p-361

SECURED ACCESS OF‘ HEALTHCARE DATA
FROM MULTIPLE HOSPITALS

A PROJECT REPORT

Submitted by
S.ANANDHAKRISHNAN 0710108301
R.SANGETHARAJ 0710108304

In partial fulfillment for the award of the degree
of

BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
An Autonomous Institution
(Affiliated to Anna University of Technology, Coimbatore)
COIMBATORE — 641 049

APRIL 2011

KUMARAGURU COLLEGE OF TECHNOLOGY: COIMBATORE-641 049

BONAFIDE CERTIFICATE

Certified that this project report entitled “SECURED ACCESS OF

HEALTHCARE DATA FROM MULTIPLE HOSPITALS” is the
bonafide work of S.ANANDHAKRISHNAN and R.SANGETHARAJ who

carried out the research under my supervision.

4 -
ﬁ“ ﬂb”’ﬂ% A Mg

(Mr.Dinesh Ranganathan M.S.] (Mrs.S.Devaki M.E. (PhD),]
Project Guide Head of the Department

The candidates with university Register Nos. (7 10108301 &

0710108304 was examined by us 1n project viva-voice examination held
on 2o.o0y.Lell -

M@u@‘ Koo T

e —

Internal Examiner External Examiner

DECLARATION

We,

S.ANANDHAKRISHNAN Reg.No: 0710108301
R.SANGETHARAJ Reg.No: 0710108304

Hereby declare that the project entitled “Secured Access of
Healthcare data from Multiple Hospitals”, submitted in partial
fulfillment to Anna University as the project work of Bachelor of
Engineering (Computer Science and Engineering) degree, is record of
original work done by us under the supervision and guidance of
Department of Computer Science and Engineering, Kumaraguru College
of Technology, Coimbatore.

Place: Coimbatore

Date:
s 'wka\&\‘qwﬁ\ K. /{/\Nj}l/
[S.Anandhakrishnan] [R.Sangetharaj]

L. yyreth

[Mr.Dinesh Ranganathan M.S.,]
Project Guide

ACKNOWLEDGEMENT

First and foremost, we would like to thank the Lord Almighty for enabling
me to complete this project.

We express my profound gratitude to our Chairman Padmabhusan
Arutselvar Dr.N.Mahalingam, B.Sc., F.LE., for giving this opportunity to pursue
this course.

We would like to thank Dr.S.Ramachandran, Ph.D, Principal for
providing the necessary facilities to complete my thesis.

We take this opportunity to thank Dr.S.Thangasamy Ph.D., Dean,
Research and Development, for his precious suggestions. We also thank
Mrs.S.Devaki M.E. (PhD), HOD, Department of Computer Science and
Engineering, for her support and timely motivation.

We register my hearty appreciation to the Guide Mr.Dinesh

Ranganathan M.S., dssistant Professor, Department of Computer Science and
Engineering, my Project advisor. We thank for him support, encouragement and
ideas. We thank him for the countless hours he has spent with us, discussing
everything from research to academic choices.

We would like to convey my honest thanks to all Teaching staff members
and Non Teaching staffs of the department for their support. We would like to
thank all my classmates who gave me a proper light moments and study breaks
apart from extending some technical support whenever we needed them most.

TABLE OF CONTENTS

CONTENTS
ABSTRACT
1. INTRODUCTION
1.1 GENERAL
1.2 EXISTING SYSTEM
1.3 PROPOSED SYSTEM
1.4 OBJECTIVE OF THE PROJECT

2. LITERATURE REVIEW
2.1 HARDWARE REQUIREMENTS
2.2 SOFTWARE REPQIREMENTS
2.3 SOFTWARE DESCRIPTION

3. DETAILS OF METHODOLOGY EMPLOYED
3.1 IMPLEMENTATION OF CLIENT APPLICATION
3.2 IMPLEMENTATION OF HEALTHCARE ADMIN
3.3 COMMON FORMATTING SYSTEM

PAGE NO

Vil

12
13
13

3.4 USER INFORMATION SYSTEM IMPLEMENTATION 14

4. SYSTEM FLOW DIAGRAM

5. PERFORMANCE EVALUATION
5.1 SYSTEM DESIGN
5.2 SYSTEM TESTING

14

15
18

6. CONCLUSION

7. APPENDICES

7.1 SOURCE CODE

7.2 SCREEN SHOT

8. REFERENCES

21

22
40

49

ABSTRACT

Intranet-based healthcare data exchange, which is particularly useful for
the management of cooperative and life time healthcare records, requires the use of
a common format to allow access to heterogeneous reservoirs of data scattered at
different hospitals, as well as protection from intrusion and piracy. However, the
unified management of multiple reservoirs is difficult to achieve, due to the
different policies operated by different hospitals and the heterogeneous format of
their information reservoirs,

We propose a software system to retrieve healthcare information in a
common format through the intranet from multiple heterogeneous reservoirs. The
proposed system consisting of the Healthcare Admin system, Hospital client
system, common formatting system, user information system involving distributed
processing with multiple matching agents connected to heterogeneous reservoirs
and one flexible master controller to unify the different formats and different
hospital policies, thus providing a secure common format and simplifying the
problem of reservoir maintenance including the addition, removal and modification
of reservoirs. The XML provides an efficient means of reservoir management,
allowing a common format for information exchange, device independent display
for diverse display resolutions of terminal devices, user identification for
authentication, digital signature for data integrity, and selective encryption for

protecting confidential health information.

1.INTRODUCTION

1.1GENERAL:

Intranet-based healthcare data exchange, which is particularly useful for the mmanagement
of cooperative healthcare and life time healthcare records, requires the use of a common format
to allow access to heterogeneous reservoirs scattered at different hospitals, as well as protection
from intrusion and piracy. However, the unified management of multiple reservoirs is difficult to
achieve, due to the different policies operated by different hospitals and the heterogeneous

format of their information reservoirs.

1.2EXISTING SYSTEM:

Healthcare organizations gencrate various documents for each patient including diagnosis,
treatment advised, blood test reports, pathology results, X-ray reports, analysis reports etc.. Each
of these documents is critical and may be referred to. Further, there are a number of medico-legal
cases that are admitted in the hospital and there is a statutory obligation on the part of the
hospital to provide the details of any specific case if such a request from competent authority
(courts or police or investigation agencies). This implies that the hospital administration typically

spends lot of time trying to retrieve these records and maintaining them.

DRAWBACKS

Often due to the deluge of documents making it impossible to locate the correct record
which can cause many problems operationatly and legally. Also since the hard copies cannot be

shared there is unnecessary and tedious retyping of data or creation of copies of the document.

1.3 PROPOSED SYSTEM:

. A Healthcare software system to convert different format of patient details collected
from different hospitals into common XML format and to store the patient details of

common format as a XML document in a secured manner.

. Patient records can be retrieved easily and instantaneously

. The documents can be shared over the LAN/intranet thus preventing wasteful copies

. Documents retrieved can be emailed to the concerned doctor or anyone else

. Since the patient history is available instantaneously, the valuable time of specialists etc.
is saved)

. With documents in digital format and with backup features, ensures the safety of

documents

1.4 OBJECTIVE OF THE PROJECT

e DBasic objective of this project is to create a digital health care software system for managing
the health documents from various hospitals in single digital signed system and provide

access to the documents.

e Creates a central electronic repository of the patient records, which can be scanned into the

system.

e Folders for each patient can be created and security can be applied which ensures

confidentiality of the documents
e The documents can be indexed with data like patient name, patient number, date etc...
e Any documents related to the patient which are generated electronically (like TEXT, SQL,

ACCESS files) can be directly imported into the system,; digital signature is added and

converted to XML then encrypted.

2. LITERATURE REVIEW

2.1 HARDWARE REQUIREMENTS

e Processor

« RAM

« Hard Disk Drive
+ Keyboard

» Mouse

« Monitor

2.2 SOFTWARE REPQIREMENTS

+ Operating System
« IDE used

« Web Technologies
« DATABASES

» Language Used

Intel Pentium P4 1.7 GHZ
512 MB

80 GB

101 Keys
Optical Mouse
SVGA/color

Windows XP 3

Visual Studio .Net Framework 2010
XML.

SQL Server 2008, MS ACCESS 2000.
Visual C#

3.3 SOFTWARE DESCRIPTION

« . VISUAL STUDIO .NET FRAME WORK 4.0

The Microsoft NET Framework is a software framework that can be
installed on computers running Microsoft Windows operating systems. It includes a large
library of coded solutions to common programming problems and a virtual machine that
manages the execution of programs writien specifically for the framework. The .NET
Framework is a Microsoft offering and is intended to be used by most new applications
created for the Windows platform. The framework’s Base Class Library provides a large
range of features including user interface, data access, database connectivity,
cryptography, web application development, numeric algorithms, and network
communications. The class library is used by programmers, who combine it with their
own code to produce applications. Programs written for the .NET Framework execute in
a software environment that manages the program's runtime requirements. Also part of
the NET Framework, this runtime environment is known as the Common Language
Runtime (CLR). The CLR provides the appearance of an application virtual machine so
that programimness need not consider the capabilities of the specific CPU that will execute

the program.

e WINDOWS PRESENTATION FOUNDATION:

This subsystem is a part of .NET Framework 3.0.The Windows Presentation
Foundation (or WPF) is a graphical subsystem for rendering user interfaces in Windows-
based applications. WPF, previously known as »Avalon”, was initially released as part of
NET Framework 3.0. Designed to remove dependencies on the aging GDI subsystem.
WPF is built on DirectX, which provides hardware acceleration and enables modern Ut
features like transparency, gradients, and transforms. WPF provides a consistent
programming model for building applications and provides a clear separation between the

user interface and the business logic.

WPF alse offers a new markup language, known as XAML, which is an alternative
means for defining Ul elements and relationships with other UI elements. A WPF application
can be deployed on the desktop or hosted in a web browser. It also enables rich control, design,

and development of the visual aspects of Windows programs.

It aims to unify a number of application services: user interface, 2D and 3D drawing,
fixed and adaptive documents, advanced typography, vector graphics, raster graphics, animation,
data binding, audio and video. Microsoft Silverlight is a web-based subset of WPF that enables

Flash-like web and mobile applications with the same programming model as .NET applications.

* GRAPHICAL SERVICES

All graphics, including desktop items like windows, are rendered using Direct3D. This aims to
provide a unified avenue for displaying graphics and is the enabling factor that allows 2D, 3D,
media, and animation to be combined in a single window. Allows more advanced graphical

features when compared to Windows Forms and its GDI underpinnings.

e MEDIA SERVICES

WPF provides an integrated system for building user interfaces with common media elements
like vector and raster images, audio, and video. WPF also provides an animation system and a
2D/3D rendering system. WPF provides shape primitives for 2D graphics along with a built-in
set of brushes, pens, geometries, and transforms. The 3D capabilities in WPF are a subset of the
full-feature set provided by Direct3D. However, WPF provides tighter integration with other
features like user interfaces, documents, and media. This makes 1t possible to have 3D user
interfaces, 3D documents, or 3D media. There is support for most common image tormats: BMP,

JPEG, PNG, TiFF, Windows Media Photo, GIF, and ICON.

¢ ANIMATIONS
WPF supports time-based animations, in contrast to the frame-based approach. This decouples

the speed of the animation from how the system is performing. WPF supports low level

animation via timers and higher level abstractions of animations via the Animation classes. Any
WPF element property can be animated as long as it is registered as a Dependency Property.
Animation classes are based on the NET type of property to be animated. For instance, changing
the color of an element is done with the Color Animation class and animating the Width of an

clement is done with the Double Animation class.

» EFFECTS

WPF 3.0 provides for Bitmap Effects, which are raster effects applied to a Visual. These raster
offects are written in unmanaged code and force rendering of the Visual to be performed on the
CPU and not hardware accelerated by the GPU. Bitmap Effects were deprecated in .NET 3.5 SP
1. The .NET Framework 3.5 SP1 adds the Effect class, which 1s a Pixel-Shader 2.0 effect that can
be applied to a visual, which allows all rendering to remain on the GPU.The Effect class is
extensible allowing application to specify their own shader effects. NET 3.5 SP1 ships with two

built-in effects, Blur Effect and DropShadowEffect.

e ASPNET

ASP.NET is a unified Web development mode! that includes the services necessary for you to
build enterprise-class Web applications with a minimum of coding. ASP.NET is part of the NET
Framework, and when coding ASP.NET applications you have access to classes in the .NET
Framework. You can code your applications in any language compatible with the common
language runtime (CLR), including Microsoft Visual Basic and C#. These languages enable you
to develop ASP.NET applications that benefit from the common language runtime, type safety,

inheritance, and so on.

Visual Web Developer is a full-featured development environment for creating ASP.NET Web

applications. Visual Web Developer offers you the following features:

. Web page designs A powerful Web page editor that includes WYSIWYG editing and

an HTML editing mode with IntelliSense and validation.

» Page design features Consistent site layout with master pages and consistent page

appearance with themes and skins.

e Code editing A code editor that enables you to write code for your dynamic Web pages in

Visual Basic or C#. The code editor includes syntax coloration and IntelliSense.

o Testing and debugging A local Web server for testing and a debugger that helps you find

errors in your programs.

» Deployment Tools to automate typical tasks for deploying a Web application t0 2 hosting

server or a hosting provider.

VISUAL C#:

C# (pronounced "see sharp™) is a multi-paradigm programming language
encompassing imperative, functional, generic, object-oriented {class-based), and
component-oriented programming disciplines. It was developed by Microsoft within the
NET initiative and later approved as a standard by Ecma (ECMA-334) and ISO
(ISO/IEC 23270). C# is one of the programming languages designed for the Common
Language Infrastructure. C# is intended to be a simple, modern, general-purpose, object-
oriented programming language. Its development team is led by Anders Hejlsberg. The
most recent version is C# 3.0, which was released in conjunction with the NET

Framework 3.5 in 2007. The next proposed version, 4.0, is in development.

e FEATURES
By design, C# 18 the programming language that most directly reflects the
underlving Commeon Language Infrastructure (CLI). Most of its intrinsic types
correspond to value-types implemented by the CLI framework. However, the language
specification does not state the code generation requirements of the compiler: that is, it

does not state that a C# compiler must target a Common Language Runtime, or generate

Common Intermediate Language (CIL), or generate any other specific format.
Theoretically, a C# compiler could generate machine code like traditional compilers of

C++ or FORTRAN.

Some notable distinguishing features of C# are:
There are no global variables or functions. All methods and members must be declared
within classes. Static members of public classes can substitute for global variables and
functions.

Local variables cannot shadow variables of the enclosing block, unlike C and C++. Variable
shadowing is often considered confusing by C++ texts.

C# supports a strict Boolean datatype, bool. Statements that take conditions, such as while
and if, require an expression of a type that implements the true operator, such as the boolean
type. While C++ also has a boolean type, it can be freely converted to and from integers, and
expressions such as if{a) require only that a is convertible to bool, allowing a to be an nt, or
a pointer. C# disallows this "integer meaning tru¢ or false” approach on the grounds that
forcing programmers to uUse eXpressions that return exactly bool can prevent certain types of
common programming mistakes in C or C++ such as if (a = b) (use of assignment = instead
of equality ==).

In C#, memory address pointers can only be used within blocks specifically marked as
unsafe, and programs with unsafe code need appropriate permissions to run. Most object
access is done through safe object references, which always either point to a "live” object or
have the well-defined null value; it is impossible to obtain a reference to a "dead" object (one
which has been garbage collected), or to a random block of memory. An unsafe pointer can
point to an instance of a value-type, array, string, or a block of memory allocated on a stack.
Code that is not marked as unsafe can still store and manipulate pointers through the
System.IntPir type, but it cannot dereference them.

Managed memory cannot be explicitly freed; instead, it is automatically garbage collected.
Garbage collection addresses the problem of memory leaks by freeing the programmer of

respoensibility for releasing memory which is no longer needed.

In addition to the try...catch construct 10 handle exceptions, C# has a try...finally construct to
guarantee execution of the code in the finally block.

Multiple inheritances is not supported, although a class can implement any number of
interfaces. This was a design- decision by the language's lead architect to avoid complication
and simplify architectural requirements throughout CLL

C# is more type safe than C++. The only implicit conversions by default are those which are
considered safe, such as widening of integers. This is enforced at compile-time, during JIT,
and, in some cases, at runtime. There are no implicit conversions between Booleans and
integers, nor between enumeration members and integers (except for literal 0, which can be
implicitly converted to any enumerated type). Any user-defined conversion must be
explicitly marked as explicit or implicit, unlike C++ copy constructors and conversion
operators, which are both implicit by default.

Enumeration members are placed in their own scope.

C# provides properties as syntactic sugar for a common pattern in which a pair of methods,
access or (getter) and mutator (setter) encapsulate operations on a single attribute of a class.

C# currently {as of 3 June 2008) has 77 reserved words.

C# is the programming language that most directly reflects the underlying Common
Language Infrastructure (CLI). Most of ils intrinsic types correspond to value-types
implemented by the CLI framework. However, the language specification does not state the
code generation requirements of the compiler: that is, it does not state that a C# compiler
must target a Common Language Runtime, or generate Common Intermediate Language
(CIL), or generate any other specific format. Theoretically, a C# compiler could generate
machine code like traditional compilers of C++ or FORTRAN. With Visual developers can
build solutions for the broadest range of clients, including Windows, the Web. and mobile or
embedded devices. Using this elegant programming language and tool, developers can
leverage their existing C++ and Java-language skills and knowledge to be successful 1n the
NET environment.

C# is more type safe than C++. The only implicit conversions by default are those which are
considered safe, such as widening of integers. This is enforced at compile-time, during JIT,

and, in some cases, at runtime. There are no implicit conversions between booleans and

integers, or between enumeration members and integers (except for literal O, which can be
implicitly converted to any enumerated type).

Any user-defined conversion must be explicitly marked as explicit or implicit, unlike C++
copy construc:tors‘ and conversion operators, which are both implicit by default. In C#,
memory address pointers can only be used within blocks specifically marked as unsafe, and
programs with unsafe code need appropriate permissions to run. Most object access is done
through safe object references. Managed memory cannot be explicitly freed; instead, it 1s

automatically garbage collected.

3. DETAILS OF METHODOLOGY EMPLOYED

IMPLEMENTATION OF CLIENT APPLICATION

Jogin into the system using

3.1

This System allows the registered hospitals to
their Hospital ID and the hospitals can upload their patient details of own format.

DFD for User Login

Admin User name
nd Password

.
Health Care
System User DB
—
If In-vah
Authorized User User name
and Password
1f valid

Exit
\

3.2 IMPLEMENTATION OF HEALTHCARE ADMIN

» This System is used by the administrator to register the hospitals in the database and to

view and delete the hospitals from the database.

» By registering, Hospitals can get access to the system with their Hospital ID provided by

Administrator.

3.3 COMMON FORMATTING SYSTEM

« This System converts different format of patient details into common XML format and

provides a User ID to the patients with respect to their hospitals.

« Different data format such as text, MS-Access and Sql server

34 USER INFORMATION SYSTEM IMPLEMENTATION

This system allows the patients to login using their valid user D and hospital name to

get their health care report.

Admin

DATA FLOW DIAGRAM

LAuthorized User

Health Care

System

Files

4. SYSTEM FLOW DIAGRAM

Uploading
Patient details

f‘*-«-.%__,) Updating

Data i Database

Base

‘Managing
Hospitals. ...

Pa'tlent::Cllent

5. PERFORMANCE EVALUATION

5.1 SYSTEM DESIGN

FUNDAMENTAL DESIGN CONCEPTS

System design sits in the technical kernel of software engineering and applied science
regardless of the software process model that is used. Beginning once the software requirements
have been analyzed and specified, tests that are required in the building and verifying the
software is done. Each activity transforms information in a number that ultimately results in

validated computer software.
There are mainly three characteristics that serve as guide for evaluation of good destgn,

o The design must be implement all of explicit requirements contained 1n the analysis
model, and it must accommodate all of the implicit requirements desired by the customer.

¢ The design must be readable, understandable guide for those who generate code and for
those who test and subsequently support the software.

e The design should provide a complete picture of software, addressing the data, its

functional and behavioral domains from the implementation perspective.

System design is thus a process of planning a new system or to replace or the
complement of the existing system. The design based on the limitations of the existing system

and the requirements specification gathered in the phase of system analysis.

Input design is the process of converting the user-oriented description of the computer
based business information into program-oriented specification. The goal of designing input data

is to make the automation as easy and free from errors as possible.

Logical Design of the system is performed where its features are described, procedures that meet

the system requirements are formed and a detailed specification of the new system is provided

Architectural Design of the system includes ‘dentification of software components, decoupling
and decomposing them into processing modules, conceptual data structures and specifying

relationship among the components.

Detailed Design is concerned with the methods involved in packaging of processing modules
and implementation of processing algorithms, data structure and interconnection among modules

and data structure.

External Design of software involves conceiving, planning and specifying the externally
observable characteristics of the software product. The external design begins in the analysis

phase and continues till the design phase.

As per the design phase the following designs had to be implemented, each of thesc
design were processed separately keeping in mind all the requirements, constraints and

conditions. A step-by-step process was required to perform the design.

Process Design is the design of the process fo be done; it is the designing that leads 1o the
coding. Here the conditions and the constraints given in the system are 1o be considered.

Accordingly the designing is to be done and processed.

The Output Design is the most important and direct source of information to the user. The
output design is an ongoing activity during study phase. The objectives of the output design

define the contents and format of all documents and reports in an attractive and useful format.

The main output generated here is the reports. The reports were generated for selective

reasons. The various reports generated are as follows,

e Reports producing the details of the customer.

e Reports producing the order status.

» Reports producing the date wise, month wise order details.
e Reports producing the current stock as on date.

e Report on the available products in the company.

¢ Report on the transaction of the products between company and the user.

5.2 SYSTEM TESTING

Software testing is a critical element of software quality assurance and represents the
ultimate review of specification, design and code generation. Once the source code has been
generated, software must be tested to uncover as many errors as possible before delivery to the
customer. In order to find the highest possible number of errors, tests must be conducted

systematically and test cases must be designed using disciplined techniques.
TYPES OF TESTING

» White box Testing
White box testing sometimes called as glass box testing is a test case design method that

uses the control structures of the procedural design to derive test cases.

Using White Box testing methods, the software engineer can derive test case, that
guarantee that all independent paths with in a module have been excreised at least once, exercise
all logical decisions on their true and false sides, exccute all loops at their boundaries and within
their operational bounds, exercise internal data structures to ensure their validity. “Logic errors
and incorrect assumptions are inversely proportional to the probability that a program path will

be executed*.

The logical flow of a program is sometimes counterintuitive, meaning that uncenscious
assumptions about flow of control and data may lead to make design errors that are uncovered

only once path testing commences.
“Typographical errors are random*“

When a program is translated into programming language source code, it is likely that
some typing errors will occur. Many will be uncovered by syntax and typing checking
mechanisms, but others may go undetected until testing begins. It is as likely that a type will

exist on an obscure logical path as on a mainstream path.

¢ Black box Testing

Black box testing, also called as behavioral testing, focuses on- the functional
requirements of the software. That is, black box testing enables the software engineer to derive
sets of input conditions that will fully exercise all functional requirements for a program. Black

box testing attempts to find errors in the following categories:

1. Incorrect or missing functions
Interface errors
Errors in data structures or external data base access

Behavior or performance errors

AN T e

Initialization and termination errors

By applying black box techniques, a set of test cases that satisfy the following criteria were been
created: Test cases that reduce, by a count that is greater than one, the number of additional test
cases that must be designed to achieve reasonable testing and test cases that tell something about
the presence or absence of classes of errors, rather than an error associated only with the specific

test at hand.

Black - box testing is not an alternative to white - box testing techniques. Rather it is
complementary approach that 1s likely to uncover a different class of errors than white - box

methods.

o Unit Testing

Unit testing focuses verification effort on the smallest unit of the software design, the module.
Using the procedural design description as a guide, important control paths are tested to uncover
errors within the boundary of the module. This testing can be conducted in parailel for all the

modules.

e Integration Testing
The objective of the integration testing is to take modules which are tested successfully during
unit test and build a program structure that has been dictated by specification. All the three modules

are combined in this testing. The entire program is tested as a whole.
o Validation Testing

Validation testing tests “Are we building the product right?” It finds out the deviations from the
specification and prepares a deviation list. It includes two type of testing namely alpha and beta

testing.

Alpha tests are carried out at the control environment the customer tests the software in the presence

of the developer. This is called looking over the shoulder.

In beta testing, the customer tests the software in the absence of the developer. This is called live

testing. Before the release, the software is used for trail.
o Qutput Testing

No systern could be useful if it does not produce the required output in the specific format.

Output testing is performed to ensure the correciness of the output and its format.

6. CONCLUSION

Thus, the proposed system, which provides a means of accessing healthcare information
located in multiple heterogeneous reservoirs located at different hospitals, by retrieving it via the
intranet and converting it to a common format. The proposed system consisting of Healthcare
Admin system, Hospital client system, common formatting system, user information system,
which involves distributed processing with multiple heterogeneous HIS (Human Information
Syster). These multiple agents with one central controller can interconnect with heterogeneous
reservoirs having different formats and different hospital policies, while providing the
information in a secure common format, as well as simplifying the complex operations of
reservoir maintenance, including the addition, removal and modification of reservoirs. The XML
provides an ecfficient means of reservoir management, allowing a common [ormat for
information exchange, device independent display for the diverse display resolutions of terminal
devices, user identification for authendification. digital signature lor data integrity. and
encryption for protecting confidential health information. The proposed system facilitates the
establishment of a patient-centered framework in which to exchange health care data over the
intranet, particularly in the case of multi-institutional multispecialist cooperative healtheare and
life-time health care records. In future, auditing features could be added to judge the approval of

this HIS by different hospitals enrolied in the usability of the software system.

7. APPENDICES
7.1 SOURCE CODE

ADMIN- HOSPITAL REGISTRATION AND VIEWING:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System. Windows.Forms;

namespace HealthCareSys

{

public partial class Adminiiome @ Form

{
public AdminHome()

{

InitializeComponent();

}

private void buttonl_Click{object sender, .0 % < @)

{

rlospital DB DanContexy Datas = new Maospiaal DR Datal omiext

Hospital Data = new Hesoial();
Data.ContactAddress = txtaddress. Text;

Data.Contactno = txtno.Text;

Data.HospitalID = txthosid.Text;

Data.Name = txtmame. Text;

Data.Pass = txtpass.Text;

Data.Status = comboBox1.Text; ‘
Datas.Hospitals.InsertOnSubmit{Data);
Datas.SubmitChanges();

MessageBox.Show("Hospital Registered”);

}

private void button2_Click(object sender, - veriArgs e)
{

Hosprtal DBDataContext Datas = new HospialDBDataContexi();
var dt = from k in Datas.Hospitals select k;

dataGridView!.DataSource = dt.ToL.ist(};

1

5

private void button3_Click(object sender, . - . . €)
SospiniiBlaelonen Datas = new TN ER TR IR § X

var dy = (from k in Datas.Hospitals
where k.HospitalID == txthosid.Text
select k).First();
Datas.Hospitals.DeleteOnSubmit(dy);
Datas.SubmitChanges();

Messazeton Show("Deleted ...}

—— Yt

XMI. CLASS:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Xml.Ling;

using System.Security.Cryptography;
using System.Xml;

using System.Security.Cryptography. Xml;

namespace CovertToXML

{

public ¢lass TR

{

public X iemen. ConvertText(Z < <o - > Docs)
{

NElement d = X Element.Load(w"D:\HealthCareSysiHealthCareSysiTest. xml");
foreach (var doc in Docs)

{

NElement child = new XElement("Report”,
new XAtiribute("AccessBy", "public™),

new X Fiement("Hospital”, doc.HospitalName),
new Xiemeniy("Patient”, doc.PatientName),
new X bicmeni("OnDate"”, doc.OnDate),

new “iZlemeni("Phone"”, doc.PhoneNQ),

new X Eicment("Subject”, doc.Subject),

new X Element("Symptom", doc.Symptoms),

new X Flemeny("Treatment”, doc. Treatments),

new XElement("Address”, doc. Address));

d.Add(child);

}

return d;

j

/fwe used the classes in the System.Security.Cryptography.Xml namespace

/o sign an XML document or part of an XML document with a digital signature.
/XML digital signatures (XMLDSIG) allow you to verify that data was not altered after it was
signed

public void SignDocument(string path)

{

ry

{

i/ Create a new CspParameters object to specify

/7 a key containet.

Cwatar i o cspParams = new - EROCE TSI

cspParams. KeyConteinerName = XML DSIGRSA KEY™

i Create a new RSA sizning key and save it in the coptainer,

RSACTyproSevicetrovider rsakey = new RSAC myaServicedrovider(cspParams);

/i Create a new XML document.

WmiDocumen: xmlDoc = new Xmilocument();

/ Load an XML file into the XmiDocument opject.
xmlDoc.Preserve Whitespace = trug;

xmiDoc.Load(path + ".xml");

/¢ Sign the XML document.

SignXml{(xmlDoc, rsaKey);

/f Save the document.

xmiDoc.Save(path + "signed.xml");

}

catch (Exception €)

{

Console, WriteLine(e.Message);

b

}

// Sign an XML file.

// This document cannot be verified unless the verifying
if code has the key with which it was signed.

public static void SignXml(XmiDocument xmlDoe, RSA Key)
{

¢/ Check arguments.

if (xmlDoc¢ == null}

throw new & o oo a(MxmiDoe™);

it (Key == null}

throw new openeatiaeeouan(ey™);

/f Create a SignedXmi object.

SgnedXm! signedXml = new Signed Xzni(xmlDoc);

/# Add the key fo the Signed Ximl document.

signedXml.SigmngKey = Key;

/# Create a reference 10 be signed.
Zoterence reference = new Korerenoo();

",

reference.Un ="",;

/# Add an enveloped transformation to the reference.

Nt DeivbnvelopeaSignaiure Lyaisg

reference.AddTransform(env);
i/ Add the reference to the SignedXml object.
signedel.AddReference(reference);

/{ Compute the signature.

signedel‘ComputeSignature();

i Get the XML representation of the signature and save
// it to an XmiElement object.

smlFElement xmiDigital Signature = signedXml.GetXml();

it Append the element to the XML document.
xmlDoc.DocumentElement.AppendChild(xmlDoc.ImportNode(xmlDigitalSignature, true));
}

public string VerifySign(string path)

t

2 Create o new CepParameters abject 10 specily

/i a key container.

{"spParamoters cspParams = new CupParameiers();

cspParams. KeyContainerName = "ML DSIG RSA_KEY?;

i Create a new RSA signing key and save it in the container.

ZSACrypioServiceProvider rsaKey = new FaaCrepeSorvicorovice -(cspParams);

A Create a new XML document.

i Tigenmen: xmiDoc = new - oo nen

i Load an XML file into the XmlDocument object.
xmlDoc.Preserve Whitespace = true;

xmlDoc.Load(path + "signed.xml");

// Verify the signature of the signed XML.

bool result = VerifyXmi(xmlDoc, rsaKey);

// Display the results of the signature verification to
/{ the console.

if (result)

{

return ("The XML signature is valid.");

3

else

{

return ("The XML signature is not valid.");

h

+ Verily the sienature of an XML file againsi i asyminetric

/i algorithm and veturn the result,

public static Boolean VerifyXml(amiDoonmen Doc, 54 Key)
/i Create a new SignedXml object and pass it

/i the XML document class.

Signed Ximi signedXml = new StznedXmi(Doc);

/# Find the "Signatne” node and create a new

/# XmiNodeList object.

% m1iNodelist nodeList = Doc.GetElementsByTagName(' Signature™);

Throw an exception if no signature was found.
if (nodeList.Count <= 0)

throw new CryptographicException("Verification failed: No Signature was found in the
document.");

// This example only supports one signature for

// the entire XML document. Throw an exception

/{ if more than one signature was found.

if (nodeList.Count >= 2)

throw new CryptographicException("Verification failed: More that one signature was found for
the document.");

}

// Load the first <signature> node.

signedXml. Load Xml{{>::1i enicnt)nodeList[01);

/F Check the signature and return the result.
return signedXml.CheckSignature(Key);

XML CONVERSION:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using CovertToXML;

using System.Xml.Ling;

using System.Xml;

namespace CareClient

{

public partial class iienie : For

{
public Home()

{

InitializeComponent();

}

private void Home_Load(object sender, -« cntigs €)

{

this.Text = Sy onDain.HospitalSession + - Health Care System.”;

}

private void loadDocumentsToolStripMenultem_Click(object sender, I'veniaras e)

{

if (SessionData. HospitalSession. ToLower() = "kg")

{

HDocuDataContext Datas = new HDocuDataContext();

var dt = from k in Datas.HosDocuments

select k;

foreach (var t in dt)

{

listBox 1.Items.Add(t.documentid);

}

}

else if (SessionData. HospitalSession. ToLower() == "apollo™)

{

System.Data.OleDb.(lebUonnection Con = new System.Data.OleDb. nebnCeonmnecton(); ;
Con.ConnectionString = ae"Provider=Microsoft. Jet OLEDB.4.0:Data
Sources=DriHealthCareSysiHealthCareSysiApolio.mdb: Persist Sceurity Info=True '

Con.Open();

System.Data.OleDb.: v eiid Cmd = new System.Data.OleDb. il - (0
Cmd.CommandText = "select documentid from healthtb”;

System.Data.i 2zt Ds = new DaiaSai();

]

System.Data.OleDb.3eDbDatsAdepior Da = new System.Data.OleDb. (> ¢y ines 5, o ()
Cmd.Connection = Con;
Da.SelectCommand = Cmd:

Da.Fill(Ds, "HealthTB™);

- for (inti= 0; i < Ds.Tables["HealthTB"].Rows.Count; i++)

{

listBox I.Items. Add(Ds.Tables["HealthTB"].Rows[i]["documentid"]. ToString());
}

}

else

{

string startFolder = @"D:\" + SessionData. HospitalSession +

// Take a snapshot of the file system.

System.10.Directorylnfo dir = new System.10.Directorvinfo(startFolder);

/7 This method assumes that the application has discovery permissions

/¢ for all folders under the specified path.
IErumerable<System. IO FileInfo> fileList

System.IO.ScarchOption. AllDirectories);

//Create the query
Enumerable<System. 1O Fileinio> fileQuery =
from file in fileList

where file.Extension == " 1xt"

orderby file.Name

select file;

foreach (var f in fileQuery)

{

listBox 1.Items.Add(f.FullName.ToString());
h

;

1
)

private void listBox1_SelectedIndexChanged(object sender, - oot

if (SessionDaia.HospitalSession. ToLower() == "kg")
HDocuDamContext Datas = new HiDocuDuatonex:();

var dt = from k 1n Datas.HosDocuments

s e)

dir.GetFiles("*.*",

where k.documentid == listBox1.SelectedItem. ToString()

select k;

dataGridView1.DataSource = dt. ToList();

}

else if (SessionData. HospitalSession. ToLower() == "apollo")
{

System.Data.OleDb.CleDbConnection Con = new System.Data.OleDb.OdieioC ornnecton();
Con.ConnectionString = @ "Provider=Microsott.Jet.OLEDB.4.0;Data
Source=D:‘\HealthCareSys\HealthCareSys\Apollo.mdb;Persist Security Info=True";

Con.Open();

System.Data.OleDb.OlcDbComimand Cmd = new System.Data.OleDb.< i ol b0 o mura();
Cmd.CommandText = “"select * from healthtb where documenud =" +
listBox1.Selectedtem. ToString() + "';

System.Data. Zoinno Ds = new Dovise ()

System.Data.OleDb. . .0 0oionic Da = new System.Dara.OleDb. .| O
Cmd.Connection = Con;

Da.SelectCommand = Cmd;

Da.Fill(Ds, "HealthTB");

dataGridView1.DataSource = Ds.Tables["HealthTB"];

}

else

{

richTextBox1.LoadFile(listBox l.Selectedltem. ToString(}, Rich/vv soon e c PlainText);
;

;

private void buttonl Click(object sender, Fventdias €)
{
}

private void uploadDocumentsToolStripMenultem Click(object sender, EventAras e)
{

if (SessionDara. HospitalSession. ToLower() == "kg")
{

List<DocType> Docs = new Lisi<DocT ype>();
HDocuDataCovtext Datas = new HDocuDataContexi();
var dt = from k in Datas.HosDocuments

select k;

foreach (var t in dt)

{

DocType SqlDoc = new DocType();
SqlDoc.Address = t.address;

SqiDoc.Content ="";

SqlDoc.HospitalName = t.hospitalid;
SalDoc.OnDate = 3+ ure.Now. ToString();
SqlDoc.PatientName = t.Patientld;

SqlDoc.PhoneNO = t.phone;

SqlDoc.Subject = t.disease,

SqlDoc.Symptoms = t.Symptom;

SqlDoc.Treatments = t.doctortreated;
Docs.Add(SqiDoc);

.
i

ConvertToxnit DocConvert = new Convertio s vin();

N lement tempfile = DocConvert.ConvertText(Docs);
tempfile.Save(w"D:\HealthCareSysiHealthCareSysi" + session! saia.HospitalSession + 7.xml™);
DocConvert.SignDocument(@ "D:\HealthCareSys:HealthCareSysi” +

SessionDaia.HospitalSession);

Messa chnx.Show(DocConvert.VerifySi gn(@“D:\HeaithCareSys\HeaithCareSys\" +
SessionData.HospitalSession));

EncryptXML d = new EncryptXM LO;

MessageB ox.Show(d. Encrypt(@"D:\HealthC areSysiHealthCareSys\" +
SessionData.HospitalSession, "pl ").ToString(});
¥

else if (ScssjmDasla.HospitalSession.ToLower() == "apollo")

{

List<DocType> Docs = new List<DocType>();

System.Data.O’leDb.()i{:if)b(‘o'nmclém: Con =new System.Data.OleDb,(“fig‘;’.}?*:(ffa.mnccz.i(m(); ;
Con.ConnectionString = @ Provider=Microsott.Jet. OLE DB.4.0:Data
Source=D:HealthCareSys:HealthCareS ysiApollo.mdb:Persist Security Info=True";

Con.Openy);

System.Data.OleDb..0 2 vo e -ar s Cmd = new System.Data.OleDb. o e),
Cmd.CommandText = "select * from Lealtnth™;

System.Data.[ataber Ds = new DataSci();

System.Data.OleDb.iciioilate sdapior Da = new System.Data.QleDb. 20t cone();
Cmd.Connection = Con;

Da.SelectCommand = Cind;

Da.Fill(Ds, "HealthTB");

for(inti=0;1< Ds.Tables{"Health TB"].Rows.Count; i++)

{

DocTvpe SqlDoc = new ocivpe();

SqlDoc.Address = Ds.Tables["HealthTB "].Rows{i]["Address"]. ToString(};
SqiDoc.Content = "";

SqiDoc.HospitalName = Ds.Tables["H cahhTB"].Rows[i]["hospitalid“].ToString();
SqlDoc.OnDate = Dare Uine. Now. ToString();

SqiDoc.PatientName = Ds.Tables["HealthTB"].Rows[i]["patientid"].ToString();
SqlDoc.PhoneNO = Ds.Tables["HcalthTB“].Rows[i]["phonc"].ToString();
SqlDoc.Subject = Ds.Tables["HealthTB"].Rows[i]["disease"].ToString();
SqlDoc.Symptoms = Ds.Tablesf"HealthTB”].Rows[i]["symptom"].ToString();
SqlDoc.Treatments = Ds.Tables["HealthTB"].Rows[i]["doctortreatcd"].ToString();
Docs.Add(Sq!Doc),

}

Convert ToXML DocConvert = new ConvertToX ML(O;

NElement tempfile = DocConvert.ConvertText(Docs);
tempfile.Save((@"D:\HealthC areSysiHealthCareSys\" + SossionData.HospitalSesston + " xml");
DocConvert.SignDocument((@"D:HealthC areSys\HealthCareSys\" +

Sessioniata. HospitalSession);

Slowsapo o +..Show(DocConvert. VerifySign{i ": HealthCareSvs HealthCareSys” +

Sessionizai, HospitalSession));

Frorvpixini, d = new fooiypriy (s

MessageBox.Show(d.Encrypt(@"D “HealthCareSys:HealthCareSysy" +
SessionData. HospitalSession, "pl "}. ToString(}));

}

else

{

System.]1O.! ‘il~.t.Delete({§{;"D:\.}-‘lcall.h(farcS_\-'s"\}-”icalth;n‘cSys“:” 4+ 2w e o HospitalSession +
"xml')

Lisi<Doc T vpe> Docs = new Lisi<oct vie>();

char[Jch= {"'};

for (int i = 0; i < listBox 1.Items.Count; i++)

{

richTextBox 1. LoadFile(listBox 1.Items[i}. ToString(), RichTextBoxStreamType.PlainText);
DocType TempDoc = new DocType();
foreach (var line in richTextBox1.Lines)

{

if (1ine.TOL0wezr().Contains("hespital"))

{
string[] lines = line.Split(ch);
TempDoc.HospitalName = lines[1].ToString();

}

else if (line.ToLower().Contains(”patiem”))

{
string[] lines = line.Split(ch);

TempDeoc.PatientName = lines{ 1. ToString();

;

else if (1ine.To]Lower().Contains(“addrcss"))

{
string[] lines = line.Split(ch);
TempDoc.Address = lines[1]. ToString();

}

else if (line.ToLower().Contains(”phonc"))

{
string[] lines = line.Split(ch);
TempDoc.PhoneNO = lines[1]. ToString();

}

else if (line.ToLower().Contains(”dalc"))

{
string[] lines = line.Split(ch);
TempDoc.OnDate = lines[1].ToString();

}

else if (line. ToLower().Contains("symptom"))
{

string{] lines = line.Split(ch);
TempDoc.Symptoms = lines[1].ToString();

}

else if (line. ToLower().Contains("treatment"))
{
string[] lines = line.Split(ch);

TempDoc. Treatments = lines[1]. ToString();

}
Docs.Add(TempDoc);

}

Converl Do A1 DocConvert = new (oo tox i l();

3F oo tempfile = DocConvert.ConvertText(Docs);

tempfile.Save(iw "D HealthCareSysiHealthCareSys:" + sussieansaic HospitalSession + ".xml");
DocConvert.SignDocument{@, "D\ HealthCarcSysiHealthCareSyst” +

Sessienirare. HospitalSession);

MessazeBiox. Show(DocConvert. VerifySign(i "D HealthCare SvsiHealthCareSys:” +
Sessioniata.HosoitalSession});

Encrypiiiil d = new Foorypindii();

MessageBox.Show(d.Encrypt(@"D:\HealthCareSys\HealthCareSys\"
SessionData.HospitalSession, "p1").ToString());

7.2 SCREEN SHOT

IMPLEMENTATION OF HEALTH CARE ADMIN APPLICATION

Welcome

Userld admin

*

;—:’:k
Password

Login || Cancel

HOSPITAL REGISTRATION:

i Register Hospitals | view Hospitals |

Enter Hospital Details

Hospital ID

Password

MNamsa

Contact Addrsss

ContactNo
Stalus h
Register Hospilal Delete Hospital

VIEW REGISTERED HOSPITALS:

View Registered Hospitals 1
E ‘
! HespitallD Name ConiactAddres: Contachno Pass Status '
i woomo B e
r3has Jained

. APOLLO aphas Jzined

IMPLEMENTATION OF CLIENT APPLICATION:

- \We

LR

Password

Login || Cancel

VIEWING AND UPLOADING DOCUMENTS:

INPUT: TEXT FORMAT

: Health Care System 7 Intial ~,
| DocumentList

Documents | View Data. .

| [hospitalKMCH
' {doctorNatrajan
{patizntanandh
ssymplomafiected by typhoid
sondate: 0711201

| ‘phone:83623566421

" ireatment provide tablat

¢ addressvillupuram

~subjectfover

o

INPUT: SQL FORMAT

System | P Lntial

Document List

KGDOCT2

OUTPUT: XML FORMAT

<?xaml wersion="1.8" encsding="utf-3"7>
<Reports>

<Report accessBy="public”:>
<Hospital>KHCH /Hospital>
<Patientranandh</Patients
<OnDate>e1/11,/2811</Cnlate
<Phoner»95625566421 < /Phans?
<Subject A
<symptom>»affected by typhoid</s/symptom:
<Treatment>provide tablet</Treatment>
<Address>willupuram</Address>

</Report>

<Report AccessBy="public”>
<Hospital>KWH< /Hespital >
<Patiertrsangeth</Patient>
«OnDater>@1/11/2811</Cnbater
<Phane»8629566421</Phana>
<Subiject />
<Syrptor>affected by fever< Spovpior>
¢<Treatrantrprowvide tablet«/Trzatrents
<dddreznzssalemsSadd-essy

IMPLEMENTATION OF USER INFORMATION SYSTEM APPLICATION:

#d Login. ik

ACCESS DOCUMENTS

User ID |

Hospital

VIEWING PATIENT INFORMATIONS

|splay

D

8.REFERENCES

(1] S. Tzelepi, G. Pangalos, G. Nikolacopoulou, Security of medical multimedia, Med. Inform.
Internet Med 73 (3) (2002) 169-184. |

[2] B. Blobel, Authorisation and access control for electronic health record systems, int. J. Med.
Inform. 73 (3) (2004) 251-257.

[3] R.E. Scott, P.Jennett, M. Yeo, Access and authorization in a Glocal e-Health Policy context,
Int. J. Med. Inform. 73 (3) (2004) 259-266.

[4] V.N. Kallepalli S.A. Ehikioya, S. Camorlinga, J.A. Rueda, Security middleware
infrastructure for DICOM image in health information system, J. Digit. Imageing 16 (4) (2003)
356-364.

[5] D. Gritzalis, C. Lambrinoudakis, A security architecture for interconnecting health
information systems, Int. J. Med. Inform. 73 (3) (2004) 305-309.

[6] D.F. Ferraiolo, D.R. Kuhn, R. Chandramoul, Role-Based Access Control, Artech House,
2003.

[7] G.K. Georgiadis, I.K. Mavridis, G. Nikolakopoulou, G.1. Pangalos, Implementing context
and team based access control in healthcare intranets, Med, Inform. Internet Med. 27 (3) (2002)
185-201.

[8] JChoe, SKYoo, Web-based secure access from multiple patient repositories,
Int.J.Med.Inform, In Press, medinf.2007.06.001.

[9] D. Eastlake, J. Reagle, D. Solo, XML-Signature Syntax and Processing, W3C
Recommendation, 12 February 2002, http://www.w3.0org/TR/2002/REC
-xmidsig-core-20020212, accessed 10 July 2004.

[10] D. Eastlake, J. Reagle, XML Encryption Syntax and Processing,
W3C Recommendation, 10 December 2002,

http://www.w3.orw/ TR/2002/REC -xmlenc-core-20021210, accessed
10 July 2004.

[11] B. Dournaee, XML Security, McGraw-Hill, 2002, pp. 107-278.-

[12] S. Gritzalis, D. Gritzalis, C. Moulinos, J. Iliadis, An integrated
architecture for deplbying a virtual private medical network over the

web, Med. Inforn. Internet Med. 26 (1) (2001) 49-72.

