ad-hoc On-Demand Distance Vector
CLR Common Language Runtime

CLS Common Language Specification
CTS Common Type System

DSR ' Dynamic Source Routing

FG FLAG Forwarding Group Flag

GPS Global Positioning System

GSR Global State Routing

1P Internet Protocol

LET Link Expiration Time

LRU Least Recently Used

MANET Mobile Ad-hoc Network

MIN LET Minimum Link Expiration Time
ODMRP On Demand Multicast Routing Protocol
WAM Wireless Adaptive Mobility

NET DotNET

CHAPTER 1

INTRODUCTION

1.1 WIRELESS AD-HOC NETWORK

Wireless ad-hoc networks are composed of autonomous nodes that are self
managed without any infrastructure. In this way, ad-hoc networks have a dynamic
topology such that node can easily join or leave the network at any time. They have
many potential applications, especially, in military and rescue areas such as
connecting soldiers on the battlefield or establishing a new network in a place ofa
network which collapsed after a disaster like an earthquake. Ad-hoc networks are
suitable for areas where it is not possible to set up a fixed infrastructure, they
provide the connectivity, and nodes use some routing protocols. Besides acting as a
host, each node also acts as a router to discover a path and forward packets to the

correct node in the network.

At a given point of time, depending on the nodes' positions and their
transmitter and receiver coverage patterns, transmission power levels and co-channel
interference levels, a wireless connectivity in the form of a random, multi-hop graph
or "ad hoc" network exists between the nodes. An ad-hoc network is a collection of
wireless mobile nodes dynamically forming a temporary network with out the
presence of a wired support infrastructure. In this environment routing/multicasting
protocols are faced with the challenge of producing multi-hop routes under host

mobility and bandwidth constraints.

1.2 SALIENT FEATURES OF MANET

= Dynamic topologies: Nodes are free to move arbitrarily; thus, the network
topology which is typically multi-hop may change randomly and rapidly at
unpredictable times, and may consist of both bidirectional and unidirectional
links.

= Bandwidth-constrained, variable capacity links: Wireless links will continue
to have significantly lower capacity than their hardwired counterparts. In
addition, the realized throughput of wireless communications - after
accounting for the effects of multiple access, fading, noise, and interference

conditions, etc., is often much less than a radio’s maximum transmission rate.

. Energy-constrained operation: Some or all of the nodes in a MANET may
rely on batteries or other exhaustible means for their energy. For these nodes,
the most important system design criteria for optimization may be energy

conservation.

» Limited physical security: Mobile wireless networks are generally more
prone to physical security threats than are fixed cable nets. The increased
possibility of eavesdropping, spoofing, and denial-of-service attacks should
be carefully considered. Existing link security techniques are often applied
within wireless networks to reduce security threats. As a benefit, the
decentralized nature of network control in MANETSs provides additional
robustness against the single points of failure of more centralized

approaches.

1.3 CLASSIFICATION OF ROUTING PROTOCOLS IN MANET

A major technical challenge in a MANET is the design of efficient routing
protocols to cope with the rapid topology changes. Routing protocols in ad hoc

networks vary depending on the type of the network.

Depending on the way routing update is carried out, the protocols can be put
into two categories: Flooding based algorithms use flooding of routing updates in
the network. Flooding levies an extra overhead. Most of the routing protocols are
based on these methods (AODV, DSR, GSR etc.). Link reversal algorithms aim to
save bandwidth. Any link breakage results in link reversal algorithm to be used at
the site of the link failure to re-establish the path. It tries to localize effect. It gives
many alternate paths to the destination. It not only save the bandwidth in updates,

but also provides alternate paths in case of path failures.

Depending on the intended use, protocols may be categorized broadly as
follows: One-to-One communication is called Unicasting. The packet from the
source is intended for a specific recipient. It includes all such protocols which are
used for end-to-end communication. Multicasting includes all such protocols, which
can be used for one-to-many communication. One to all communication is referred
as broadcasting. In the [P address, if all the bits are set to 1 it serves as the broadcast
address. The packet is transmitted to each and every node of the network.

Geocasting includes all such protocols which can be used for geographic.

Another way to classify routing protocols may be based on the network
hierarchies: In flat protocols all nodes are on the same level. In hierarchical

protocols nodes are logically or physically on a different level of hierarchy.

Based on the multicast topology, multicast routing protocols are grouped into
two types: Tree-based protocols are those in which there exists only one possible
path between a source-destination pair, whereas in mesh-based protocols, there may

be more paths. Tree-based protocols are further categorized into shared-tree and

source-tree topologies. Mesh-based Protocols are more robust to the changes in the

network.

Many routing protocols optimized for mobile wireless ad hoc networks
emerged recently and they can be classified into topology-based and location-aware
protocols. The main category of MANET routing protocols can be further divided
into proactive (table-driven), reactive (on-demand), and hybrid (combining both

reactive and proactive mechanisms).

Proactive Routing pretoce ———# Example:
OLSRFSRTBRPE VWRP

Urecast Routing
Pratocols

Reactive Routirg protote] ——=~==——® Example:
AODVY, DsR

Hybed Reuting protocol — Example
|4

Routing protocals tex BANETS TORA, ZFP

Proattwe Rouling protocol —=—% [xample .-
Apdroute, AMRIS

\

Mukicast Routing
Fratocels

_— .
Reactive Routmg protoce| Erample -
QUMRP, MACDY

sl N

Hybrid Routing prowotol = Example -
GPHHMR

Figure 1.1 Classification on routing Protocols for MANETS

Unicast and multicast routing protocols are divided into proactive, reactive,
and hybrid protocols. Figure 1.1 gives a classification on routing protocol which is
based on unicast and multicast routing protocol. In proactive routing routes available
immediately. Reactive routing discovers the route when needed. Hybrid routing is

combination of both, such as proactive for neighborhood, reactive for far away.

Multicasting in wireless ad —hoc network is a hot topic in recent years. In
multicasting, packets are transmitted from one source or a group of sources to a
group of one or more hosts that are identified by a single destination address.
Multicasting greatly reduces the transmission cost when sending the same packet to
multiﬁle recipients. Multicast reduces the channel bandwidth, sender and router
processing and delivery delay. In addition multicast gives robust communication
whereby the receiver address is unknown or modifiable without the knowledge of
the source within the wireless environment. In recent years, a number of new
multicast routing protocols of different styles have been proposed for ad hoc

networks.

@ Senckes
@ Forearder
. Hoeiver

Figure 1.2 Multicast: Data packet replicated by the network

ODMRP (On Demand Multicast Routing Protocol), is a mesh based
multicast protocol that provides richer connectivity among multicast members. By
building a mesh and supplying multiple routes, multicast packets can be delivered to
destinations on the face of node movements and topology changes. To establish a
mesh for each multicast group, ODMRP uses the concept of forwarding group. The
forwarding group is a set of nodes responsible for forwarding multicast data on

shortest paths between any member pairs. ODMRP also applies on-demand routing

5

techniques to avoid the channel overhead and improves scalability. The major

strength of ODMRP is its simplicity.

In this project it is considered that the delay properties of one-hop networks
with general interference constraints and multiple traffic strcams with time-
correlated arrivals. This project show that the well known maximal scheduling

algorithm achieves average delay.

Chapter 2 with basic ODMRP, Chapter 3 defines the problems with the
existing ODMRP, Chapter 4 provides the proposed ODMRP with the methodologies
for enhancement, Chapter 5 concludes that the proposed ODMREP is efficient than
existing ODMRP.

CHAPTER 2

LITERATURE SURVEY

2.1 ODMRP

On-Demand Multicast Routing Protocol (ODMRP) was developed by the
Wireless Adaptive Mobility (WAM) Laboratory at University of California, Los
Angeles. ODMRP applies "on-demand" routing techniques to avoid channel
overhead and improves scalability. It uses the concept of "forwarding group," a set
of nodes responsible for forwarding multicast data, to build a forwarding mesh for
each multicast group. By maintaining and using a mesh instead of a tree, the
drawbacks of multicast trees in mobile wireless networks (e.g., intermittent
connectivity, traffic concentration, frequent tree reconfiguration, non-shortest path
in a shared tree, etc.) are avoided. A soft-state approach is taken to maintain
multicast group members. No explicit control message is required to leave the group
(Yudhvir et.al,2010). The reduction of channel/storage overhead and the relaxed
connectivity make ODMRP more attractive in mobile wireless networks. ODMRP is
well suited for ad hoc wireless networks with mobile hosts where bandwidth is

limited, topology changes frequently and rapidly.

2.2 ADVANTAGES OF ODMRP

i. Simplicity

ii. Low channel and storage overhead

iii. Usage of up-to-date shortest routes

iv. Reliable construction of routes and forwarding group
v. Robustness to host mobility

vi. Maintenance and exploitation of multiple redundant paths

vii. Exploitation of the broadcast nature of wireless environments
viii. Unicast routing capability

ix. Scalability using efficient flooding.

2.3 GENERAL TERMS

This section defines terminology used in ODMRP.

NODE: A device that implements IP.

NEIGHBOR: Nodes that are within the radio transmission range.

FORWARDING GROUP: A group of nodes responsible for forwarding multicast
data on shortest paths between any member pairs. ODMRP also applies on-demand

routing techniques to avoid the channel overhead and improve scalability.

MULTICAST MESH: The topology defined by the link connection between

forwarding group members.

JOIN QUERY: The special data packet sent by multicast sources to establish and

update group memberships and routes.

JOIN REPLY: The table broadcasted by each multicast receiver and forwarding

node to establish and update group membership and routes

2.4, PROTOCOL OVERVIEW

2.4.1 Multicast route and mesh creation

In ODMRP, group membership and multicast routes are established and
updated by the source on demand. Similar to on-demand unicast routing protocols, a

request phase and a reply phase comprise the protocol. When a multicast source has
8

packets to send but no route and group membership is known, it floods 2 member
advertising packet with data payload piggybacked. This packet, called "JOIN
QUERY™". It is periodically broadcasted to the entire network to refresh the
membership information and update the routes. When a node receives a JOIN
QUERY packet, it stores the source address and the unique identifier of the packet
to its "Message Cache" to detect duplicates. The upstream node address is inserted
or updated as the next node for the source node in its "Routing Table." If the JOIN
QUERY packet is not a duplicate and the Time-To-Live value is greater than zero,
appropriate fields are updated and it is rebroadcast. When a JOIN QUERY packet
reaches the multicast receiver, it creates and broadcasts a " JOIN REPLY " to its
neighbors.

When a node receives a JOIN REPLY, it checks if the next node address of
one of the entries matches its own address. If it does, the node realizes that it is on
the path to the source and thus is part of the forwarding group; it sets the FG_FLAG
(Forwarding group flag). It then broadcasts its own JOIN REPLY built upon
matched entries. The next node address field is filled in by extracting the
information from its routing table. This way, the JOIN REPLY is propagated by
each forward group member until it reaches the multicast source via the selected
path. This process constructs (or updates) the routes from sources to receivers and

builds a mesh of nodes, the forwarding group.

R L Join Reply of Node R
Sender| Next Node
]
S, 1, 5 b
Sa L

Join Reply of Node |

Sender| Next MNode
S, S

M
F

Figure 2.1 JOIN REPLY

As an example of JOIN REPLY forwarding process (Lee et.al, 2002) nodes
S1 and S2 are multicast sources, and nodes R1 and R2 are multicast receivers. Node
R2 sends its JOIN REPLY to both S1 and S2 via 12, and R1 sends its packet to Sl
via I1 and to S2 via 12. When receivers send their Join Replies to next hop nodes, an
intermediate node I1 sets the FG FLAG and builds its own JOIN REPLY since
there is a next node ID entry in the JOIN REPLY received from R1 that matches its
ID. Note that the JOIN REPLY built by I1 has an entry for sender S1 but not for S2
because the next node address for S2 in the received JOIN REPLY is not I1. In the
meanwhile, node 12 sets the FG_FLAG constructs its own JOIN REPLY and sends
it to its neighbors. Note that I2 broadcasts the JOIN REPLY only once even though
it receives two Join Replies from the receivers because the second table arrival
carries no new source information. Channel overhead is thus reduced dramatically in

cases where numerous multicast receivers share the same links to the source.

After this group establishment and route construction process, a source can
multicast packets to receivers via selected routes and forwarding groups. While
outgoing data packets exist, the source sends JOIN QUERY every
REFRESH INTERVAL. This JOIN QUERY and JOIN REPLY propagation
process refreshes forwarding group and routes. When receiving the multicast data
packet, a node forwards it only when it is not a duplicate and the setting of the
FG _FLAG for the multicast group has not expired. This procedure minimizes the

traffic overhead and prevents sending packets through stale routes.

ODMBRP uses location and movement information to predict the duration of
time that routes will remain valid. With the predicted time of route disconnection, a
"jomn data" packet is flooded when route breaks of ongoing data sessions are
imminent. It reveals that ODMRP is better suited for ad hoc networks in terms of

bandwidth utilization.

10

—— SOOI QUeEry

-] — — — Join Reply

Figure 2.2 ODMRP Mesh Creation
2.4.2 Data forwarding

After the group establishment and route construction process, a multicast
source can transmit packets to receivers via selected routes and forwarding
groups(Baburaj and Vasudevan,2007). Periodic control packets are sent only when
outgoing data packets are still present. When receiving a multicast data packet, a
node forwards it only if it is not a duplicate and the setting of the FG_FLAG for the
multicast group has not expired. This procedure minimizes traffic overhead and

prevents sending packets through stale routes.

.....

Forwarding Group

P,
‘\:_3 Muiticast Member Nodes

T
L PG Forwarding Group Nodes

Figure 2.3 Forwarding group concepts
11

2.4.3 Soft state

In ODMRP, no explicit control packets need to be sent to join or leave the
group (Narshima et.al, 2007). If a multicast source wants to leave the group, it
simply stops sending JOIN QUERY packets since it does not have any multicast
data to send to the group. If a receiver no longer wants to receive from a particular
multicast group, it removes the corresponding entries from its Member Table and
does not transmit the JOIN REPLY for that group. Nodes in the forwarding group
are demoting to non-forwarding nodes if not refreshed (no Join Replies received)

before they timeout.
2.4.4 Adapting the refresh interval via mobility prediction

ODMRP requires periodic flooding of JOIN QUERIES to build and refresh
routes. Excessive flooding is, however, is not desirable in ad-hoc networks because
of bandwidth constraints. Furthermore, flooding often causes congestion, contention,
and collision. In the prediction method, assume a free space propagation model,
where the received signal strength solely depends on its distance to the transmittet.
Assume that all nodes in the network have their clock synchronized. Therefore, if
the motion parameters of two neighbors are known, the duration of connection

between these two nodes can be determined.
2.4.5 Network model

Assume two nodes i and j are within the transmission range r of each other.
Let (x;, y;) be the coordinate of mobile host i and (xj, ;) be that of mobile host j.
Also let v; and v; be the speeds, and T; and T; (0<= T, Tj<2x) be the moving
direction of nodes i and j respectively, Then, the amount of time that they will stay

connected, D, is predicted by:

12

_ —(ab+cd)++J(a’ +cP)r’ - (ad —be)’
‘o (a’ + c?)

where

D
..... Equation {2.1)
a=v,cos 8, —v,cos b,

b=x —x,
c=v,sin@, —v,sin G,
d =y, - ¥,

r = Transmission radius

Figure 2.4 Distance calculation

When v ¢ = vj and 8¢ = 6;, D; is set to . The value of D; gives the link expiration
time between the neighbor nodes k and j. The direction of movement of the node can

be calculated as:

Ao = Xq -eeees Equation (2.2)

Where, 0 is the direction of movement of the node. (xi, yi) and (X2, y2) are the

positions of the nodes at two different time instants.
2.4.6 Data structures

Network hosts running ODMRP are required to maintain the following data

structures.

13

Member table: Each multicast receiver stores the source information in the Member
Table. For each multicast group the node is participating in, the source ID and the
time when the last JOIN REQUEST is received from the source are recorded. If no
JOIN REQUEST is received from a source within the refresh period, that entry is

removed from the Member table.

Routing table: A Routing table is created on demand and is maintained by each
node. An entry is inserted or updated when a non-duplicate JOIN REQUEST is
received. The node stores the destination (i.e., the source of the JOIN REQUEST)
and the next hop to the destination (i.e., the last node that propagated the JOIN
REQUEST). The Routing table provides the next hop information when transmitting

Join tables.

Forwarding group table: When a node is a forwarding group node of the multicast
group, it maintains the group information in the Forwarding group table. The

multicast group ID and the time when the node was last refreshed are recorded.

Message cache: The Message Cache is maintained by each node to detect
duplicates. When a node receives a new JOIN REQUEST or data, it stores the
source ID and the sequence number of the packet. Note that entries in the Message
Cache need not to be maintained permanently. Schemes such as LRU (Least
Recently Used) or FIFO (First in First Qut) can be employed to expire and remove

old entries and prevent the size of the Message Cache to be extensive.

14

CHAPTER 3

PROBLEM DEFINITION

The main disadvantage of ODMRP is its excessive delay due to interference.
Therefore, ODMRP may suffer scalability issue. Another drawback of ODMRP is
that the mesh contains a lot of redundancy and thereby the number of transmissions
of a specific multicast data packet is unnecessarily high and leads to a high
bandwidth consumption. Also, the delay required to obtain a route is also a
drawback of ODMRP. This route acquisition latency makes on-demand protocols

less attractive in networks where real-time traffic is exchanged.

The proposed system develops order-optimal delay results for a single hop in
ad-hoc networks with general interference set constraints. This system provides a
flow control technique that works together with maximal scheduling and yields an
explicit utility-delay tradeoff. Thereby it removes route acquisition latency. The
usage of maximal scheduling achieves average delay that grows at most
logarithmically in the largest number of interferers at any link. The usage of Markov
chains also prove that average delay is independent of the number of nodes and

links in the network, and hence is order-optimal.

15

CHAPTER 4

PROPOSED SYSTEM

4.1 PROPOSED TECHNIQUE

This system derives average delay bounds for single hop in wireless ad-hoc
networks that use maximal scheduling subject to a general set of interference
constraints. In order to reduce the scheduling complexity, queue grouping
techniques are implemented. In particular, when arrival processes are modulated by
independent Markov processes, average delay grows at most logarithmically in the
number of nodes in the network. Existing work provides explicitly computable and
order-optimal delay bounds for time-correlated arrivals. The proposed work
addresses the issues of general interference constraints and time-correlated traffic

simultaneously.

4.2 QUEUEING ANALYSIS

Queue grouping techniques have been used in reducing scheduling
complexity in switches and wireless networks. They are used to provide order-
optimal delay for opportunistic scheduling in a single server downlink. Near order-
optimal delay is established for packet switches in. This project particularly treats
delay in wireless networks with general constraint sets and time-correlated arrivals.
These are perhaps the first delay bounds for controlled queuing networks that
explicitly incorporate such statistical information. This allows delay to be

understood in terms of general models for network traffic.

16

Define Q(t) as the number of queued packets waiting for transmission over link 1
during slot t. Let Q (t) = (QU(t)) ;=;be the vector of queue. Define pl (t)e{0,1} as the

transmission rate offered to the link during slot t (in units of packets/slot). That is,
pl(t) = 1 if link 1 is scheduled for transmission on slot t, and pi(t) =0 otherwise. The
scheduler only schedules a link 1 that does not violate the interference constraints

and that has a packet ready for transmission (so that QI(t) > 0). Let p(t) = {(pi(t)Hiel

represent the transmission rate vector for slot t. Define X(t) as the set of feasible
transmission vectors for slot t, representing all p(t) rate vectors that conform to the
constraints defined by the interference sets Sl and the additional constraint that pl(t)

= 1 only if QI(t) > 0 (for each 1 € L). The goal is to observe the queue every slot and
make scheduling decisions u(t) € X(t) so as to support all incoming traffic with

average delay as small as possible.

4.3 MAXIMAL SCHEDULING

Define the network capacity region A as the closure of the set of all arrival

rate vectors (#1),s; that can be stably supported, considering all possible scheduling

algorithms that conform to the above constraints. It is well known that scheduling
according to a generalized max-weight rule every timeslot ensures stability and
maximum throughput whenever arrival rates are interior to the capacity region.
However, the max-weight rule involves an integer optimization that may be difficult
to implement, and has delay properties that are difficult to analyze. In this project
scheduling is done according to a simpler maximal scheduling algorithm.
Specifically, given a queue vector Q(t), a transmission vector u(t) is maximal if it

satisfies the interference constraints and is such that for all links ! € L, if QI(t) > 0
then jt_(t) = 1 for at least one link « € 5. It means that if link 1 has a packet, then

either link 1 is selected for transmission, or some other link within the interference
set S1 is selected. There is much recent interest in maximal scheduling because of its
implementation and its ability to support input rates within a constant factor of the

capacity region for wireless networks.
17

One way to achieve a maximal scheduling is as follows: First select any non-

empty link ! € L and label it “active.” Then select any other non-empty link that

does not conflict with the active link 1 (i.e., that is not within SI). Label this second
link “active.” Continue in the same way, selecting new non-empty links that do not
conflict with any previously selected links, until no more links can be added. It is
not difficult to see that this final set of links labeled “active” has the desired
maximal property. Maximal link selections are not unique, and can alternatively be
found in a distributed manner, where multiple nodes attempt to activate their non-
conflicting, non-empty links simultaneously, and contentions are resolved locally.
This distributed implementation also requires multiple iterations before the set of

selected links becomes maximal.

In this project, it is assumed that transmission decisions are made every slot
according to any maximal scheduling. For convenience, further assume that the
maximal scheduling has a well defined probabilistic structure given the queue
backlog vector, so that the entire queuing system can be viewed as an ergodic
Markov chain with a countably infinite state space. The inequality is the only

additional property of maximal scheduling required in this analysis.

4.4 DELAY ANALYSIS

Assume that the arrival process is deterministic and vehicle arrives at a
uniform rate. Further, assume that the system in unsaturated -- that is, the total
number of vehicles that arrive in a period is less than the total number of vehicles
that can be served by the system. These two assumptions mean that the arrival rate is

such that all the vehicles that come in a cycle are cleared within the same cycle.

The average delay to vehicles for this case then can be easily determined..
The figure shows a typical cumulative arrival / departure graph against time for an
unsaturated, uniform arrival rate approach to an intersection. The slope of the

cumulative arrival line is v, where v is the uniform arrival rate in vehicles per unit
18

time. The slope of the cumulative departure line is sometimes zero (when the light is
red) and sometimes S(when the light is green); where sis the saturation flow rate
obtained as the reciprocal of the saturation headway explained earlier; 5is expressed

as vehicles per hour of green per lane.

4.5 FLOW CONTROL

In data communications, flow control is the process of managing the pacing
of data transmission between two nodes to prevent a fast sender from outrunning a
slow receiver. It provides a mechanism for the receiver to control the transmission
speed, so that the receiving node is not overwhelmed with data from transmitting
node. Flow control should be distinguished from congestion control, which is used
for controlling the flow of data when congestion has actually occurred. Flow control
mechanisms can be classified based on whether the receiving node sends feedback

to the sending node or not.

Flow control is important because it is possible for a sending computer to
transmit information at a faster rate than the destination computer can receive and
process them. This can happen if the receiving computers have a heavy traffic load
in comparison to the sending computer, or if the receiving computer has less

processing power than the sending computer.

A Markov chain is a mathematical system that transits from one state to
another (out of a finite or countable number of possible states) in a chainlike
manner. 1t is a random process endowed with the Markov property: that the next
state depends only on the current state and not on the past. Markov chains have
many applications as statistical models of real-world processes. A "discrete-time"
random process means a system which is in a certain state at each "step”, with the
state changing randomly between steps. The steps are often thought of as time, but
they can equally well refer to physical distance or any other discrete measurement;
formally, the steps are just the integers or natural numbers, and the random process

is a mapping of these to states. The Markov property states that the conditional
19

probability distribution for the system at the next step (and in fact at all future steps)
given its current state depends only on the current state of the system, and not
additionally on the state of the system at previous steps. Since the system changes
randomly, it is generally impossible to predict the exact state of the system in the
future. However, the statistical properties of the system's fuﬁre can be predicted. In

many applications it is these statistical properties that are important.

The changes of state of the system are called transitions, and the probabilities
associated with various state-changes are called transition probabilities. The set of
all states and transition probabilities completely characterizes a Markov chain. By
convention, assume all possible states and transitions have been included in the
definition of the processes, so there is always a next-state and the process goes on

forever.

4.6 SOFTWARE ENVIRONMENT

The software environment in which the proposed system is presented 1s

NET Framework.
4.6.1 Features Of .Net

Microsoft NET is a set of Microsoft software technologies for rapidly
building and integrating XML Web services, Microsoft Windows-based
applications, and Web solutions. The .NET Framework is a language-neutral
platform for writing programs that can easily and securely interoperate. There’s no
language barrier with NET: there are numerous languages available to the developer
including Managed C++, C#, Visual Basic and Java Script. The .NET framework
provides the foundation for components to interact seamlessly, whether locally or
remotely on different platforms. It standardizes common data types and
communications protocols so that components created in different languages can
easily interoperate. “.NET” is also the collective name given to various software

components built upon the .NET platform. These will be both products (Visual

20

Studio.NET and Windows.NET Server, for instance) and services (like Passport,
NET My Services, and so on).

4.6.2 The .Net Framework
The NET Framework has two main parts:
1. The Common Language Runtime (CLR).
2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It provides the

environment within which programs run. The most important features are

Conversion from a low-level assembler-style language, called
Intermediate Language (IL), into code native to the platform being
executed on.

e Memory management, notably including garbage collection.

Checking and enforcing security restrictions on the running code.

Loading and executing programs, with version control and other

such features.

ASP.NET

XML WEB SERVICES Windows Forms

Base Class Libraries

Common Language Runtime

Operating System

Figure 4.1 .NET Framework

21

4.6.3 Common Type System

The CLR uses something called the Common Type System (CTS) to strictly
enforce type-safety. This ensures that all classes are compatible with each other, by
describing types in a common way. CTS define how types work within the runtime,
which enables types in one language to interoperate with types in another language,
including cross-language exception handling. As well as ensuring that types are only
used in appropriate ways, the runtime also ensures that code doesn’t attempt to

access memory that hasn’t been allocated to it.

4.6.4 Common Language Specification

The CLR provides built-in support for language interoperability. To ensure
that you can develop managed code that can be fully used by developers using any
programming language, a set of language features and rules for using them called
the Common Language Specification (CLS) has been defined. Components that

follow these rules and expose only CLS features are considered CLS-compliant.

4.6.5 The Class Library

NET provides a single-rooted hierarchy of classes, containing over 7000
types. The root of the namespace is called System; this contains basic types like
Byte, Double, Boolean, and String, as well as Object. All objects derive from
System. Object. As well as objects, there are value types. Value types can be
allocated on the stack, which can provide useful flexibility. There are also efficient
means of converting value types to object types if and when necessary. The set of
classes is pretty comprehensive, providing collections, file, screen, and network 1/O,

threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each
providing distinct areas of functionality, with dependencies between the namespaces

kept to a minimum.

22

4.6.6 Languages Supported By .Net

The multi-language capability of the .NET Framework and Visual Studio
NET enables developers to use their existing programming skills to build all types
of applications and XML Web services. The .NET framework supports new versions
of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C+t},

but there are also a number of new additions to the family.

Visual Basic .NET has been updated to include many new and improved
language features that make it a powerful object-oriented programming language.
These features include inheritance, interfaces, and overloading, among others.
Visual Basic also now supports structured exception handling, custom attributes and
also supports multi-threading. Visual Basic .NET 1is also CLS compliant, which
means that any CLS-compliant language can use the classes, objects, and

components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of
the enhancements made to the C++ language. Managed Extensions simplify the task
of migrating existing C++ applications to the new .NET Framework. C# is
Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid
Application Development”. Unlike other languages, its specification is just the
grammar of the language. It has no standard library of its own, and instead has been

designed with the intention of using the NET libraries as its own.

Microsoft Visual J# NET provides the easiest transition for Java-language
developers into the world of XML Web Services and dramatically improves the
interoperability of Java-language programs with existing software written in a

variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-
aware applications to be built in either Perl or Python. Both products can be
integrated into the Visual Studio .NET environment. Visual Perl includes support for

Active State’s Perl Dev Kit.

23

CHAPTER 5

CONCLUSION

In this project a new technique to improve the performance of ODMRP is
presented using NET. The analysis in this project particularly treats delay in
wireless networks with general constraint sets and time-correlated arrivals. This
allows delay to be understood in terms of general models for network traffic. The
proposed system develops order-optimal delay results for a single hop in ad-hoc
networks with general interference set constraints. This system provides a flow
control technique that works together with maximal scheduling and yields an

explicit utility-delay tradeoff. Thereby it removes route acquisition latency.

24

APPENDICES
A.1 SAMPLE CODING
// Maximal Scheduling
//program.cs
using System;
using System.Collections.Generic;

using System. Windows.Forms;

namespace Maximal_Scheduling

{

static class Program
{
/{ <summary>
/{/ The main entry point for the application.
/I </summary>
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run{new Form1());

//form.cs
using System,;
using System.Collections.Generic;

using System.ComponentModel;

25

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.Net; |

using System.Net.Sockets;

using System.lO;

namespace Maximal Scheduling

{

public partial class Form1 : Form

{
public Form1(}

{

InitializeComponent();
}
int priyarl = (;
int priyar2 = 0;
int priyar3 = 0;
private void pictureBox5_Click(object sender, EventArgs ¢)
{
backgroundWorkerl RunWorkerAsync();
Iblstatus.Text = "Runing,...";
}
receiver obj = new receiver();

private void backgroundWorkeri DoWork(object sender, DoWorkEventArgs

obj.StartServer();

}

private void Form1 Load(object sender, EventArgs e)

{

26

labell.Text =
Conveﬂ.ToString(Environment.GetFolderPath(Environment.SpecialFolder.Desktop)
)

receiver.receivedPath = labell.Text;

for (inti=1;i<=3;i++)

{
if (System.IO.Directory.Exists(label1.Text + "/MS Client " +1) == false)
{
System.IO.Directory.CreateDirectory(labell. Text + "/MS Client " + i);
3
)

}
int[] arr = new int[3]; string pri = "Yes";
private void timerl_Tick(object sender, EventArgs e}

{

if (receiver.curMsg == "Received")
{
receiver.curMsg ="";
11.Text = receiver.fsizel . ToString();
12.Text = receiver.fsize2. ToString();
13.Text = receiver.fsize3.ToString();
if (receiver.fsizel != 0 && receiver.fsize2 == 0 && receiver.fsize3 ==
&& receiver.strl == "start")
{
receiver.strl = "Stop”;
System.Threading. Thread.Sleep(500);
arr[0] = receiver.fsizel;

int temp;

if (receiver.fsizel == arr{0])

{
27

priyarl = 1;
}
shedul();
Pﬂ = "NO";
¥
if (receiver.fsizel == 0 && receiver.fsize2 1= 0 && receiver.fsize3 == 0
&& receiver.str2 == "start")
{
System.Threading. Thread.Sleep(500);
arr[0] = receiver.fsize2;

int temp;

if (receiver.fsize2 == arr[0])
{
priyar2 = 1;
}
shedul();
pn — “NO";
}
if (receiver.fsizel == 0 && receiver.fsize2 == 0 && receiver.fsize3 =0
& & receiver.str3 == "start")
{
System.Threading. Thread.Sleep(500);
arr[0] = receiver.fsize3;

int temp;

if (receiver.fsize3 == arr[0])
{
_ priyar3 =1;

¥
shedul();

pri - HNOH;

}

if (receiver.fsizel != 0 && receiver.fsize2 != 0 && receiver.fsize3 == 0
&& receiver.strl == "start" && receiver.str2 = "start")
{
arr[0] = receiver.fsizel;
arr[1] = receiver.fsize2;
int temp;
for (int i = 0; i <= 2; 1++)
{
for (intj =1+ 1;j <= 2; j+1)
{
if (arr[i1] < arr[j])
{
temp = arr{i};
arr[i] = arr[j];

arr(j] = temp;

}

if (receiver.fsizel == arr[0])

{
priyarl = 1;

}

else if (receiver.fsize2 = arr[0])

{
priyar2 = 1;

if (receiver.fsizel == arr[1})

{
priyarl = 2;

else if (receiver.fsize2 == arr[1])

{
privar2 = 2;

shedul();
pn - “NO";
}
if (receiver.fsizel == 0 && receiver.fsize2 1= 0 && receiver.fsize3 1= 0
&& receiver.str? == "start" && receiver.str3 == "start")
{
arr[0] = receiver.fsize2,;
arr{ 1] = receiver.fsize3;
int temp;
for (inti=0; i <=2; i++)
{
for(intj=1+1;j <=2; j++)
{
if (arr[i] <arr[j])
{
temp = artfi];
arr[i] = arr[j];

arr{j] = temp;

}

if (receiver.fsizel == arr{0])
{

priyarl = 1;
}

else if (receiver.fsize2 == arr[0])

{

priyar2 = 1;

if (receiver.fsizel == arr[1])
{

priyarl = 2;
}

else if (receiver.fsize2 == arr[1])

{
priyar2 =2;

shedul();
pri - ||N0";
}
if (receiver.fsizel != 0 && receiver.fsize2 == 0 && receiver.fsize3 1=0
&& receiver.strl == "start" && receiver.str3 == "start")
{
arr[0] = receiver.fsizel;
arr[1] = receiver.fsize3;
int temp;
for (inti=0; i <= 2; 1+4)
{
for(intj=1+1;j<=2;)t+)
{
if (arr{i] < arr[}])
{
temp = arr[1];
arr{i} = arr(j];

arr[j] = temp;

31

}

if (receiver.fsizel = arr[0])

{
priyarl = 1,
)
else if (receiver.fsize2 == arr{0])
{
privar2 =1,
}

if (receiver.fsizel = arr[1])
{

priyar]l = 2;
}

else if (receiver.fsize2 == arr[1])

{
priyar2 = 2;

shedul();
pri = TINOH;

}

if (receiver.fsizel 1= 0 && receiver.fsize2 1= 0 && receiver.fsize3 1= 0
&& receiver.strl == "start" && receiver.str2 == "start" && receiver.str3 == "start")

{

arr[0] = receiver.fsizel;

arr[1] = receiver.fsize2;

arr[2] = receiver.fsize3;

int temp;

for (inti=0;1 <= 2;1++)

{
32

for (intj=i+ ;1< 2;3+)

{

if (arr(i] < arr(i])
{
temp = arr{il;
art[i] = arr{j};
arr{j] = temp;
3

}

if (receiver.fsizel == arr{0])

{
priyarl = 1;
}

else if (receiver.fsize2 == arr[0])

{
priyar2 = 1;
}

else if (receiver.fsize3 == arr{07)

{
priyar3 = 1;

}
if (receiver.fsizel == arr[17)
{
priyarl = 2;
¥

else if (receiver.fsize2 == arr[1])

{
priyar2 = 2;

}

else if (receiver.fsize3 == arr{1])

{
priyar3 = 2;
}
if (receiver.fsizel == arr[2])
{
priyarl = 3;
}
else if (receiver.fsize2 == arr[2])
{
priyar2 = 3;
¥
else if (receiver.fsize3 == arr{2])
{
priyar3 = 3
}
shedul();
pI'l ="N O“;
)
timer1.Enabled = true;
}
¥
private void 1bl1()
{

Iblsts1.Text = "ON",
Tbists1.ForeColor = Color.Green;
lblsts2. Text = "OFF";
1blsts2.ForeColor = Color.Red;
1blsts3.Text = "OFF";
Iblsts3.ForeColor = Color.Red;

34

1blid1.Visible = true;
1blid2.Visible = false;
1blid3.Visible = false;

}
private void Ib12()

{
Iblsts]1.Text = "OFF",;
ibists1.ForeColor = Color.Red;
Ibists2. Text = "ON";
Ibists2.ForeColor = Color.Green;
Iblsts3.Text = "OFF";
Ibists3.ForeColor = Color.Red;
lblid1.Visible = false;
1blid2.Visible = true;
1blid3.Visible = false;

}
private void 1bl3()

{
Iblsts1.Text = "OFF";
1blsts1.ForeColor = Color.Red;
Iblsts2. Text = "OFF";
Ibists2.ForeColor = Color.Red;
Ibists3.Text = "ON";
Iblsts3.ForeColor = Color.Green;
1blid1.Visible = false;
1blid2. Visible = false;
Iblid3.Visible = true;

¥

private void shedul()
{
timerl.Enabled = false;

byte[] ok = Encoding.ASCII.GetBytes("Ok");
35

inta, b, ¢;

if (priyarl == 1)
{
1bl11();
Application.DoEvents();
a=3;
for(inti=11<=a; i++)
{
if (progressBarl Value != 100)
{

progressBarl.Value += 10;

Application.DoEvents();

send(ok, 1);

System.Threading.Thread.Sleep(3 000);
}

else

{

Jireceiver.strl = "Stop”;

/Ireceiver.fsizel = 0;

/i priyarl = 0;
3
}
}
else if (priyarl == 2)
{
1bi1();
Application.DoEvents();
a=2;
for (inti=1;1<=a; it+)
{
if (progressBarl.Value != 100)
{

36

progressBarl.Value += 10;
Application.DoEvents();
send(ok, 1);
System.Threading.Thread.Sleep(2000);
3
else
{
// receiver.strl = "Stop";

/ireceiver.fsizel = 0;

// priyarl = 0;
}
}
ki
else if (priyarl == 3)
{
b11();

Application.DoEvents();
a=1;
for (inti=1;1<=a;i++)
{
if (progressBarl.Value != 100}
{
progressBarl.Value +=10;
Application. DoEvents(};
send(ok, 1);
System.Threading.Thread.Sleep(ZOOO);
3
else
{
/freceiver.strl = "Stop";
/f receiver.fsizel =0,

// priyarl = 0;

¥
}
if (priyar2 == 1)
{
1b12();
Application.DoEvents();
a=3;
for (int1=1; i <= a; i++)
{
if (progressBar2.Value !=100)
{
progressBar2. Value += 10;
Application.DoEvents();
send(ok, 2);
System. Threading, Thread.Sleep(2000);
}
else
{
/freceiver.str2 = "Stop”;
/! receiver.fsize2 = 0;
// priyar2 = 0;
j
}
}
else if (priyar2 == 2)
{
1b12();

Application.DoEvents();
a=2;

for (inti=1; 1 <= a; i++)

38

if (progressBar2.Value != 100)
{
progressBar2.Value += 10;
Application.DoEvents();
send(ok, 2);
System.Threading. Thread.Sleep(2000);
}
else
{
//receiver.str2 = "Stop";

// receiver.fsize2 = Q;

// priyar2 = 0;
}
}
}
else if (priyar2 == 3)
{
1bl2();

Application.DoEvents(),
a=1;
for (inti=1;1i<=a; it++)
{
if (progressBar2.Value != 100)
{
progressBar2.Value += 10;
Application.DoEvents();
send(ok, 2);
System.Threading.Thread.Sileep(2000);
}

else

{

39

// receiver.str2 = "Stop";
// receiver.fsize2 = 0;

// priyar2 = 0;

if (priyar3 == 1)
{
1b13();
Application.DoEvents();
a=23;
for (inti=1,1<=1; i++)
{
if (progressBar3.Va1ue 1=100)
{
progressBarB.Value += 10,
Application.DoEvents();
send{ok, 3);
System.Threading.Thread.Sleep(ZOOO);
}
else
{
//receiver.str3 = "Stop";
// receiver.fsize3 = 0;

/f priyar3 = 0;

h
else if (priyar3 == 2)

{
b13();

40

Application.DoEvents();
a=2;
for (inti=1; i<=a;it+)
{
if (progressBar3 Value != 100)
{
progressBar3 Value +=10;
Application.DoEvents();
send(ok, 3);
System.Threading.Thread.Sleep(2000);
}
else
{
/jreceiver.str3 = "Stop™;
jireceiver.fsize3 = (;

/ipriyar3 = 0;

}
else if (priyar3 == 3)
{
1b13();
Application.DoEvents();
a=1;
for (inti=1;1<=&; i++)
{
if (progressBar3.Value 1= 100)
{
progressBa:rS.Value +=10;
Application.DoEvents();
send(ok, 3);
System.Threading.’[hread.Sleep(2000);

3

else

{

/Ireceiver.str3 = "Stop”;
/ireceiver.fsize3 = 0;

/fpriyar3 = 0;

}

timer1.Enabled = true;

Jjreceiver.strl = "Stop";
Jjreceiver.str2 = "Stop";
/freceiver.str3 = "Stop”;

}
public void send(bytef] data, int port)

{
try

{
[P Address[] ipAddress = Dns.GetHostAddresses("192.168.1 2™,

IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], port);

gocket clientSock = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, Protocol Type.IP);

clientSock.Connect(ipEnd);
clientSock.Send(data);
clientSock.Close();

catch (Exception ex)

{

42

if (ex.Message == "A connection attempt failed because the connected
party did not properly respond after a period of time, or established connection
failed because connected host has failed to respond™)

{
//IblError. Text ="";

//IblError.Text = "No Such System Available Try other IP";
3

else

{

if (ex.Message == "No connection could be made because the target

machine actively refused it")

{
//IblError. Text ="";
/MblError. Text = "File Sending fail. Because server not running.”;
}
else
{
/NIblError. Text = "";
J/IblError. Text = "File Sending fail." + ex.Message;
b

private void label5_Click{object sender, EventArgs €)

{

}

class receiver
{
"~ IPEndPoint ipEnd;

43

Socket sock;
string serl;
string fileDes, fileini;
int len;
public static string[} path = null;
bytef] cldatal; byte[] c2datal; byte[] c3datal;
byte[] cldataZ; byte[] c2data2; byte[] c3data?;
byte[] cldata3; byte[] c2data3; byte[] c3data3;
byte[] cldatad; byte[] c2data4; byte[] c3data4;
byte[] cldatad; byte[] c2data5; byte[] c3data;
byte[] cldataé; byte[] c2data6; byte[] c3datab;
byte[] cldata7; byte[] c2data7; byte[] c3data7;
byte[] cldata8; byte[] c2data8; byte[] c3datad;
byte[] cldata9; byte[] c2datad; byte[] c3data9;
byte{] cldatal0; byte[] c2datal0; byte[] c3datalO;
int csegl = 0;
int cseg2 = 0;
int cseg3 =0;
public receiver()
{
1PHostEntry ipEntry = Dns.GetHostEntry(Environment.MachineN ame);
[PAddress IpAddr = ipEntry.AddressList[O];
ipEnd = new IPEndPoint(lpAddr, 4);
sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.IP);
sock.Bind(ipEnd);
}
public static string receivedPath;
public static string curMsg = "Stopped";

"o,

public static string strl ="

ner,

public static string str2 ="";

"nu,

public static string str3 =""
44

public static bytef] clientData;
public static int receivedBytesLen;
public static int fsizel = 0;
public static int fsize2 = 0;
public static int fsize3 = 0;
int count = 0;
public void StartServer()
{
try
{
//curMsg = "Starting...";
sock.Listen(100);

// curMsg = "Running and waiting to receive file.";

Socket clientSock = sock.Accept();

clientData = new byte[1024 * 15000];

receivedBytesLen = clientSock.Receive(clientData);

System.”[hreading.Thread.Sleep(1000);
string who = Encoding.ASCII.GetString(clientData, 0, 2);
if (who == "c1")
{

if (fsizel == 0}

{

fsizel = Convert.ToInt3Z(Encoding.ASCII.GetString(clientData, 2,
receivedBytesLen - 2));
}

else

{

45

int fileNameLen =
Convert.ToInt32(Encoding.ASCII.GetString(clientData, 2,2));

string fileName = Encoding.ASCII.GetString(clientData, 4,
fileNameLen);

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath +
"/MS Client 1/" + fileName, FileMode.Append)); ;

bWrite. Write(clientData, 4 + fileNameLen, receivedBytesLen - 4 -
fileNameLen);

curMsg = "Saving file...";

bWrite.Close();
if (ﬁleName.EndsWith(".E"))

{
MargeUp(receivedPath +"/MS Client 1/" + fileName);

}

strl = "start";

}
else if (who == "c2")
{

if (fsize2 == 0)

{

fsize2 = Convert.ToInt32(Encoding.ASCII.GetString(clientData, 2,
receivedBytesLen - 2));
}

else

{

int fileNameLen =

Convert.ToInt3Z(Encoding‘ASCII.GetString(clientData, 2.2

46

string fileName = Encoding.ASCII.GetString(clientData, 4,
fileNameLen),

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath +

"/MS Client 2/ + fileName, FileMode.Append)); 5
bWrite. Write{clientData, 4 + fileNameLen, receivedBytesLen - 4 -
fileNameLen);

curMsg = "Saving file...";

bWrite.Close();
if (ﬁleName.EndsWith(".E"))

{
MargeUp(receivedPath + "/MS Client 2/" + fileName);

}

str2 = "start";

3
else if (who == "c3")

{
if (fsize3 == 0)
{
fsize3 = Convert.ToInt32(Encoding.ASCII.GetString(clientData, 2,
receivedBytesLen - 2));
}

else

{

int fileNameLen =
Convert.ToInt32(Encoding.ASCII.GetString(clientData, 2,20
string fileName = Encoding.ASCII.GetString(c]ientData, 4,
fileNameLen);

47

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath +
"MS Client 3/" + fileName, FileMode.Append)); ;

bWirite. Write(clientData, 4 + fileNameLen, receivedBytesLen - 4-
fileNameLen); |

curMsg = "Saving file...";

bWrite.Close();
if (ﬁleName.EndsWith(".E"))

{
MargeUp(receivedPath +"/MS Client 3/" + fileName);

}

str3 = "start";

}

curMsg = "Received”;

//BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath + """+
fileName, FileMode.Append)); ;

/foWrite. Write(clientData, 4 + fileNameLlen, receivedBytesLen - 4 -
fileNameLen);

//curMsg = "Saving file...";
//bWrite.Close();
clientSock.Close();
//send();

StartServer();

/] curMsg = "Reeived & Saved file; Server Stopped.™;

438

catch (Exception ex)

{

curMsg = "File Receving error.";

}
public void MargeUp(string firstFileName)

{
if (firstFileName.Length < 1)
return;

string endPart = firstFileName;
string orgFile ="";

orgFile = endPart.Substring(0, endPart. LastIndexOf{("."));
endPart = endPart.Substring(endPart.LastIndexOf(".") + 1);

if (endPart == "E")//If only one slice is there

{
orgFile = orgFile.Substring(0, orgF ile.LastIindexOf("."));
endPart = "0";

if (File.Exists(orgFile))
{
if (MessageBox.Show(orgFile + " already exists, do you want to delete it",
" MessageBoxButtons.YesNo) == DialogResult.Yes)
File.Delete(orgFile);
else
{
MessageBox.Show("File not assembled. Operation cancelled by user.");

return;

49

//Assembling starts from here

BinaryWriter bw = new BinaryWriter(File.Open(orgFile,
FileMode.Append)); |

string nextFileName ="";

byte[] buffer = new byte[bw.BaseStream.Length];

int counter = int.Parse(endPart);
while (true)
{
nextFileName = orgFile + "." + counter. ToString();
if (File.Exists(nextFileName + ".E"))
{
//Last slice
buffer = File.Read AlIBytes(nextFileName + ".E");
bw.Write(buffer);
if (File.Exists(nextFileName + ".E"))
File.Delete(nextFileName + ".E");
break;
}

else

{
buffer = File.Read AliBytes(nextFileName),
bw.Write(buffer);

¥

counter++;

if (File.Exists(nextFileName))
File.Delete(nextFileName);

}
bw.Close();

50

//MessageBox.Show("File assebled successfully");

private void clientl1()
{
if (csegl == 0)
{
csegl++;
cldatal = new byte[receivedBytesLen - 3]; P - AR
Array.Copy(clientData, 3, cldatal, 0, receivedBytesLen - 3);

}

else if (csegl == 1)

{
csegl++;
cldata2 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata2, 0, receivedBytesLen - 3);

h

else if (csegl == 2)

{
csegl++;
cldata3 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata3, 0, receivedBytesLen - 3);

t

else if (csegl == 3)

{
csegl++;
cldata4 = new byte{receivedBytesLen - 3];
Array.Copy(clientData, 3, cldatad, 0, receivedBytesLen - 3);

51

}
else if (csegl == 4)
{
csegl++;
| cidata5 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata5, 0, receivedBytesLen - 3);

}

else if (csegl == 5)

X

csegl++;

cldataé = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata6, 0, receivedBytesLen - 3);

}

else if (csegl == 6)

{
csegl-++;
cldata7 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata7, 0, receivedBytesLen - 3);

}

else if (csegl == 7)

{
csegl++;
cldata8 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata8, 0, receivedBytesLen - 3);

}
else if (csegl == 8)

{

csegl++;

cldata9 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, cldata9, 0, receivedBytesLen - 3);

}
else if (csegl =9)
{
csegl+t;
c1datal0 = new bytefreceivedBytesLen - 3];
Array.Copy(clientData, 3, cldatal0, 0, receivedBytesLen - 3);
if (cldatal !=null && cldata? '= null && cldata3 != null && cldata4 !=
null && cldatas 1= null && cldata6 !=null && cldata7 !=null && cldata8 !=
null && cldata9 '= null && cldatal(!=null)
{
byte[] wrdata = new byte[cldatal Length + cldata2.Length +
cldata3.Length + cldatad.Length + cldatas.Length + cldata6.Length +
cldata7.Length + cldata8.Length + cldata9.Length + cldatal0.Length];
//Array.Copy(cldatal, 0, datal, O, fsize);
//Array.Copy(cldata2, 0, data2, 0, fsize);
//Array.Copy(cldata3, 0 + fsize, data3, 0, fsize);
/{Array.Copy(cldatad, 0 + fsize + fsize, datad, 0, fsize);
//Array.Copy(cldatas, 0 + fsize + fsize + fsize, datas, 0, fsize);
//Array.Copy(cldata6, O + fsize + fsize + fsize + fsize, datab, 0, fsize);
//Array.Copy(cldata7, O + fsize + fsize + fsize + fsize + fsize, data7, 3,
fsize);
//Array.Copy(cldata8, 0 + fsize + fsize + fsize + fsize + fsize + fsize,
data8, 3, fsize);
//Array.Copy(cldata9, 0 + fsize + fsize + fsize + fsize + fsize + fsize +
fsize, data9, 3, fsize);
/{Array.Copy(cldatal0, O + fsize + fsize + fsize + fsize + fsize + fsize +

fsize + fsize, datal0, 3, fsize + Convert. ToInt32(g));

53

Array.Copy(cldatal, 0, wrdata, 0, cldatal.Length);

Array.Copy(cldata2, 0, wrdata, cidatal.Length, cldata2.Length);

Array.Copy(cldata3, 0, wrdata, cldatal.Length + cldata2.Length,
cldata3.Length);

Array.Copy(cldata4, 0, wrdata, cldatal .Length + cldata2.Length +
cldata3.Length, cldata4.Length);

Array.Copy(cldata5, 0, wrdata, cldatal.Length + cldata2.Length +
cldata3.Length + cldatad4.Length, cldata5.Length);

Array.Copy(cldatas, 0, wrdata, cldatal.Length + cldata2.Length +
cldata3.Length + cldata4.Length + c1data5.Length, cldata6.Length);

Array.Copy(cldata7, 0, wrdata, cldatal.Length + cldata2.Length +
cldata3.Length + cldatad.Length + cldata5.Length + cldata6.Length,
cldata7.Length);

Array.Copy(cldata8, 0, wrdata, cldatal.Length + cldata2.Length +
cldata3.Length + cldatad.Length + cldata5.Length + cidata6.Length +
cldata7.Length, cldata8.Length);

Array.Copy(cldata9, 0, wrdata, cldatal Length + cldata2.Length +
cldata3.Length + cldatad.Length + cldata5.Length + cldata6.Length +
cldata7.Length + cldata8.Length, cldata9.Length);

Array.Copy(cldatal0, 0, wrdata, cldatal.Length + cldata2.Length +
cldata3.Length + cldatad.Length + cldata5.Length + cldata6.Length +
cldata7.Length + cldata8.Length + cldata9.Length, cldatal0.Length);

int fileNamelLen = BitConverter. ToInt32(wrdata, 0);
string fileName = Encoding. ASCII.GetString(wrdata, 4, fileNameLen);

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath +
"/MS Client 1/" + fileName, FileMode.Append)); ;

bWrite. Write(wrdata, 4 + fileNameLen, receivedBytesLen - 4 -
fileNameLen);

bWrite.Close();
54

}

private void client2()
{
if (cseg2 == 0)
{
cseg2++;
c2datal = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2datal, 0, receivedBytesLen - 3);

}

else if (cseg2 == 1)

{
cseg2+t;
c2data2 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data2, 0, receivedBytesLen - 3);

3

else if (cseg2 == 2)

{
cseg2++;
c2data3 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data3, 0, receivedBytesLen - 3);

3

else if (cseg2 == 3)

{
cseg2++;
c2datad = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data4, 0, receivedBytesLen - 3);

}

else if (cseg2 == 4)

{
cseg2+t;
¢2data5 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data5, 0, receivedBytesLen - 3)

}

else if (cseg2 == 5)

{
cseg2++;
c2data6 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data6, 0, receivedBytesLen - 3%

ki

else if (cseg2 == 6)

{
cseg2+t;
c2data7 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data7, 0, receivedBytesLen - 3);

b

else if (cseg2 == 7)

{
cseg2++;
c2data8 = new byte[receivedBytesLen - 31;
Array.Copy(clientData, 3, c2data8, 0, receivedBytesLen - 3);

}
else if (cseg2 = §)

{

cseg2++;

56

c2data® = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2data9, 0, receivedBytesLen - 3)

3

else if (cseg2 = 9)

{
cseg2++;
c2datal0 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c2datal0, 0, receivedBytesLen - 3);

}

private void client3()
{
if (cseg3 ==0)
{
cseg3++;
c3datal = new byte[receivedBytesLen - 3];
Array.Copy{clientData, 3, c3datal, 0, receivedBytesLen - 3);

}

else if {cseg3 == 1)

{
cseg3++;
c3data? = new byte[receivedBytesLen ~ 3];
Array.Copy(clientData, 3, c3data2, 0, receivedBytesLen - 3);

}
else if (cseg3 == 2)
{

cseg3+t;

c3data3 = new byte[receivedBytesLen - 3];

57

Array.Copy(clientData, 3, c3data3, 0, receivedBytesLen - 3);

}

else if (cseg3 = 3)

{
cseg3++;
c3data4 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data4, 0, receivedBytesLen - 3);

}

else if (cseg3 == 4)

{
cseg3++;
c3data5 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data5, 0, receivedBytesLen - 3);

b

else if (cseg3 == 5)

{
csegld++;
c3data6 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data6, 0, receivedBytesLen - 3);

}

else if (cseg3 == 6)

{
cseg3++;
c3data’ = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data7, 0, receivedBytesLen - 3);

}
else if (cseg3 == 7)
58

cseg3++;
¢3data8 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data8, 0, receivedBytesLen - 3);

3

else if {(cseg3 =— 8)

{
cseg3++;
c3data9 = new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3data9, 0, receivedBytesLen - 3);

}

else if (cseg3 == 9)

{
cseg3++;
c3datal(= new byte[receivedBytesLen - 3];
Array.Copy(clientData, 3, c3datal0, 0, receivedBytesLen - 3);

}
public void sendf)
{
try
{
IPAddress[] ipAddress = Dns.GetHostAddresses("192.168.1.2");
IPEndPoint ipEnd = new IPEndPoint{ipAddress[0], 5657);
Socket clientSock = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.IP);

byte[] fileNameByte = Encoding. ASCII.GetBytes(fileDes);

clientSock.Connect(ipEnd};
59

clientSock.Send(clientData);
clientSock.Close();
StartServer();

catch (Exception ex)
{
if (ex.Message = "A connection attempt failed because the connected
party did not properly respond after a period of time, or established connection
failed because connected host has failed to respond™)
{
//1blError. Text ="";
//IblError.Text = "No Such System Available Try other IP";
}

else

{

if (ex.Message == "No connection could be made because the target

machine actively refused it")

{
//1blError. Text="";
//IblError.Text = "File Sending fail. Because server not running.”;
}
else
{
//IblError. Text = "";
//blError.Text = "File Sending fail." + ex.Message;
ki
}

60

A.2 SCREEN SHOTS

Figure A.1 Maximal scheduling main screen

61

“Fia B Wew Prodx DA Debug Dia Fomat Tods Tet Wndw tep

i =% . Bdw

Source Path of The File
C\Documents and SettingsigopiiMy .

Split Nerv)

. Midentt L

o L.

Figure A.2 Node 1 initiating data transfer

62

R AR O]

Cr

Wi toms m[:'maﬁ‘f =i

Figure A.3 Setting data size after splitting

63

Figure A.4 scheduling the data transfer

64

REFERENCES

1 Apara.K, (2010}, ‘Performance Comparison of MANET (Mobile Ad
hoc Network) Protocols (ODMRP with AMRIS and MAQODVY)
International Journal of Computer Applications (0975 — 8887), Vol.l,
No. 10, pp. 42-46.

2 Baburaj.E , Vasudevan.V (2007) ‘Multicast Routing Using On-
Demand Multicast Routing Protocol in Jade Agents’ , International
Journal of Soft Computing 2, pp. 411-416.

3 Bagrodia.R, Gerla.M, Hsu.J, Lee.S.J, Su.W, (2000), ‘A performance
comparison study of Adhoc Wireless Multicast protocols’, Proc.of the
19" Annual Joint Conf. Of the IEEE Computer and Communications
Societies’ , pp.565-574.

4 Bommaiah.E, Liu.M, McAuley.A, Talpade.R, (1998), ‘AMRoute:
Adhoc Multicast Routing Protocol, Internet draft, draft-talpade-manet-
amroute-00.txt’.

5 Chaporkar .P, Kar .K, Luo .X, and Sarkar .S,(2008) Throughput and
fairnessguarantees through maximal scheduling in wireless networks’
IEEE Trans. on Information Theory, Vol. 54, No. 2, pp. 572-594.

6 Erciyes. K, Dagdeviren. O, Cokuslu. D, (2006),” modelling and
simulation of wireless sensor and mobile ad hoc Networks’,
Proceedings of the International Conference on Modeling and
Simulation, No. B101, pp.28-30.

7 Gerla.M , Hsu.J, Lee.S.J, Su.W (2002}, *On-Demand Multicast Routing
Protocol (ODMRP) for Ad hoc Networks’, -ietf-manetodmrp-02.txt.
8 Narsimha.G, Venugopal Reddy.A, Sarma.S.S.V.N, (2007) ‘The

Effective Multicasting Routing Protocol in Wireless Mobile Adhoc
Network’, IEEE Computer Society,04196208,Proceedings of the Sixth
International Conference on Networking(ICN’07).

9 Neely M.J,(2009) ‘Delay Analysis for Maximal Scheduling with Flow
Control 1n Wireless Networks with Bursty Traffic’, IEEE Transactions
On Networking, Vol. 17, No. 4, pp. 1146-1159.

65

10

11

12

Wu X, Srikant .R, and Perkins J.R,(2007) ¢ Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks’ IEEE
Transactions on Mobile Computing.

Yudhvir Singh, Yogesh Chaba , Monika Jain, Prabha Rani, (2010),
‘Performance Evaluation of On-Demand MuiticastingRouting
Protocols in Moble Adhoc Networks’, IEEE Computer Society, pp-
298-301.

ZhaoY, XuL, ShiM, (2003), ‘On-Demand Multicast Routing
Protocol-Multipoint Relay (ODMRP-MRP) in Mobile Ad-hoc
Network’, proceedings of ICCT, pp. 1295-13.

66

