

INDENTIFYING PACKET DROPPERS

AND MODIFIERS IN WIRELESS SENSOR

NETWORKS

 A PROJECT REPORT

 Submitted by

 SURYA PRABA .E

in partial fulfillment for the requirement of award of the degree

of

MASTER OF ENGINEERING

FACULTY OF COMPUTER SCIENCE AND ENGINEERING

 KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE 641 049

 (An Autonomous Institution Affiliated to Anna Univ ersity, Chennai)

 APRIL 2013

IDENTIFYING PACKET DROPPERS

AND MODIFIERS IN WIRELESS

SENSOR NETWORKS

 A PROJECT REPORT

Submitted by

SURYA PRABA .E

in partial fulfillment for the requirement of award of the degree

of

MASTER OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE 641 049

(An Autonomous Institution Affiliated to Anna University, Chennai)

 APRIL 2013

BONAFIDE CERTIFICATE

Certified that this project work titled “IDENTIFYING PACKET DROPPERS

AND MODIFIERS IN WIRELESS SENSOR NETWORKS” is the bonafide work

of Ms. SURYA PRABA, E. (1120108019) who carried out the research under my

supervision. Certified further, that to the best of my knowledge the work reported

herein does not form part of any other thesis or dissertation on the basis of which a

degree or award was conferred on an earlier occasion on this or any other students.

Prof. N. Jayapathi M.Tech., Mr. K. Sivan Arul Selvan M.E., (Ph.D.),

HEAD OF DEPARTMENT, SUPERVISOR

PROFESSOR, Associate Professor,

Computer Science and Engineering, Computer Science and Engineering,

Kumaraguru College of Technology, Kumaraguru College of Technology,

Coimbatore-641 049. Coimbatore-641 049.

Submitted for the Project Viva-Voce examination held on ____________.

 -------------------------------- ----------------------------

 Internal Examiner External Examiner

ACKNOWLEDGEMENT

 First and foremost, I would like to thank the Lord Almighty for enabling me

to complete this project.

I express my profound gratitude to our Chairman Padmabhusan Arutselvar

Dr.N.Mahalingam, B.Sc., F.I.E., Co-Chairman Dr. B. K. Krishnaraj

Vanavarayar, B.Com., B.L., Correspondent Mr. M. Balasubramaniam, M.Com.,

M.B.A., and Joint Correspondent Mr. K. Shankar Vanavarayar , M.B.A.,

PGDIEM for giving his great opportunity to purse this course. I would like to thank

Principal Dr.S.Ramachandran, Ph.D., for providing the necessary facilities to

complete my thesis.

 I take this opportunity to thank Prof.N.Jayapathi, M.Tech., Head of the

Department, Department of Computer Science and Engineering, for his support and

timely motivation. Special thanks to my Project Coordinator Dr.V.Vanitha, Ph.D.,

Senior Associate Professor, Department of Computer Science and Engineering, and

project committee members for arranging brain storming project review sessions.

 I register my sincere thanks to my Guide Mr. K. Sivan Arul Selvan, M.E.,

(Ph.D.), Senior Associate Professor, Department of Computer Science and

Engineering, my thesis advisor. I am grateful for his support, encouragement and

ideas. I would like to convey my honest thanks to all Teaching and Non Teaching

Staff members of the department and my classmates for their support.

I dedicate this project work to my Parents for no reasons but feeling from

bottom of my heart that without their love, this work wouldn’t be possible.

-SURYA PRABA E

TABLE OF CONTENT

CHAPTER

NO

TITLE PAGE

NO

 ABSTRACT iii

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS ix

1 INTRODUCTION 1

 1.1 SENSOR NODE 2

 1.2 WIRELESS SENSOR NETWORKS 4

 ARCHITECTURE

 1.2.1 Layered Architecture 4

 1.2.2 Clustered Architecture 6

 1.3 DESIGN CHALLENGES OF WSN 8

 1.4 ATTACKS 10

 1.4.1 Passive Attacks 10

 1.4.2 Active Attacks 11

 1.5 SECURITY MECHANISM 11

 1.5.1 Low Level Mechanism 12

 1.5.2 High Level Mechanism 14

 1.6 LITERATURE SURVEY 16

 1.6.1 Dpdsn: Detection Of Packet- Dropping

 Attacks For Wireless Sensor Networks 16

 1.6.2 Mitigating Routing Misbehaviour In Mobile

 Ad Hoc Networks 18

 1.6.3 Statistical En-Route Filtering

 Of Injected False Data 20

 1.6.4 An Interleaved Hop-By-Hop 21

 Authentication Scheme

 1.6.5 Catching “ Moles” In Sensor Networks 23

 1.6.6 Catching Packet Droppers and Modifiers in

 Wireless Sensor Networks 25

2 PROJECT DESCRIPTION 28

 2.1 PROBLEM DEFINITION 28

 2.2 ROUTING PROCESS 29

 2.3 IDENTIFICATION OF COMPROMISED NODE 31

3 RESULTS AND ANALSIS 34

 3.1 SOFTWARE DESCRIPTION 34

 3.2 HARDWARE REQUIREMENTS 34

 3.3 SOFTWARE REQUIREMENTS 35

 3.4 IMPLEMENTATION 35

 3.5 ANALSIS 36

 3.2.1 Energy Consumption 36

 3.2.2 Packets Received 37

 3.2.3 Delay 38

 3.6 SNAPSHOTS 39

 3.7 CONCULSION AND FUTURE ENHANCEMENT 41

 APPENDIX 42

 REFERENCES 56

 LIST OF PUBLICATIONS 58

ABSTRACT

In Wireless Sensor Network, sensors at different locations can generate

streaming/ discrete data, which can analysed in real-time/Non real-time to identify

events of interest. A sensor network is often deployed in an unattended and hostile

environment to perform monitoring and data collection tasks. When it is deployed

in such an environment, it lacks physical protection and is subject to node

compromise. After compromising one or multiple sensor nodes, an adversary may

launch various attacks to disrupt the in-network communication. In this project, the

node which acts as the packet droppers or modifiers are identified based on the

delay and energy consumption. Based on the information available in the routing

table, the consumed energy at each node is calculated. A compromised node

consumes more energy for dropping or modifying the packet than other nodes and

the delay is increased. Hence the compromised nodes are identified and the packets

are routed in the alternate path.

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

1.1 WSN Architecture 1

 1.2 Components of Sensor Node 2

1.3 Layered Architecture 4

1.4 Clustered Architecture 6

1.5 The Attacks Classification on WSN 11

 1.6 The Order of Security Mechanisms 12

 1.7 Detection of a Packet-Dropping Path 17

 1.8 Watchdog Mechanism 18

 1.9 Global Key Pool 20

 1.10 False Data Injection 24

1.11 Packet Sending, Forwarding 26

2.1 Routing Table 31

2.2 Residual Energy 33

3.1 Energy Consumption 36

3.2 Packets Received 37

3.3 Delay 38

3.4 First Path 39

3.5 Alternate Path 40

LIST OF ABBREVIATIONS

ADC Analog and Digital Converter

BS Base Station

CDMA Code Division Multiple Access

CSMA Carrier Sense Multiple Access

DPDSN Detection Of Packet Dropping Attacks for

 Sensor Network

DSR Dynamic Source Routing

LEACH Low-Energy Adaptive clustering Hierarchy

MAC Medium Access control

PNM Probabilistic Nested Marking

QOS Quality of Service

RF Radio Frequency

SEF Statistical En-route Filtering

UNPF Unified Network Protocol Framework

WSN Wireless Sensor Network

CHAPTER 1

INTRODUCTION

A Wireless Sensor Network (WSN) is a self-configuring network of small

sensor nodes communicating among themselves using radio signals, and deployed

in quantity to sense, monitor and understand the physical world. It consists of

spatially distributed autonomous sensors (Figure 1.1) to monitor physical or

environmental conditions, such as temperature, sound, vibration, pressure, motion

or pollutants and to cooperatively pass their data through the network to a main

location.

Figure1.1 WSN Architecture

The more number of modern networks are bi-directional, enables to control

the activity of the sensors. The development of wireless sensor networks was

motivated by military applications such as battlefield surveillance; today such

networks are used in many industrial and consumer applications, such as industrial

process monitoring and control, machine health monitoring and so on.

1.1 SENSOR NODE

The WSN is built of ‘nodes’ – from a few to several hundreds or even

thousands, where each node is connected to one (or sometimes several) sensors.

Each such sensor network node has typically several parts: a radio transceiver with

an internal antenna or connection to an external antenna, a microcontroller, an

electronic circuit for interfacing with the sensors and an energy source, usually a

battery or an embedded form of energy harvesting. A wireless sensor node is

composed of four basic components as shown in Figure 1.2: a sensing unit, a

processing unit (microcontroller), a transceiver unit and a power unit.

Figure 1.2 Components of Sensor Node

In addition to the above units, a wireless sensor node may include a

number of application-specific components, for example a location detection system

or mobiliser; for this reason, many commercial sensor node products include

expansion slots and support serial wired communication.

Sensing Unit: The main function of the sensing unit is to sense or

measure physical data from the target area. The analog voltage or signal is

generated by the sensor corresponding to the observed phenomenon. The continual

waveform is digitized by an Analog-to-Digital Converter (ADC) and then delivered

to the processing unit for further analysis. The sensing unit is a current technology

bottleneck because the sensing technologies are much slower than those of the

semi-conductors.

Processing Unit: The processing unit which is generally associated with

a small storage unit manages the procedures that make the sensor nodes collaborate

with the other nodes to carry out the assigned sensing tasks.

Transceiver: There are three deploying communication schemes in

sensors which include optical communication (Laser), Infrared, and Radio-

Frequency (RF). Laser consumes less energy than radio and provides high security,

but requires line of sight and is sensitive to atmospheric conditions. Infrared, like

laser, needs no antenna but is limited in its broadcasting capacity. RF is the most

easy to use but requires antenna. Various energy consumption reduction strategies

have been developed such as modulation, filtering, and demodulation. Amplitude

and frequency modulation are standard mechanisms. Amplitude modulation is

simple but susceptible to noise.

Power Unit: One of the most important components of a sensor node is

the power unit. Every sensor node is equipped with a battery that supplies power to

remain in active mode. Power consumption is a major weakness of sensor networks.

Any energy preservation schemes can help to extend sensor’s lifetime. Batteries

used in sensors can categorized into two groups; rechargeable and non-

rechargeable. Often in harsh environments, it is impossible to recharge or change a

battery.

1.2 WIRELESS SENSOR NETWORKS ARCHITECTUR E

The architecture of Wireless Sensor Networks is classified into two

types.

1.2.1 Layered Architecture

1.2.2 Clustered Architecture

1.2.1 Layered Architecture

In this type of architecture there is a single powerful base station (BS) and

layers of sensor nodes are formed around BS, based on their hop count distance to

reach BS. Therefore, in general layer i denote all nodes that are i-hop away from

BS. Layered architecture is depicted in Figure 1.3.

Figure1.3 Layered Architecture

Unified Network Protocol Framework (UNPF)

It is a type of layered architecture with a set of protocols that integrates

the following operations:

• Network Initialization & Maintenance Protocol

Unified Network Protocol Framework (UNPF)

It is a type of layered architecture with a set of protocols that integrates

the following operations:

• Network Initialization & Maintenance Protocol

• Medium Access Control Protocol

• Routing Protocol

Network Initialization & Maintenance Protocol:

• BS broadcasts its ID using Code Division Multiple Access(CDMA)

common control channel (BS reaches all nodes in one hop)

• Nodes record BS ID & send beacon signal with their own IDs at their

low default power levels

• All nodes ,the BS can hear are at 1-hop distance

The BS broadcasts a control packet with all layer one node IDs

• All nodes send a beacon signal again

• The layer one nodes record the IDs they hear-layer 2

• The layer one nodes inform the BS of the layer 2

• The BS broadcasts the layer2 nodes IDs

• To maintain: periodic beaconing updates are required.

MAC protocol

• A Time Division CDMA (TCDMA) protocol for spatial bandwidth

reuse.

• Ensures a scheduling scheme for fair access.

Routing Protocol

• Downlink from the BS is by direct broadcast on the control channel

• Enables multi-hop data forwarding to the BS

• The remaining energy is considered when forwarding to the next hop

(layer)

• Only the nodes of the next layer need to be maintained in the routing

table.

1.2.2 Clustered Architecture

In this type of architecture sensor nodes are organized into clusters and

each cluster is governed by a cluster-head. Only cluster heads send messages to a

BS. This architecture is suitable for data fusion and is self-organizing in nature. This

is depicted in Figure 1.4.

Figure1.4 Clustered Architecture

Low-Energy Adaptive Clustering Hierarchy (LEACH)

It is a self-organizing and adaptive clustering protocol which evenly

distributes the energy expenditure among the sensors. It performs data aggregation

where cluster heads act as aggregation points.

There are two main phases in this architecture.

• Setup phase: organizing the clusters

• Steady-state phase: deals with the actual data transfers to the BS.

Setup phase:

• Each sensor chooses a random number m between 0 and 1

• If m < T(n) for node n, the node becomes a cluster-head where

 P: the desired percentage of cluster heads

 r: the round number.

 G: the set of nodes that have not been cluster heads during the last 1 / P

rounds.

• A cluster head advertises its neighbours using a CSMA MAC.

• Surrounding nodes decide which cluster to join based on the signal strength

of these messages.

• Cluster heads assign a TDMA schedule for their members.

Steady-state phase

• All source nodes send their data to their cluster heads.

• Cluster heads perform data aggregation/fusion through local transmission.

• Cluster heads send them back to the BS using a single direct transmission.

• After a certain period of time, cluster heads are selected again through the

set-up phase.

1 [* mod(1/)]()

0 ,

P
if n G

P r PT n

otherwise

 ∈ −= 



Merits

• Accounting for adaptive clusters and rotating cluster heads.

• Opportunity to implement any aggregation function at the cluster heads.

Demerits:

• Highly dynamic environments.

• Continuous updates

• Mobility

1.3 DESIGN CHALLENGES OF WSN

1. Scalable and flexible architecture- the network must preserve its

stability. Introducing more nodes into the network means that additional

communication messages will be exchanged, so that these nodes are integrated into

the existing network.

2. Error prone wireless medium- The wireless medium can greatly

affected by noisy environments.

3. Fault tolerance and adaptability- Fault tolerance means to maintain

sensor network functionalities without any interruption due to failure of sensor node

because in sensor network every node have limited power of energy so the failure of

single node doesn’t affect the overall task of the sensor network.

4. Infrastructure - Sensors network are infrastructure less in which

nodes can communicate directly with base station.

5. Node Deployment- Sensor network be deployed randomly in

geographical area. After deployment, they can maintain automatically without

human presence.

6. Real –Time- Achieving Real-Time in WSN is difficult to maintain. It

must support maximum bandwidth, minimum delay and several QOS parameters.

7. Dynamic changes- As in sensor network, nodes are deployed without

any topology and they are adaptable to changes due to addition of new nodes or

failure of nodes.

8. Power Consumption- Wireless sensor node is a microelectronic

device means it is equipped with a limited number of power source. Nodes are

dependent on battery for their power. Hence power conservation and power

management is an important issue in wireless sensor network.

9. Production cost- As the name suggests production cost, in the sensor

network there are large no of nodes deployed, so if a single node cost is very high

then the cost of overall network will be very high.

10. Short Range Transmission- In WSNs, here the short transmission

range should be considered in order to reduce the possibility of being eavesdropped.

11. Hardware design- While designing any hardware of sensor network,

it should be energy-efficient.

12. Limited computational power and memory size- It is another

factor that affects WSN in the sense that each node stores the data individually and

sometime more than one node stored same data and transferred to the base station

which is waste of power and storage capacity of nodes so have to develop effective

routing schemes and protocols to minimize the redundancy in the network.

13. Quality of Service- It means data should be delivered within time

period.

14. Security- Security is very important parameter in sensor network.

Since sensor networks are data centric so there is no particular ID associated with

sensor nodes and attacker can easily inserted himself into the network and stole the

important data by becoming the part of network without the knowledge of sensor

nodes of the network. So it is difficult to identify whether the information is

authenticated or not.

For many applications in wireless sensor networks, users may want to

continuously extract data from the networks for analysis later. However, accurate

data extraction is difficult – it is often too costly to obtain all sensor readings, as

well as not necessary in the sense that the readings themselves only represent

samples of the true state of the world. In order to enable reliable and efficient

observation and initiate right actions, physical phenomenon features should be

reliably detected/estimated from the collective information provided by sensor

nodes. Moreover, instead of sending the raw data to the nodes responsible for the

fusion, sensor nodes use their processing abilities to locally carry out simple

computations and transmit only the required and partially processed data.

1.4 ATTACKS

Wireless Sensor networks are vulnerable to security attacks due to the

broadcast nature of the transmission medium. Figure 1.5 shows various attacks in

Wireless Sensor Networks. Basically attacks are classified into two types. They are

1.4.1 Passive Attacks

The monitoring and listening of the communication channel by

unauthorized attackers are known as passive attack. The Attacks against privacy is

passive in nature.

Figure1.5 The Attacks Classification on WSN

1.4.2 Active Attacks

The unauthorized attackers monitors, listens to and modifies the data

stream in the communication channel are known as active attack.

1.5 SECURITY MECHANISMS

The security mechanisms are actually used to detect, prevent and recover

from the security attacks. A wide variety of security schemes (Figure 1.6) can

invent to counter malicious attacks and these can categorized as

1.5.1 Low-level mechanism

 1.5.2 High-level mechanism

Fig.1.6 The Order of Security Mechanisms.

1.5.1 Low-Level Mechanism

Low-level security primitives for securing sensor networks includes,

a. Key establishment and trust setup

b. Secrecy and authentication

c. Privacy

d. Robustness to communication denial of service

e. Secure routing

f. Resilience to node capture

a. Key establishment and trust setup

The primary requirement of setting up the sensor network is the

establishment of cryptographic keys. Key-establishment techniques need to scale to

networks with hundreds or thousands of nodes. In addition, the communication

patterns of sensor networks differ from traditional networks; sensor nodes may need

to set up keys with their neighbours and with data aggregation nodes. The

disadvantage of this approach is that attackers who compromised sufficiently and

many nodes could also reconstruct the complete key pool and break the scheme.

b. Secrecy and authentication

Most of the sensor network applications require protection against

eavesdropping, injection, and modification of packets. For point-to-point

communication, end-to-end cryptography achieves a high level of security but

requires that keys be set up among all end points and be incompatible with passive

participation and local broadcast. Link-layer cryptography with a network wide

shared key simplifies key setup and supports passive participation and local

broadcast, but intermediate nodes might eavesdrop or alter messages.

c. Privacy

Like other traditional networks, the sensor networks have also to force

privacy concerns. Initially the sensor networks are deployed for legitimate purpose

might subsequently be used in unanticipated ways.

d. Robustness to communication denial of service

An adversary attempts to disrupt the network’s operation by broadcasting

a high-energy signal. If the transmission is powerful enough, the entire system’s

communication could be jammed. More sophisticated attacks are also possible; the

adversary might inhibit communication by violating the 802.11 medium access

control (MAC) protocol by, transmitting while a neighbour is also transmitting or

by continuously requesting channel access with a request-to send signal.

e. Secure routing

Routing and data forwarding is a crucial service for enabling

communication in sensor networks. Unfortunately, current routing protocols suffer

from many security vulnerabilities. The simplest attacks involve injecting malicious

routing information into the network, resulting in routing inconsistencies. Simple

authentication might guard against injection attacks, but some routing protocols are

susceptible to replay by the attacker of legitimate routing messages.

f. Resilience to node capture

One of the most challenging issues in sensor networks is resiliency

against node capture attacks. In most applications, sensor nodes are likely to be

placed in locations easily accessible to attackers. Such exposure raises the

possibility that an attacker might capture sensor nodes, extract cryptographic

secrets, modify their programming, or replace them with malicious nodes under the

control of the attacker. Algorithmic solutions to the problem of node capture are

preferable.

1.5.2 High-Level Mechanisms

High-level security mechanisms for securing sensor networks, includes

a. Secure group management

b. Intrusion detection

c. Secure data aggregation

a. Secure group management

Each and every node in a wireless sensor network is limited in its

computing and communication capabilities. However, interesting in-network data

aggregation and analysis can perform by groups of nodes. The actual nodes

comprising the group may change continuously and quickly. Many other key

services in wireless sensor networks are also performed by groups. Consequently,

secure protocols for group management are required, securely admitting new group

members and supporting secure group communication. The outcome of the group

key computation is normally transmitted to a base station. The output must be

authenticated to ensure it comes from a valid group.

b. Intrusion detection

Wireless sensor networks are susceptible to many forms of intrusion.

Wireless sensor networks require a solution that is fully distributed and inexpensive

in terms of communication, energy, and memory requirements. The use of secure

groups may be a promising approach for decentralized intrusion detection.

c. Secure data aggregation

One advantage of a wireless sensor network is the fine grain sensing that

large and dense sets of nodes can provide. The sensed values must be aggregated to

avoid overwhelming amounts of traffic back to the base station. All aggregation

locations must be secured.

1.6 LITERATURE SURVEY

In this section, the papers related to Packet dropping and modifications

are discussed. These are two common attacks that can launch by an adversary to

interrupt communication in wireless multi-hop sensor networks.From that, an

effective scheme is proposed to identify misbehaving forwarders that drop or

modify packets.

1.6.1 DPDSN: Detection of Packet-Dropping Attacks for WSN

 A lightweight solution (Bhuse 2005) is proposed to identify paths that

drop packets (Figure 1.7) by using alternate paths. Alternate paths are found during

route discovery and it incurs no additional cost because one of the alternate paths is

utilized for all subsequent communication. DPDSN does not require monitoring

individual nodes, making it feasible for WSNs. It formulates the probability of

success and failure of DPDSN in the presence of malicious nodes that drop packets.

This is approach compared with existing techniques. This analysis found that the

overhead of DPDSN is at most Ο (N) for a two-dimensional grid network of N

nodes. The simulations show that the overhead of DPDSN for a WSN with 100

nodes is less than 3% of energy consumed on route discovery when using DSR or

Directed Diffusion routing protocols.

Finding of compromised paths

The process of finding an alternate path is embedded in the route

discovery phase of routing protocols like DSR and Directed Diffusion. It is assumed

that source and destination nodes are trustworthy. Ideally, the alternate path does

not have any node in common with the original path.

Fig.1.7 Detection of a Packet-Dropping Path

Embed alternate path discovery in route discovery

A straightforward solution is to perform route discovery using DSR and

mark the edges of the original path. It incurs significant cost due to flooding. A

better heuristic approach would be to keep two route requests at every node when a

node receives multiple route requests one of the route requests is used for

establishing the path and second one will be used for alternate path.

Advantage

1. Continuous monitoring of each and every node is not feasible for resource

constrained WSNs especially when extending lifetime is the main goal in the

design of WSNs. DPDSN avoids continuous monitoring of every node.

Disadvantage

1. DPDSN succeeds whenever an alternate path does not have any malicious

nodes that drop packets.

1.6.2 Mitigating Routing Misbehavior in Mobile Ad Hoc Networks

There are two techniques to improve throughput in an ad hoc network in

the presence of nodes that agree to forward the packets but fail to do so. The nodes

can categorise based upon their dynamically measured behaviour. It introduces two

extensions to Dynamic Source Routing (DSR) to mitigate the effects of routing

misbehaviour: the watchdog and the pathratcr (Marti 2000). A watchdog that

identifies misbehaving nodes and a pathrater that helps routing protocols avoid

these nodes.

Figure 1.8 Watchdog Mechanism

The watchdog method detects misbehaving nodes. Figure 1.8 illustrates

how the watchdog works. Suppose there exists a path from node S to D through

intermediate nodes A, B, and C. Node A cannot transmit all the way to node C, but

it can listen in on node B's traffic. Thus, when A transmits a packet for B to forward

to C, A can often tell if B transmits the packet. If encryption is not performed

separately for each link, which be expensive, then A can also tell if B has tampered

with the payload or the header. The watchdog is implemented by maintaining a

buffer of recently sent packets and comparing each overheard packet with the

packet in the buffer to see if there is a match. If so, the packet in the buffer is

removed and forgotten by the watchdog, since it has been forwarded on.

When B forwards a packet from S toward D through C, A can overhear

B's transmission and can verify that B has attempted to pass the packet to C. The

solid line represents the intended direction of the packet sent by B to C, while the

dashed line indicates that A is within transmission range of B and can overhear the

packet transfer. If a packet has remained in the buffer for longer than a certain

timeout, the watchdog increments a failure tally for the node responsible for

forwarding on the packet. If the tally exceeds a certain threshold bandwidth, it

determines that the node is misbehaving and sends a message to the source

notifying it of the misbehaving node. Each node runs pathrater in the network,

combines knowledge of misbehaving nodes with link reliability and data to choose

the route most likely to be reliable. Each node maintains a rating for every other

node it knows about in the network. It calculates a path metric (Marti 2000) by

averaging the node ratings in the path.

Advantages

1. DSR with the watchdog has the advantage that it can detect misbehaviour at

the forwarding level and not just the link level.

2. The two techniques to increase the throughput by 17% in presence of 40%

misbehaving nodes, while increasing the percentage of overhead

transmissions from the standard routing protocol's 9% to 17%.

3. During extreme mobility, watchdog and pathrater can increase network

throughput by 27%, while increasing the overhead transmissions from the

standard routing protocol's 12% to 24%.

Disadvantages

1. Watchdog’s weaknesses are that it might not detect a misbehaving node in

the presence of ambiguous collisions, receiver collisions, limited

transmission power, false misbehaviour, collusion and partial dropping.

2. The watchdog method requires nodes to buffer the packets and operate in the

promiscuous mode, the storage overhead and energy consumption may not

be affordable for sensor nodes.

1.6.3 Statistical En-route filtering of Injected False Data

Statistical En-route Filtering (SEF) mechanism (Ye 2004) can detect and

drop those false reports. SEF requires that each sensing report be validated by

multiple keyed message authentication codes (MACs), each generated by a node

that detects the same event. As the report is forwarded, each node along the way

verifies the correctness of the MACs probabilistically and drops those with invalid

MACs at earliest points. The sink further filters out remaining false reports that

escape the en-route filtering. In SEF there is a global key pool. The sink has the

knowledge of the entire pool. Each sensor stores a small number of keys that are

drawn in a randomized fashion from the global key pool before deployment. Once a

stimulus appears in the field, multiple detecting nodes elect a Centre-of-Stimulus

(CoS) node that generates the report. Each detecting node produces a keyed MAC

for the report using one of its stored keys.

Figure 1.9 Global Key Pool

A Bloom filter is a space-efficient probabilistic data structure that is

used to test whether an element is a member of a set. False positive retrieval results

are possible, but false negatives are not; i.e. a query returns either "inside set (may

be wrong)" or "definitely not in set". Elements be added to the set, but not removed

(though this can address with a counting filter). The more elements that are added to

the set, the larger the probability of false positives. Using the Bloom filter, instead

of a list of MACs, greatly reduces the packet size. These multiple MACs

collectively act as the proof that a report is legitimate. A report with an insufficient

number of MACs will not be forwarded. An example of a global key pool(Figure

1.9) with n = 9 partitions and 4 nodes, each of which has k = 3 keys randomly

selected from one partition. In a real system, k, n may be much larger.

The sink serves as the final goal-keeper for the system. When it receives

reports about an event, the sink verifies every MAC carried in the report because it

has complete knowledge of the global key pool.

Advantage

1. With an overhead of 14 bytes per report, SEF is able to drop 80-90% injected

false reports by a compromised node within 10 forwarding hops, and reduce

energy consumption by 50% or more in many cases

Disadvantage

1. SEF also does not address the issues of how to identify compromised nodes

or revoke compromised keys. For identification, neighbour nodes may

overhear the channel to detect unusual activities of compromised nodes such

as high traffic volume and notify the sink. After the nodes are identified, the

user may deploy new nodes and the sink could flood instructions to revoke

compromised keys and propagate new ones

1.6.4 An Interleaved Hop-by-Hop Authentication Scheme

An interleaved hop-by-hop authentication scheme (Zhu 2004) that

guarantees that the base station will detect any injected false data packets when no

more than a certain number t nodes are compromised. Further, our scheme provides

an upper bound B for the number of hops that a false data packet could be

forwarded before it is detected and dropped, given that there are up to t colluding

compromised nodes. The scheme involves the following five phases.

1. In the node initialization and deployment phase, the key server loads every

node with a unique id, as well as necessary keying materials that allow the node to

establish pairwise keys with other nodes. After deployment, a node first establishes

a one-hop pairwise key with each of its neighbours.

2. In the association discovery phase, a node discovers the ids of its

associated nodes. This process may be initiated by the base station periodically, or

by a node that detects the failure of a neighbour node.

3. In the report endorsement phase, t + 1 node generate a report

collaboratively when they detect the occurrence of an event of interest. More

specifically, every participating node computes two MACs over the event, one

using its key shared with the BS, and the other using its pair wise key shared with

its upper associated node. Then it sends the MACs to its cluster head. The cluster

head collects MACs from all the participating nodes, wraps them into a report, and

then forwards the report towards BS.

4. In the en-route filtering phase, every forwarding node verifies the MAC

computed by its lower association node, and then removes that MAC from the

received report. If the verification succeeds it then computes and attaches a new

MAC based on its pair wise key shared with its upper associated node. Finally, it

forwards the report to the next node towards the BS.

5. In the base station verification phase, the BS verifies the report after

receiving it.

Advantage

1. Our scheme attempts to filter out false data packets injected into the network

by compromised nodes before they reach the base station, thus saving the

energy for relaying them.

Disadvantage

1. The number of hops before an injected data packet is detected and discarded

should be as small as possible.

1.6.5 Catching "Moles" in Sensor Networks

False data injection is a severe attack that compromised sensor nodes

("moles"') can launch. These moles inject large amount of bogus traffic that can

lead to application failures and exhausted network resources.

Probabilistic Nested Marking (PNM) Scheme

A Probabilistic Nested Marking (PNM) scheme (Ye 2007) that is secure

against such colluding attacks. No matter how colluding moles manipulate the

marks, PNM can always locate them one by one. Here proved that nested marking

is both sufficient and necessary to resist colluding attacks. Here it locates such

moles within the framework of packet marking, when forwarding moles collude

with source moles to manipulate the marks. The packet marking is used to discover

the true origin of packets: A node marks its identity in the packets it forwards. By

collecting such marks, the sink can infer the route, thus the origin location of the

traffic. Due to the nested marking, any tampering with the previous IDS, or MACs,

or their order, will make the MAC invalid. Probabilistic marking requires an

additional feature, anonymity of IDS, to defeat selective dropping attacks.

Figure 1.10 False Data Injection

The challenge for an effective marking scheme is, a colluding mole X

along the forwarding path may tamper the marks arbitrarily (see Figure 1.10). It can

hide both its location and the source mole's location, or even trick the sink trace to

innocent nodes. Hiding their locations allows continuous injection without being

punished. This is needed for the injection to cause significant damage. Leaking any

of their locations will lead to punishment such as network isolation or physical

removal. Tricking the sink trace to innocent nodes is extra bonus: the sink may

punish these nodes, thus denying legitimate resource and service to itself. Mole S

and X work together to cover their traces for injecting attack. S injects bogus

reports. X receives a packet with nodes 1, 2, 3’s marks. X may manipulate the

marks in various ways, such as altering these marks to l ‘, 2', 3', or remove the mark

of node 1. The moles' goal is to hide their locations, or lead the sink trace to

innocent nodes.

Advantage

1. Probabilistic Nested Marking is the first work that can locate moles despite

colluding attack. Combined with physical removal or network isolation,

PNM can used to actively fight back

2. PNM also has fast-trace back: within about 50 packets, it can track down a

mole up to 20 hops away from the sink. This virtually prevents any effective

data injection attack: moles will be caught before they have injected any

meaningful amount of bogus traffic.

3. While public-key cryptography can implement in such low-end devices, it is

too expensive in energy consumption. Thus considered only efficient

symmetric cryptography (e.g., secure hash functions) in our design.

Disadvantage

1. In PNM scheme, modified packets should not be filtered out en-route

because they should be used as evidence to infer packet modifiers; hence, it

cannot be used together with existing packet filtering schemes.

1.6.6 Catching Packet Droppers and Modifiers in Wireless Sensor Networks

Packet dropping and modification are common attacks that can launch by

an adversary to disrupt communication in wireless multi-hop sensor networks.

Many schemes have been proposed to mitigate or tolerate such attacks but very few

can effectively and efficiently identify the intruders. To address this problem, a

simple effective scheme (Chuang Wang 2012), this can identify misbehaving

forwarders that drop or modify packets. In this scheme, a routing tree rooted at the

sink is first established. When sensor data is transmitted along the tree structure

towards the sink, each packet sender or forwarder adds a small number of extra bits,

which is called packet marks, to the packet. The format of the small packet marks is

deliberately designed such that the sink can obtain very useful information from the

marks. Specifically, based on the packet marks, the sink can figure out the dropping

ratio associated with every sensor node, and then runs our proposed node

categorization algorithm to identify nodes that are droppers/modifiers for sure or are

suspicious droppers/modifiers. As the tree structure dynamically changes every time

interval, behaviours of sensor nodes can observe in a large variety of scenarios. As

the information of node behaviours has been accumulated, the sink periodically runs

our proposed heuristic ranking algorithms to identify most likely bad nodes from

suspiciously bad nodes. This way, most of the bad nodes can gradually identify with

small false positive.

Packet Sending and Forwarding

Each node maintains a counter Cp which keeps track of the number of

packets that it has sent so far. When a sensor node u has a data item D to report, it

composes and sends the following packet to its parent node Pu. Cp MOD Ns is the

sequence number of the packet. Ru (0 ≤ Ru ≤ Np − 1) is a random number picked

by node u during the system initialization phase, and Ru is attached to the packet to

enable the sink to find out the path along which the packet is forwarded. {X}Y

represents the result of encrypting X using key Y. Padding padu,0 and padu,1 are

added to make all packets equal in length, such that forwarding nodes cannot tell

packet sources based on packet length.

Figure 1.11 Packet Sending, Forwarding

Figure 1.11 shows an example sensor network with 7 nodes, nodes 0−6.

Node ID is represented by 3 bits. Suppose the maximum packet sequence number

Ns are 16 and 4 bits are used to represent the counter Cp. Np, the maximum number

of parents that each sensor node should record during the tree establishment, is 4.

Assume that the length of sensory data LD is 8 bits. The figure illustrate the

following procedure: node 5, which is 2 hops away from the sink, generates sensory

data 96; the data is sent to the sink node 0. Assume data from node 5 follows path 5-

>2->0 and Cp = 3. Node 5 constructs packet .The plain-text of the packet is shown

in the figure as P1.Specifically, Pu = 2(010), Ru = 1(01), u = 5(101), Cp =3(0011),

and D =96(01100000).The cipher-text is represented by C1 and the encrypted

packet P2 is constructed accordingly. P2 is sent to node 2. When node 2 receives

packet P2, it first chops off the rightmost logNp bits, which are 2 bits of the

paddings. Next, node 2 constructs packet P3 by adding its parent ID and the random

number R2 to the front of cipher-text C1. Note that the packet length is kept the

same since the rightmost 2 bits are chopped off, and a random number R2 with 2

bits is added. Next, node 2 uses its secret key K2 to encrypt information {R2, C1}

in packet P3 and generates packet P4. P4 is then sent to the sink. After the sink

receives the packet P4 from its children, the sink tries to figure out the sender. The

sink tries to decrypt the cipher-text C2 by using its children’s secret keys one by

one. The sink finds that the packet is from node 2 after C2 is decrypted by using K2.

The sink also recovers the decrypted C2 which does not start with {R2, 2}.The sink

concludes that node 2 is an intermediate node. It continues this process and finds

out the source of the data is node 5.

Advantages

1. Low communication and energy overheads

2. Compatible with existing false packet filtering schemes

CHAPTER 2

PROJECT DESCRIPTION

2.1 PROBLEM DEFINITION

Wireless Sensor networks consist of large number of small sensor nodes

which has limited computation capacity, restricted memory space, limited power

resource, and short-rage radio communication device. With a widespread

deployment of these devices, one can precisely monitor the environment. Basically,

sensor networks are application dependent and sensor nodes monitor the

environment, detect events of interest, produce data, and collaborate in forwarding

the data toward a sink, which could be a gateway, base station, storage node, or

querying user.For example wireless sensor networks are used in environmental

monitoring, military surveillance, etc. Farmers can use sensor network to collect

information about how much water is needed, what pesticide to use, what fertilizer

to be used. A soldier in a battle field may need to know the location of the nearest

enemy tank.

Wasteful energy consumption is due to idle listening in the network,

retransmitting due to packet collisions, overhearing and generating or handling

control packets. Nodes in sensor network have very limited computational resources

and they are energy constrained. Sensor nodes generate a large volume of data and

they must be processed in order to respond to the queries given. Processing of these

queries has to be carried out energy efficiently. Sensor nodes are often battery

powered and it is very difficult to change batteries when they get down. A sensor

network is often deployed in an unattended and hostile environment to perform the

monitoring and data collection tasks. When it is deployed in such environment, it

lacks physical protection and is subject to node compromise. After compromising

one or multiple sensor nodes, an adversary may lunch various attacks to disrupt the

in-network communication. This work deals with two common attacks, dropping

packets and modifying packets which can launch by compromised nodes.

2.2 ROUTING PROCESS

The main objective is to identify compromised nodes and to prolong

network lifetime via an energy efficient routing algorithm and contributions are

listed as below:

(1) Given the source to sink node distance d, the optimal multi-hop number and the

corresponding individual distance d can determined based on the theoretical

analysis of energy consumption under time based traffic model.

(2) Based on (1), a Routing algorithm is proposed which consists of route setup and

route maintenance phases. The distance factor is treated as the first parameter

during the routing process and the residual energy factor is the second parameter to

be considered. The algorithm can balance energy consumption for all sensor nodes

and consequently prolong the network lifetime.

Distance Calculation

There are N nodes randomly scattered in a two dimensional square field

[X, Y]. There exists a link E (i, j) between node I and node j if the Euclidean

distance d (i, j) is not larger than the radio transmission radius R, namely d (i, j) ≤ R.

In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given

Routing Tables

Sensor node has two tables. One is the routing table which contains

information like source node, previous and next hop node, etc. The other table is the

neighbour table which contains neighbours information like distance between them,

distance to the sink node, residual energy, node degree, etc. Thus, each node can

make intelligent decisions about the next hop based on this algorithm and the

algorithm is easy to implement for practical engineering applications.

The routing table is generated by source whenever it takes new path to

destination. The routing will include residual energy. Before routing a packet

through a particular path, source will have a knowledge about intermediate nodes,

hop count, free buffer space, etc. Then energy of each node in path is calculated.

Figure 2.1 shows routing table created for first path.

Figure 2.1 Routing Table

2.3 IDENTIFICATION OF COMPROMISED NODE

Here the compromised node be a dropper or modifier, such nodes are

identified by data delivery ratio and energy. Here delay is also calculated to identify

the compromised node.

Delay

With the help of routing table, path taken by source node is identified.

Source has the knowledge of whole path to reach the destination. And delay of each

packet is calculated. When delay is increased, there is a chance for modification.

The delay is calculated for each packet form one source node to destination. Here

delay is calculated for entire path.

Source will send the packets in a path, if the particular path is delayed,

then it will conclude that there is a compromised node. So it will check the routing

table and take alternate route to reach the same destination. Again it will check

delay to second path. The algorithm is implemented to calculate delay of each

packet. The timer value is set to 5ms. At each node the delay is calculated for every

5ms.and energy is also calculated as same for delay.

Algorithm

Initialize Ns =0, Nr = 0, St =0, Et =0
Wait until a packet is received
Record PACKET receipt time Et
St = t1, Et = t2, Ns = 1, Nr =1
Start ‘DROPPER or MODIFIER TIMER ‘
While ‘DROPPER or MODIFIER TIMER ‘has not expired

Wait until next PACKET is received or ‘DROPPER or MODIFIER TIMER
‘is expired
If a PACKET i is received
 Record PACKET receipt time ti

Reset ‘DROPPER or MODIFIER TIMER ‘
 End if
End while

Energy

Energy consumption in a sensor node that is due to either useful sources

or wasteful sources. Useful energy consumption is due to transmitting or receiving

data, processing query request, and forwarding queries or data to neighbouring

nodes. To identify the energy loss in each node, the residual energy is calculated.

Figure 2.2 Residual Energy

Here routing is used to find the path between each source and destination

pair. While finding a path, residual energy is also calculated for each node in the

path Figure 2.2 shows residual energy for each node. The energy is calculated at

each node in the path for every 5ms. When the energy utilization is more, there will

be a chance for modification. When the energy utilization is more in the node, it is

declared as modifier.

CHAPTER 3

RESULTS AND ANALSIS

3.1 SOFTWARE DESCRIPTION

 NS2 is one of the most popular open source network simulators. The

original NS is a discrete event simulator targeted at networking research. First and

foremost, NS2 is an object-oriented, discrete event driven network simulator which

was originally developed at University of California-Berkely. The programming it

uses is C++ and OTcl (Tcl script language with Object-oriented extensions

developed at MIT). The usage of these two programming language has its reason.

The biggest reason is due to the internal characteristics of these two languages. C++

is efficient to implement a design but it is not very easy to be visual and graphically

shown. It’s not easy to modify and assemble different components and to change

different parameters without a very visual and easy-to- use descriptive language.

The event scheduler and the basic network component objects in the data path are

written and compiled using C++ to reduce packet and event processing time. OTcl

happens to have the feature that C++ lacks. So the combination of these two

languages proves to be very effective.

3.2 HARDWARE REQUIREMENTS

Processor : 3rd generation Intel core i5 – 3210 M

Clock speed : 2.5 GHz

Hard Disk : 500 GB

RAM : 4 GB

Cache Memory : 3 MB

Monitor : Color Monitor

Keyboard : 104Keys

Mouse : 3Buttons

3.3 SOFTWARE REQUIREMENTS

Operating System : Ubuntu

Language : Network Simulator 2.34

3.4 IMPLEMENTATION

The proposed work is implemented using Network Simulator NS2. For

the evaluation purpose, 30 or 50 sensor nodes are deployed randomly. The routing

operation is performed to identify the path for each source and their destination. The

routing table is created and updated periodically. A path is chosen from the routing

table. While identifying the path, residual energy is also calculated for each node.

The routing table consist of source node, destination node, intermediate nodes, hop

count, residual energy and buffer size of each node. The packets are routed through

two different paths.

Initially, packets are forwarded through a path and delay and energy

calculations are made. The energy and delays calculations are made for each 5ms.

Here values obtained for energy and delay are found to high in a particular node. So

it will be declared as compromised node. Later an alternate path is taken with help

of routing for same source and destination. Again the energy and delay calculations

are made for this particular path. The values obtained for energy and delay

calculations are found to be normal. So there is no compromised node found in this

alternate path. The code is written in awk file and tcl file.

3.5 ANALYSIS

3.5.1 Energy Consumption

In sensor networks, consumed energy is the primary performance

measure. Here energy consumption is considered as an important factor to identify

the compromised nodes in the network. Below graph (Figure 3.1) compares the

energy consumption for path with compromised node and alternate path with no

compromised nodes.

Figure3.1 Energy Consumption

3.5.2 Packets Received

The packets dropped are identified by calculating total number of packets

received by sink. The graph below (Figure 3.2) shows packets received with respect

to time. When the received packet is less compared to transmitted packets, then it

may be dropped.

Figure 3.2 Packet Received

3.5.3 Delay

Delay of each packet is calculated. When delay is increased, there is a

chance for modification. The delay is calculated for each packet form one node to

another. The graph below (Figure 3.3) compares the delay for path with

compromised node and alternate path with no compromised nodes.

Figure3.3 Delay

3.6 Snapshots

Figure 3.4 First Path

The packets are transmitted through the first path. The source and sink

nodes are labeled. Intermediated nodes are denoted by dark black color from other

nodes in the network.

Figure 3.5 Alternate Path

Here the nodes which drop and modify the packets are identified in the

first path. The compromised nodes in the first path are labeled, and then source

transmits the packets through the alternate path.

 3.7 CONCLUSION AND FUTURE ENHANCEMENT

A simple effective method is proposed to identify the packet droppers

and modifiers in the network. The routing is performed to identify the path between

each source node and their destination, and residual energy is calculated for each

node in the network. The routing table is created and updated periodically. The

packet will be transmitted through a path chosen from routing table. Delay and

energy calculations are made for each path to identify the compromised nodes.

Analysis and simulations are conducted.

In future, this is anticipated to extend better scalability and improve to

identify the modifier by next honest node and alternate path will be chose by

intermediate nodes.

APPENDIX

SOURCE CODE

Packet.tcl
Environmental Settings
 set val(chan) Channel/WirelessChannel ;# channel type
 set val(prop) Propagation/TwoRayGround ;# radio-propagation model
 set val(ant) Antenna/OmniAntenna ;# Antenna type
 set val(ll) LL ;# Link layer type
 set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type
 set val(ifqlen) 256 ;# max packet in ifq
 set val(netif) Phy/WirelessPhy ;# network interface type
 set val(mac) Mac/802_11 ;# MAC type
 set val(rp) DSDV ;# Routing Protocol
 set val(nn) 50 ;# number of mobilenodes
 set val(x) 1500
 set val(y) 1500
 set opt(energymodel) EnergyModel ;# Energy model
 set opt(radiomodel) RadioModel ;# Radio model
 set opt(initialenergy) 100 ;# Initial energy Joules
 set val(sc) setdest-100.tr
 set r 250
 set s_thres 250
 set qlen 256
 set beta 2
Default parameters
 Agent/TCP/RFC793edu set rto_ 250 ; #250 m Transmission range
 Agent/TCP set packetSize_ 1024 ; # Packet size (data +
 overhead)
 Phy/WirelessPhy set Pt_ 0.015 ; # Transmission Power
 Phy/WirelessPhy set RXThresh_ 2.025e-12 ; #500m radius.Receving
 Threshold
 Phy/WirelessPhy set CSThresh_ [expr 0.9*[Phy/WirelessPhy set RXThresh_]]
 ; # Carrier Sence Threshold
 Phy/WirelessPhy set CPThresh_ 10.0 ; # Carrier Power
 Phy/WirelessPhy set bandwidth_ 2e6 ; # Bandwidth
 Phy/WirelessPhy set freq_ 914e+6 ; # Frequency

Simulator Object Creation
set ns_ [new Simulator]
Trace File to record all the Events

set f [open Link-mdp.tr w]
$ns_ trace-all $f
$ns_ use-newtrace
NAM Window creation
set namtrace [open dcqs.nam w]
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)
Topology Creation
set topo [new Topography]
$topo load_flatgrid 1500 1500
General Operational Director
create-god $val(nn)
Node Configuration
$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace ON \
 -movementTrace ON \
 -idlePower 0.012 \
 -rxPower 1.5 \
 -txPower 2.0 \
 -sleepPower 0.00015 \
 -initialEnergy $opt(initialenergy) \
 -energyModel $opt(energymodel)
Node Creation
set god_ [create-god $val(nn)]
for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i) random-motion 0
$god_ new_node $node_($i)
}
for {set i 0} {$i < $val(nn)} {incr i} {
 $ns_ initial_node_pos $node_($i) 50
 $node_($i) set X_ 750.0
 $node_($i) set Y_ 0.0
 $node_($i) set Z_ 0.0
 $node_($i) color black

}

source $val(sc)

subclass Agent/MessagePassing to make it do flooding
Class Agent/MessagePassing/Flooding -superclass Agent/MessagePassing
Agent/MessagePassing/Flooding instproc recv {source sport size data} {
 $self instvar messages_seen node_
 global ns BROADCAST_ADDR
 # extract message ID from message
 set message_id [lindex [split $data ":"] 0]
 #puts "\nNode [$node_ node-addr] got message $message_id\n"
 if {[lsearch $messages_seen $message_id] == -1} {
 lappend messages_seen $message_id
 $self sendto $size $data $BROADCAST_ADDR $sport
 } else {
 }}

Agent/MessagePassing/Flooding instproc send_message {size message_id data
port} {
 $self instvar messages_seen node_
 global ns MESSAGE_PORT BROADCAST_ADDR
 lappend messages_seen $message_id
 $self sendto $size "$message_id:$data" $BROADCAST_ADDR $port
}
set t [$ns_ now]
for {set i 0} {$i<50} {incr i} {
set sink$i [new Agent/LossMonitor]
}
$ns_ attach-agent $node_(0) $sink0
$ns_ attach-agent $node_(1) $sink1
$ns_ attach-agent $node_(2) $sink2
$ns_ attach-agent $node_(3) $sink3
$ns_ attach-agent $node_(4) $sink4
$ns_ attach-agent $node_(5) $sink5
$ns_ attach-agent $node_(6) $sink6
$ns_ attach-agent $node_(7) $sink7
$ns_ attach-agent $node_(8) $sink8
$ns_ attach-agent $node_(9) $sink9
$ns_ attach-agent $node_(10) $sink10
$ns_ attach-agent $node_(11) $sink11
$ns_ attach-agent $node_(12) $sink12
$ns_ attach-agent $node_(13) $sink13
$ns_ attach-agent $node_(14) $sink14
$ns_ attach-agent $node_(15) $sink15

$ns_ attach-agent $node_(16) $sink16
$ns_ attach-agent $node_(17) $sink17
$ns_ attach-agent $node_(18) $sink18
$ns_ attach-agent $node_(19) $sink19
$ns_ attach-agent $node_(20) $sink20
$ns_ attach-agent $node_(21) $sink21
$ns_ attach-agent $node_(22) $sink22
$ns_ attach-agent $node_(23) $sink23
$ns_ attach-agent $node_(24) $sink24
$ns_ attach-agent $node_(25) $sink25
$ns_ attach-agent $node_(26) $sink26
$ns_ attach-agent $node_(27) $sink27
$ns_ attach-agent $node_(28) $sink28
$ns_ attach-agent $node_(29) $sink29
$ns_ attach-agent $node_(30) $sink30
$ns_ attach-agent $node_(31) $sink31
$ns_ attach-agent $node_(32) $sink32
$ns_ attach-agent $node_(33) $sink33
$ns_ attach-agent $node_(34) $sink34
$ns_ attach-agent $node_(35) $sink35
$ns_ attach-agent $node_(36) $sink36
$ns_ attach-agent $node_(37) $sink37
$ns_ attach-agent $node_(38) $sink38
$ns_ attach-agent $node_(39) $sink39
$ns_ attach-agent $node_(40) $sink40
$ns_ attach-agent $node_(41) $sink41
$ns_ attach-agent $node_(42) $sink42
$ns_ attach-agent $node_(43) $sink43
$ns_ attach-agent $node_(44) $sink44
$ns_ attach-agent $node_(45) $sink45
$ns_ attach-agent $node_(46) $sink46
$ns_ attach-agent $node_(47) $sink47
$ns_ attach-agent $node_(48) $sink48
$ns_ attach-agent $node_(49) $sink49
proc attach-CBtraffic { node sink } {
 #Get an instance of the simulator
 set ns_ [Simulator instance]
 #Create a CBR agent and attach it to the node
 set udp [new Agent/UDP]
 $ns_ attach-agent $node $udp
 set cbr [new Application/Traffic/CBR]
 $cbr attach-agent $udp
 $cbr set packetSize_ 256 ;#sub packet size
 $cbr set interval_ 0.048

 #Attach CBR source to sink;
 $ns_ connect $udp $sink
 return $cbr
 }
proc attach-CBR-traffic { node sink } {
 #Get an instance of the simulator
 set ns_ [Simulator instance]
 set udp [new Agent/UDP]
 $ns_ attach-agent $node $udp
 #Create a CBR agent and attach it to the node
 set cbr [new Application/Traffic/CBR]
 $cbr attach-agent $udp
 $cbr set packetSize_ 256 ;#sub packet size
 $cbr set interval_ 0.048
 $cbr set random_ 1
 $cbr set maxpkts_ 5000
 #Attach CBR source to sink;
 $ns_ connect $udp $sink
 return $cbr
 }
~~~~~~~~~~~~~~~~~~~~For route
discovery~~~~~~~~~~~~~~~~~``~~~`~~~~~~
set init [attach-CBR-traffic $node_(0) $sink21]
set init1 [attach-CBR-traffic $node_(0) $sink21]
set init2 [attach-CBR-traffic $node_(0) $sink44]
$ns_ at 3.0 "$init start"
$ns_ at 3.01 "$init stop"
$ns_ at 37.8 "$init1 start"
$ns_ at 37.801 "$init1 stop"
$ns_ at 35.8 "$init2 start"
$ns_ at 35.801 "$init2 stop"

set dis [open E-Distance.txt w]
puts$dis
"\t~~
~"
puts $dis "\tsource-Node\tDest-Node\tSX-cor\tSY-Cor\tE-Distance(d)"
puts$dis
"\t~~
~"
close $dis
set nbr [open Neighbour w]
puts$nbr
"\t~~
~”

puts $nbr "\tsource-Node\tNeighbour-Node\tH-Distance(d)"
puts$nbr
"\t~~
~"
close $nbr
#~~~~~~~~~~~~ For Calculation of Euclidean distance~~~~~~~~~~~~~~~~~~~
proc distance { n1 n2 nd1 nd2 fl} {
global r
set dis [open E-Distance.txt a]
set nbr [open Neighbour a]
set x1 [expr int([$n1 set X_])]
set y1 [expr int([$n1 set Y_])]
set x2 [expr int([$n2 set X_])]
set y2 [expr int([$n2 set Y_])]
set d [expr int(sqrt(pow(($x2-$x1),2)+pow(($y2-$y1),2)))]
if {$nd2>=$nd1} {
if {$fl == 49} {
puts $dis "\t$nd1\t\t$nd2\t\t$x1\t$y1\t$d"
}}
if {$d<250} {
if {$nd2!=$nd1} {
puts $nbr "\t$nd1\t\t$nd2\t\t$d"
}}
close $dis
close $nbr
}
#~~~~~~~~~For Calculating Energy~~~~~~~~~~~~~~~~~~~
proc energy {stnode etnode stime etime} {
set etp [open etmp w]
puts $etp "$stnode $etnode $stime $etime"
close $etp
exec awk -f energy.awk etmp Link-mdp.tr
}
~~~~~~~~~~~~~~ For Routing~~~~~~~~~~~~~~~~~~~~~~~~~~~
proc routing { tme stnode etnode snk qlen s_thres lc beta stme etme} {
set rtmp [open rtmp w]
puts $rtmp "$tme $stnode $etnode $snk $qlen $s_thres $lc $beta $stme $etme"
close $rtmp
exec awk -f routing.awk rtmp Res_ene($tme).txt E-Distance.txt
set rt [open route.txt r]
set rout [read $rt]
puts "$rout"
close $rt
}

~~~~~~~~~~~~~~~~~~~For function Calling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
for {set i 0} {$i<=49} {incr i} { 
for {set j 0} {$j<=49} {incr j} { 
$ns_ at 3.5 "distance $node_($i) $node_($j) $i $j 49" 
}} 
$ns_ at 4.51 "energy 0 49 0 4.5" 
$ns_ at 36.0 "energy 0 49 5 35.0" 
$ns_ at 4.6 "routing 4.5 0 48 49 $qlen $s_thres $lc $beta 5.0 35.0" 
$ns_ at 36.6 "routing 35.0 0 48 49 $qlen $s_thres $lc $beta 40.0 70.0" 
set src Trans.tcl 
$ns_ at 4.7 "source $src" 
$ns_ at 36.7 "source $src" 
 
proc fenergy { timee } { 
global ns_ t i sink0  
set i [expr $i+5] 
set time 5 
set now [$ns_ now] 
for {set i 0} {$i <=49} {incr i} { 
set tmp [open temp1.tr w] 
puts $tmp "[expr $timee-5] $timee $i" 
close $tmp 
exec awk -f renergy.awk temp1.tr Link-mdp.tr  
} 
set tme [expr $now+$time] 
$ns_ at $tme "energy $tme" 
} 
set i 0 
set t 4 
# For energy of each node 
proc nenergy { t } { 
global ns_  
set cnt 0 
set tot 0 
set tm [$ns_ now] 
set int 5 
set rt [open route.txt r] 
while {!([eof $rt])} { 
set hp [gets $rt] 
set tmp [open temp1.tr w] 
puts $tmp "$t $hp" 
close $tmp 
set cnt [expr $cnt+1] 
exec awk -f nenergy.awk temp1.tr Link-mdp.tr 

 

set tmp2 [open temp2.tr r] 
set e [gets $tmp2] 
set tene($cnt) $e 
close $tmp2 
set en [open ene($hp).tr a] 
puts $en "$t\t$e" 
close $en  
puts "Node - $hp\tTime - $t\tEnergy - $e" 
} 
for {set k 1} {$k<=$cnt} {incr k} { 
set tot [expr $tene($k)+$tot] 
} 
set avg [expr $tot/$cnt] 
set pe_ene [open P-PriResEnergy.xg a] 
set se_ene [open P-SecResEnergy.xg a] 
if {$tm <=35} { 
puts $pe_ene "$t $avg" 
} elseif {$tm >=40 && $tm<=70 }  { 
puts $se_ene "$t $avg" 
} 
close $pe_ene 
close $se_ene 
set tim [expr int($tm+$int)] 
if {$tim <=70 } { 
$ns_ at $tim "nenergy $tim" 
} } 
# For Delay Calculation 
set pdely [open pridelay w] 
set sdely [open secdelay w] 
close $pdely 
close $sdely 
#set tm 35 
proc delay { start end send rec id} { 
global ns_ dely rno 
set tm $start 
set t [open tdly.tr w] 
puts $t "$start $end $send $rec" 
close $t 
exec awk -f delay.awk tdly.tr Link-mdp.tr 
set pdely [open pridelay a] 
set sdely [open secdelay a] 
set dly [open tmp$send r] 
set value [gets $dly] 
if {$tm<=30 && $id==1} { 
puts $pdely "$value" 

 

} elseif {$tm>=30 && $tm<=60 && $id==2} { 
puts $sdely "$value" 
} 
close $pdely 
close $sdely 
set tm [expr $tm+5] 
if {$tm<=30 && $id==1 } { 
delay $tm [expr $tm+5] $send $rec $id 
} elseif {$tm>=40 && $tm<70 && $id==2} { 
delay $tm [expr $tm+5] $send $rec $id 
} else { 
return 
}} 
set ptp [open P-PriThroughput.xg w] 
set stp [open P-SecThroughput.xg w] 
set pdp [open P-PriDrop.xg w] 
set sdp [open P-SecDrop.xg w] 
set ppdr [open P-PriPDR.xg w] 
set spdr [open P-SecPDR.xg w] 
puts $spdr "35 0" 
set pdly [open P-PriDelay.xg w] 
set sdly [open P-SecDelay.xg w] 
set pe_ene [open P-PriResEnergy.xg w] 
set se_ene [open P-SecResEnergy.xg w] 
close $pe_ene 
close $se_ene 
close $pdly 
close $sdly 
proc record { } { 
global ns_ sink0 sink14 sink28 sink15 sink16 sink24 sink33 sink31 sink26 sink37 
sink46 sink49 ptp pdp ppdr 
set t [$ns_ now] 
set itval 5.0 
set r0 [$sink0 set npkts_] 
set r14 [$sink14 set npkts_] 
set r28 [$sink28 set npkts_] 
set r15 [$sink15 set npkts_] 
set r16 [$sink16 set npkts_] 
set r24 [$sink24 set npkts_] 
set r33 [$sink33 set npkts_] 
set r31 [$sink31 set npkts_] 
set r26 [$sink26 set npkts_] 
set r37 [$sink37 set npkts_] 
set r46 [$sink46 set npkts_] 
set r49 [$sink49 set npkts_] 

 

set rec [expr 
($r0+$r14+$r28+$r15+$r16+$r24+$r33+$r31+$r26+$r37+$r46+$r49)/12] 
set b0 [$sink0 set bytes_] 
set b14 [$sink14 set bytes_] 
set b28 [$sink28 set bytes_] 
set b15 [$sink15 set bytes_] 
set b16 [$sink16 set bytes_] 
set b24 [$sink24 set bytes_] 
set b33 [$sink33 set bytes_] 
set b31 [$sink31 set bytes_] 
set b26 [$sink26 set bytes_] 
set b37 [$sink37 set bytes_] 
set b46 [$sink46 set bytes_] 
set b49 [$sink49 set bytes_] 
setbyt[expr($b0+$b14+$b28+$b15+$b16+$b24+$b33+$b31+$b26+$b37+$b46+$b
4)/12] 
set pdr 0 
if {$rec!=0} { 
set pdr [expr ($rec+0.0)/($rec+$los)] 
} 
set tput [expr ($byt*8.0)/($itval*1000000)] 
puts $ptp "$t\t$tput" 
puts $pdp "$t\t$los" 
puts $ppdr "$t\t$pdr" 
set inter [expr $t+5.0] 
if {$inter <=35} { 
$ns_ at $inter "record" 
} 
$sink0 set bytes_ 0 
$sink14 set bytes_ 0 
$sink28 set bytes_ 0 
$sink15 set bytes_ 0 
$sink16 set bytes_ 0  
$sink24 set bytes_ 0 
$sink33 set bytes_ 0 
$sink31 set bytes_ 0 
$sink26 set bytes_ 0 
$sink37 set bytes_ 0 
$sink46 set bytes_ 0 
$sink49 set bytes_ 0 
} 
proc record1 { } { 
global ns_ sink0 sink21 sink17 sink20 sink35 sink29 sink36 sink44 sink13 sink41 
sink49 stp sdp spdr 
set t [$ns_ now] 



 

set itval 5.0 
set r0 [$sink0 set npkts_] 
set r21 [$sink21 set npkts_] 
set r17 [$sink17 set npkts_] 
set r20 [$sink20 set npkts_] 
set r35 [$sink35 set npkts_] 
set r29 [$sink29 set npkts_] 
set r36 [$sink36 set npkts_] 
set r44 [$sink44 set npkts_] 
set r13 [$sink13 set npkts_] 
set r41 [$sink41 set npkts_] 
set r49 [$sink49 set npkts_] 
set rec [expr ($r0+$r21+$r17+$r20+$r35+$r29+$r36+$r44+$r13+$r41+$r49)/11] 
set l0 [$sink0 set nlost_] 
set l21 [$sink21 set nlost_] 
set l17 [$sink17 set nlost_] 
set l20 [$sink20 set nlost_] 
set l35 [$sink35 set nlost_] 
set l29 [$sink29 set nlost_] 
set l36 [$sink36 set nlost_] 
set l44 [$sink44 set nlost_] 
set l13 [$sink13 set nlost_] 
set l41 [$sink41 set nlost_] 
set l49 [$sink49 set nlost_] 
set los [expr ($l0+$l21+$l17+$l20+$l35+$l29+$l36+$l44+$l13+$l41+$l49)/11] 
set b0 [$sink0 set bytes_] 
set b21 [$sink21 set bytes_] 
set b17 [$sink17 set bytes_] 
set b20 [$sink20 set bytes_] 
set b35 [$sink35 set bytes_] 
set b29 [$sink29 set bytes_] 
set b36 [$sink36 set bytes_] 
set b44 [$sink44 set bytes_] 
set b13 [$sink13 set bytes_] 
set b41 [$sink41 set bytes_] 
set b49 [$sink49 set bytes_] 
set byt [expr 
($b0+$b21+$b17+$b20+$b35+$b29+$b36+$b44+$b13+$b41+$b49)/11] 
set pdr 0 
if {$rec!=0} { 
set pdr [expr ($rec+0.0)/($rec+$los)] 
} 
set tput [expr ($byt*8.0)/(2*$itval*1000000)] 
puts $stp "$t\t$tput" 
puts $sdp "$t\t$los" 

 

puts $spdr "$t\t$pdr" 
set inter [expr $t+5.0] 
if {$inter >=40 && $inter <= 70} { 
$ns_ at $inter "record1" 
} 
$ns_ at 5.0 "record" 
$ns_ at 40.0 "record1" 
$ns_ at 5.0 "nenergy 5" 
# Finish Procedure to exec NAM Window 
proc finish {} { 
 global ns_ namtrace ptp pdp ppdr stp sdp spdr 
 $ns_ flush-trace 
        close $namtrace  
 close $ptp 
 close $pdp 
 close $ppdr 
 close $stp 
 close $sdp 
 close $spdr 
 exec awk -f adelay.awk pridelay 
 exec awk -f adelay.awk secdelay 
 exec nam -r 5m dcqs.nam & 
  exec xgraph P-PriDrop.xg -geometry 800x400 -t " PacketDrop" -x 
"Time" -y "Avg Drop" & 
       exec xgraph P-PriResEnergy.xg -t "EnergyConsumpution " -x "Time" -y 
"Energy(mj)" -ly 50,100 & 
       exec xgraph -m -P -bg white  q1.tr -geometry 640x480 & 
       exec xgraph -m -P -bg white  q2.tr -geometry 640x480 & 
       exec xgraph -m -P -bg white  q3.tr -geometry 640x480 & 
       exec xgraph -m -P -bg white  q4.tr -geometry 640x480 & 
 exit 0 
 } 
$ns_ at 101.0 "finish" 
puts "Start of simulation.." 
$ns_ run 
 
Adelay.awk 
 
BEGIN { 
i=1 
} 
{ 
if(FILENAME=="pridelay" || FILENAME=="secdelay") { 
fle=FILENAME 
d[i,1]=$1 

 

d[i,2]=$2 
i++ 
}} 
END { 
if(fle=="pridelay") { 
for(k=10;k<=35;k=k+5) { 
for(j=1;j<i;j++) { 
if(k==d[j,1]) { 
t[k]=t[k]+d[j,2] 
}} 
print k" "t[k] > "P-PriDelay.xg" 
}} 
if(fle=="secdelay") { 
for(k=45;k<=70;k=k+5) { 
for(j=1;j<i;j++) { 
if(k==d[j,1]) { 
t[k]=t[k]+d[j,2] 
}} 
print k" "t[k] > "P-SecDelay.xg"}}} 
Delay.awk 
 
BEGIN { 
i=1 
} 
{ 
if(FILENAME=="pridelay" || FILENAME=="secdelay") { 
fle=FILENAME 
d[i,1]=$1 
d[i,2]=$2 
i++ 
}} 
END { 
if(fle=="pridelay") { 
for(k=10;k<=35;k=k+5) { 
for(j=1;j<i;j++) { 
if(k==d[j,1]) { 
t[k]=t[k]+d[j,2] 
}} 
print k" "t[k] > "P-PriDelay.xg" 
}} 
if(fle=="secdelay") { 
for(k=45;k<=70;k=k+5) { 
for(j=1;j<i;j++) { 
if(k==d[j,1]) { 
t[k]=t[k]+d[j,2] 

 

}} 
print k" "t[k] > "P-SecDelay.xg" 
}}} 
Energy.awk 
 
BEGIN { 
stnode=0 
etnode=0 
stime=0 
etime=0 
n=-1 
t=0 
nd=-1 
ene=0 
} 
{ 
if(FILENAME == "etmp") { 
stnode=$1 
etnode=$2 
stime=$3 
etime=$4 
} 
if(FILENAME != "etmp") { 
n=$1 
t=$3 
nd=$5 
ene=$7 
if($1 == "N") { 
for(i=stnode;i<=etnode;i++) { 
if(t>=stime && t <= etime) { 
if(nd==i) { 
node[i,1]=i 
node[i,2]=ene 
}}}} }} 
END { 
print "   ***************************************" > "Res_ene("etime").txt" 
print "\tTime\tNode-id\tResidual-Energy" > "Res_ene("etime").txt" 
print "   ***************************************" > "Res_ene("etime").txt" 
for(i=stnode;i<=etnode;i++) { 
print "\t"etime"\t"node[i,1]"\t"node[i,2] > "Res_ene("etime").txt" 
} 
 

 

 

 

 



 

REFERENCES 

 

 

 

 

1. V. Bhuse, A. Gupta, and L. Lilien, “DPDSN: Detection of Packet- Dropping 
Attacks for Wireless Sensor Networks,” Proc. Fourth Trusted Internet 
Workshop, 2005. 

 
2. H. Chan and A. Perrig, “Security and privacy in sensor networks,” IEEE  

Computer, Digital Object Identifier vol. 36, no. 10, pp. 103-105, Oct 2003. 
 

3. Chuang Wang, Taiming Feng, Jinsook Kim, Guiling Wang, Member, IEEE, 
and Wensheng Zhang, Member “Catching Packet Droppers and Modifiers in 
Wireless Sensor Networks” in IEEE Trans. on Parallel and Distributed 
Systems, vol. 36, no. 5, May 2012. 

 
4. T.H. Hai and E.N. Huh, “Detecting Selective Forwarding Attacks in Wireless 

Sensor Networks Using Two-Hops Neighbour Knowledge,” Proc. IEEE 
Seventh Int’l Symp. Network Computing and Applications (NCA ’08), 2008. 

 
5. M. Just, E. Kranakis, and T. Wan, “Resisting Malicious Packet Dropping in 

Wireless Ad Hoc Networks,” Proc. Int’l Conf. Ad-Hoc Networks and 
Wireless (ADHOCNOW ’03), 2003. 

 
6. M. Kefayati, H.R. Rabiee, S.G. Miremadi, and A. Khonsari, “Misbehavior 

Resilient Multi-Path Data Transmission in Mobile Ad-Hoc Networks,” Proc. 
Fourth ACM Workshop Security of Ad Hoc and Sensor Networks (SASN 
’06), 2006. 

 
7. I.Krontiris, T. Giannetsos, and T. Dimitriou, “LIDeA: A Distributed 

Lightweight Intrusion Detection Architecture for Sensor Networks,” Proc. 
Fourth Int’l Conf. Security and Privacy in Comm. Netowrks (SecureComm 
’08), 2008. 

 
8. W. Li, A. Joshi, and T. Finin, “Coping with Node Misbehaviors in Ad Hoc 

Networks: A Multi-Dimensional Trust Management Approach,” Proc. 11th 
Int’l Conf. Mobile Data Management (MDM ’10), 2010. 

 
9. K. Liu, J. Deng, P.K. Varshney, and K. Balakrishnan, “An Acknowledgment 

Based Approach for the Detection of Routing Misbehavior in Manets,” IEEE 
Trans. Mobile Computing, vol. 6, no. 5, pp. 536-550, May 2007. 

 

10. S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in 
Mobile Ad Hoc Networks,” Proc. ACM MobiCom, 2000. 

 

 
11. H. Song, S. Zhu, and G. Cao, “Attack-Resilient Time Synchronization for 

Wireless Sensor Networks,” Ad Hoc Networks, vol. 5, no. 1, pp. 112-125, 
2007. 

 
12. B. Xiao, B. Yu, and C. Gao, “Chemas: Identify Suspect Nodes in Selective 

Forwarding Attacks,” J. Parallel and Distributed Computing, vol. 67, no. 11, 
pp. 1218-1230, 2007. 

 
13. H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward Resilient 

Security in Wireless Sensor Networks,” Proc. Sixth ACM Int’l Symp. 
Mobile Ad Hoc Networking and Computing (MobiHoc ’05), 2005. 

 
14. F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-Route Filtering of 

Injected False Data in Sensor Networks,” Proc. IEEE INFOCOM, 2004. 
 

15. F. Ye, H. Yang, and Z. Liu, “Catching Moles in Sensor Networks,” Proc. 
27th Int’l Conf. Distributed Computing Systems (ICDCS ’07), 2007. 

 

16. S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved Hop-by- Hop 
Authentication Scheme for Filtering False Data in Sensor Networks,” Proc. 
IEEE Symp. Security and Privacy, 2004. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

LIST OF PUBLICATIONS 

 

 

1. E. Surya Praba and K. Sivan Arul Selvan, “Identification of Packet Droppers 

and Modifiers in Wireless Sensor Network” International Journal of Societal 

Applications of Computer Science, In Volume II and Issue I January 2013, 

ISSN 2319 – 8443. 

 

2. E. Surya Praba and K. Sivan Arul Selvan, “Detection of Packet Droppers and 

Modifiers in Wireless Sensor Network”, DRDO sponsored National 

Conference on “Innovations in Information Technology(NCIIT 2013)” , 

Bannari Amman Institute of Technology, 21st and 22nd February 2013. 

 

 


