P-36eo!

JOB SCHEDULING IN GRID COMPUTING USING
ANT COLONY OPTIMIZATION

A PROJECT REPORT

Submitted by
DIVYA N
KAVIYA S
NATHIYA P

In partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
An Autonomous Institution Affiliated to Anna University of Technology,

Coimbatore.

APRIL 2011



ANNA UNIVERSITY OF TECHNOLOGY: COIMBATORE

BONAFIDE CERTIFICATE

Certified that this project report entitled “Job Scheduling in Grid
Computing using Ant Colony Optimization” is the bonafide work of Divya
N, Kaviya S and Nathiya P who carried out the research under my supervision.
Certified also, that to the best of my knowledge the work reported here in does
not form part of any other project report or dissertation on the basis of which a

degree or award was conferred on an earlier occasion on this or any other

candidate.

WLW‘ it
GUIDE AD OF THE DEPARTMENT
(Ms. P. DEVAKI, MLE., (Ph.D)) (Ms. P. DEVAKI, M.E., (Ph.D))

The candidate with University Register Nos. 0710108013, 0710108024

and 0710108029 were examined by us in the project viva-voce examination

heldon_2p.pu. 2011

W L EXAMINER EXTERNAL EXAMINER



DECLARATION

We hereby declare that the project entitled "Job Scheduling in Grid
Computing using Ant Colony Optimization” is a record of original work
done by us and to the best of our knowledge, a similar work has not been
submitted to Anna University or any Institutions, for fulfillment of the

requirement of the course study.
The report is submitted in partial fulfillment of the requirement for the

award of the Degree of Bachelor of Computer Science and Engineering of Anna

University of Technology, Coimbatore.

0 Dy

Place: Coimbatore (Divya N)
Date: 19. 01 - 2,011 5[ :
(Kaviya S)

Tk
Nathiyd P)



ACKNOWLEDGEMENT

We extend our sincere thanks to our Principal, Dr. S. Ramachandran.,
Kumaraguru College of Technology, Coimbatore, for being a constant source of

inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to
Dr. S. Thangasamy, Dean R&D, for his support and encouragement
throughout the project.

We express our gratitude and gratefulness to our Guide Ms. P. Devaki,
M.E., (Ph.D ), Head of the Department, Department of Computer Science &
Engineering, for her supervision, enduring patience, active involvement and

guidance.

We would like to convey our honest thanks to all Faculty members of
the Department for their enthusiasm and wealth of experience from which we

have greatly benefited.

We also thank our friends and family who helped us to complete this

project fruitfully.



ABSTRACT

Currently, the users of internet have increased geometrically. Grid
computing utilizes the distributed heterogeneous resources in order to support
complicated computing problems in a computational grid. The problem of
optimally mapping the tasks onto the machines is shown to be NP-complete.
Certain assumptions are made for this matching. To increase the efficiency of
task distribution to resources in a distributed environment; an efficient

scheduling algorithm is needed.

A good scheduler would adjust its scheduling strategy according to
changing status of the entire environment and types of jobs. Therefore dynamic
algorithm in job scheduling such as Ant Colony Optimization is appropriate for

grids.

Ant Colony Optimization (ACO) is an outperforming algorithm and
it is compared and analyzed with other existing scheduling algorithms. The Ant
colony algorithm imitates the behavior of real ant colonies in nature to search
for food and to connect to each other by pheromone laid on the paths travelled.
An ant in the ant system is similar to a job in the grid system. The pheromone
indicator of the ant system represents the weight of resource in the grid system

i.e. the capability of the resource and the value represents the QoS satisfaction

of the resource.

The main aim is to reduce the makespan of a given set of jobs and

also to reduce the waiting time of the jobs in a distributed environment.



LIST OF ABBREVIATIONS

ETC - Expected Time to Compute
MET - Minimum Execution Time
MCT - Minimum Computation Time
QoS - Quality of Service

ACO - Ant Colony Optimization

P1 - Pheromone Indicator

viii



LIST OF FIGURES

1. Classification of Static task-Scheduling algorithms

2. General ant behavior

3. System Architecture

4, Mapping between ant system and grid system

5. Makespan

5.1 Low Task Low Machine- Inconsistent

5.2. Low Task Low Machine - Partially Consistent
5.3. Low Task Low Machine - Consistent

5.4. Low Task High Machine- Inconsistent

5.5. Low Task High Machine - Partially Consistent
5.6. Low Task High Machine - Consistent

5.7. High Task Low Machine- Inconsistent

5.8. High Task Low Machine - Partially Consistent
5.9. High Task Low Machine - Consistent

5.10. High Task High Machine- Inconsistent

5.11. High Task High Machine - Partially Consistent
5.12 High Task High Machine — Consistent

6. Average Resource Utilization

6.1. Low Task Low Machine- Inconsistent

6.2.Low Task Low Machine Partially Consistent



6.3. Low Task Low Machine - Consistent

6.4. Low Task High Machine- Inconsistent

6.5. Low Task High Machine - Partially Consistent
6.6. Low Task High Machine - Consistent

6.7. High Task Low Machine- Inconsistent

6.8. High Task Low Machine - Partially Consistent
6.9. High Task Low Machine - Consistent

6.10. High Task High Machine- Inconsistent

6.11. High Task High Machine - Partially Consistent
6.12. High Task High Machine - Consistent



TABLE OF CONTENTS

CHAPTERI
1. Overview of Grid Environment

1.1 Introduction

1.2 Grid Computing

1.3 Classification of Emerging Grids

1.4 Benefits of Grid Computing

1.5 Issues in Grid Computing

1.6 Overview of Task Scheduling

1.7 Classification of Static Task Scheduling Algorithms

CHAPTER 1I
2. Problem Overview
2.1 Problem Definition
2.2 ETC Matrix Generation
2.3 Assumption
2.4 Existing Strategies taken Up for Comparison
2.4.1 MAX MIN STRATEGY
2.4.2 MIN MIN STRATEGY
243 MCT STRATEGY
2.4.4 MET STRATEGY

2.5 Proposed Algorithm

vi

12

13

14

17

18

18

21

22

22



CHAPTER III

3. Overview of Ant Colony Algorithm

3.1 General ant behavior
- 3.2 Architecture of the System
3.3 The proposed Ant Colony Algorithm
3.4 Steps in Ant Colony Algorithm
3.5 Ant Colony Algorithm for Task Scheduling

3.6 Coding

CHAPTER 1V

4, Experimental Results and Discussion

4.1 Makespan

4.2 Average Resource Utilization

CHAPTER V

5. Comparison Graphs

5.1 Makespan Comparison
5.2 Average Resource Utilization Comparison
5.3 Conclusion

5.4 References

vii

23

23

24

25

26

30

46

46

47

53

59

60



CHAPTERI

1. OVERVIEW OF GRID ENVIRONMENT
1.1 INTRODUCTION

The growth of internet along with the availability of powerful
computers and high speed networks as low cost commodity components 1s
changing the way the scientists and engineers do computing and also 1s
changing how society in general manages information. These ncw
technologies have enabled the clustering of a wide variety of geographically
distributed resources, such as supercomputers, storage systems, data sources,
instruments. A grid is a collection of resources owned by multiple
organizations that are coordinated to allow them to solve a common
problem. The grid vision has been described as a world in which
computational power (resources, services, data) is as readily available to
users with differing levels of expertise in diverse areas and in which these
services can interact to perform specified tasks efficiently and securely with

minimal human intervention. [1]

1.2 GRID COMPUTING

Grid computing, a next leap in communication technology, a new trend
in distributed computing system that enables utilization of idie resources
existing worldwide, to solve data intensive and computationally intensive
problems. The resources may either be homogeneous or heterogeneous in
nature and they are shared from multiple administrative domains. Grid
computing can be a cost effective way to resolve IT issues in the areas of
data, computing and collaboration; especially if they require enormous
amounts of compute power, complex computer processing cycles or access

to large data sources. Grid computing needs to be a secure, coordinated



sharing of heterogeneous computing resources across a networked
environment that allows users to get their answers faster.

Grid computing requires the use of software that can divide and farm
out pieces of a program to as many as several thousand computers. Grid
computing can be thought of as distributed and large-scale cluster computing
and as a form of network-distributed parallel processing. It can be confined
to the network of computer workstations within a corporation or it can be a
public collaboration (in which case 1t is also sometimes known as a form of
peer-to-peer computing).

Grids are a form of distributed computing whereby a “super virtual
computer” is composed of many networked loosely coupled computers
acting in concert to perform very large tasks. This technology has been
applied to computationally intensive scientific, mathematical, and academic
problems through volunteer computing, and it is used in commercial
enterprises for such diverse applications asdrug discovery, economic
forecasting, seismic analysis, and back-office data processing in support
of e-commerce and Web services.

What distinguishes Grid computing from conventional high
performance computing systems such as cluster computing is that Grids tend
to be more loosely coupled, heterogeneous, and geographically dispersed. It
is also true that while a Grid may be dedicated to a specialized application, a

single Grid may be used for many different purposes.

1.3 A CLASSIFICATION OF EMERGING GRIDS

In the literature, two characteristics categorize traditional grids: the
type of solutions they provide and the scope or size of the underlying
organization(s). We propose four additional nomenclatures to facilitate the
classification of emerging grids: accessibility, interactivity, user-centricity,

and manageability.



Grids classified by solution

The main solution that computational grids offer is CPU cycles. These
grids have a highly aggregated computational capacity. Depending on the
hardware deployed, computational grids are further classified as desktop,
server, or equipment grids. In desktop grids, scattered, idle desktop computer
resources constitute a considerable amount of grid resources, whereas in
server grids resources are usually limited to those available in servers. An
equipment or instrument grid includes a key piece of equipment, such as a
telescope. The surrounding grid—-a group of electronic devices connected to
the equipment—controls the equipment remotely and analyzes the resulting
data.

In data grids, the main solutions are storage devices. They provide an
infrastructure for accessing, storing, and synchronizing data from distributed
data repositories such as digital libraries or data warehouses.

Service or utility grids provide commercial computer services such as
CPU cycles and disk storage, which people in the research and enterprise
domains can purchase on demand.

Access grids consist of distributed input and output devices, such as
speakers, microphones, video cameras, printers, and projectors connected to
a grid. These devices provide multiple access points to the grid from which
clients can issue requests and receive results in large-scale distributed
meetings and training sessions. If clients use wireless or mobile devices to

access the grid, it’s considered a wircless access grid or a mobile access grid.

Grids classified by size

Global grids are established over the Internet to provide individuals or
organizations with grid power anywhere in the world. This is also referred to
as Internet computing. Some literature further classifies global grids into

voluntary and non-voluntary grids. Voluntary grids offer an efficient solution

3



for distributed computing. They let Internet users contribute their unused
computer resources to collectively accomplish nonprofit, complex scientific
computer-based tasks. Resource consumption is strictly limited to the
controlling organization or application. On the other hand, non-voluntary
grids contain dedicated machines only.

National grids are restricted to the computer resources available within
a country’s borders. They’re available only to organizations of national
importance and are usually government funded.

Project grids are also known as enterprise grids or partner’s grids.
They’re structurally similar to national grids, but rather than aggregating
resources for a country, they span multiple geographical and administrative
domains. They’re available only to members and collaborating organizations
through a special administrative authority.

Intra-grids or campus grids, in which resources are restricted to those
available within a single organization, are only for the host organization’s
members to use.

Departmental grids are even more restricted than enterprise grids.
They’re only available to people within the department boundary.

Personal grids have the most limited scope of underlying organization.
They’re available at a personal level for the owners and other trusted users.

Personal grids are still at a very early stage.

Accessible grids

In this context, accessibility means making grid resources available
regardless of the access devices’ physical capabilities and geographical
locations. The highly structured networks of supercomputers and high-
performance workstations that dominate grids today typically don’t provide
such accessibility. In traditional, restricted-access grids, grid nodes are

stationary with a predefined wired infrastructure and entry points.

4



Wireless, mobile, and ad hoc grids have emerged to support grid
accessibility. An accessible grid consists of a group of mobile or fixed
devices with wired or wireless connectivity and predefined or ad hoc
infrastructures.

One of the most critical issues in understanding accessible grids is
having an accurate definition, or at least determination, of each grid type (ad
hoc, wireless, and mobile). Yet, researchers offer no consistent definition of
any of these three terms. Ad hoc grids stress the ad hoc nature of virtual
organizations, wireless grids emphasize the wireless connectivity, and
mobile grids focus on mobility-related issues such as job migration and data
replication.

An accessible grid’s main characteristic is its highly dynamic nature,
which results from the frequently changing structure of underlying networks
and VOs due to nodes switching on and off, nodes entering and leaving,
node mobility, and so on. This is why traditional service discovery,
management, and security mechanisms might not be optimal for accessible
grids.

Accessible grids are accessible from more geographical locations and
social settings than traditional grids. This opens the door for new
applications in emergency communication, disaster and battlefield

management, e-learning, and e-healthcare, among other fields.

Ad hoc grids:

Grids’ ad hoc, sporadic nature was observed within the first
documented Globus Grid application (see www.globus.org). However,
traditional grids fail to support certain aspects of ad hoc environments, such
as constantly changing membership with a lack of structured

communications infrastructure. As a result, ad hoc grids have emerged.



An ad hoc grid is a spontancous formation of cooperating
heterogeneous computing nodes into a logical community without a
preconfigured fixed infrastructure and with minimal administrative
requirements .Thus, the traditional static grid infrastructure is extended to
encompass dynamic additions with no requirements of formal, well-defined,
or agreed-upon grid ehtry points. Instead, nodes can join as long as they can
discover other members.

Some researchers strictly define ad hoc grids as grid environments
without fixed infrastructures: all their components are mobile. This grid is
referred to as a mobile ad hoc grid. However, ad hoc grids focus on the
grid’s ad hoc nature rather than the nodes’ mobility.

Ad hoc grids’ main challenge is their dynamic topology, due to the
rebooting of workstations and the movement or replacement of
computational nodes. Technical details concerning ad hoc grid challenges

and implementations are available elsewhere.

Wireless grids:

The wireless grid extends grid resources to wireless devices of varying
sizes and capabilities such as sensors, mobile phones, laptops, special
instruments, and edge devices. These devices might be statically located,
mobile, or nomadic, shifting across institutional boundaries and connected to
the grid via nearby devices such as desktops.

Many technical concerns arise when integrating wireless devices into
a grid. These include low bandwidth and high security risks, power
consumption, and latency. So, several communities, including the
Interdisciplinary Wireless Grid Team are exploring these new issues to

ensure that future grid peers can be wireless devices.



Mobile grids:

Mobile grids make grid services accessible through mobile devices
such as PDAs and smart phones. Researchers usually consider these devices
to be at best marginally relevant to grid computing because they’re typically
resource limited in terms of processing power, persistent storage, runtime
heap, battery lifetime, screen size, connectivity, and bandwidth. In contrast,
recent studies suggest a very different picture. The millions of mobile
devices sold annually shouldn’t be ignored, and some mobile devices’ raw
processing power is not insignificant given their mobility. Furthermore, in
emergency situations, such as during natural disasters and on battlefields,
wireless mobile devices might be the only available communication and
computation services. The most important argument is that it’s difficult to
materialize the SOKU and Aml visions without using such devices.

As in the case of wireless devices, there are already two approaches to
integrating mobile devices into grid systems. In the first approach, the grid
includes at least one mobile node that actively participates by providing
computational or data services. In the second approach, mobile devices serve
as an interface to a stationary grid for sending requests and receiving results.
Sometimes this approach is labeled mobile access to grid infrastructure, or
simply mobile access grids.

Recently, researchers have made numerous efforts toward establishing
mobile grids. You can find details concerning mobile grid requirements and
challenges elsewhere. Researchers have proposed various techniques for
implementing the mobile grid vision, including centralized and P2P
structure, intelligent mobile agents, mobile grid middleware, and many more.

Existing mobile grid projects include Akogrimo, ISAM, and MADAM.



Interactive grids

Some potential NGG application areas, such as real-time embedded
control systems and video gaming, require rapid response times and online
interactivity. The classic request/response communication paradigm of
traditional grid systems (such as batch grids) can’t accommodate this, so
interactive grids are emerging to support real-time interaction.

Interactivity in grid environments can be implemented at two layers:
the Web portal layer and the grid middleware layer. In the former, a Web-
based grid portal is used to submit interactive jobs to a secure shell process
rather than directly to the grid middleware. ScGrid portal falls into this
category. In the laiter, grid middleware is extended to support interactivity.
Examples of this category include Cross Grid and edutain@grid.

These examples mainly highlight explicit interactions between a grid
and its users, so they’re labeled explicit interactive grids. However, this is
only one possible form of interaction in grid environments. Another is
between a grid and its surroundings to implement a context-aware grid,
which uses sensors to interactively build the context and actuators to adapt
grid behaviors accordingly. The research agendas of many emerging grid
projects in the areas of embedded and pervasive systems, such as RUNES,

SENSE, Hydra, and MORE emphasize context awareness.

User-centric grids

Traditional grids are designed specifically for people involved in
research and large industry domains. Hence, they lack user centricity and
personalization features. Consequently, it’s difficult for personal users—that
is, individuals outside these domains—to construct or use traditional gnds.
Most traditional grid systems are non-personalized grids.

Personalized grids are emerging grid systems with highly

customizable Web portals that make them adaptable to users’ needs. User

8



centricity is a design philosophy that focuses on the needs of a system’s
users. Personalization 1s a more restrictive philosophy that aims to adapt the
whole system’s design to a specific user. In grid computing, user centricity
could begin by displaying the user’s name on a Web portal, and might end
with the personalization of all information, resources, and networks
underpinning grids. Research to support user centricity in grid computing 1is
in its infancy.

We use the term user-centric grids to refer to two types of emerging
grids: personalized and personal. Personalized grids have highly
customizable Web portals to provide user-friendly access points to grid
resources for people in different domains. For instance, the myGrid project
lets scientists establish multiple views that provide access to a user-defined
subset of the registered services. These views can be specific to individual
scientists or to more specialized discovery services. The Akogrimo project
saves all learners’ profiles and needs, such as his or her context information,
and automatically loads them whenever they sign on, providing a
customized, user-friendly environment for each learner. A personal grid is a
personalized grid with an underlying VO of limited scope and size. It’s used
and/or owned by individuals. You can find a framework for a personal grid

that consists of a set of networked personal desktop computers elsewhere.

Manageable grids

A grid is highly complex and dynamic, making its management
extremely challenging. Traditional grid-management approaches require
centralized servers, extensive knowledge of the underlying systems, and a
large group of experienced staff. So, grids are emerging with manageability

as a main focus.



Centralized grids are traditional grid systems that use a central
management scheme. In distributed grids, such as P2P grids, management is
distributed.

Manageability is the capacity to manage, organize, heal, and control a
system; hence, a manageable grid is a sophisticated grid that automatically
manages, adapts, monitors, diagnoses and fixes itself. A manageable system
has intelligent control embedded into its infrastructure to automate its
management procedure. A variety of technologies are available to support
grid manageability at both the hardware and software levels. At the software
level, a wide range of techniques, from traditional log files to recent
technologies such as Java Management Extensions and knowledge
technologies, can support manageability. At the hardware level, technologies
from simple embedded sensors to standalone intelligent robots can achieve
this. Additionally, changing the underlying grid architecture—for example,
from centralized client/server to P2P structures—can support manageability.

Manageable grids offer a simplified installation and greatly reduce
configuration and administration, which, in turn, reduces management costs
and dramatically enhances scalability. Existing research in this area includes
autonomic grids, knowledge grids, and organic grids. Hybrid grids use
different combinations of management schemes. For instance, a grid
environment might implement a distributed P2P management scheme at the

cluster level and a centralized management structure at the higher grid level.

Autonomic grids:

Autonomic computing, initiated by IBM in 2001, is named after the
human body’s autonomic nervous system. The autonomic nervous system
regulates body systems without any external help; likewise, an autonomic

computing system controls the functioning of computer systems without user

10



intervention. The main goal of autonomic computing is to make managing
large computing systems (such as grids) less complex.

An autonomic grid can configure, reconfigure, protect, and heal itself
under varying and unpredictable conditions and optimize its work to
maximize resource use. You can find applications, challenges, and various
methods that have been proposed to work toward autonomic grids elsewhere.
Examples of autonomic grid projects include the IBM OptimalGrid and

AutoMAGI.
? - abo\

Knowledge grids:

A knowledge grid is an extension to the current grid in w

semantic metadata so both machines and humans can understand them. The
aim is to move the grid from an infrastructure for computation and data
management to a pervasive knowledge-management infrastructure.
Examples of knowledge grid projects include Onto Grid, InteliGrid, and K-
Wf Grid. Several communities are working to realize knowledge grids,
including the Semantic Grid Group from the Open Grid Forum. Reviews of
the status and future vision of knowledge grids, including applications,

challenges, and critical issues, are detailed elsewhere.

Organic grids:

Traditionally, “organic” means forming an integral element of a
whole, having systematic coordination of parts, and/or having the
characteristics of an organism and developing in the manner of a living plant
or animal. In grid computing, the organic grid refers to a new design for
desktop grids that relies on a decentralized P2P approach, a distributed
scheduling scheme, and mobile agents. The basic idea comes from the

manner in which complex patterns can emerge from the interplay of many

11



agents in an ant colony. However, work on organic grids is at a very early

stage.

1.4 BENEFITS OF GRID COMPUTING

Grid computing appears to be a promising trend for three reasons: (1)
its ability to make more cost-effective use of a given amount of computer
resources, (2) as a way to solve problems that can't be approached without an
enormous amount of computing power, and (3) because it suggests that the
resources of many computers can be cooperatively and perhaps
synergistically harnessed and managed as a collaboration toward a common
objective. In some grid computing systems, the computers may collaborate
rather than being directed by one managing computer. One likely area for the
use of grid computing will be pervasive computing applications - those in
which computers pervade our environment without our necessary awareness.

Moreover the following can be summarized as the merits of Grid
Computing

1. Exploiting underutilized resources

2. Parallel CPU capacity

3. Virtual resources and virtual resources for collaboration

4, Access to other resources

5. Resource Balancing

6. Reliability

7. Management

Grid computing enables organizations (real and virtual) to take
advantage of various computing resources in ways not previously possible.
They can take advantage of underutilized resources to meet business
requirements while minimizing additional costs. The nature of a computing
grid allows organizations to take advantage of parallel processing, making

many applications financially feasible as well as allowing them to complete

12



sooner. Grid computing makes more resources available to more people and
organizations while allowing those responsible for the IT infrastructure to

enhance resource balancing, reliability, and manageability. [2]

1.5 ISSUES IN GRID COMPUTING

A grid is a distributed and heterogeneous environment that involves
dynamic arrival of tasks where the tasks and resources can be from various
administrative domains. Both of these issues require are the source of
challenging design problems.

Being heterogeneous inherently contains the problem of managing
multiple technologies and administrative domains. The computers that
participate in a grid may have different hardware configurations, operating
systems and software configurations. This makes it necessary to have right
management tools for finding a suitable resource for the task and controlling
the execution and data management.

A grid may also be distributed over a number of administrative
domains. Two or more institutions may decide to contribute their resources
to a grid. In such cases, security is a main issue. The users who submit their
tasks and their data to the grid wish to make sure that their programs and
data is not stolen or altered by the computer in which it is running. Of course
the problem is reciprocal. The computer administrators also have to make
sure that harmful programs do not arrive over the grid.

Another important issue is scheduling. Scheduling a task to the
correct resource requires considerable effort. The picture is further
complicated when we consider the need to access the data. In this project, we
have assumed that the capacity of the machines and the execution time of the
tasks are known in advance and no jobs arrive dynamically. In case of a

dynamic scenario, the chances of failure are high.

13



Grid computing environment may also involve the service level
agreements (SLA) which are service based agreements rather than customer
based agreements. SLA 1s a negotiation mechanism between resource

providers and task submitting sources.

1.6 OVERVIEW OF TASK SCHEDULING:

Scheduling is defined as the problem of allocation of machines over
time to competing jobs [3]. The m x n job scheduling problem denotes a
problem where a set of # jobs has to be processed on a set of m machines.
Fach job consists of a chain of operations, each of which requires a specified
processing time on a specific machine. The allocation of system resources to
various tasks, known as task scheduling, is a major assignment of the
operating system. The system maintains prioritized queues of jobs waiting
for CPU time and must decide which job to take from which queue and how
much time to allocate to it, so that all jobs are completed in a fair and timely
manner.

The task scheduling system is responsible to select best suitable
machines in a grid for user jobs. The management and scheduling system
generates job schedules for each machine in the grid by taking static
restrictions and dynamic parameters of jobs and machines into consideration.

Task scheduling in Grids: In a Grid system

1. It arranges for higher utilization Complex as many machines with
local policies involved.
2. Resources are fixed Resources may join or leave randomly.

3. One job scheduler or two job schedulers.

14



Job scheduling in grids

Job scheduling is well studied within the computer operating systems.
Most of them can be applied to the grid environment with suitable
modifications. In the following we introduce several methods for grids. The
FPLTF (Fastest Processor to Largest Task First) algorithm schedules tasks to
resources according to the workload of tasks in the grid system. The
algorithm needs two main parameters such as the CPU speed of resources
and workload of tasks. The scheduler sorts the tasks and resources by their
workload and CPU speed then assigns the largest task to the fastest available
resource. If there are many tasks with heavy workload, its performance may
be very bad. Dynamic FPLTF (DPLTF) is based on the static FPLTFE, it
gives the highest priority to the largest task.

DPLTF needs prediction information on processor speeds and task
workload. The WQR (Work Queue with Replication) is based on the work
queue (WQ) algorithm. The WQR sets a faster processor with more tasks
than a slower processor and it applies FCFS and random transfer to assign
resources. WQR replicates tasks in order to transfer to available resources.
The amount of replications is defined by the user. When one of the
replication tasks is finished, the scheduler will cancel the remaining
replication tasks. The WQR’s shortcoming is that it takes too much time to
execute and transfer replication tasks to resource for execution.

Min-min set the tasks which can be completed earliest with the highest
priority. The main idea of Min-min is that it assigns tasks to resources which
can execute tasks the fastest. Max-min set the tasks which has the maximum
earliest completion time with the highest priority. The main idea of Max-min

is that it overlaps the tasks with long running time with the tasks with short

15



running time. For instance, if there is only one long task, Min-min will
execute short tasks in parallel and then execute long task. Max-min will
execute short tasks and long task in parallel. The RR (Round Robin)
algorithm focuses on the fairness problem. RR uses the ring as its queue to
store jobs. Each job in queue has the same execution time and it will be
executed in turn. If a job can’t be completed during its turn, it will store back
to the queue waiting for the next turn. The advantage of RR algorithm is that
each job will be executed in turn and they don’t have to wait for the previous
one to complete. But if the load is heavy, RR will take long time to complete
all jobs. Priority scheduling algorithm gives each job a priority value and
uses it to dispatch jobs. The priority value of each job depends on the job
status such as the requirement of memory sizes, CPU time and so on. The
main problem of this algorithm is that it may cause indefinite blocking or
starvation if the requirement of a job is never being satisfied.

The FCFS (First Come First Serve) algorithm is a simple job
scheduling algorithm. A job which makes the first requirement will be
executed first. The main problem of FCFS is its convoy effect. If all jobs are
waiting for a big job to finish, the convoy effect occurs. The convoy effect

may lead to longer average waiting time and lower resource utilization.

16



1.7 CLASSIFICATION OF STATIC TASK-SCHEDULING

ALGORITHMS
Static Task-Scheduling Algorithms
Heuristic Based Guided Random Search

Genetic algorithms
Simulated Annealing
Local Search

Technique

List Scheduling Task Duplication

Modified Critical Path Critical path Fast Duplication

Dynamic Critical Path Duplication Scheduling Heuristic

Dynamic Level Scheduling Bottom-up Top-Down Heuristic

Mapping Heuristic Duplication First and Reduction

Next

Clustering Heuristics

Mobility Directed
Dominant Sequence Clustering

Linear Clustering

Fig 1: Classification of Static task-Scheduling algorithms

17



CHAPTER I

PROBLEM OVERVIEW
2.1 PROBLEM DEFINITION:

Given a set of jobs (n)with QoS parameters ( Cost, Ram and Deadline)
and a set of heterogeneous machines(m) with their own QoS parameters(
Cost, Ram and Deadline) such that( m<n), the aim of the job scheduling
algorithm is to allocate jobs at nodes so that the total makespan is
minimized and the resource utilization is maximized. ACO algorithm is used

in order to obtain an optimal solution.

2.2 ETC MATRIX GENERATION:

It is assumed that an accurate estimate of the expected execution time
for each task on each resource is known prior to execution and contained
within an Expected Time to Compute (ETC) matrix. One row of the ETC
matrix contains the estimated execution times for a given task on each
machine. Similarly, one column of the ETC matrix consists of the estimated
execution times of a given machine for each task in the meta-task. Thus, for
an arbitrary task t, and an arbitrary machine m, ETC (t;, m) is the estimated
execution time of t; on m.

For cases when inter-machine communications are required. ETC (t;,
m;) could be assumed to include the time to move the executables and data
associated with task t, from their known source to machine m. For cases
when it is impossible to execute task t, on machine m; (e.g., if specialized
hardware is needed), the value of ETC (t;, m) can be set to infinity, or some
other arbitrary value. For this study , it is assumed that there are inter-task
communication each task it can execute on each machine, and estimated
expected execution time of each task on each machine following method are

known. The assumption that these estimated expected execution times are

18



known is commonly made when studying mapping heuristics for HC
systems.

For the simulation studies, characteristics of the ETC matrices were
varied in an attempt to represent a range of possible HC environments. The
ETC matrices used were generated using the following method. Initially, a t
x 1 baseline column vector, W, of floating point values is created. The
baseline column vector is generated by repeatedly selecting random numbers
X, and multiplying them by a constant ‘a’ letting W (i) = (x4 X a) for 0 <i <
t. Next, the rows of the ETC matrix are constructed. Each element ETC (t;,
m;) in row i of the ETC matrix is created by taking the baseline value, W (i),
and multiplying it by a vector X (j). The vector X (j) = (x/ x b) is created
similar to the way W (i) is created. Each row 1 of the ETC matrix can then be
described as ETC (t;, mj) = B (i) x X (j) for 0 <j < m. (The baseline column
itself does not appear in the final ETC matrix). This process is repeated for
each row until the t x m ETC matrix 1s full.

The variation along a column of an ETC matrix is referred to as
the task heterogeneity. This is the degree to which the task execution times
vary for a given machine [4]. Task heterogeneity was varied by changing the
value of constant ‘a’ used to multiply the elements of vector W (i). The
variation along a row is referred to as the machine heterogeneity; this is the
degree to which the machine execution times vary for a given task
[4].Machine heterogeneity was varied by changing the value of constant ‘b’
used to multiply the elements of vector X (j). The ranges were chosen in
such a way that there is less variability across execution times for different
tasks on a given machine than the exccution time for a single task across
different machines.

To further vary the ETC matrix in an attempt to capture more aspects
of realistic mapping situations. Different ETC matrix consistencies were

used. An ETC matrix is said to be consistent if whenever a machine m;

19



executes any task t; faster than machine my, then machine mj executes all the
task faster than m, . Consistent matrices were generated by sorting each row
of the ETC matrix independently, with machine m, always being the fastest
and machine m,.1y; the slowest. In contrast: inconsistent matrices
characterize the situation where machine m ; may be faster than the machine
my, for some tasks, may be slower for others. These matrices are left in the
unordered, random state in which they were generated (i.e., no consistence is
enforced). Partially-consistent matrices are inconsistent matrices that include
a consistent sub matrix. For the partially-consistent matrices used here , the
row elements in column positions {0,2,4,...} of row I are extracted sorted,
and replaced in order , while the row elements in column positions {1,3,5...}
remain unordered (i.e., the even columns are consistent and odd columns are
in general inconsistent).[3]

A system’s machine heterogeneity is based on a combination of the
machine heterogeneities for all tasks (rows). A system comprised mainly of
workstations of similar capabilities can be said to have “low” machine
heterogeneity. A system consisting of diversely capable machines, e.g., a
collection of SMP’s, workstations, and supercomputers, may be said to have
“high” machine heterogeneity. A system’s task heterogeneity is based on a
combination of the task heterogeneities for all machines {columns). “High”
task heterogeneity may occur when the computational needs of the tasks
vary greatly, e.g., when both time-consuming simulations and fast
- compilations of small programs are performed. “Low” task heterogeneity
may typically be seen in the jobs submitted by users solving problems of
similar complexity (and hence have similar Execution times on a given
machine). Based on the above idea, four categories were proposed for the
ETC matrix in [4]: (a) high task heterogeneity and high machine

heterogeneity, (b) high task heterogeneity and low machine heterogeneity,

20



(c) low task heterogeneity and high machine heterogeneity, and (d) low task

heterogeneity and low machine heterogeneity.

SAMPLE ETC MATRIX (FOR 8 TASKS AND 8 MACHINES [LOW
LOW INCONSISTENT])

1.097707
0.642505
1.013353
3.517587
0.162561
1.55419

1.74766

2.989389
1.749737
2.759668
9.579454
0.442702
4.232531
4.759408

3.570314 9.723048

2.3 ASSUMPTION

3.004404
1.758525
2.773529
9.627568
0.444925
4.253789
4.783312
9.771883

0.68733
0.402305
0.634512

2.20254
0.101787
0.9731 587
1.094299
2.235556

2.280924
1.335061
2.105646

7.30919
0.337784

3.22945
3.631461
7.418752

2.081497
1.218333
1.921543
6.670126
0.308251

2.94709
3.313952
6.770109

2.415987
1.414115
2.230329
7.741994
0.357786
3.420678
3.846493
7.858045

0.738158
0.432056
0.681434
2.365418
0.109315
1.045122
1.175222
2.400874

e All jobs/tasks are independent of each other and no priorities are

among them.

¢ All machines and jobs are simultaneously available at the initial time.

e One machine can only process an operation of a job at the same time

and the processing cannot be interrupted before an operation is

completed.

e The transportation time of a job from one machine to another is

negligible and the machine setup time for an operation is included in

its processing time.

21



2.4 EXISTING STRATEGIES TAKEN UP FOR COMPARISON
2.4.1 MIN MIN STRATEGY: [5][6]

2.4.2. MAX MIN STRATEGY: [5]{6]

2.4.3. MCT STRATEGY: [5][6]

2.4.4. MET STRATEGY: [5][6]

2.5 PROPOSED ALGORITHM
ACO Algorithm

ACO is a heuristic algorithm [7] with efficient local search for
combinatorial problems. ACO imitates the behavior of real ant colonies in
search for its food and connect to each other by pheromone laid on paths
travelled. Many researchers solve NP-hard problems such as Travelling

salesman problem, graph coloring problem using ACO approach.

Basic Description
It is assumed that each task is an ant and the algorithm sends the

ant to search for resources. The pheromone update is based on the QoS

factors and the availability of the resources.

22



CHAPTER III

3. Overview of Ant Colony Algorithm

3.1 General ant behavior:

The ants in an ant colony go in search of food. It secretes a pheromone
fluid in its path. When any one of the ants finds the food resource, the other
ants follow the ant’s path by its pheromone. When another ant finds another
path which is shorter than this path, more pheromone is secreted in that path
than any other path and every ant follows that shorter path and the

pheromone in the other paths gets evaporated.

Fig 2: General ant behavior

3.2 Architecture of the System:

The clients use the portal interface for job execution. The Network
Weather Service reports system information to the Information server
periodically. The job scheduler selects the most appropriate resources to
execute the request according to the proposed ACO algorithm. Finally the

results will be sent back to the user.

23



Ry
=

i

. H o
Infornmuation Reg/Res
Server
*

Resources
Swp 3

Fig 3: System Architecture

3.3 The proposed Ant Colony Algorithm:
The relationship between the ant system and the grid system is mapped as
follows.
a) An ant -An ant in the ant system is a job in the grid system
b) Pheromone -Pheromone value on a path in the ant system is equivalent
for a weight for the resource in the grid system.
A resource with a larger weight value means at the resource has a

better computing power.

weght st one

Aot Sy it Sy
Fig4; Mepping between the ant system and the grid ystem.

The scheduler collects data from the information server and uses the
data to calculate a weight value of resource. The pheromone (weight) of each
resource is stored in the scheduler and the scheduler uses it as a parameter
for ACO algorithm. At last the scheduler selects a resource by a scheduling

algorithm and sends the job to the selected resource.

24



3.4 Steps in Ant Colony Algorithm:
1. Input : ETC matrix of size n x m,Task Requirement matrix, Machine
capability matrix for QoS(Cost, RAM and Deadline) parameters.
2. Task requirements matrix represents the user requirements of
QoS(Cost, RAM and Deadline) factors for executing the particular
task.

Cost: RAM: Deadline
TaskRequirementsx=| : : :

Costsy RAM, Deadlines

Where i denotes the task and k denotes the number of QoS parameters.
3. Machine Capability matrix for each machine;, indicates the QoS
factors (Cost, RAM and deadline) associated with machine; for each

task;. The machine capability matrix for a machine; 1s given by,

-~ . e )
Costi*Deadline: RAM; Deadline:

{MachineCapabilityw)j = : ; :

Costp*Deadlines, RAM». Deadline,
. /

For each machine the MachineCapability, values are

calculated.
4. The initial pheromone value of each job across each resource i1s equal
to the pheromone indicator. The initial pheromone indicator value 1s
calculated based on the QoS factor(Cost, RAM and Deadline) values

in machine capability and task matrix and guided probability value as,

TaskRequirements; (MachineCapabilitya); TaskRequirementsi ]
- . —— X05+ X025+ X025 ¢ | ——
(MachineCapabilityir) TaskRequirementsp (MachineCapabilitys) ETCq

P;

25



Where PI ; indicates the pheromone indicator value for task;

assigned to machine;. TaskRequirements;; represents the value of user

expectation of QoS factor; (Cost, RAM and Deadline) for each task;.

(MachineCapability; ); represents the value of machine capability

matrix, for the particular machine j, the MachineCapability;; indicates

the QoSfactor; of machine for executing task;_

5. In each iteration, we need to select the largést entry from the matrix.

Assuming PJ; is selected, then job i assigned to a resource j. Before

assigning a task to the resource, the machine availability for each

resource is calculated. Based on the minimum machine availability,

the task 1s assigned to the resource.

6. Repeat the step 5 until all tasks are assigned.

7. Calculate the makespan

8. End

3.5 Ant Colony Algorithm for Task Scheduling

Example:

Step 1: Assume there are five jobs Ty, T, Ts, T4, Ts and three resources R,

R,, Rs in a grid. Sample low low inconsistent matrix is generated. The matrix

18

Ro
T, 1.70
T, 252
T, 3.0l
T,  2.09
T, 1.63

Step 2: User Requirements

R,
0.23
0.30
0.17
0.73

0.06

R,
1.13
1.74
2.26
1.59
0.65

Task Requirement matrix for the above sample is:

26



Cost
1198.09
840.22
1057.20
1116.71
1171.39

RAM
117.76
119.80
104.44
82.37
115.52

Step 3: Machine Capability

Deadline

To
1.13
T,
0.30
T,
2.26

0.65

3.47

5.14

6.14

4.25

3.33

Ry

Cost RAM Deadline

529 1.70

529 252
529 301
529 2.09
529 1.63

1.02

1.29

0.74

3.14

0.29

Step 4: Initial PI Calculation

Ro
172.76
81.83
86.23
131.61
176.36

R,
595.90
336.45
750.84
179.51
2304.61

Deadline
2.66
4.74
4.78
2.99
5.73

R, R,

Cost RAM  Deadline Cost RAM

9.64 023 8.82 5.0l
9.64 030 13.58 5.01
9.64 0.17 17.65 5.01
9.64  0.73 1243 5.01
9.64  0.06 507 5.0l
R

68.42

31.33

30.19

4532

118.82

27



Step 5: The maximum PI value in the matrix above matrix is 2304.61. So
task4 is assigned to resourcel. The next maximum value PI value is 750.84.
Now the availability matrix becomes,
Ry R, R,
T, 0.00 0.00 0.00
T, 3.01 0.24 2.26
Avail 3.01 0.24 2.26
The minimum availability for the above matrix is 0.24. Hence task2 1s
assigned to resourcel. The availability matrix now becomes,
Ry R, R,
Avail 0.00 0.24 0.00
The next maximum value is 595.90. Now the availability matrix for each

machine becomes,

Ry R, R,
0.00 0.24  0.00
T, 1.70 0.23 1.13
Avail 1.70 0.47 I.13
The minimum availability for the above matrix is 0.47. Hence task0 is
assigned to resourcel. The availability matrix now becomes,
Ry R; R,
Avail 0.00 047 0.00
The next maximum value is 336.45. Now the availability matrix for each
machine becomes,
Ry R; R;
0.00 0.47 0.00
T, 2.52 0.30 1.74
Avail  2.52 0.77 1.74

28



The minimum availability for the above matrix is 0.77. Hence taskl is
assigned to resourcel. The availability matrix now becomes,
Ry R, R,
Avail 0.00 0.77 0.00
The next maximum value is 179.51. Now the availability matrix for each
machine becomes,
Ry R, R
0.00 0.77 0.00
T,  2.09 0.73 1.59
Avail  2.09 1.5 1.59
The minimum availability for the above matrix is 1.5. Hence task3 1s
assigned to resourcel. Final availability for each machine is,
Ry20.00 R,=>1.5 R,~>0.00

Hence the makespan is 1.5.

Resource Utilization:
Resource Utilization;= Resource Availability;/ Makespan
In this case resourcel is only used. So,
Resource Utilization; = 1.5/1.5
=1

Percentage of resource utilization is calculated based on the following
formula:
Resource Utilization (%) = (Resource Utilization/ No. of resources)*100

= (1/3)*100

=33.33%

29



3.6 CODING:

package ant;

import java.io.*;

import java.util.*;

import java.text.*;

import java.io.IOException;

public class antpi

{

public static void main(String args[])

{

}

int no_machines=16;

double temp5[]=new double[512];

double temp6[]=new double[no machines];

int nl,n2;

int 1,),k,c1,n;

double no;

int size;

double temp1[][]=new double[512][no_machines];
double ordervector[]=new double[512];

double etcavail[][]=new double[512][no machines];
double temp2[][][]=new double[512][no_machines][3];
double temp3[][][]=new double[512][no_machines][3];
double temp8[][][]=new double[512][no machines][3];
double temp9[][][J=new double[512][no_machines][3];
double pidx1[][I[J=new double[512][no _machines}[3];
double pir,max |,avmin;

int j1,s,z;

30



double ¢=0.5,ra=0.25,d=0.25,a=0.0;
int div1=0;
public void piinit(double mach{][][],double tsk1[][],double et[][],int
no_tasks,String ip,String pi,String assign,String makespan,String pifinal,int
count,String antuti)throws Exception
{
for(i=0;i<no_tasks;i++)
{
for(7=0;j<no_machines;j++)
{
for(k=0;k<1;k++)
{
if(mach[i][j][k]==0)

{
temp2[i](j)[k]=0;

else
{
temp2[i][j1[k]=(tsk1[i][k]/mach[1]{j}[k]);//BA
SED ON FORMULA COST=REQ/CAP
temp2[i][j][k]=round(temp2[1][j][k],4);
}
temp2[i][ji[k+1]=(mach[1][j][k+1]/tsk][1][k+]1]);
if{mach[i][j][k+2]==0)
temp2[i][j1[k+2]=0;
else
temp2[1}[j1[k+2]=(tsk1[i][k+2])/mach[i][j][k+2]);
}

31



}

for(n1=0;nl1<temp5.length;n1++)

temp5[{nl1]=0;

for(n2=0;n2<temp6.length;n2++)

temp6[n2]=0;

temp7=0;

cnt=0;

String ss="Iteration ";

String sn="\r\n";

OutputStream out=new FileOutputStream(assign,true);
BufferedOutputStream bfo=new BufferedOutputStream(out);
String count1=Integer.toString(count);

String ms=ss.concat(countl);

byte by[]=ms.getBytes();

bfo.write(by);

bfo.write(sn.getBytes());

bfo.close();

display2(temp2,ip,no_tasks);
pical(temp2,et,temp5,temp6,no_tasks,pi,assign,makespan,pifinal,count

,2antuti);

}

public void pical(double temp2[][][],double et[]{],double temp5[],double
temp6[],int no_tasks,String pi,String assign,String makespan,String
pifinal,int count,String antuti)throws Exception

{

for(i=0;i<no_tasks;i++)

{

for(j=0;j<no_machines;j++)

32



{

for(k=0;k<1;k++)
{
temp3[i][j][k]=((temp2[i][j][k}*0.5)+(temp2[i][}][k
+17*0.25)+(temp2[i][j][k+2]*0.25)*(1/et[11D);//
MULTIPLICATION OF TASK
temp3[i][j][k]=round(temp3[i][j](k],4);
j

}

double av[] = new double[no_machines];
double avail[] = new double[no machines];
double m[] = new double[no_machines];
temp7=0;
for(i=0;i<no_tasks;i++)
{
for(j=0;)<no_machines;j++)
{
for(k=0;k<1;k++)
{
templ[i][j]=temp3[i][j](k};
pidx 1 [1][j1[k]=temp3 1] [1[K];
}

}

display3(temp3,pi,no_tasks,count);

t2dconv(templ,avail,et,temp3,temp6,cnt,av,assign,temp7,temp3,pidx |

;m,no_tasks,pi,makespan,pifinal,count,antuti);

33



}

[ERFEREXFWRITING 1D ARRAY IN FILE*##kkx/
public void display3(double trmp[][]{],String s,int no_tasks,int count)throws
Exception
{
String sn="\r\n";
OutputStream out=new FileOutputStream(s,true);
BufferedOutputStream bfo=new BufferedOutputStream(out);
String iter = "\nlteration";
String disp1= iter.concat(Integer.toString(count));
byte b[]=displ.getBytes();
bfo.write(b);
bfo.write(sn.getBytes());
for(i=0;i<no_tasks;i++)
{
String bl = Integer.toString(i);
String b2="task";
String b3=b2.concat(b1);
byte by1[]=b3.getBytes();
bfo.write(byl);
bfo.write(sn.getBytes());
for(j=0;j<no_machines;j++)
{
String al = Integer.toString(j);
String a2="Machine";
String a3=a2.concat(al);
String a4=a3.concat("\t");
byte by2[]=a4.getBytes();
bfo.write(by2);

34



String s2="null";

for(k=0;k<1;k++)
{
Double fObj = new Double(trmpl[i]{j]{k1);
String sl = fObj.toString();
s2=s1.concat("\t");

byte by[]=s2.getBytes();

bfo.write{by);
}
bfo.write(sn.getBytes());
¥
bfo.write(sn.getBytes());
}
bfo.close();

}

/********** ROUND OFF FUNCTION ************/

public static double round(double val, int places)

{
long factor = (long)Math.pow(10,places);
val = val * factor;
long tmp = Math.round(val);
return (double)tmp / factor;
}

[HxEEFFAXDISPLAY MACHINE CAPABILITY *## kit
public void display2(double trmp(] [1[],String s,int no_tasks)throws
Exception

OutputStream out=new FileOutputStream(s);

35



BufferedOutputStream bfo=new
BufteredOutputStream(out);
String sn="\r\n";
for(i=0;i<no_tasks;i++)
{
String b1 = Integer.toString(i);
String b2="Task";
String b3=b2.concat(bl);
byte by1[]=b3.getBytes();
bfo.write(by1);
bfo.write(sn.getBytes());
for(j=0;j<no_machines;j++)
{
String al = Integer.toString(j);
String a2="Machine";
String a3=a2.concat(al);
String a4=a3.concat("\t");
byte by2[]=a4.getBytes();
bfo.write(by2);
String s2="null";
for(k=0;k<3;k++)
{
Double fOb) = new
Double(trmp[1](j}{k]);
String s1 = fObj.toString();
s2=sl.concat('"\t");
byte by[]=s2.getBytes();
bfo.write(by);
h

36



bfo.write(sn.getBytes());

}
bfo.write(sn.getBytes());

3
bfo.close();

¥
Jriiok CALCULATION OF MAXIMUM P s/
public void t2dconv(double temp1[][],double avail [],double et[][],double
temp5[],double temp6[],int cnt,double av[],String s1,int temp7,double[][][]
temp3,double[]{][] pidx,double m[],int no_tasks,String pi,String
makespan,String pifinal,int count,String antuti)throws Exception

{

pir=maxpi(templ,no_tasks);

loop:for(i=0;i<no_tasks;i++)

{
for(j=0;j<no_machines;j++)
{
if(temp 1 [1]{j]==pir)
{
temp1[i][j]=-1;
break loop;
}
}
j

if((pir==-1)&&(cnt!=no_tasks))
System.exit(0);
pi3d(pir,avail,temp3,et,temp] ,cnt,temp5,temp6,av,sl temp7,pidx1,m,n
o_tasks,pi,makespan,pifinal,count,antuti);//SCHEDULING OF JOB
}

37



public void pi3d(double pir,double avail[],double pidx[][][].double
et[][],double temp1[][],int cnt,double temp5[],double temp6[],double
av[],String s1,int temp7,double[l[][] pidx1,double m[},int no_tasks,String
pi,String makespan,String pifinal,int count,String antuti)throws Exception
{

String str="Task ";

String str1=" Assigned to Machine ";

nt X;

String sn="\r\n";

loopb:for(i=0;i<no_tasks;i++)

{
loopc:for(j=0;j<no_machines;j++)
1
for(k=0;k<1;k++)
{
if(pidx[i][jik]!=-1)&&(pir!=-1))

{
if((pidx[i][j][k}==pir))
{
pidx[i]{j][k]=-1;
n=check(temp5,i);

if((n==0))

{

break loopb;

}
cl=checkmac(tempb.j);
if(c1==0)

38



for(s=0;s<no_machines;s++)
{
avail[s]+=et[i][s];
b
avmin=minpindex(avail);

jl1=search(avail,avmin);

loopf: for(s=0;s<no_machines;s++)
{
if(s==)1)
continue loopf;
else
{
avail[s]=avail[s]-et[1][s];
\ |
j
ordervector[i]=j1;
OutputStream out=new FileOutputStream(s1,true);
BufferedOutputStream bfo=new
BufferedOutputStream(out);
String t11=Integer.toString(i);
String t21=Integer.toString(j1);
String t31=str.concat(t11);
String t41=strl.concat(t2 1);
String t51=t31.concat(t41 );
byte by[]=t51.getBytes();

39



bfo.write(by);
bfo.write(sn.getBytes());
cnt++;

temp7++;

templ[il{jl]=-1;

temp5[i]=1;

temp6[j11=1;
mjl]+=et[i][1];

bfo.close();

break loopb;

3

else

{

temp1[i][ij}=-1;
ordervector[il=j;
QutputStream out=new FileOutputStream(s! jtrue);
BufferedOutputStream bfo=new BufferedOutputStream(out);
String t1=Integer.toString(i);
String t2=Integer.toString(j);
String t3=str.concat(tl);
String t4=strl.concat(t2);
String t5=t3.concat(t4);

byte by[]1=t5.getBytes();
bfo.write(by);
bfo.write(sn.getBytes());
cnt++;

temp7++;

m[jJ+=et[i](];

avail[jl=m[j];

40



temp5S[il=1;

temp6(j]=1;
bfo.close();
break loopb;
}
}
}
h
}
}

if(temp7!=no_tasks)
t2dconv(temp1,avail et,temp5 temp6,cnt,av,sl ,temp7,temp3,pidx1 ,m,no_task
s,pi,

makespan,pifinal, count,antuti);

if(tcmp7==no_tasks)/ /IF ALL TASKS ARE ASSIGNED THEN MAKESPAN IS
CALCULATED

{
makespan(m,makespan,sl Jtemps ,temp6,antuti,ordervector,no__tasks);
¥

}

[rssrkkxEk QETS FLAGS FOR MACHINE AVAILABILITY Aotk okokokok ek /

public int checkmac(double temp6[],int i)throws Exception

{
if(temp6[i]==0)
return 1;//IF AVAILABLE FLAG IS SET

return 0;//ELSE FLAG IS RESET

}

[ExExE% SETS FLAGS FOR TASKS AVAILABILITY Kook Rk f

public int check(double temp5([],int j)throws Exception

41



{

if(temp5[j]==0)

return 1;//IF AVAILABLE FLAG IS SET
return 0;//ELSE FLAG IS RESET

}

public double maxpi(double trmpl[](],int no_tasks)throws Exception
{
double max=trmp[0][0];

for(i=0;i<no_tasks;i++)

{
for(j=0;j<trmpl[i].length;j++)
{
if(trmpli][j]>=max)
max=trmp[i]{j];
!
}
return max;

}

public int search{double temp1[],double max)throws Exception

{
loop:for(j=0;j<no_machines;j++)
{
if(temp1[j}J=max)
break loop;
}
return j;
}

42



JREFHERREEXCAT CULATE MAXIMUM FOR A GIVEN INDEX*** oA R
public double maxpiindex(double temp1[][],int )throws Exception
{

double max=temp1[i]{0];

for(j=0;j<temp1{i].length;j++)

{
if(temp1[i][j]>=max)
max=temp1[i][j];

}

return max,

}

JAFEREREERECAT CULATE MINIMUM FOR A GIVEN INDEX¥##***# &4k %/
public double minpindex{double t[])throws Exception
{

double minimum = t[0];

for(z=0;z<t.length;z++)

{
if (t[z] <minimum)
{
minimum = t[z]; // new maximum
}
}

return minimum, }

public void makespan(double m[},String makespan,String ms,double
temp5[],double temp6[],String antuti,double ordervector[},int

no_tasks)throws Exception

{

String ss="Makespan-->";

43



double max;
OutputStream out=new FileOutputStream(makespan,true);
BufferedOutputStream bfo=new BufferedOutputStream(out);
String sn1="\r\n";
max=round(maximum(m),4);
System.out.printin{"ANT MAKESPAN:" +max);
String m2=Double.toString(max);
byte by[]=m2.getBytes();
bfo.write(by);
bfo.write(snl.getBytes(}));
bfo.close();
OutputStream outl=new FileOutputStream(ms,true);
BufferedOutputStream bfo 1=new BufferedOutputStream(outl);
String ms1=Double.toString(max);
String max 1=ss.concat(ms1);
byte by1{]=max!.getBytes();
bfol.write(byl),
bfol.write(snl.getBytes());
bfol.write(snl.getBytes());
bfol.close();
MachineUtilization(max,m,no machines,antuti);
for(ni=0;n1<temp5.length;n1++)
temp5[ni]=0;
for(n2=0;n2<tempb.length;n2-++)
temp6[n2]=0;
temp7=0;
cnt=0;
}

/************MACHINE UTILIZATION****************/

44



public void MachineUtilization(double makespan,double machinecapl[],int

no_machines,String uti)throws Exception

{

100,4);

1

OutputStream out=new FileOutputStream(uii,true);
BufferedOutputStream bfo=new BufferedOutputSiream(out);
String snl1="\r\n";
double machineUtil[]=new double[no_machines];
double totalResourceUtil=0.0;
fof(int i=0;i<no_machines;i++)
{
machineUtil[i]=round(machinecap(i]/makespan,4),
totalResourceUtil+=machineUt1l[1];

}

totalResourceUtil=round(totalResourceUtil/no_machines *

System.out.println("Total Resource Utilization:
"+totalResourceUtil+ " %");

String m2=Double.toString(totalResourceUtil);
byte by[]=m2.getBytes();

bfo.write(by);

bfo.write(snl.getBytes());

bfo.close();

45



CHAPTER 1V

Experimental Results and Discussion

4.1 Makespan

Makespan is a measure of the throughput of the heterogeneous
computing systems, such as grid. It can be calculated as the following
relation:

Makespan=MAX(CT;)
The less the makespan of a scheduling algorithm, the better it works. [5]

4.2 Average Resource Utilization
The capability of the software product to use appropriate amounts and
types of resources, for example the amounts of main and secondary memory

used by the program and the sizes of required temporary or overflow files,

when the software performs its function under stated conditions.

46



CHAPTER V

5. Comparison Graphs

5.1Makespan Comparison

Low Task Low Machine Consistent
35
30 -
25 -
E‘ 20 - & Min-Min
g & MCT
] 15 R
= & Max-Min
10 % MET
5 - # Ant
0 .
200 300 400 512
No. of Tasks
Low Task Low Machine Inconsistent
70 -
g & Min-Min
e
=2 2 MCT
-]
= # Max-Min
o MET
2% Ant
200 300 400 512
No. of Tasks

47



Makespan

200

300

No. of Tasks

400

Makespan

35 -

30

20 -

15 -

Low Task High Machine Consistent

200

300

No. of Tasks

48

400

512

512

# Min-Min

w MCT ‘
. Max-Min .
® MET
2 Ant E

@ Min-Min
@ MCT
7 Max-Min
@ MET

# Ant



Makespan

140 -

120 -

100 -

80 -

60 -

a0 -

20

200

300

No. of Tasks

Makespan

Low Task High Machine Partial Consistent

200

300

No. of Tasks

400

49

512

# Min-Min
B MCT
. Max-Min
MET

£ Ant

# Min-Min
® MCT
i Max-Min
@ MET

#Ant

H




High Task Low Machine Consistent

200 300 400 512

No. of Tasks

50

35 -
30 -
25 -
= # Min-Mi
g 20 n
& B MCT
w15
= 3 Max-Min
10 - B MET
5 5 Ant
0 -
200 300 400 512
No. of Tasks
High Task Low Machine Inconsistent
120 -
100 -
80 -
5 # Min-Min
e
% 60 - a MCT
0 - # Max-Min
= MET
20 - # Ant
0 -




Makespan

200

300

No. of Tasks

400

512

Makespan

35 -

30 -

25 -

20

15 -

10 -

High Task High Machine Consistent

200

300

No. of Tasks

400

512

51

# Min-Min
B MCT

77 Max-Min
B MET

i Ant

% Min-Min
#® MCT
# Max-Min
B MET

# Ant




Makespan

300 -
250 -
200 -

150 -

100

50

300

No. of Tasks

400

512

Makespan

& Min-Min
B MCT
. Max-Min
8 MET

s Ant

High Task High Machine Partial Consistent

200

300

No.of Tasks

400

52

512

# Min-Min
# MCT
4 Max-Min
% MET

# Ant




5.2 Average Resource Utilization Comparison

Low Task Low Machine Consistent

10

200 300 400

No. of Tasks

512

53

100 -
¥ 90 -
8
= 80 -
z
!g 70
= 60 - # Min-Min
g
@ 50 B MCT
=]
T 40 - e M M
= i Max-Min
g 30 & MET
g2 20
% ‘# Ant
o 10

0
200 300 400 512
No. of Tasks
Low Task Low Machine Inconsistent

100 -
& 90
=
= 380 -
b
= 70
=}
g 60 # Min-Min
E 50 ® MCT
§ 40 & Max-Min
§ 30 8 MET
z 20
@ % Ant
=1




Resource Utilisation percentage

100 -
S0 -
80 -

70
60
50
40

30 -

20

10 -

200

No. of Tasks

Resource Utilisation percentage

100 -

90
80
70
60

50 -

40
30
20
10

Low Task High Machine Consistent

200

300

No. of Tasks

400

400

512

512

54

% Min-Min
& MCT
: Max-Min
® MET

7 Ant

# Min-Min
®MCT
% Max-Min
B MET

& Ant



100 -

& 90 -
£
= 80 -
s
= 70
; 60 & Min-Min
s S0 - & MCT
]
E 40 - = Max-Min
jan
aé 30 & MET
= .
§ 20 # Ant
g 10 -

0 .

200 300 400 512
No. of Tasks
100 -

¥ 90
&
= 80 -
3
5 70
n . -
g 60 g Min-Min
g 50 - ® MCT
: 40 & Max-Min
- ax-Mi
g 30 & MET
=
% 20 = Ant
g 10

0

200 300 400 512

No. of Tasks

55




Resource Utilisation percentage

100 -
90 -

80
70

60 -
50 -

40

30 -

20

10 -

200

300

No. of Tasks

400

Resource Utilisation percentage

100 -

90
80
70
60

50 -

40
30
20
10

200

300

No. of Tasks

56

400

512

& Min-Min
# MCT
= Max-Min
&\ MET

£ ANt

& Min-Min
= MCT
% Max-Min
8 MET

# Ant

i




100

& 90 -
=2
§ 80 -
5 70
(=9
=z 60 # Min-Min
=]
= S0 ® MCT
E 40 = Max-Min
g 30 # MET
2 20
% # ANt
=" 10 -

0

200 300 400 512
No. of Tasks
High Task High Machine Consistent
100 -

¥ 90
s
§ 80
5 70
=
E 60 # Min-Min
g 50 - m MCT
g 40 = Max-Min
dé 30 ® MET
g2 20
] 5 Ant
10

0 .

200 300 400 512
No. of Tasks

57




100 -

Resource Utilisation percentage

90
80
70
60

50 -

40
30
20
10

& 90 -
&
2 80
L7
E 70
2,
= 60 -
£
§ 50
2 40 -
-
® 30 -
T
2 20
£ 10
200 300 400 512
No. of Tasks
High Task High Machine Partial Consistent
100 -

200 300 400 512

No. of Tasks

58

# Min-Min
s MCT
¥ Max-Min
8 MET

s Ant

B Min-Min
®MCT
# Max-Min
B MET

% Ant

I



5.3 Conclusion

In this project, we have presented weighted QoS Ant colony, which is
an extension of existing Ant colony algorithms. Our algorithm yields
significant improvements in performance over existing heuristic algorithms
in most of the cases and minimizes the makespan and utilizes the resources
effectively. This algorithm first checks the QoS Satisfying criteria and then
schedules the task to the relevant machine. We have published our results in
the International Conference on Emerging Trends in Computing held at St

Ramakrishna Engineering College, Coimbatore.

59



5.4 References

[1] Manish Parashar, Senior Member , IEEE and Craig A.Lee, Member,
IEEE, “Grid Computing: Introduction and Overview”

[2] www.redbooks.ibm.com

[3] Tracy D. Braun, Howard Jay Siegel , “A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems”, Noah Beck School of Electrical and
Computer Engineering, Purdue University, West Lafayette, Indiana
47907-1285

[4] Armstrong. R, “Investigation of Effect of Different Run-Time
Distributions onSmart-Net Performance”, (1997).

[S] A Kobra Etminani, Prof. M. Naghibzadeh Dept. of Computer
Engineering Ferdowsi University of Mashad Mashad, Iran ,Prof. M.
Naghibzadeh Dept. of Computer Engineering Ferdowsi University of
Mashad ,Mashad, Iran, “Min-Min Max-Min Selective Algorithm for Grid
Task Scheduling”.

[6] Kousalya.K and Balasubramanie.P, “An enhanced ant algorithm for grid
scheduling problem”.

[7] Ruay-Shiung Chang, Jih Sheng Chang, Po-Sheng Lin, “An algorithm for
balanced job scheduling in grids”, Future Generation Computer Systems
25(2009) 20-27.

60



