j°-35217

R |
JOB SCHEDULING IN GRID COMPUTING USING

GENETIC ALGORITHM

A PROJECT REPORT
Submitted by
S.S.DEEPIKA (0710108009)
M.KASTHURI (0710108022)

In partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

An Autonomous Institution Affiliated to Anna University of Technology,
Coimbatore.

APRIL 2011

KUMARAGURU COLLEGE OF TECHNOLOGY: COIMBATORE-641 049
BONAFIDE CERTIFICATE

Certified that this project report entitted “Job Scheduling in Grid
Computing using Genetic Algorithm” is the bonafide work of S.S.Deepika and
M.Kasthuri who carried out the research under my supervision. Certified also, that
to the best of my knowledge the work reported here in does not form part of any
other project report or dissertation on the basis of which a degree or award was

conferred on an earlier occasion on this or any other candidate.

SIGNATURE SIGN
< Bz wmt«
Mrs.P.Devaki,M.E.(Ph.D) rs.P evakl ,M.E.(Ph.D)

HEAD OF THE DEPARTMENT PROJECT GUIDE

Department of Computer Department of Computer

Science and Engineering Science and Engineering
Kumaraguru College of Technology Kumaraguru College of Technology
Coimbatore-641049 Coimbatore-641049

The candidate with University Register Nos. 0710108009, 0710108022
were examined by us in the project viva-voce examination held on

200l .\ -

Wioeian

INTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project entitled ”Job Scheduling in Grid
Computing using Genetic Algorithm” is a record of original work done by us
and to the best of our knowledge, a similar work has not been submitted to Anna
University or any Institutions, for fulfillment of the requirement of the course

study.

The report is submitted in partial fulfillment of the requirement for the
award of the Degree of Bachelor of Computer Science and Engineering of Anna

University, Coimbatore.

oA

Place: Coimbatore (S.S.Deepika)

Date: (%04 11
H\'E_@Z

(M Kasthuri)

ACKNOWLEDGEMENT

We are intend to express our heartiest thanks to our chairman
PadmaBhushan Arutselvar N.Mahalingam,B.sc., F.LE and the Co-Chairman
Dr.B.K.Krishnaraj Vanavarayar for given us this opportunity to embark on this

project.

We would like to make a special acknowledgement and thanks to
our correspondent M.Balasubramaniam, M.com., M.B.A., and our Director

Dr.J.Shanmugam for his support and encouragement throughout the project.

We extend our sincere thanks to our Principal, Dr. S.Ramachandran.,
Kumaraguru College of Technology, Coimbatore, for being a constant source of

inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to
Dr. S. Thangasamy, Ph.D., Dean , Research and Development for his support and

encouragement throughout the project.

We express deep gratitude and gratefulness to our Guide
Mrs.P.Devaki MLE.,(Ph.D)., Project coordinator and Head of the Department of
Computer Science & Engineering, for her supervision, enduring patience, active

involvement and guidance.

We would like to convey our honest thanks to all Faculty members of the
Department for their enthusiasm and wealth of experience from which we have

greatly benefited.

We also thank our friends and family who helped us to complete this

project fruitfully.

ABSTRACT

The grid computing system is a new, powerful and innovative system
for a groilp of heterogeneous distributed computing systems. Scheduling is a key
problem in emergent computational systems, such as Grid in order to benefit from
the large computing capacity of such systems.

When all the jobs need the same resource, overloading or stagnation
of that particular resource may occur in the Grid environment .To overcome this
problem, our project aims to use Genetic Algorithm(GA) for efficiently allocating
jobs(homogeneous) to resources in a Grid system. We present the usefulness of
GA for designing efficient Grid schedulers when makespan is minimized.

We have assumed that the tasks property is submitted statically i.e.
(offline or in a predictive manner). It is also assumed that each machine executes a
single task at a time in the order in which the tasks are assigned. The number of
tasks and machines, the time taken to complete the tasks in each machine is known
in advance. Given all these details, the goal of task scheduling is to allocate the
tasks at machines in a way that the makespan (overall completion time of all tasks)
and the waiting time of each task is reduced.

We have taken up existing strategies namely min-min, max-min,
minimum completion time and minimum execution time and the results of these
algorithms are compared with the results obtained from the proposed genetic
algorithm. Genetic algorithm is chosen because it is an evolutionary process and

the solution obtained from it will be optimal.

TABLE OF CONTENTS

CHAPTER 1

1. OVERVIEW OF GRID ENVIRONMENT

1.1 INtrOQUCHION. ...t ieeiteeneeteeeee ettt e e e e e e 1
1.2 Grid COMPULING . envnennrneniniiiiiiiit e 1
1.3 A Classification of emerging grids.........ccoeeeiiiiieiiiiiiii 3
1.4 Benefits of Grid Computing.........ccccoviuiiniiiiniiniiiiiiineeenen. 5
1.5 Issues in Grid Computing......c.ocvuvieiuiinieriiniieaiiii et 6
1.6 Overview of Task Scheduling.........ccccoveiiiiiiiiiiiiiiiiiiii, 7
1.7 Classification of static Task-Scheduling Algorithms..................... 10
CHAPTERII
2. PROBLEM OVERVIEW
2.1 Problem Definition......ccvvuereiieiieiiiiiiiiiii e 11
2.2 ASSUMPLIONS ..\euenenininininininiait et 11
2.3 ETC Matrix Representation.........oovvueiiiinieiieiieninnieeaneeinn. 11
2.4 Existing Strategies Taken Up for Comparison..............c...ooene 15
2.4.1 MAX MIN STRATEGY ...ooeiiiiiiiiiiiiiii e 15
242 MIN MIN STRATEGY ...cneiiiiiiiiiiiiiii e 15

243. MCT STRATEGY ...eeiiiiiiicee e 15

244 MET STRATEGY ...ccoiitiiiiiiiiiiiiiiiiiiiiiiiiena, 15
2.5. Proposed Algorithm...........ccooeiviiiiiiiiiiiiiiiiiiiiiiiiiiiceieeen 15
CHAPTER 111
3. OVERVIEW OF GENETIC ALGORITHM
3.1 Introduction......o.vvuiiiiiieiieeeir ettt eeceeee e 1O
3.2 Steps in Genetic Algorithm........c..oovieiiiiiiiiiiiiiiiiiiii e, 16
3.3 Genetic Algorithm for Task Scheduling.....................oo.. 17
3.3.1 Encoding (Initial Population Generation) 17
3.3.2 Selection.....couveiniiiiiiiiiiiiiie e 18
3.3.3 CrOSSOVET. .. vttt ittt e 21
334 MUutation.....coeeiniiiiiiii e e 22
335 Algorithm ...oooeiii e 22
34. Implemenfation .. 23
CHAPTER 1V
4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1Comparisori Metrics
4.1.1 Makespan.....ccooviiieiiiiiiieiiieeiiirieeeeerieeeeeeeens 7

4.1.2 Average Resource Utilization..............c.ooevviiiinnnnnnn.. 57

CHAPTER YV
5. COMPARISON GRAPHS
5.1 Makespan COmpPariSOn.........oeoveeererencniiiiaeimnnananns e 58
5.2 Average Resource Utilization Comparison............c.coeueeiineeees 64
CHAPTER V1
6.1 CONCIUSION. . uuventeeeeeaeeei ettt eeea s e w71
6.2 References. ...ocovevuieieiiniiiiiiiiiiiiniieaieeenens .11

LIST OF ABBREVIATIONS

ETC - Expected Time to Compute
MET - Minimum Execution Time
MCT - Minimum Completion Time
QoS - Quality of Service

GA - Genetic Algorithm

LIST OF FIGURES

1. Classification of Static Task-Scheduling algorithms
2. Makespan

2.1. Low Task Low Machine — Consistent

2.2. Low Task Low Machine - Inconsistent

2.3. Low Task Low Machine — Partially Consistent
2.4. Low Task High Machine - Consistent

2.5. Low Task High Machine - Inconsistent

2.6. Low Task High Machine — Partially Consistent

~ 2.7. High Task High Machine - Consistent

2.8. High Task High Machine - Inconsistent

2.9. High Task High Machine — Partially Consistent
2.10. High Task Low Machine - Consistent

2.11. High Task Low Machine - Inconsistent

2.12 High Task Low Machine — Partially Consistent

3. Average Resource Utilization

3.1. Low Task Low Machine - Consistent
3.2. Low Task de Machine - Inconsistent

3.3. Low Task Low Machine — Partially Consistent

3.4. Low Task High Machine - Consistent

3.5. Low Task High Machine - Inconsistent

3.6. Low Task High Machine — Partially Consistent
3.7. High Task High Machine - Consistent

3.8. High Task High Machine - Inconsistent

3.9. High Task High Machine — Partially Consistent
3.10. High Task Low Machine - Consistent

3.11. High Task Low Machine - Inconsistent

3.12. High Task Low Machine — Partially Consistent

CHAPTERI1
1. OVERVIEW OF GRID ENVIRONMENT
1.1 INTRODUCTION

The growth of internet along with the availability of powerful computers and
high speed networks as low cost commodity components is changing the way the
scientists and engineers do computing and also is changing how society in general
manages information. These new technologies have enabled the clustering of a
wide variety of geographically distributed resources, such as supercomputers,
storage systems, data sources, instruments. A grid is a collection of resources
owned by multiple organizations that are coordinated to allow them to solve a
common problem. The grid vision has been described as a world in which
computational power (resources, services, data) is as readily available to users with
differing levels of expertise in diverse areas and in which these services can
interact to perform specified tasks efficiently and securely with minimal human

intervention. [1]

1.2 GRID COMPUTING

Grid computing can be viewed as a means to apply the resources from a
collection of computers in a network and to harness all the compute power into a
single project. Grid computing can be a cost effective way to resolve IT issues in
the areas of data, computing and collaboration; especially if they require enormous
amounts of compute power, complex computer processing cycles or access to large
data sources. Grid computing needs to be a secure, coordinated sharing of
heterogeneous computing resources across a networked environment that allows

users to get their answers faster.

Grid computing is the combination of computer resources from multiple
administrative domains for a common goal. Grids are usually used for solving
scientific, technical or business problems that require a great number of computer

processing cycles for processing of large amounts of data.

Grid computing concerns the application of the resources of many
computers in a network to a single problem at the same time - usually to a
scientific or technical problem that requires a great number of computer processing

cycles or access to large amounts of data.

Grid computing requires the use of software that can divide and farm out
pieces of a program to as many as several thousand computers. Grid computing
can be thought of as distributed and large-scale cluster computing and as a form of
network-distributed parallel processing. It can be confined to the network of
computer workstations within a corporation or it can be a public collaboration (in

which case it isialso sometimes known as a form of peer-to-peer computing).

Grids are a form ofdistributed computing whereby a “super virtual
computer” is composed of many networked loosely coupled computers acting in
concert to perform very large tasks. This technology has been applied to
computationally intensive scientific, mathematical, and academic problems
through volunteer computing, and it is used in commercial enterprises for such
diverse applications as drug discovery, economic forecasting, seismic analysis,

and back-office:data processing in support of e-commerce and Web services.

What distinguishes Grid computing from conventional high performance
computing systems such as cluster computing is that Grids tend to be more loosely

coupled, heterogeneous, and geographically dispersed. It is also true that while a
2

Grid may be dedicated to a specialized application, a single Grid may be used for

many different purposes.
1.3 A CLASSIFICATION OF EMERGING GRIDS

In the literature, two characteristics categorize traditional grids: the type of
solutions they provide and the scope or size of the underlying organization(s). We
propose four additional nomenclatures to facilitate the classification of emerging

grids: accessibility, interactivity, user-centricity, and manageability.
Grids classified by solution

The main solution that computational grids offer is CPU cycles. These grids
have a highly ‘aggregated computational capacity. Depending on the hardware
deployed, computational grids are further classified as desktop, server, or
equipment grids. In desktop grids, scattered, idle desktop computer resources
constitute a considerable amount of grid resources, whereas in server grids
resources are usually limited to those available in servers. An equipment or
instrument grid includes a key piece of equipment, such as a telescope. The
surrounding grid—a group of electronic devices connected to the equipment—

controls the equipment remotely and analyzes the resulting data.

In data 'grids, the main solutions are storage devices. They provide an
infrastructure for accessing, storing, and synchronizing data from distributed data

repositories such as digital libraries or data warehouses. -

Service or utility grids provide commercial computer services such as CPU
cycles and disk storage, which people in the research and enterprise domains can

purchase on demand.

Access grids consist of distributed input and output devices, such as
speakers, microphones, video cameras, printers, and projectors connected to a grid.
These devices provide multiple access poinfs to the g_rid from which clients can
issue requests and receive results in large-scale distributed meetings and training
sessions. If clients use wireless or mobile devices to access the grid, it’s considered

a wireless access grid or a mobile access grid.
Grids classified by size

Global grids are established over the Internet to provide individuals or
organizations with grid power anywhere in the world. This is also referred to as
Internet computing. Some literature further classifies global grids into voluntary
and nonvoluntary grids. Voluntary grids offer an efficient solution for distributed
computing. They let Internet users contribute their unused computer resources to
collectively accomplish nonprofit, complex scientific computer-based tasks.
Resource consumption is strictly limited to the controlling organization or
application. On: the other hand, nonvoluntary grids contain dedicated machines

only.

National igrids are restricted to the computer resources available within a
country’s borders. They’re available only to organizations of national importance

and are usually government funded.

Project grids are also known as enterprise grids or partners grids. They’re
structurally similar to national grids, but rather than aggregating resources for a
country, they span multiple geographical and administrative domains. They’re
available only to members and collaborating organizations through a special

administrative authority.

Intra-grids or campus grids, in which resources are restricted to those
available within a single organization, are only for the host organization’s

members to use.

Departmental grids are even more restricted than enterprise grids. They’re
only available to people within the department boundary.

Personal grids have the most limited scope of underlying organization.
They’re available at a personal level for the owners and other trusted users.

Personal grids are still at a very early stage.
1.4 BENEFITS OF GRID COMPUTING

Grid computing appears to be a promising trend for three reasons: (1) its
ability to make more cost-effective use of a given amount of computer resources,
(2) as a way to solve problems that can't be approached without an enormous
amount of computing power, and (3) because it suggests that the resources of many
computers can be cooperatively and perhaps synergistically harnessed and
managed as a collaboration toward a common objective. In some grid computing
systems, the computers may collaborate rather than being directed by one
managing computer. One likely area for the use of grid computing will be
pervasive computing applications - those in which computers pervade our

environment without our necessary awareness.
Moreover the following can be summarized as the merits of Grid Computing
1. Exploiting underutilized resources

2. Parallel CPU capacity

3. Virtual resources and virtual resources for collaboration
4. Access to other resources

5. Resource Balancing

6. Reliability

7. Management

Grid computing enables organizations (real and virtual) to take advantage of
various computing resources in ways not previously possible. They can take
advantage of underutilized resources to meet business requirements while
minimizing additional costs. The nature of a computing grid allows organizations
to take advantage of parallel processing, making many applications financially
feasible as well as allowing them to complete sooner. Grid computing makes more
resources available to more people and organizations while allowing those
responsible for the IT infrastructure to enhance resource balancing, reliability, and

manageability. [2]

1.5 ISSUES IN GRID COMPUTING

A grid is a distributed and heterogeneous environment. A heterogeneous
environment involves dynamic arrival of tasks where the tasks and resources can
be from various administrative domains. Both of these issues require are the source

of challenging design problems.

Being heterogeneous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid

may have different hardware configurations, operating systems and software
6

configurations. This makes it necessary to have right management tools for
finding a suitable resource for the task and controlling the execution and data

management.

A grid may also be distributed over a number of administrative domains.
Two or more institutions may decide to contribute their resources to a grid. In such
cases, security is a main issue. The users who submit their tasks and their data to
the grid wish to make sure that their programs and data is not stolen or altered by
the computer in which it is running. Of course the problem is reciprocal. The
computer administrators also have to make sure that harmful programs do not

arrive over the grid.

Another .important issue is scheduling. Scheduling a task to the correct
resource requires considerable effort. The picture is further complicated when we
consider the need to access the data. In this project, we have assumed that the
capacity of the machines and the execution time of the tasks are known in advance
and no jobs arrive dynamically. In case of a dynamic scenario, the chance of

failure is high.

Grid computing environment may also involve the service level agreements
(SLA) which are service based agreements rather than customer based agreements.
SLA is a negotiation mechanism between resource providers and task submitting

sources.
1.6 OVERVIEW OF TASK SCHEDULING

Scheduling is defined as the problem of allocation of machines over time to
competing jobs[3].The m x n task scheduling problem denotes a problem where a

set of n jobs has to be processed on a set of m machines. Each job consists of a

7

chain of operations, each of which requires a specified processing time on a

specific machine. The allocation of system resources to various tasks, known as
task scheduling, is a major assignment of the operating system. The system
maintains prioritized queues of jobs waiting for CPU time and must decide which
job to take from which queue and how much time to allocate to it, so that all jobs

are completed in a fair and timely manner.

. The task scheduling system is responsible to select best suitable machines in
a grid for user jobs. The management and scheduling system generates job
schedules for each machine in the grid by taking static restrictions and dynamic

parameters of jobs and machines into consideration.
Task scheduling in Grids: In a Grid system

1. It arranges for higher utilization complex as many machines with local

policies involved.
2. Resources are fixed resources may join or leave randomly.

3. One job scheduler or two job schedulers.
Job scheduling in grids

Job scheduling is well studied within the computer operating systems. Most
of them can be applied to the grid environment with suitable modifications. In the
following we introduce several methods for grids. The FPLTF (Fastest Processor
to Largest Task First) algorithm schedules tasks to resources according to the
workload of tasks in the grid system. The algorithm needs two main parameters
such as the CPU speed of resources and workload of tasks. The scheduler sorts the

8

asks and resources by their workload and CPU speed then assigns the largest task
o the fastest available resource. If there are many tasks with heavy workload, its
verformance may be very bad. Dynamic FPLTF (DPLTF) is based on the static
FPLTF, it gives the highesf prioﬁty to the largest task.

Min-min set the tasks which can be completed earliest with the highest
priority. The main idea of Min-min is that it assigns tasks to resources which can
execute tasks the fastest. Max-min set the tasks which has the maximum earliest
completion time with the highest priority. The main idea of Max-min is that it
overlaps the tasks with long running time with the tasks with short running time.
For instance, if there is only one long task, Min-min will execute short tasks in
parallel and then execute long task. Max-min will execute short tasks and long task
in parallel. The RR (Round Robin) algorithm focuses on the fairness problem. RR
uses the ring as its queue to store jobs. Each job in queue has the same execution
time and it will be executed in turn. If a job can’t be completed during its turn, it
will store back to the queue waiting for the next turn. The advantage of RR
algorithm is that each job will be executed in turn and they don’t have to wait for
the previous one to complete. But if the load is heavy, RR will take long time to
complete all jobs. Priority scheduling algorithm gives each job a priority value and
uses it to dispatch jobs. The priority value of each job depends on the job status
such as the requirement of memory sizes, CPU time and so on. The main problem
of this algorithm is that it may cause indefinite blocking or starvation if the

requirement of a job is never being satisfied.

The FCFS (First Come First Serve) algorithm is a simple job scheduling
algorithm. A job which makes the first requirement will be executed first. The

main problem of FCFS is its convoy effect If all jobs are waiting for a big job to

9

finish, the convoy effect occurs. The convoy effect may lead to longer average

waiting time and lower resource utilization.

1.7 CLASSIFICATION OF STATIC TASK-SCHEDULING ALGORITHMS

Static Task-Scheduling Algorithms

Heuristic Based

Guided Random Search Based

Genetic algorithms
Simulated Annealing
LocalSearchTechnique

List Scheduling Heuristics

Task Duplication Heuristics

Modified Critical Path
Dynamic Critical Path

Dynamic Level Scheduling

Mapping Heuristic

Critical path Fast Duplication
Duplication Scheduling Heuristic
Bottom-up Top-Down Heuristic
Duplication First and Reduction Next

Clustering Heuristics

Mobility Directed
Dominant Sequence Clustering

Linear Clustering

Fig 1

10

CHAPTER II
PROBLEM OVERVIEW P- 550"

2.1 PROBLEM DEFINITION

Given a set of tasks (n)with QoS parameters (Cost, Ram and Deadline) and
a set of heterogeneous machines(m) with their own QoS parameters(Cost, Ram
and Deadline) such that(m<n), the aim of the job scheduling algorithm is to
allocate tasks at nodes so that the total makespan is minimized and the resource
utilization is maximized. Genetic algorithm is used in order to obtain an optimal

solution.
2.2 ASSUMPTIONS

e Tasks are all independent and the task property is submitted statically —

offline or batch mode.

e FEach machine executes a single task at a time in the order in which the tasks

are assigned.

e The number of tasks and machines, the time taken to complete the tasks in

each machine is known in advance.
2.3 ETC MATRIX GENERATION

It is assumed that an accurate estimate of the expected execution time for
each task on each resource is known prior to execution and contained within an
Expected Time to Compute (ETC) matrix. One row of the ETC matrix contains
the estimated execution times for a given task on each machine. Similarly, one

column of the ETC matrix consists of the estimated execution times of a given

1 AN\

machine for each task in the meta-task. Thus, for an arbitrary task t, and an

arbitrary machine m, ETC (t;, m) is the estimated execution time of t; on m.

For cases when inter-machine communications are required. ETC (t;, m;)
could be.aSSumed to include the time to move the executables and data associated
with task t, from their known source to machine m. For cases when it is impossible
to execute task t, on machine mj (e.g., if specialized hardware is needed), the value
of ETC (t;, m) can be set to infinity, or some other arbitrary value. For this study ,
it is assumed that there are inter-task communication each task it can execute on
each machine, and estimated expected execution time of each task on each
machine following method are known. The assumption that these estimated
expected execution times are known is commonly made when studying mapping

heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied
in an attempt to represent a range of possible HC environments. The ETC matrices
used were generated using the following method. Initially, a t x 1 baseline column
vector, W, of floating point values is created. The baseline column vector is
generated by repeatedly selecting random numbers Xy, and multiplying them by a
constant ‘a’ letting W (1) = (X x a) for 0< i < t. Next, the rows of the ETC matrix
are constructed. Each element ETC (t;, m;) in row i of the ETC matrix is created by
taking the baseline value, W (i), and multiplying it by a vector X (j). The vector X
Gg) = (xrj x b) is created similar to the way W (i) is created. Each row i of the ETC
matrix can then be described as ETC (t;, mj) = B (1) x X (§) for 0 <j < m. (The
baseline column itself does not appear in the final ETC matrix). This process is

repeated for each row until the t x m ETC matrix is full.

12

The variation along a column of an ETC matrix is referred to as the
task heterogeneity. This is the degree to which the task execution times vary for a
given machine [4]. Task heterogeneity was varied by changing the value of
constant ‘a’ used to multiply the elements of vector W (i). The variation along a
row is referred to as the machine heterogeneity; this is the degree to which the
machine execution times vary for a given task [4].Machine heterogeneity was
varied by changing the value of constant ‘b’ used to multiply the elements of
vector X (j). The ranges were chosen in such a way that there is less variability
across execution times for different tasks on a given machine than the execution

time for a single task across different machines.

To further vary the ETC matrix in an attempt to capture more aspects of
realistic mapping situations. Different ETC matrix consistencies were used. An
ETC matrix is said to be consistent if whenever a machine m; executes any task t;
faster than machine my , then machine mj; executes all the task faster than my .
Consistent matrices were generated by sorting each row of the ETC matrix
independently, with machine m, always being the fastest and machine m.1y; the
slowest. In contrast: inconsistent matrices characterize the situation where machine
m ; may be faster than the machine my for some tasks, may be slower for others.
These matrices are left in the unordered, random state in which they were
generated (i.e., no consistence is enforced). Partially-consistent matrices are
inconsistent matrices that include a consistent sub matrix. For the partially-
consistent matrices used here , the row elements in column positions {0,2,4,...} of
row I are extracted sorted, and replaced in order , while the row elements in
column positions {1,3,5...} remain unordered (i.e., the even columns are consistent

and odd columns are in general inconsistent).[3]

13

A system’s machine heterogeneity is based on a combination of the
machine heterogeneities for all tasks (rows). A system comprised mainly of
workstations of similar capabilities can be said to have “low” machine
hetérogeneity. A system consisting of diversely capable machines, e.g., a collection
of SMP’s, workstations, and supercomputers, may be said to have “high” machine
heterogeneity. A system’s task heterogeneity is based on a combination of the task
heterogeneities for all machines (columns). “High” task heterogeneity may occur
when the computational needs of the tasks vary greatly, e.g., when both time-
consuming simulations and fast compilations of small programs are performed.
“Low” task heterogeneity may typically be seen in the jobs submitted by users
solving problems of similar complexity (and hence have similar
Execution times on a given machine). Based on the above idea, four categories
were proposed for the ETC matrix in [4]: (a) high task heterogeneity and high
machine heterogeneity, (b) high task heterogeneity and low machine heterogeneity,
(c) low task heterogeneity and high machine heterogeneity, and (d) low task
Heterogeneity and low machine heterogeneity.

SAMPLE ETC MATRIX (FOR 8 TASKS AND 8 MACHINES [LOW LOW
INCONSISTENT])

1.097707 2.989389 3.004404 0.68733 2.280924 2.081497 2.415987 0.738158
0.642505 1.749737 1.758525 0.402305 1.335061 1.218333 1.414115 0.432056
1.013353 2.759668 2.773529 0.634512 2.105646 1.921543 2.230329 0.681434
3.517587 9.579454 9.627568 2.20254 7.30919 6.670126 7.741994 2.365418
0.162561 0.442702 0.444925 0.101787 0.337784 0.308251 0.357786 0.109315
1.55419 4.232531 4.253789 0.973158 3.22945 2.94709 3.420678 1.045122
1.74766 4.759408 4.783312 1.094299 3.631461 3.313952 3.846493 1.175222
3.570314 9.723048 9.771883 2.235556 7.418752 6.770109 7.858045 2.400874

14

2.4 EXISTING STRATEGIES TAKEN UP FOR COMPARISON
2.4.1 MIN MIN STRATEGY: [5][6}

2.4.2. MAX MIN STRATEGY: [5][6]

2.4.3. MCT STRATEGY: [5][6]

2.4.4. MET STRATEGY: [5][6]

2.5 PROPOSED ALGORITHM

GENETIC ALGORITHM

A genetic algorithm (GA) [6] is an iterative search procedure widely used in
solving optimization problems, motivated by biological models of evolution. In
each iteration, a population of candidate solutions is maintained. Genetic operators
such as mutation and crossover are applied to evolve the solutions and to find the

good solutions that have a high probability to survive for the next iteration.

BASIC DESCRIPTION

Start with a set of possible solutions (represented by chromosomes) the
population. Solutions from one population are taken and used to form a new
population. This is motivated by a hope that the new population will be better than
the old one. New solutions (offspring) are selected according to their fitness and
based on QoS factors - the more suitable they are the more chances they have to

reproduce by mating (crossover). Repeat the cycle until some condition is satisfied.

15

CHAPTER III
OVERVIEW OF GENETIC ALGORITHM
3.1 INTRODUCTION

Genetic algorithms are a part of evolutionary computing, which is a
rapidly growing area of artificial intelligence. GAs are excellent for all tasks
requiring optimization and is highly effective in any situation where many inputs
(variables) interact to produce a large number of possible outputs (solutions). It can
quickly scan a vast solution set. Genetic algorithms are a class of search
techniques inspired from the biological process of evolution by means of natural
selection. GA is an iterative procedure that consists of a constant-size population of
individuals, each one represented by a finite string of symbols, known as the
genome, encoding a possible solution in a given problem space. This space,
referred to as the search space, comprises all possible solutions to the problem at
hand. Generally speaking, the genetic algorithm is applied to spaces which are too

large to be exhaustively searched.

3.2 STEPS IN GENETIC ALGORITHM

OUTLINE OF THE GENETIC ALGORITHM
1. Generate a random population of n chromosomes which are suitable
solutions.
2. Establish a method to evaluate the fitness f(x) of each chromosome
X in the population .
3. Create a new population by repeating the following steps until the new

population is complete.

16

o Selection - Select from the population according to some fitness
scheme.It involves QoS Satisfaction — To ensure that all chromosomes
in the mutated population satisfies QoS parameters.

o Crossover- New offspring formed by a crossover with the parents.

o Mutation - With a mutation probability mutate new offspring atEach
locus (position in chromosome).

5. Use the newly .generated population for further run of algorithm.
3.3 GENETIC ALGORITHM FOR TASK SCHEDULING

3.3.1 ENCODING

To solve a problem via GAs, it is necessary to find a mapping of a
potential candidate for a solution onto a sequence of binary digits, the so called
chromosome. In our case, however, it is more efficient to represent chromosomes
as strings of integers. The length of the chromosomes is given by the number of
tasks that should be allocated. Every gene in the chromosome represents the
processor where the task is running on.

Solutions of a given problem obtained from existing algorithms are
encoded in the form of chromosomes. These chromosomes form the initial
population. The chromosomes are the task allocation vectors and order vectors of
the obtained solutions. Task allocation vector is of length equal to the number of
given tasks and each value represents the processor to which the corresponding
task is allotted. For instance, the value py in the vector indicates the processor to
which the j™ task is allotted.

Similarly, order vector of dimension equal to the number of tasks contains

the order of execution of the corresponding task in the assigned Processor.
17

Eg: task vector [8]

2|11)13(1]2

Order vector [8]

11211112

Here, taskl gets executed in processor2 first, task5 the second in
processor2. Tasks 4 and 2 get executed in processorl in the respective order. Task3

in processor3.

Solutions obtained from max-min and min-min scheduling algorithms are
encoded as above and these form the initial population, the two parents to
crossover. The schedule produced by these algorithms is located at an approximate
area in the search space around the optimal schedule. Genetic algorithm searches

that area to improve the schedule.

To reduce the complexity of the Genetic algorithm, the number of

chromosomes in the population is fixed throughout its operation. [6]

3.3.2 SELECTION
For the selection process, we introduce a criterion called QoS factors
satisfaction. Task requirements matrix represents the user requirements of

QoS(Cost, RAM and Deadline) factors for executing the particular task.

18

Cost; RAM: Deadline;
TaskRequirementsg= | : :
Costa RAM. Deadline,

where i denotes the task and k denotes the number of QoS parameters.

Machine Capability matrix for each machine;, indicates the QoS factors
(Cost, RAM and deadline) associated with machine; for each task;. The machine

capability matrix for a machine; is given by,

/Costa*Deaéiinez RAM: Deacﬁﬁne:\
(MachineCapabilityi); = : ; ;

Costg*Deadline, RAM, Deadline,
- J

For each machine the MachineCapability;, values are calculated.

A resource is said to be satisfying a QoS Parameter for a particular job only when,

QOSMachineCapability,-k
>1

Q oS TaskRequirements

Hence for each QoS factor the above equation is applied. Hence for a
particular job if a resource satisfies all the QoS factors, then the QoS matrix is
generated with each QoS factor having a guided probability value associated with

it.

19

Let w indicates the guided probability value for each QoS factor,

k
w=<w.w>0<w,<1 Zwi=1
i=1

The QoS Satisfaction matrix will be generated based on the formula

TaskRequirements;

. . QoS
QoSSatisfaction;= K. (Q MachimeCapabiliy; X wl) if equation is satisfied for all

the QoS factors.
Else QoSSatisfaction; = 0

The QoSSatisfaction; indicates the QoS satisfaction value for resource;
executing job;. From the QoS matrix, for each job;, we find the resource; that has
the highest QoS satisfaction value and allocate the particular job; to that resource;.
If all the resources didn’t satisfy QoS for a particular job, then we assign that job to

the resource that has the lowest ETC for that job.

Each of the chromosomes after mutation process undergoes selection
process based on the QoS Satisfaction matrix. In each chromosome, if a gene or
job which doesn’t satisfy QoS is found, then we replace the value of gene with

resource that has the highest QoS satisfaction.
At the end of the process we will get 4 chromosomes with QoS satisfaction
and we calculate the makespan for each of them. Fitness function is given by

1
makespan

f(x) =

20

Hence we get f(x) value for each chromosome and the top 2 chromosomes
that has the highest f(x) will be given to the next step in the evolutionary process as

initial seed until the makespan of parents and offfsprings converges.

3.3.3 CROSSOVER

[6]A common and a single random crossover point is chosen in both the
parents. The values after the crossover point in both the parents are swapped to
produce the two new offspring. The offspring generated contains the qualities of
both the parents.
Eg:

Parentl

2(4(1(5|3

Parent2

2154|131

Crossover point: 3
After crossover:

Offspringl

21411311

Offspring?2

2151415]|3

21

3.3.4 MUTATION

[6]Mutation is performed by exchanging any two values in the newly
generated offspring. Mutation is to prevent all solutions from falling into a local
optimum of solved problem that is to preserve the diversity of the population. The
points for mutation are also selected at random.

Eg:

3111412141132

Mutation points: 3 and 8
After Mutation:

3(1(2]2(4]|1|3/|4

3.3.5 ALGORITHM

1. Input: ETC matrix of size n x m, Job Requirement matrix, Resource capability
matrix for k QoS parameters, initial seed (orderVector) of size n from Min-Min

and Min-Max algorithm.
Constants: cross over probability n.~0.9, mutation probability p,=0.05

2. Method:

Stepl: Perform crossover process to the initial seeds based on the crossover

probability value.

Step2: Perform mutation process to each of the seeds thus obtained from stepl
based on the mutation probability value. After mutation process, each of the seed

undergoes selection and fitness function

22

Step3: For the selection criterion, generate the QoS satisfaction matrix . From the

QoS satisfaction matrix for each job; identify a resource; that has the highest QoS
satisfaction value and allocate the particular job; to that resource;. If all the
resources didn’t satisfy QoS for a particular job, then we assign that job to the
resource that has the lowest ETC for that job. For each seed the makespan is

calculated.

Step4: Fitness function, f(x) is calculated for each seed and the top 2 order vectors
will be given to the stepl as a initial seed and the process is repeated until the seeds

converges.
Step5: Calculate the makespan.
Step6: End

3.4 IMPLEMENTATION

GENETIC ALGORITHM

import java.io.*;

import java.util. *;

import java.io.IOException;
public class ga

{

public static void main(String args[])throws Exception

23

{3

public static void gacalc(double trmp[][}[],double task1[][],double 1I[][],int

no_tasks,int no_machines,int iteration,String gaﬁle,String gautil)throws— Exception
{
max] ipl=new max1();
minl ip2=new minl1();
int no_iterations=20;
double maccap[]=new double[no_machines];
int resordervector[]=new int[no_tasks];
for(int £=0;f<no_machines;f++)
maccap|f]=0;
int index=0;
double maxx,minn;
double minmkspan[J=new double[no _iterations];
crossovermutation cm=new crossovermutation();
int ordervector1[]=new int[no_tasks];
int ordervector2[]=new int[no_tasks];
ordervectorl=ipl.maxmin(ll,no_tasks);

ordervector2=ip2.minmin(ll,no_tasks);

24

int resarr[][]=new int[no_iterations][no_tasks];

resarr=cm.crossovercalc(ordervectorl,ordervector2,no_tasks,no_machines,tr

mp,task1,ll,no_iterations);
System.out.println("resarr");
for(int w=0;w<no_iterations;w++)
{
for(int a=0;a<no_tasks;a++)
System.out.print(resarr[w][a]+"\t");
System.out.println();

}
for(int i=0;i<no_iterations;i++)
{
for(int j=0;j<no_machines;j++)
{
for(int t=0;t<no_tasks;t++)

{
if(resarr[i][t]==j)

maccap(j]J=maccap[j}+HI[t][j];

25

System.out.println();
System.out.print(maccap[j]+"\t");
}
maxx=maccap[0];

for(int m=0;m<no_machines;m++)

{
if(maxx<maccap[m])
{
maxx=maccap[m];
}
}

minmkspan[i}=maxx;
System.out.println("maxmakespan"+maxx+"\t");
for(int x=0;x<no_machines;x++)
maccap[x]=0;
}
for(int ¢c=0;c<no_iterations;c++)
System.out.println("minmakespan"+minmkspan[c]+"\t");

minn=minmkspan[0];
26

for(int s=0;s<no _iterations;s++)

{
if(minn>minmkspan[s])
{
minn=minmkspan][s];
index=s;
}
}

displaymakespan(minn,gafile);
System.out.println("resordervector");
for(int r=0;r<no_tasks;r++)

1

resordervector[r]=resarr[index][r];

}

makespancalc(resordervector,no_tasks,no_machines,ll,gautil);

}

public static double makespancalc(int ov[],int no_tasks,int

no_machines,double etc[][],String gautil)throws Exception

27

int count=0;
- double max;
double machinecap[]=new double[no_machines];
for(int j=0;j<no_machines;j++)
{
machinecapl[j]=0;
}
for(int k=0;k<no_machines;k++)
{
for(int i=0;i<no_tasks;i++)
{

if(ov[i]==count)

machinecap[count]=round((machinecap|count]+etc[i][count]),4);

2

}

count++;

}
max=machinecap|[0];

28

for(int I=0;1<no_machines;1++)
{
if(max<machinecap[l1])
max=machinecap[l];
}
for(int j1=0;j1<no_machines;j1++)
{

System.out.println(machinecap[j1]);

MachineUtilization(max,machinecap,no_machines,gautil);
return max;
}

public static void MachineUtilization(double makespan,double machinecap([],int

no_machines,String gautil)throws Exception

{

double machineUtil[J=new double[no machines];

double totalResourceUtil=0.0;

29

for(int i=0;i<no_machines;i++)
{
machineUtil[i]=roﬁnd(machinecap[i]/ makespan,4);
totalResourceUtil+=machineUtil[i];
}
System.out.println("Machine Utilization"),
for(int i=0;i<no_machines;i++)
System.out.printin(machineUtil[i]+"\t");
totalResourceUtil=round(totalResourceUtil/no_machines * 100,4);
System.out.println("Total Resource Utilization: "+totalResourceUtil+ " %");
displaymakespan(totalResourceUtil,gautil); }
[EEEEEEEER*XFFTO DISPLAY MAKESPAN®#* % kkk okt /

public static void displaymakespan(double makespan,String

gafile)throws Exception

{
BufferedWriter out = new BufferedWriter(new FileWriter(gafile,true));
try
{

Double mkspn=new Double(makespan);
30

String makespan1=mkspn.toString();
out.write(makespanl);
but.write("\r\n");

}

out.close();

}

public static double round(double val, int places)
{

long factor = (long)Math.pow(10,places);

val = val * factor;

long tmp = Math.round(val);

return (double)tmp / factor;

}

public class crossovermutation

{

public static void main(String args[])throws Exception

{
31

DatalnputStream in=new DatalnputStream (System.in);

}

public static intf] []-- crossovercalc(int ordervectorl[],int ordervector2[],int
no tasks,int no_machines,double mc[][][],double trf][],double etc[][],int

no_iterations)throws Exception
{
int total=no_tasks+no_tasks;
double QOS[][]=new double [no_tasks][no_machines];
int resultarr[]=new int[total];
int resarr[][]J=new int[no_iterations][no_tasks];
QOSmatrix(mc,tr,no_tasks,no_machines,QOS);
for(int w=0;w<no_iterations;w++)
{System.out.println("iteration value"+w);
resultarr=crossover(ordervector1,ordervector2,no_tasks,QOS,no_machines,etc);
for(int a=0;a<no_tasks;a++)
{
ordervectorl[a]=resultarr[a];

System.out.print(ordervectorlfaj+"\t");

32

System.out.println();
-for(int b=no_tasks;b<total;b++)
{
ordervector2[b-no_tasks]=resultarr{b];
System.out.print(ordervector2 [b-no_tasks]+"\t");

}

for(int d=0;d<no_tasks;d++)

{
resarr[w][d]=ordervector1[d];
}
}
return resarr,
}

/****************CROSSOVER*************/

public static int[] crossover(int parentl[],int parent2[],int

no_tasks,double QOS[][],int no_machines,double etc[][])throws Exception
{
int total=no_tasks+no_tasks;

System.out.println("etc matrix"),

33

for(int i=0;i<no_tasks;i++)

{
for(int j=0;j<no_machines;j++)
System.out.print(etc[i][j]+"\t");
System.out.println();

}

int child1[]=new int[no_tasks];

int child2[]=new int[no_tasks];

int res[}=new int[total];

int lastpoint=no_tasks-1;

double crossoverprobability=0.9;

double Pc=round(Math.random(),1);

System.out.println("probcross"+Pc);

if(Pc<crossoverprobability)

{
int crosspoint=(int)(1+Math.random()*(lastpoint-1));
System.out.printIn("crosspoint"+crosspoint);
for(int c=0;c<crosspoint;c++)

{
34

child1 [c]=parean [c];
child2[c]=parent2[c];
}
for(int c=crosspoint;c<no_tasks;c++)
{
child1[c]=parent2[c];
child2[c]=parentl[c];
}
System.out.println("parent1");

for(int 1=0;l<no_tasks;l++)

{

System.out.print(parent1 [1]+"\t");
}
System.out.println();

System.out.println("parent2");

for(int m=0;m<no_tasks;m++)

System.out.print(parent2[m]+"\t");

35

System.out.printin();
System.out.println("child1");

for(int p=0;p<no_tasks;p++)

{
System.out.print(child1[p]+"\t");
}
System.out.printin();
System.out.println("child2");
for(int qg=0;q<no_tasks;q++)
{
System.out.print(child2[q]+"\t");
}
System.out.println();

System.out.println("parent1");
mutate(parentl etc,no_tasks);
for(int p1=0;pl<no_tasks;pl++)
System.out.print(parentl [p1]+"\t");
System.out.println("parent2");

mutate(parent2,etc,no_tasks);
36

for(int r1=0;r1<no_tasks;r1++)
System.out.print(parent2[r1]);
System.out.println();
System.out.println("child1");
mutate(childl,etc,no_tasks);
for(int j1=0;j1<no_tasks;jl1++)
System.out.print(child1{j1]);
System.out.printin();
System.out.println("child2");
mutate(child2,etc,no_tasks);
for(int g1=0;gl<no_tasks;gl++)
System.out.print(child2[g1]);
System.out.println();
QOSsatisfaction(QOS,etc,no_tasks,no_machines,parentl);
QOSsatisfaction(QOS,etc,no_tasks,no_machines,parent2);
QOSsatisfaction(QOS, etc,no_tasks,no_machines,childl);

QOSsatisfaction(QOS,etc,no_tasks,no_machines,child2);

res=selection(parent1 ,parent2 child1,child2,etc,no_tasks,no_machines);

return res;

37

clse

System.out.println("no crossover");
QOSsatisfaction(QOS, etc,no_tasks,no_machines,parentl);
QOSsatisfaction(QOS, etc,no_tasks,no_machines,parent2);

. double makel,make2;
makel=makespancalc(parent],no_tasks,no_machines,etc),

make2=makespancalc(parent2,no_tasks,no_machines,etc);

if(makel<make2)

{

for(int t=0;t<no_tasks;t++)

{

res[t]=parent1{t];

}

for(int y=no_tasks;y<total;y++)

{

res[y]=parent2[y-no_tasks];

38

else

{

for(int t1=0;t1<no_tasks;tl++)
{
res[t]]=parent2[tl];
}
for(int yl=no_tasks;yl<total;y1++)
{
res[yl]=parentl[yl-no_tasks];
}
}

return res;

}

public static void mutate(int arrmutate[],double etc[][],int no_tasks)

{

double mutationprobability=0.05;
39

double Pm=round(Math.random(),2);
System.out.println("probmutate"+Pm);
if(Pm<mutationprobability)
{
double min=etc[0][arrmutate[0]];
int mutatepoint1=0;
int mutatepoint2=0;

for(int x=0;x<no_tasks;x++)

{
if(min>etc[x][arrmutate[x]])
{
min=etc[x][arrmutate[x]];
mutatepoint]=x;
}
}

System.out.println("min"+min);
double max=etc[0][arrmutate[0]];
for(int y=0;y<no_tasks;y++)

{
40

if(max<etc[y][arrmutate[y]])
{
max=etc[y][arrmutate[y]];

mutatepoint2=y;

}

System.out.println("max"+max);

int temp=arrmutate[mutatepointlJ;
arrmutate[mutatepointl]=arrmutate[mutatepoint2|;
arrmutate[mutatepoint2 j=temp;
System.out.println("mutatepoint1"+mutatepoint1);
System.out.printIn("mutatepoint2"+mutatepoint2);
System.out.println("mutated array");

for(int z=0;z<no_tasks;z++)
System.out.print(arrmutate[z]);

System.out.println();

else

System.out.println("no mutation");
41

}

/*************SELECTION*************/

public static int[] selection(int pl[l,int p2[],int child1[],int

child2[],double etc[][],int no_tasks,int no_machines)throws Exception

{

double makespan1=0,makespan2=0,makespan3=0,makespan4=0;
double fitness1=0, fitness2=0,fitness3=0,fitness4=0;
double max1=0,max2=0;
int index=0;
int iteration=5;
double minmakespan=0;
int total=no_tasks+no_tasks;
int result[]=new int[total];
double fitness[]=new double[4];
int result1[J=new int[no_tasks};
int result2[]=new int[no_tasks];
makespanl=makespancalc(pl,no_tasks,no_machines,etc);
makespan2=makespancalc(p2,no_tasks,no_machines,etc);

makespan3=makespancalc(childl,no_tasks,no_machines,etc);

42

makespan4=makespancalc(child2,no_tasks,no_machines,etc);

System.out.println("mk1,mk2,mk3,mk4"+makespan1+"\t"+makespan2-+"\t"

+makespan3+"\t"+makespan4);
fitness1=1/makespanl;
fitness2=1/makespan?2;
fitness3=1/makespan3;
fitness4=1/makespan4;

System.out.println("fitness"+fitness1+"\t"+fitness2+"\t"Hfitness3+"\t"+fitness4);
fitness[0]=fitness];
fitness|1]=fitness2;
fitness[2]=fitness3;
fitness[3]=fitness4;
max 1=fitness[0];
for(int k=0;k<4;k++)
{

if(max1<fitness[k})

{

max 1=fitness[k];

43

index=k;

}
if(index==0)
minmakespan=makespanl;
else if(index==1)
minmakespan=makespan2;
else if(index==2)
minmakespan=makespan3;
else if(index==3)
minmakespan=makespan4;
if(max 1==fitness1)
{
System.out.println("resultl");
for(int e=0;e<no_tasks;et++)
{
resultl[e]=pl[e];

}

fitness[0]=0;
44

}

else if(max 1==fitness2)

{
System.out.println("result1");
for(int £=0;f<no_tasks;f++)
{
result1[f]=p2[f];
}
fitness[1]=0;
}

else if(max 1==fitness3)

{
System. out.println("resultl");
for(int g=0;g<no_tasks;g++)
{
resultl[g]=child1[g];
}
fitness[2]=0;
}

45

else if(max 1==fitness4)

{
System.out.println("result1");
for(int h=0;h<no_tasks;h++)
{
result1[h]=child2[h];
}
fitness[3]=0;
}

max2=fitness[0];

for(int g=0;g<4;g++)

{
if(max2<fitness[g])
{

max2=fitness[g];

}

if(max2==fitnessl1)

{
46

}

System.out.println("result2");

for(int e1=0;el<no_tasks;el++)

{

result2[el]=pl[el];
}
System.out.printin();

fitness[0]=0;

else if(max2==fitness2)

{

}

System.out.printin("result2");

for(int f1=0;f1<no_tasks;f1++)

{

result2[f1]=p2[f1];
}
System.out.println();

fitness[1]=0;

else if(max2==fitness3)

47

System.out.printIn("result2");
for(int g1=0;gl<no_tasks;gl++)
{

result2[gl]=child1[gl];
}
fitness[2]=0;

}

else if(max2==fitness4)

{
System.out.printIn("result2");
for(int h1=0;h1<no_tasks;h1++)
{
result2[h1]=child2[hl1};
}
fitness[3]=0;
}

System.out.print("result1");

for(int i=0;i<no_tasks;i++)
48

System.out.print(result1[i}+"\t");
System.out.println();
System.out.print("result2");
for(int j=0;j<no_tasks;j++)
System.out.print(result2[j]+"\t");
System.out.println();

for(int t=0;t<no_tasks;t++)

{

result[t}=resultl{t];

for(int y=no_tasks;y<total;y++)
{
result[y]=result2[y-no_tasks];
}
System.out.print("merged array");
for(int p=0;p<total;p++)
System.out.print(result[p]+"\t");

return result;
49

}

/*************MAKESPAN CALCULATION**************/

public static double makespancalc(int ov([],int no_tasks,int

no_machines,double etc[][])
{
int count=0;
double max;
double machinecap[J=new double[no_machines];
for(int j=0;j<no_machines;j++)
{
machinecap[j]=0;
}
for(int k=0;k<no_machines;k++)
{
for(int i=0;i<no_tasks;i++)
{
if(ov[i]==count)

machinecap[count]=round((machinecap[count]+etc[i][count]),4);

50

}

count++;

L
P 35"

max=machinecap[0];

for(int 1=0;1<no_machines;l++)
{
if(max<machinecap(l])

max=machinecap(l];

}

for(int j1=0;j1<no_machines;j1++)

{

System.out.println(machinecap[j1]);
}
return max;

}

[xEExxx %55 *CALCULATION OF QoS MATRIX***#kkxxk/

public static void QOSmatrix(double mc[][][],double tr{][],int no_tasks,int
no_machines,double QOSI[][])

{
51

int ¢=0,r=0,d=0;
double cost=0,ram=0,deadline=0,w=0;
for(int i=0;i<no_tasks;i++)
{
for(int j=0;j<no_machines;j++)
{
cost=(tr[1][0)/mc[j][i][0]);

if(cost>=1.0)

{
c=1;
cost=cost*0.5;
}
else

cost=0.0;
ram=(mc[j][i][1)/tr{i][1]);
if(ram>=1.0)
{

r=1;

ram=ram*0.25;
52

else
ram=0.0;
deadline=(tr[i][2])/mc[j][i}{2]);

if(deadline>=1.0)

{
d=1;
deadline=deadline*0.25;
}
else

deadline=0.0;

| if((c=—=1)&&(==1)&&(d==1))

{
w=round((cost+ram+deadline),4);
QOS[illj}Fw;
c=0;
d=0;
r=0;
}

53

else

{
.
—0;
r=0;
QOSTi](j1=0;
}

System.out.print(QOS[i]{j]+"\t");
}
System.out.println();
3
frixxxxksxxxkCHECKING FOR QoS SATISFACTION*#ksckakskik/

public static void QOSsatisfaction(double QOS[][],double etc[][],int

no_tasks,int no_machines,int ordervector(])
{
double max,min,;
int machine=0,machinel=0;
for(int i=0;i<no_tasks;i++)

{
54

if(QOS[i][ordervector[i]]==0)
{
max=QOS[i][0];

for(int j=0;j<no_machines;j++)

{
if(max<QOS[i][])
{
max=QOS[i][j];
machine=j;
}
)
if(max!=0)

ordervector[i]=machine;
else
{ min=etc[i][0];
for(int k=0;k<no_machines;k++)
{
if(min>etc[i][k])

{
55

min=etc[i][k];
machinel=k;

}

}Yordervector[i]=machinel;

System.out.println("qos satisfied ordervector");
for(int 0=0;0<no_tasks;o++)

System.out.print(ordervector{o]+"\t");

56

CHAPTER IV
EXPERIMENTAL RESULTS AND DISCUSSION

4.1 COMPARISON METRICS

4.1.1 MAKESPAN
Makespan is a measure of the throughput of the heterogeneous
computing systems, such as grid. It can be calculated as the following relation:
Makespan=MAX(CT;)
The less the makespan of a scheduling algorithm, the better it works. [5]

4.1.2 AVERAGE RESOURCE UTILIZATION

The capability of the software product to use appropriate amounts and

types of resources, for example the amounts of main and secondary memory used
by the program and the sizes of required temporary or overflow files, when the

software performs its function under stated conditions.

57

CHAPTER V

5. COMPARISON GRAPHS

5.IMAKESPAN COMPARISON

Fig 2.1
Low Task Low Machine Heterogeneity-
Consistent
35
30 -+
25 -
‘c;;. 20 - & min-min
% 15 | \ @ mct
= 10 - I "g2
met
5 4 .
% max-min
0 - —
200 300 400 512
No.of Tasks

58

Fig 2.2

Low Task Low Machine Heterogeneity-
Inconsistent
70 -
60 -
50 -
g 40 4 ® min-min
;"‘ 30 - W mct
20 - %ga
2 met
10 - .
@ max-min
0
200 300 400 ,5‘12
No.of Tasks
Fig 2.3
Low Task Low Machine Heterogeneity-
Partially Consistent
8 -
7 .
6
& 5+ # min-min
&
% 4 - # mct
= 3 - mga
2 - ® met
- % max-min
0
200 300 400 512
No.of Tasks

59

Fig 2.4
Low Task High Machine Heterogeneity-
Consistent
35 -
30 -
25 -
§ 20 - : = min-min
E & mct
g 15 -+
B -_L J—L -
o met
5 : .
& max-min
0 RN L T 55
200 300 400 512
No.of Tasks
Fig 2.5
Low Task High Machine Heterogeneity-
Inconsistent
140 -
120 -
100
§ 80 - & min-min
ﬁ 60 # mct
§ 40 #ga
B met
20 A i
% max-min
0 =
200 300 400 512
No.of Tasks

60

Fig 2.6

Low Task High Machine Heterogeneity-
PartiallyConsistent
8 -
7
6 ..
g 54 # min-min
&
% 4 - #®mct
S 34 #ga
2 1 = met
17 # max-min
0 . R R e TN 1 BN ...
200 300 400 512
No.of Tasks
Fig 2.7
High Task High Machine Heterogeneity-
Consistent
35
30
25
g 20 - B min-min
% 15 ® mct
E 10 - % ga
5 . W met
max-min
0 .
200 300 400 512
No.of Tasks

61

Fig 2.8

High Task High Machine Heterogeneity-
Inconsistent
250 ~
200 -
§ 150 - B min-min
% ®m mct
s 100 - w ga
50 - m met
' ; # max-min
o i} N L 4 l__ l ______________________
200 300 400 512
No.of Tasks
Fig 2.9
High Task High Machine Heterogeneity-
Partially Consistent
g .
-
6
§ 5 - # min-min
g 4 ® mct
§ 3 1 ’ % ga
2 - ® met
1 B max-min
0 - ; -
200 300 400 512
No.of Tasks

62

Fig 2.10

High Task Low Machine Heterogeneity-
Consistent
35
30 -
25 -
§_ 20 - ® min-min
g 15 - ®mmct
10 A l wga
M met
5 .
max-min
0 e SOOIL L SN PARERLRL ereraraen .
200 300 400 512
No.of Tasks
Fig 2.11
High Task Low Machine Heterogeneity-
Inconsistent
140 -
120
100 -
g 80 - # min-min
% 60 - @ mct
= 40 - "ea
@ met
20 - .
2 max-min
0 -
200 300 400 512
No.of Tasks

63

Fig 2.12

High Task Low Machine Heterogerieity-
Partially Consistent

8 -
7
§_ & min-min
_;c"; B mct
b= #ga
| met
B max-min
200 300 400 512
No.of Tasks
5.2 AVERAGE RESOURCE UTILIZATION COMPARISON
Fig 3.1
Low Task Low Machine Heterogeneity-
Consistent
120 -
100 -
s
§ @ .
= # min-min
g 60 ® mct
3 40 #%ga
€ ® met
max-min
0 .
200 Tasks 300 tasks 400 tasks 512 tasks
No.of Tasks

64

Fig 3.2

Low Task Low Machine Heterogeneity-

Inconsistent
120
S
:_g W min-min
g mmct
g mga
2 = met
® max-min
200 Tasks 300 tasks 400 tasks 512 tasks
No.of tasks
Fig 3.3
Low Task Low Machine Heterogeneity-
Partiallyconsistent
120 -~
100 ~
8
® 80 - . .
2 # min-min
g 60 - o mct
s w0 =g
& 50 . ® met
max-min
0 -

200 Tasks 300 Tasks 400 Tasks 512 Tasks

No.of Tasks

65

Fig 3.4

Low Task High Machine Heterogeneity-
Consistent
120
100 4
s
£ 80
= ® min-min
?g 60 B mct
?, 40 mega
& ® met
20 1 # max-min
0
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks
Fig 3.5
Low Task High Machine Heterogeneity-
Inconsistent
120
100 -
c 80 - & min-min
]
:'_;‘; 60 B mct
5 #ga
]
‘g 20 # met
2 o # max-min
200 Tasks 300 Tasks 400 tasks 512 tasks
No.of Tasks

66

Fig 3.6

Low Task High Machine Heterogeneity-

Partiallyconsistent
120
100
c 80 - L
o m min-min
.g 60 - B mct
Tg
3 40 mga
§ 20 ® met
] B max-min
0
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks
Fig 3.7
High Task High Machine Heterogeneity-
Consistent
120
c
K=
® 80 o
2 # min-min
5 i
> 60 B mct
£
S 40 #wga
s
20 | @ met
max-min
0
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks

67

Fig 3.8

High Task High Machine Heterogeneity-
Inconsistent
120 -
100 -
S |
:.‘_;, %7 % min-min
E 60 - = mct
§ 40 S mga
= 20 - ® met
" # max-min
0 e e TTRTIOIRG B TVOIINELLESo I 5 FWORIITIAER:... .- 1 -
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks
Fig 3.9
High Task High Machine Heterogeneity-
Partially Consistent
120 -
100 -
S
:‘—g % # min-min
;?;, 60 ® mct
-§ 40 - % ga
= 20 - # met
max-min
0 - :
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks

63

Fig 3.10

High Task Low Machine Heterogeneity-

Consistent
120
100 -
c
2
g B min-min
E @ mct
£ % ga
3]
b = met
max-min
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks
Fig 3.11
High Task Low Machine Heterogeneity-
Inconsistent
120
100 -
c
2
;g" %0 B min-min
?:, 60 - B mct
£ 40 = ga
s
20 4 = met
® max-min
0 - -
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks

69

Fig 3.12

High Task Low Machine Heterogeneity-
Partially Consistent

120 -
100 ~
c
L
® 80 A N
2 B min-min
5 60 -
@ B mct
£
S 40 - @iga
s
20 4 M met
#® max-min
o i
200 Tasks 300 Tasks 400 Tasks 512 Tasks
No.of Tasks

70

CHAPTER VI
6.1 CONCLUSION

In this project, the algorithm first checks the Qos Satisfying criteria and then
schedules the task to the relevant machine. The genetic algorithm implementation
with QoS Satisfaction shows that it yields better performance than the already
existing strategies taken up for comparison i.e. genetic algorithm has minimized

the makespan and has given better resource utilization for almost all cases.
6.2 REFERENCES

[1] Manish Parashar, Senior Member , IEEE and Craig A.Lee, Member, IEEE,

“Grid Computing: Introduction and Overview”.

[2] www.redbooks.ibm.com

[3] Tracy D. Braun, Howard Jay Siegel , “A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems”, Noah Beck School of Electrical and
Computer Engineering, Purdue University, West Lafayette, Indiana 47907-
1285.

[4] Armstrong. R, “Investigation of Effect of Different Run-Time Distributions
onSmart-Net Performance”, (1997).

[5] A Kobra Etminani, Prof. M. Naghibzadeh Dept. of Computer Engineering
Ferdowsi University of Mashad Mashad, Iran ,Prof. M. Naghibzadeh Dept. of
Computer Engineering Ferdowsi University of Mashad ,Mashad, Iran, “Min-

Min Max-Min Selective Algorithm for Grid Task Scheduling”.

71

[6] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine

Learning”, Addison-Wesley, New York, NY, 1989.

[7] Ruay-Shiung Chang, Jih Sheng Chang, Po-Sheng Lin, “An algorithm for
balanced job scheduling in grids”, Future Generation Computer Systems

25(2009) 20-27.

[8] T. Loukopoulos, P. Lampsas, P. Sigalas, “ Improved Genetic Algorithms and
List Scheduling Techniques for Independent Task Scheduling in Distributed
Systems”, 8th International Conference on Parallel and Distributed Computing,

Application and Technologies, 2007.

72

