
A DYNAMIC LOAD BALANCING ALGORITHM IN

COMPUTATIONAL GRID USING ZERO

CONFIGURATION SCHEDULING

 A PROJECT REPORT

 Submitted by

YOGADHARANI M.

in partial fulfillment for the requirement of award of the degree

 of

 MASTER OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

 KUMARAGURU COLLEGE OF TECHNOLOGY,

 COIMBATORE 641 049

 (An Autonomous Institution Affiliated to Anna University, Chennai)

APRIL 2013

A DYNAMIC LOAD BALANCING ALGORITHM IN

COMPUTATIONAL GRID USING ZERO

CONFIGURATION SCHEDULING

A PROJECT REPORT

 Submitted by

 YOGADHARANI M.

in partial fulfillment for the requirement of award of the degree

 of

 MASTER OF ENGINEERING

FACULTY OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,

COIMBATORE 641 049

 (An Autonomous Institution Affiliated to Anna University, Chennai)

APRIL 2013

���

�

BONAFIDE CERTIFICATE

Certified that this project work titled “A DYNAMIC LOAD BALANCING

ALGORITHM IN COMPUTATIONAL GRID USING ZERO

CONFIGURATION SCHEDULING” is the bonafide work of

MS.YOGADHARANI M. (1120108025), who carried out the research under my

supervision. Certified further, that to the best of my knowledge the work reported

herein does not form part of any other thesis or dissertation on the basis of which a

degree or award was conferred on an earlier occasion on this or any other students.

Prof. N. JAYAPATHI M.Tech., Ms. P. DEVAKI M.E.,

HEAD OF THE DEPARTMENT SUPERVISOR

Professor Assistant Professor

Dept. of Computer Science and Dept. of Computer Science and

Engineering Engineering

Kumaraguru College of Technology Kumaraguru College of Technology

Coimbatore – 641 049 Coimbatore – 641 049

 Submitted for the Project Viva-Voce examination held on ____________

 ------------------------------- -----------------------------

 Internal Examiner External Examiner

����

�

ABSTRACT

In Grid networks, peers are having heterogeneous configurations. In large

peer to peer networks balancing the load all over network is a big issue. Balancing the

load across the network is important to manage the resources efficiently. Existing load

balancing mechanisms distribute the load equally to all peers. But it is not optimal in

Grid networks. The load has to be dedicated based on its capacity. So propose a

performance-based load delegation which will delicate the load based on each peer’s

load and performance. The policies are defined by the peers based on its capacity.

Data-aware scheduling where the replication of the accessibility of data is considered.

Further, the training of the system should be made online, during scheduling in form

the of a self-learning system. Learning scheduling decision with machine learning

techniques would lead to a zero-configuration scheduling system which can easily

integrated into existing middleware solutions.Grid has standards based on persistent,

addresses security issues; resources are more powerful, more diverse, better connected,

data intensive, facing problems of autonomic configuration and management, not much

scalable. But in P2P has much scalability, fault tolerance, self-configuration, automatic

problem determination, higher variable behaviour, but lack of infrastructure, security

problems, less concerned with qualities of service. The main objective is to distribute

the load at run time, to reduce makespan i.e., the time difference between the start and

finish of a sequence of jobs or tasks and improve its performance in a heterogeneous

network.

���

�

ACKNOWLEDGEMENT

� First and foremost, I would like to thank the Lord Almighty for enabling me to

complete this project. I express my profound gratitude to Padma Bhushan Arutselvar

Dr.N.Mahalingam B.Sc., F.I.E. Chairman, Dr.B.K.Krishnaraj Vanavarayar

B.com., B.L., Co-Chairman, Mr.M.Balasubramaniam M.Com., MBA.,

Correspondent, Mr.Sankar Vanavarayar MBA., PGDIEM., Joint Correspondent

and Dr.S.Ramachandran Ph.D., Principal for providing the necessary facilities to

complete my project.

 I take this opportunity to thank Prof.N.Jayapathi M.Tech., Head of the

Department, Department of Computer Science and Engineering, for his support and

motivation. Special thanks to my Project Coordinator Dr.V.Vanitha M.E., Ph.D.,

Senior Associate Professor, Department of Computer Science and Engineering, and

project committee members.

 I register my sincere thanks to my guide Ms.P.Devaki M.E., Assistant

Professor, Department of Computer Science and Engineering. I am grateful for her

support, encouragement and ideas. I would like to convey my honest thanks to all

Teaching and Non Teaching staff members of the department and my classmates for

their support.

I dedicate this project work to my Parents for no reasons but feeling from

bottom of my heart that without their love, this work would not be possible.

-YOGADHARANI M.

��

�

TABLE OF CONTENTS

Chapter No Contents Page No.

 ABSTRACT iii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

1. INTRODUCTION 1

 1.1 OVERVIEW OF GRID 1

 1.1.1 Scheduler Architecture 2

 1.1.2 Load Balancing 4

1.2 LITERATURE SURVEY 7

 1.2.1 Fair Scheduling Algorithms In Grid 7

 1.2.2 Task Resource Allocation In Grid Using

Swift Scheduler

8

 1.2.3 Unsplittable Max-Min Demand

Allocation – A Routing Problem

9

 1.2.4 A Dynamic Error Based Fair Scheduling

Algorithm For A Computational Grid

10

 1.2.5 Recitation Of Load Balancing

Algorithms In Grid Computing

Environment Using Policies And

Strategies - An Approach

11

���

�

 1.2.6 Improving Performance In Load

Balancing Problem on the Grid

Computing System

12

 1.2.7 A Novel Load Balancing Algorithm For

Computational Grid

14

 1.2.8 A Dynamic Load Balancing Algorithm

in Computational Grid Using Fair

Scheduling

16

1.2 PROBLEM DEFINITION 20

2. IMPLEMANTATION OF DYNAMIC LOAD

BALANCING ALGORITHM IN

COMPUTATIONAL GRID USING ZERO

CONFIGURATION SCHEDULING

21

1 2.1 EXISTING SYSTEM� 21

 2.1.1 Drawbacks 21

2.2 PROPOSED SYSTEM 22

2.3 OVERVIEW OF THE PROJECT 24

2.4 MODULES � 24

 2.4.1 Module Description 25

3. RESULTS 27

3.1 IMPLEMENTATION 27

3.2 SCREEN SHOTS 28

3.3 DATABASE DESIGN 33

����

�

3.5 CONCLUSION AND FUTURE WORK 34

APPENDIX 35

 SAMPLE SOURCE CODE 35

REFERENCES 48

LIST OF PUBLICATIONS 50

�����

�

LIST OF TABLES

Table No Caption Page No.

1 Node Details 33

2 Policy Details 34

���

�

LIST OF FIGURES

Figure

No

Caption Page

No.

1.1 Scheduler Architecture 3

1.2 Load Balancing 5

1.3 Static Load Balancing 13

1.4 Dynamic Load Balancing 14

1.5 An Event Diagram for Dynamic Load Balancing Algorithm 18

1.6 Flow Chart of Algorithm 19

2.1 Workflow of Zero configuration scheduling 23

3.1 User Login 28

3.2 Acknowledgement 28

3.3 User Mail Window 29

3.4 Grid server 30

3.5 Policy and Load value 30

3.6 Job Delegate to other Middleware 31

3.7 Accept Remote Job 31

3.8 Processing Time 31

��

�

3.9 Load Delegation 32

3.10 Job complete 32

3.11 Job Complete Acknowledgement 33

3.12 Get Details 33

 �

���

�

LIST OF ABBREVIATIONS

AFTO Adjusted Fair Task Order

AWF Accept When Fit

CG Computational Grid

DLBA Dynamic Load Balancing Algorithm

EDF Earliest Deadline First

FCFS First Come First Serve

GGF Global Grid Forum

GRMS Grid Resource Management System

GUI Graphical User Interface

WLAN Wireless Local Area Network

��

�

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF GRID

Grid computing has been increasingly considered as a promising next-

generation computing platform that supports wide area parallel and distributed

computing since its advent in the mid-1990s [Foster, 1999]. It couples a wide

variety of geographically distributed computational resources such as PCs,

workstations, and clusters, storage systems, data sources, databases, computational

kernels, and special purpose scientific instruments and presents them as a unified

integrated resource.

Grids address issues such as security, uniform access, dynamic

discovery, dynamic aggregation, and quality of services. In computational grids,

heterogeneous resources with the different systems in different places are

dynamically available and distributed geographically. The user’s resource

requirements in the grids vary depending upon their goals, time constraints,

priorities and budgets. Allocating tasks to the appropriate resources in the grid, so

that performance requirements are satisfied. Allocating the resources to the proper

users so that utilization of resources and the profits generated are maximized is also

an extremely complex problem. From a computational perspective, it is impractical

to build a centralized resource allocation mechanism in such a large scale

distributed environment. A computational grid is less expensive than purchasing

more computational resources while obtaining the same amount of computational

power for their computational tasks.

��

�

1.1.1 Scheduler Architecture

The scheduler architecture adopted in the GRIDLAB infrastructure

which is shown in Fig 1.1, the main modules of which are the following:

Queuing System

Each time a task is submitted for execution, its characteristics (for

example, the task deadline) are stored on a database, which is the core of the

queuing system module.

Queuing Order

This unit addresses the task-queue ordering problem; that is, it

determines the order in which the tasks are considered for assignment to the

available resources. The queuing order unit communicates with the queuing system

module, where the tasks requesting service along with their respective

characteristics are stored and with the resource discovery module, which determines

the available resources of the infrastructure.

Resource Discovery

This module determines the available resources of the grid.

Processor Assignment

The information collected by the queuing order unit is then passed

through the processor assignment unit, which determines the processor on which

each task is assigned.

��

�

Fig.1.1 Scheduler Architecture

Adaptive Components

This module is responsible for

1. Predicting the workload of the tasks requesting service and

2. Estimating the task-ready times _i through the respective communication

delays and the processor release times _j of the tasks already allocated to

processor j.

The adaptive component module provides the information required by

the scheduler to perform the task queue ordering and the processor assignment

functions. A method for predict the task workload in the particular case of 3D

rendering applications.

��

�

Local Resource Manager

This module is responsible for implementing the task execution locally

as instructed by the scheduler.

1.1.2 Load Balancing

Load balancing is a computer networking methodology to distribute the

workload across multiple computers or a computer cluster, network links, central

processing units, disk drives, or other resources, to achieve optimal resource

utilization, maximize throughput, minimize response time, and avoid overload.

Using multiple components with load balancing, instead of a single component,

may increase reliability through redundancy. The load balancing service is usually

provided by dedicated software or hardware, such as a multilayer switch or a

Domain Name System server shown in Fig 1.2.

Load balancing technique to enhance resources, utilizing parallelism,

exploiting throughput improvisation, and to reduce response time through an

appropriate distribution of the application. Load balancing algorithms can be

defined by their implementation of the following policies:

Information policy: It states the workload of task information to be collected,

when it is to be collected and from where.

Triggering policy: It determines the appropriate period to start a load balancing

operation.

��

�

Fig.1.2 Load Balancing

Resource type policy: It orders a resource as server or receiver of tasks according

to its availability status.

Location policy: It uses the results from the resource type policy to find a suitable

partner for a server or receiver.

Selection policy: It defines the tasks that should be migrated from overloaded

resources (source) to most idle resources (receiver).

Load balancing algorithms are defined by two types such as static and

dynamic. Static load balancing algorithms allocate the tasks of a parallel program to

workstations. Multi computers with dynamic load balancing allocate or reallocate

resources at runtime based on task information, which may determine when and

whose tasks can be migrated. Karthick Kumar (2000) has implemented the dynamic

load balancing algorithm to multi computers based on resource type policy.

��

�

Load Sharing Vs Load Balancing

Load sharing means one can split the traffic from a network to be

transported by different routers (paths). That is configure half of the hosts with one

default gateway and the second half with the other. E.g.: PBR configuration in

routers for link distribution for host subnets.

On the other hand, load balancing means distributing the traffic evenly

and dynamically among different paths to avoid link congestion and saturation. This

can be done in a packet-by-packet basis or per destination in a round-robin fashion.

The packets sent by a host follow different paths to the same destination. All paths

belong to all hosts.

��

�

1.2 LITERATURE SURVEY

In this section, papers related to load balancing and scheduling jobs on a

grid computing environment were discussed.

1.2.1 FAIR SCHEDULING ALGORITHMS IN GRIDS (Doulamis, 2007)

Scheduling and resource management are important in optimizing

multiprocessor grid resource allocation and determining its ability to deliver the

negotiated Quality-of-Service (QoS) requirements. This need has been confirmed

by the Global Grid Forum (GGF) in the special working group dealing with the area

of scheduling and resource management for grid computing. The resource manager

receives information about the job characteristics and determines when and on

which processor each job will execute.

 Proposed a new algorithm for fair scheduling, and compare it to other

scheduling schemes such as the Earliest Deadline First (EDF) and the First Come-

First Served (FCFS) schemes. This algorithm uses a max-min fair sharing approach

for providing fair access to users. When there is no shortage of resources, the

algorithm assigns to each task to the resource which has enough computational

power to finish within its deadline. When there is congestion, the main idea is to

fairly reduce the CPU rates assigned to the tasks so that the share of resources that

each user gets is proportional to the user’s weight. The weight of a user may be

defined as the user’s contribution to the infrastructure or the price is willing to pay

for services or any other socioeconomic consideration. In this algorithm, all tasks

whose requirements are lower than their fair share CPU rate are served at their

demanded CPU rates. However, the CPU rates of tasks whose requirements are

larger than their fair share CPU rate are reduced to fit the total available

computational capacity in a fair manner. Three different versions of fair scheduling

are: The Simple Fair Task Order (SFTO), which schedules the tasks according to

their respective fair completion times, the Adjusted Fair Task Order (AFTO), which

	�

�

refines the SFTO policy by ordering the tasks using the adjusted fair completion

time, and the Max-Min Fair Share (MMFS) scheduling policy, which

simultaneously addresses the problem of finding a fair task order and assigning a

processor to each task based on a max-min fair sharing policy.

The traditional scheduling schemes such as the EDF and the FCFS are

using three different error criteria. It has been overcome by reducing the cycle time

reduction and concentrate on to improve the performance of the system.

1.2.2 TASK RESOURCE ALLOCATION IN GRID USING SWIFT

SCHEDULER (K. Somasundaram, 2009)

The task of Grid resource broker and scheduler is to dynamically identify

and characterize the available resources and to select and allocate the most

appropriate resources for a given job. The resources are typically heterogeneous

locally administered and accessible under different local policies. Advance

reservation is currently being added to Portable Batch System (PBS).

In a Grid Scheduler, the mapping of Grid resources and an independent

job in optimized manner is so hard where couldn’t predict optimized mapping. So

the combination of uninformed search and informed search will provide the good

optimal solution for mapping resources and jobs, to provide minimal turnaround

time with minimal cost and minimize the average waiting time of the jobs in the

queue. A heuristic algorithm is an algorithm that ignores whether the solution to the

problem can prove to be correct, but which usually produces a good solution.

Heuristics are typically used when there is no known way to find an optimal

solution, or when it is desirable to give up finding the optimal solution for an

improvement in run time.

�

�

The primary objective is to investigate effective resource allocation

techniques based on computational economy through simulation. To simulate

millions of resources and thousands of users with varied requirements and study

scalability of systems, algorithms, efficiency of resource allocation policies and

satisfaction of users. In this simulation model applications are in the areas of

biotechnology, astrophysics, network design, and high-energy physics in order to

study usefulness of resource allocation techniques. This work will have the

significant impact on the way resource allocation is performed for solving problems

on grid computing systems.

Provides level of determinism on the waiting time of each job as

disadvantage. The advantage of FCFS shows up when the jobs at the head of the

ready queue cannot be scheduled immediately due to insufficient system resources,

but jobs further down the queue would be able to execute given the currently

available system resources.

1.2.3 UNSPLITTABLE MAX-MIN DEMAND ALLOCATION – A ROUTING

PROBLEM (Pal Nilsson)

In a routing problem involving max-min fair allocation of bandwidth to

demands in a communication network is dealt with. The considered problem has

been studied in its simplified form already in, and has also, as a convex

optimization problem, been solved for bifurcated (splittable) flows. It addresses a

more difficult version when only non-bifurcated (unsplittable) flows are allowed.

Such an assumption, also called a requirement of single-path flows, results in non-

convex problem formulations which are inherently hard. Unsplittable flows are

often a realistic restriction due to the used routing protocol, or simply an explicit

management requirement, stipulating avoidance of packet resequencing in receiving

nodes. With the network given in terms of topology and link capacities, the

following traffic engineering problem is identified: The demand between each

source-destination (S-D) node-pair must be associated with a single path such that a

���

�

sufficient volume of flow can be routed on demands’ single paths simultaneously,

without exceeding the link capacities. By sufficient volume that is equitable among

different S-D pairs are addressed i.e., a fair sharing of resources. Particularly, the

problem of assigning a single-path flow to each demand such that the flow

distribution in Max-Min Fair (MMF). Consequently, once each S-D pair is assigned

a single path, the problem is reduced to max-min fair sharing of corresponding link

capacities, for which an efficient polynomial time algorithm exists. Thus

essentially, the considered problem amounts to the very hard task of appropriate

path selection.

It provides single-path flow.It reduce to the max-min fair sharing of

corresponding link capacities, and identify traffic problems as advantage. The

disadvantage is too difficult to identify path selection.

1.2.4 A DYNAMIC ERROR BASED FAIR SCHEDULINGALGORITHM

FOR A COMPUTATIONAL GRID (Daphne Lopez, 2009)

Various types of grids have been developed to support applications and

categorized as Computational Grids, Data Grids and Service Grids. Computational

Grid (CG) represents a new computational framework whose efficient use requires

schedulers that allocate user’s tasks to the grid resources in an acceptable amount of

time.

An efficient use of distributed resources is highly dependent on the

resource allocation by grid schedulers, where user requirements and job

characteristics must be also considered. Moreover, due to the changeability of a CG,

machines and jobs to be scheduled may vary over time, and therefore, any grid

scheduler must generate optimal schedules at a minimal amount of time in order to

rapidly adapt itself to the changes of the grid. Major issues that can easily handled

in conventional computing environments become seriously challenging problems in

grids mainly because a grid consists of multiple administrative domains. Two very

���

�

crucial issues among them are security and scheduling which have been investigated

and researched over time.

The demand for scheduling is to achieve high-performance computing.

The motivation is to develop a good scheduling algorithm that can perform

effectively and efficiently in terms of minimizing the error to achieve fairness and

reduce the cost and time. Here proposes a fair scheduling algorithm based on the

service time error. Fair Share is a widely used queuing algorithm for prioritorizing

jobs based on of a “share”. The first part explains the algorithm and secondly the

simulation of the experiment with GridSim toolkit is presented. The simulator

defines the workload of resources, the arrival time of independent jobs, length of

each job and other parameters. Finally compare the performance with FCFS and

Round Robin.

Genetic algorithm methods minimize the total task completion time as

advantage. The major issue in genetic algorithm is the process of finding a good

solution can take a very long time as disadvantage.

1.2.5 RECITATION OF LOAD BALANCING ALGORITHMS IN GRID

COMPUTING ENVIRONMENT USING POLICIES AND STRATEGIES -

AN APPROACH (M.Kamarunisha, 2011)

The rapid development in computing resources has enhanced the

performance of computers and reduced their costs. This availability of low cost

powerful computers coupled with the popularity of the Internet and high-speed

networks has led the computing environment to be mapped from distributed to grid

environments. In fact, computing architectures are allowed the emergence of a new

computing paradigm known as grid computing. Grid is a type of distributed system

which supports the sharing and coordinated use of geographically distributed and

multi owner resources, independently from their physical type and location, in

dynamic virtual organizations that share the same goal of solving large-scale

applications.

���

�

In Grid computing, individual users can access computers and data,

transparently, without having to consider location, operating system, account

administration, and other details. In grid computing, the details are abstracted, and

the resources are virtualized. Grid computing has emerged as a new and important

field and can be visualized as an enhanced form of distributed computing. Sharing

in a grid is not just a simple sharing of files but of hardware, software, data, and

other resources. Thus a complex yet secure sharing is at the heart of the grid.

It uses centralized and sender-initiated load balancing algorithm and the

disadvantage is sender-initiated policy found to yield performance not far from

optimal, also particularly light to moderate systems loads.

1.2.6 IMPROVING PERFORMANCE IN LOAD BALANCING PROBLEM

ON THE GRID COMPUTING SYSTEM (Prabhat Kr.Srivastava, 2011)

Grid computing is a type of parallel and distributed system that enables

the distribution, selection and aggregation of geologically resources dynamically at

run time depending on their availability, capability, performance, cost, user quality-

of –self-service requirement. Grid computing, individual users can retrieve

computers and data, transparently, without taking into account the location,

operating system, account administration, and other details. In grid computing, the

details are abstracted, and the resources are virtualized. Grid computing should

enable the job in question to be run on an idle machine elsewhere on the network.

Grids functionally bring together globally distributed computers and information

systems for creating a universal source of computing power and information. A key

characteristic of grids is that resources (e.g., CPU cycles and network capacities) are

shared among various applications, and therefore, the amount of resources available

to any given application highly fluctuates over time. Load balancing is a technique

to enhance resources, utilizing parallelism, exploiting throughput improvisation,

���

�

and to reduce response time through an appropriate distribution of the application.

Load balancing algorithms are two types static and dynamic.

(i) Static Load Balancing Algorithm

Static load balancing algorithms allocate the tasks of a parallel program

to workstations based on either the load at the time nodes are allocated to some task,

or based on an average load of workstation cluster as shown in Fig 1.3. The

decisions related to load balance are made at compile time when resource

requirements were estimated.

Fig.1.3 Static Load Balancing

(ii) Dynamic Load Balancing Algorithm

Dynamic load balancing algorithm shown in Fig 1.4 make changes to the

distribution of work among workstations at a run-time; it use current or recent load

information when making distribution decisions. Multi computers with dynamic

load balancing allocate/reallocate resources at runtime based on task information,

which may determine when and whose tasks can be migrated. As a result, the

dynamic load balancing algorithms can provide a significant improvement in

performance over static algorithms.

As a result, dynamic load balancing algorithm can provide a major

improvement in performance over static algorithms. However, this comes at the

���

�

additional cost of collecting and maintaining load information, so it is important to

keep these overheads within reasonable limits.

Fig.1.4 Dynamic Load Balancing

 There are three major parameters which usually define the strategy a

specific load balancing algorithm will employ. These three parameters are:

• The load balancing decision maker.

• Information is used to make the load balancing decision, and

• The place where the load balancing decision is made.

 The advantage is to improve resources, utilizing parallelism, exploiting

throughput managing and to reduce response time through proper distribution of the

application and performance is still an issue in dynamic load balancing.

1.2.7 A NOVEL LOAD BALANCING ALGORITHM FOR

COMPUTATIONAL GRID (Saravana kumar E, 2010)

The Grid is emerging as a wide-scale distributed computing

infrastructure that promises to support resource sharing and coordinated problem

solving in dynamic multi-institutional Virtual Organizations. The idea is similar to

���

�

the former Meta computing where the focus was limited to computation resources,

whereas grid computing takes a broader approach. The computational grid is the

cooperation of distributed computer systems where user jobs can be executed on

either local or remote computer systems. With its multitude of heterogeneous

resources, a proper scheduling and efficient load balancing across the grid are

required for improving the performance of the system. A widely used performance

metric is the Average Response Time of tasks. The response time of a task is the

time elapsed between its initiation and its completion. Minimizing the average

response time is often the goal of load balancing. The system load is a measure of

the amount of work that a computer system performs. If loads at some computers

are typically heavier than at others, or if some processors execute tasks more slowly

than others, will become heavily loaded. The load balancing aims to have all

processor’s equally heavy workloads over the long term.

In general, any load balancing algorithm consists of two basic policies—

a transfer policy and a location policy. The transfer policy decides if there is a need

to initiate load balancing across the system. By using workload information, it

determines when a node becomes eligible to act as a sender (transfer a job to

another node) or as a receiver (retrieve a job from another node). The location

policy determines a suitably under loaded processor. In other words, it locates

complementary nodes to/from which a node can send/receive workload to improve

the overall system performance. Location-based policies can be broadly classified

as a sender initiated, receiver initiated, or symmetrically initiated. Based on the

information that can be used, load-balancing algorithms are classified as static,

dynamic, or adaptive. In a static algorithm, the scheduling is carried out according

to a predetermined policy. The state of the system at the time of the scheduling is

not taken into consideration.

On the other hand, a dynamic algorithm adapts its decision to the state of

the system. Adaptive algorithms are a special type of dynamic algorithms where the

���

�

parameters of the algorithm and/or the scheduling policy itself is changed based on

the global state of the system. According to another classification, based on the

degree of centralization, load-scheduling algorithms could be classified as

centralized or decentralized. In a centralized system, only a single processor does

the load scheduling. Such algorithms are bound to be less reliable than decentralized

algorithms, where many, if not all, processors do load scheduling in the system.

Load balancing involves assigning to each processor work proportional to its

performance, thereby minimizing the response time of a job. Normally load

balancing is done by migrating the job to buddy processors. A set of processors to

which a processor is directly connected constitutes its buddy set.

To present a load-balancing algorithm adapted to the heterogeneous grid

computing environment. It attempts to propose an adaptive decentralized sender-

initiated load balancing algorithm for computational grid environments. Compare to

former Meta computing where the focus was limited to computation resources,

whereas grid computing takes a broader approach.

1.2.8 A DYNAMIC LOAD BALANCING ALGORITHM IN

COMPUTATIONAL GRID USING FAIR SCHEDULING (U. Karthick

Kumar, 2011)

One of the most challenging issues in grid computing is efficient

scheduling of tasks. Here proposed a load balancing algorithm for fair scheduling,

and compare it to other scheduling schemes such as the Earliest Deadline First,

Simple Fair Task order, Adjusted Fair Task Order and Max Min Fair Scheduling for

a computational grid. It addresses the fairness issues by using mean waiting time. It

scheduled the task by using fair completion time and rescheduled by using mean

waiting time of each task to obtain load balance. This algorithm scheme tried to

provide optimal solution so that it reduces the execution time and expected price for

the execution of all the jobs in the grid system is minimized.

���

�

Dynamic Load Balancing

 Load balancing should take place when the scheduler schedules the task

to all processors. There are some particular activities which change the load

configuration in grid environment. In Fig.1.5 shows an event diagram of dynamic

load balancing algorithm. The activities can be categorized as following:

• Arrival of any new job and queuing of that job to any particular node.

• Scheduler schedules the job to particular processor.

• Reschedule the jobs if load is not balanced

• Allocate the job to processor when it is free.

• Release the processor after it completes the whole job.

Initialization of Algorithm:

Number of tasks that have to be scheduled and workload of tasks are

submitted to number of processors.

Scheduling Task:

Scheduler allocates number of demanded tasks to number of processors

based on fair completion time of each task.

Load Balancing Algorithm:

It applied when the processor task allocation is excessive than the other

after scheduling the task. Rescheduled the task for upper bound and lower bound

processor based on workloads.

�	�

�

Fig.1.5 an Event Diagram for Dynamic Load Balancing Algorithm

Termination:

This process is repeated until all the processor is balanced. Finally,

obtain the optimal solution from the above process. The Fig 1.6 shows the flow

chart of load balancing algorithm. It has proved the best results in terms of

makespan and execution cost. In particular the algorithm allocates the task to the

available processors so that all requesting task get equal amount of time that

satisfied their demand.

�
�

�

Fig. 1.6 Flow Chart of Algorithm

�
��
�

Initialization of Algorithm

Scheduling task to processor by FCT

Calculate MWT for scheduled task

Rescheduled the task based on Wt(x)

Check

Processor is

balanced or

not�

Return the Schedule

Stop

Check

Processor is

balanced or

not�

Balanced

Balanced

Not Balanced

���

�

1.3 PROBLEM DEFINITION

Systems are having heterogeneous network in computational grid. It is

less expensive than purchasing more computational resources to obtain the same

amount of computational power for the computational tasks. In a large scale

distributed environment build a centralized resource mechanism is impractical from

computational view. In the grids, the user’s resource needs are based on goals, time

constraints, priorities and budgets. Performance requirements are satisfied by

assigning tasks to the relevant resource in grid. The complex is allocation of

resources to proper user’s who utilize the maximum resources and the maximum

profit. A key characteristic of grids resources are shared among various

applications, and therefore, the amount of resources available to any given

application highly varies over time. Load balancing is one of the big issues in grid

computing. Static load balancing is a system with servers and computers where

servers balance the load among all computers in a round robin fashion. The

problem of determining which group can arrived job should be allocated to and how

its load can be distributed among computers in the group to optimize the

performance. Also in proposed algorithms, which guarantee finding a load

distribution over computers in a group that leads to the minimum response time or

computational cost.

���

�

CHAPTER 2

IMPLEMANTATION OF DYNAMIC LOAD BALANCING ALGORITHM

IN COMPUTATIONAL GRID USING ZERO CONFIGURATION

SCHEDULING

2.1 EXISTING SYSTEM

Heterogeneous resources are distributed and dynamically available in

different places of the distinct system in computational grid. The resources

requirements are varying depending upon the time constraints, goals, budgets and

priorities. Purchasing the computational resources is expensive than computational

grid in order to obtain the same amount of computational power for their

computational tasks. Delegating tasks to the resources becomes extremely

complicated problem in grid. The ultimate problem is allocation of resources to

proper user’s who utilize the maximum resources and the maximum profit.

Centralized resource allocation mechanism becomes impractical in computational

perspective.

2.1.1 Drawbacks

• The most profound problem of this scheduling structure is its bad fault

tolerance and lack of scalability

• The local user community is often not allowed to bypass the central

scheduler for submitting jobs.

���

�

2.2 PROPOSED SYSTEM

Load Balancing algorithm tried to improve the performance and total

completion time finally proposed a zero configuration scheduling for grid

environment. Here proposed an enhanced algorithm which more efficiently

implements two policies in load balancing algorithm. These two policies are:

Information Policy, and Transfer policy. Dependent on the current system state, the

load decision maker has to decide whether to accept an offered job or not. If the

local system is already highly loaded, it compares with transfer policy and

additionally to near an optimal system which reduces the delay and improves the

performance based on zero configuration scheduling which is shown in Fig 2.1.

���

�

Fig.2.1 Workflow of Zero configuration scheduling

Start

Wait for trigger by

middleware that

some activity

Yes

No

Determine job which

should be migrated

Migrate job from

Heavily Loaded node to

Lightly Loaded node

Update Database

PendingJob _list

PendingJob_list +’j’

End

Is

LightlyLo

aded_list

is empty ?

No

No

No

Yes

Yes

If any

of four

defined

Retrieve Load

Balancing

LoadBa

lancing

_start()

Is

HeavilyLoad

ed_list is

empty

Start

Wait for trigger by

middleware that

some activity

���

�

Advantages

• This approach has significant improvement over the previous algorithm.

• To apply middleware can provide self-.configuration, and guarantees the

interoperability.

• It reduces delay, improves performance and efficiency of the grid systems.

2.3 OVERVIEW OF THE PROJECT

Grid computing is mainly focusing on resource sharing. The scheduling

task is the one of a major problem in grid computing. The proposed load balancing

algorithm for fair scheduling which is used to compare it to other scheduling

schemes such as the Earliest Deadline First, Simple Fair Task order, Adjusted Fair

Task Order and Max Min Fair Scheduling for a computational grid. It scheduled the

task by using fair completion time and rescheduled by using mean waiting time of

each task to obtain load balance. This algorithm scheme tries to provide optimal

solution so that it reduces the execution time and expected price for the execution of

all the jobs in the grid system is minimized. The performance of the proposed

algorithm compared with other algorithms by using simulation. Load balancing

algorithms can be defined by their implementation of the following policies.

Information policy: It states the workload of task information to be collected, when

it is to be collected and from where. Triggering policy: It determines the appropriate

period to start a load balancing operation. Resource type policy: It orders a resource

as server or receiver of tasks according to its availability status. Location policy: It

uses the results of the resource type policy to find a suitable partner for a server or

receiver. Selection policy: It defines the tasks that should be migrated from

overloaded resources (source) to most idle resources (receiver).

2.4 MODULES

• INFORMATION POLICIES

• GRMS (GRID RESOURCE MANAGEMENT SYSTEM)

���

�

• ADAPTIVE DECISION MAKING

• LOAD DELEGATION

2.4.1 Module Description

Information Policies

This policy becomes relevant if more than one exchange partner is

available in the grid. Thus, there exists more than one possibility to delegate a job to

a remote grid participant. For such scenarios, the location policy determines as a

first step the sorted subset of possible delegation targets

Transfer Policy

After the location policy has been applied, the transfer policy specifies

whether a job should be delegated to a certain partner or not. For this purpose, the

policy is applied separately on each partner in a re determined order. Every time the

transfer policy is consulted, it decides whether the job should be executed locally or

delegated to the considered partner.

GRMS (Grid Resource Management Systems)

The GRMS layer consists of a waiting queue and a scheduler. The

waiting queue stores all locally submitted jobs while the scheduler executes a

specific scheduling strategy in order to assign jobs from the waiting queue onto the

available local resources. On MPP system layer, this approach allows the realization

of priorities for jobs of different user groups. Usually, the scheduling strategies are

formulated by the system provider to fulfill the users’ needs. Although many

special-purpose algorithms exist that are tailored for certain MPP system owner

priorities, use the basic and simple First-Come-First-Serve (FCFS) algorithm as an

example on GRMS. This heuristic starts the first job from the waiting queue

whenever enough idle resources are available.

���

�

Adaptive Decision Making

The current state of the system is crucial when deciding on whether to

accept or decline foreign workload, e.g., allowing for additional remote jobs, if the

local system is already highly loaded, seems to be inappropriate.

Dependent on the current system state, the load decision maker has to

decide whether to accept an offered job or not. Thus, represent the acceptance of a

job by an output value of 1 and the corresponding refusal of a job by _1.

Load Delegation

To test the robustness of the pair wise learned rule bases, apply to the 6-

month workloads within the same setups. To this end, only two site grids are

considered and every partner applies its egoistically learned rule base. Note that

AWF is not used in these scenarios anymore. The changes in AWRT and SA are

depicted when both partners applied their learned rule bases to be previously

unknown job submissions.

Obviously, the Evolutionary Load Systems still decrease the AWRT

significantly in all cases. This indicates a high robustness with respect to

submission changes. The AWRT improvements in comparison to the AWF transfer

policy and in additionally to near optimal solutions. Although AWF is a quite naïve

exchange method, it is sufficient for the training purpose. However, for the matter

of comparison, it is more meaningful to compare this approach against the best

achievable solutions. Unfortunately, there exists no such algorithm that can generate

optimal solutions under the given information restrictions. Thus, apply a request-

based exchange method (OPT) that actually relaxes all information restrictions and

allows also backfilling of jobs in the queues.

���

�

CHAPTER 3

RESULTS

3.1 IMPLEMENTATION

Dynamic load balancing algorithms make changes to the distribution of

work among workstations at a run-time; use current or recent load information

when making distribution decisions. Multicomputer with dynamic load balancing

allocates/reallocate resources at runtime based on a priori task information, which

may determine when and whose tasks can be migrated. Zero configuration is a set

of techniques that automatically creates a usable Internet Protocol (IP) network

without manual operator’s intervention or special configuration servers. It is known

as Wireless Auto Configuration or WLAN Auto Configuration.As a result, wireless

auto configuration can provide a significant improvement in Performance over other

algorithms. To apply middleware, this provides a high level abstraction, self

configuration, and guarantees the interoperability.

�	�

�

3.2 Screen Shots

�

Fig.3.1 User Login

�

Fig.3.2 Acknowledgement

�

�
�

�

�

Fig.3.3 User Mail Window

�

���

�

�

Fig.3.4 Grid server

�

Fig.3.5 Policy and Load value

���

�

�

Fig.3.6 Job Delegate to other Middleware

�

Fig.3.7 Accept Remote Job

�

Fig.3.8 Processing Time

���

�

Fig.3.9 Load Delegation

�

Fig.3.10 Job complete

���

�

�

Fig.3.11 Job Complete Acknowledgement

Fig.3.12 Get Details

3.3 DATABASE DESIGN

This table shows the node details such as node name, IP address, port

number, group, status.Table.1 Node Details

Nodename IPAddress Port Group Status

Middleware1 192.68.1.6 7700 G1 Connect

Middleware2 192.68.1.7 7710 G1 Connect

Middleware3 192.68.1.6 7720 G1 Connect

Middleware4 192.68.1.7 7730 G1 Connect

���

�

 This table shows the policy details such as group number, peer name,

individual load, local policy, remote policy.

Table.2 Policy Details

GroupNo Peername IndvLoad Loc_pol Rem_pol

7700 Middleware1 0 150 120

7710 Middleware2 0 37000 25000

7720 Middleware3 0 30000 27000

7730 Middleware4 0 600 500

�

3.4 CONCLUSION AND FUTURE WORK

Grid application performance remains a challenge in dynamic grid

environment. Dynamic load balancing algorithm allocates the tasks to the particular

processors, reschedule the jobs if load is not balanced and get equal shares of the

resources. In this project, the zero configuration scheduling is used to schedule the

job. Here, based on the current system state, load decision maker decides whether to

accept the job or not. If the peer is highly loaded, the load decision maker compares

the transfer policy in addition to near optimal solution. This improves the

performance based on zero configuration scheduling. In future, QoS constrains such

as reliability can used as performance measure.

���

�

APPENDIX

SAMPLE SOURCE CODE

Middleware

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.Timer;

public class MiddleWares extends JFrame implements Runnable

{

private JLabel jLLocalPolicy1;

private JLabel jLRemotePolicy;

private JLabel jLJObHistory;

private JLabel jLBackGround;

private JTextField jTF_LP;

private JTextField jTF_RP;

private JTextArea jTALoadHistory;

private JScrollPane jScrollPane1;

private JButton jBSetLoad;

private JButton jBGetAll;

private JPanel contentPane;

final static int serPort = 7700;

Socket soc,soc1;

ServerSocket ss;

ObjectInputStream ois;

ObjectOutputStream oos;

String name="GridServer1";

int setPort;

GRMS rp = new GRMS(serPort);

public MiddleWares()

{

super();

initializeComponent();

Thread t= new Thread(this);

t.start();

initializeComponent call

try{

rp.node_no = serPort;

DBCon db=new DBCon();

���

�

db.getPolicies(serPort);

String rp=String.valueOf(db.rp);

String lp=String.valueOf(db.lp);

jTF_LP.setText(lp);

jTF_RP.setText(rp);

}catch(Exception n){

n.printStackTrace();

}

this.setVisible(true);

}

private void initializeComponent()

{

jLLocalPolicy1 = new JLabel();

jLRemotePolicy = new JLabel();

jLJObHistory = new JLabel();

jLBackGround = new JLabel();

jTF_LP = new JTextField();

jTF_RP = new JTextField();

jTALoadHistory = new JTextArea();

jScrollPane1 = new JScrollPane();

jBSetLoad = new JButton();

jBGetAll = new JButton();

contentPane = (JPanel)this.getContentPane();

jLLocalPolicy1.setText("Local Policy");

jLRemotePolicy.setText("Remote Policy");

jLJObHistory.setText("Job History");

jLBackGround.setIcon(new ImageIcon("images//icon1.png"));

jTF_LP.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jTF_LP_actionPerformed(e);

}

});

jTF_RP.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jTF_RP_actionPerformed(e);

}

});

jScrollPane1.setViewportView(jTALoadHistory);

jBSetLoad.setText("SetLoad");

jBSetLoad.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jBSetLoad_actionPerformed(e);

���

�

}

});

jBGetAll.setText("Get All Details");

jBGetAll.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jBGetAll_actionPerformed(e);

}

});

contentPane.setLayout(null);

addComponent(contentPane, jLLocalPolicy1, 61,186,105,18);

addComponent(contentPane, jLRemotePolicy, 63,224,110,18);

addComponent(contentPane, jLJObHistory, 62,32,160,18);

addComponent(contentPane, jTF_LP, 204,182,100,22);

addComponent(contentPane, jTF_RP, 203,223,100,22);

addComponent(contentPane, jScrollPane1, 59,54,436,100);

addComponent(contentPane, jBSetLoad, 210,285,83,28);

addComponent(contentPane, jBGetAll, 359,284,102,28);

addComponent(contentPane, jLBackGround, 0,-20,555,442);

this.setTitle("GridServer1 ");

this.setLocation(new Point(650, 0));

this.setSize(new Dimension(550, 433));

this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

}

private void addComponent(Container container,Component c,int x,int y,int

width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

private void jTF_LP_actionPerformed(ActionEvent e)

{

System.out.println("\njTF_LP_actionPerformed(ActionEvent e) called.");

}

private void jTF_RP_actionPerformed(ActionEvent e)

{

System.out.println("\njTF_RP_actionPerformed(ActionEvent e) called.");

}

private void jBSetLoad_actionPerformed(ActionEvent e)

{

System.out.println("\njBSetLoad_actionPerformed(ActionEvent e) called.");

int lp=Integer.parseInt(jTF_LP.getText());

int rp=Integer.parseInt(jTF_RP.getText());

if(rp<lp)

{

�	�

�

DBCon dc=new DBCon();

dc.setPolices(lp,rp,serPort);

JOptionPane.showMessageDialog(this,"Inserted Successfully");

}

else

JOptionPane.showMessageDialog(null,"Remote policy should be less than Local

policy");

}

private void jBGetAll_actionPerformed(ActionEvent e)

{

System.out.println("\njBGetAll_actionPerformed(ActionEvent e) called.");

new GetAllDetails();

}

public void run()

{

try{

Socket soc1;

ServerSocket ss;

ObjectInputStream ois1;

ObjectOutputStream oos1;

String pro="",filenam="";

String zipfile="";

String unzipfile="";

String zipFileNam="";

int clientPort = 0;

byte[] data;

ss=new ServerSocket(serPort);

System.out.println("Server1 Started in :"+serPort);

jTALoadHistory.append(" GridServer1 started");

Timer timer = new Timer();

timer.schedule(rp, 1000, 1000);

while(true)

{

int subPort = 0;

double load=0.0;

soc1=ss.accept();

ois1=new ObjectInputStream(soc1.getInputStream());

String msg =(String) ois1.readObject();

if(msg.equals("delegate")){

clientPort=(Integer)ois1.readObject();

pro= (String)ois1.readObject();

filenam =(String)ois1.readObject();

data=(byte[])ois1.readObject();

jTALoadHistory.append("\nFile :"+filenam+" is Recieved from Node for process :

"+pro);

�
�

�

load = data.length/100;

System.out.println("Load of the file is :"+load);

subPort = rp.process(load,clientPort);

if(subPort == 0)

{

FileOutputStream fos = new FileOutputStream("received\\"+filenam);

fos.write(data);

fos.flush();

if(pro.equals("Zip"))

{

System.out.println(" in side zip");

MyZip mz = new MyZip(filenam);

mz.doZip(filenam);

zipfile=mz.outFilename;

zipFileNam=mz.zipFileNam;

}

else{

System.out.println(" in side zip");

MyUNzip uz=new MyUNzip(filenam);

uz.doUnzip();

unzipfile=uz.outFilename;

zipFileNam=uz.unzipfile;

}

File fi= new File(zipfile);

if(fi.exists())

{

System.out.println("File Exists");

FileInputStream fis = new FileInputStream(fi);

data=new byte[fis.available()];

fis.read(data);

fis.close();

}

fos.close();

System.out.println("ZipFile :"+zipfile);

}

else

{

Socket socSub;

DBCon.setHost(subPort);

String subHost=DBCon.host;

System.out.println("Host :"+subHost +"subPort :"+subPort);

socSub=new Socket(subHost,subPort);

oos=new ObjectOutputStream(socSub.getOutputStream());

oos.writeObject("delegate");

oos.writeObject(serPort);

���

�

oos.writeObject(pro);

oos.writeObject(filenam);

oos.writeObject(data);

ois = new ObjectInputStream(socSub.getInputStream());

zipFileNam=(String)ois.readObject();

data=(byte[])ois.readObject();

}

oos1=new ObjectOutputStream(soc1.getOutputStream());

System.out.println("ZipFile :"+zipfile);

oos1.writeObject(zipFileNam);

oos1.writeObject(data);

oos1.flush();

jTALoadHistory.append("\nFile :"+zipFileNam+".zip is send to Node as :

"+pro+"file");

DBCon.update(filenam,name);

oos1.close(); ois1.close();

}

else if(msg.equals("same")){

filenam =(String)ois1.readObject();

data=(byte[])ois1.readObject();

pro = (String)ois1.readObject();

FileOutputStream fos = new

FileOutputStream("received\\"+filenam);fos.write(data);

fos.flush();

if(pro.equals("Zip"))

{

System.out.println(" in side zip");

MyZip mz = new MyZip(filenam);

mz.doZip(filenam);

zipfile=mz.outFilename;

zipFileNam=mz.zipFileNam;

}

Else

{

System.out.println(" in side zip");

MyUNzip uz=new MyUNzip(filenam);

uz.doUnzip();

unzipfile=uz.outFilename;

zipFileNam=uz.unzipfile;

}

File fi= new File(zipfile);

if(fi.exists()){

System.out.println("File Exists");

FileInputStream fis = new FileInputStream(fi);

data=new byte[fis.available()];

���

�

fis.read(data);

fis.close();

 }

fos.close();

System.out.println("ZipFile :"+zipfile);

oos1=new ObjectOutputStream(soc1.getOutputStream());

System.out.println("ZipFile :"+zipfile);

oos1.writeObject(zipFileNam);

oos1.writeObject(data);

oos1.flush();

jTALoadHistory.append("\nFile :"+zipFileNam+".zip is send to Node as :

"+pro+"file");

DBCon.update(filenam,name);

oos1.close(); ois1.close();

}

}

}

catch(Exception e)

{

e.printStackTrace();

}

}

public static void main(String[] args)

{

JFrame.setDefaultLookAndFeelDecorated(true);

JDialog.setDefaultLookAndFeelDecorated(true);

try

{

UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAnd

Feel");

}

catch (Exception ex)

{

System.out.println("Failed loading L&F: ");

System.out.println(ex);

}

new MiddleWares();

}

}

Service user

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.util.*;

���

�

import java.util.Timer;

import java.net.*;

import java.sql.*;

public class ServiceUser extends JFrame

{

private JLabel jLMidWare;

private JLabel jLFile;

private JLabel jLJobType;

private JTextField jTF_FileName;

private JComboBox jCBMidWare;

private JComboBox jCBJobType;

private JTextArea jTAWorkDetail;

private JScrollPane jScrollPane1;

private JButton jBBrowse;

private JButton jBSubmit;

private JLabel jLBackGround;

private JPanel contentPane;

Socket soc;

Socket soc1;

ServerSocket ss;

ObjectInputStream ois;

ObjectOutputStream oos;

final static int serPort=7700;

String fn, fpath;

String job="";

String midWare="";

public ServiceUser()

{

super();

initializeComponent();

this.setVisible(true);

}

private void initializeComponent()

{

String[]

combo1_str={"Select","Middleware1","Middleware2","Middleware3","Middleware

4"};

String[] combo2_str={"Select Job","Zip","UnZip"};

jLMidWare = new JLabel();

jLFile = new JLabel();

jLJobType = new JLabel();

jTF_FileName = new JTextField();

jCBMidWare = new JComboBox(combo1_str);

jCBJobType = new JComboBox(combo2_str);

���

�

jTAWorkDetail = new JTextArea();

jScrollPane1 = new JScrollPane();

jBBrowse = new JButton();

jBSubmit = new JButton();

jLBackGround = new JLabel();

contentPane = (JPanel)this.getContentPane();

jLMidWare.setText("Middle Ware");

jLFile.setText(" File");

jLJobType.setText("Job Type");

jTF_FileName.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jTF_FileName_actionPerformed(e);

}

});

jCBMidWare.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jCBMidWare_actionPerformed(e);

}

});

jCBJobType.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jCBJobType_actionPerformed(e);

}

});

jScrollPane1.setViewportView(jTAWorkDetail);

jBBrowse.setText("Browse");

jBBrowse.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jBBrowse_actionPerformed(e);

}

});

jLBackGround.setIcon(new ImageIcon("images//icon1.png"));

jBSubmit.setText(" Submit ");

jBSubmit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jBSubmit_actionPerformed(e);

}

});

contentPane.setLayout(null);

addComponent(contentPane, jLMidWare, 64,64,60,18);

���

�

addComponent(contentPane, jLFile, 64,120,60,18);

addComponent(contentPane, jLJobType, 68,220,60,18);

addComponent(contentPane, jTF_FileName, 164,119,100,22);

addComponent(contentPane, jCBMidWare, 163,66,100,22);

addComponent(contentPane, jCBJobType, 164,220,100,22);

addComponent(contentPane, jScrollPane1, 23,305,433,100);

addComponent(contentPane, jBBrowse, 165,160,83,28);

addComponent(contentPane, jBSubmit, 167,266,83,28);

addComponent(contentPane, jLBackGround, 0,-10,555,450);

this.setTitle("ServiceUser");

this.setLocation(new Point(250,100));

this.setSize(new Dimension(481,481));

this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

}

private void addComponent(Container container,Component c,int x,int y,int

width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

private void jTF_FileName_actionPerformed(ActionEvent e)

{

System.out.println("\njTF_FileName_actionPerformed(ActionEvent e) called.");

}

private void jCBMidWare_actionPerformed(ActionEvent e)

{

Object o = jCBMidWare.getSelectedItem();

midWare=o.toString();

System.out.println(">>" + ((o==null)? "null" : o.toString()) + " is selected.");

}

private void jCBJobType_actionPerformed(ActionEvent e)

{

Object o = jCBJobType.getSelectedItem();

job=o.toString();

System.out.println(">>" + ((o==null)? "null" :o) + " is selected.");

}

private void jBBrowse_actionPerformed(ActionEvent e)

{

JFileChooser file=new JFileChooser();

int val=file.showOpenDialog(this);

if(val==JFileChooser.APPROVE_OPTION){

fn=file.getSelectedFile().getName();

fpath=file.getSelectedFile().getPath().toString();

jTF_FileName.setText(fpath);

System.out.println(">> Path :"+fpath+" >>--File name :"+fn);

���

�

}

}

private void jBSubmit_actionPerformed(ActionEvent e)

{

String error="";

String tf=jTF_FileName.getText();

Object job = (String)jCBJobType.getSelectedItem();

Object midWare = (String)jCBMidWare.getSelectedItem();

if(tf.equals(""))

{

error="Browse File and Retry\n";

}

if(job.equals("Select Job"))

{

error+="Choose any Job and Retry\n";

}

if(midWare.equals("Select"))

{

error=error+"Choose a Node and Retry";

}

System.out.println(" ok"+error

if(error.length()<2)

{

if(DBCon.checkDB(fn))

{

System.out.println("trueeeeeeeeksj;lakdjgal;j;k,fgbmdf,.");

ArrayList list=DBCon.getpeerdetail(fn);

sendSame(list,job);

}

else

{

Send(midWare, job);

}

}

else

JOptionPane.showMessageDialog(null,error);

}

void Send(Object oN,Object oP)

{

try{

jTAWorkDetail.append("\nFile : submitted to Middleware :");

new DBCon();

DBCon.setDetailOf(oN);

String host=DBCon.host;

int port=DBCon.port;

���

�

if(port == 0)

JOptionPane.showMessageDialog(null,"The MiddleWare is not available

"+host,"Please Choose Another"+port,JOptionPane.ERROR_MESSAGE);

Else

{

System.out.println(" host "+host+"Port :"+port);

FileInputStream fis = new FileInputStream(fpath);

byte[] data=new byte[fis.available()];

fis.read(data);

soc=new Socket(host,port);

oos=new ObjectOutputStream(soc.getOutputStream());

oos.writeObject("delegate");

oos.writeObject(serPort);

oos.writeObject(oP);

oos.writeObject(fn);

oos.writeObject(data);

ois = new ObjectInputStream(soc.getInputStream());

String zipnam=(String)ois.readObject();

System.out.println("Returned File :"+zipnam);

data=(byte[])ois.readObject();

FileOutputStream fos = new FileOutputStream("middleware//"+zipnam);

fos.write(data);

fos.flush();

fis.close();

fos.close();

oos.close();

 ois.close();

jTAWorkDetail.append("\nFile :"+zipnam+" is Received form MiddleWare "+oN+"

as : "+oP+"file");

}

}catch(Exception e){

e.printStackTrace();

}

}

void sendSame(ArrayList list,Object oP)

{

try

{

FileInputStream fis = new FileInputStream(fpath);

byte[] data=new byte[fis.available()];

fis.read(data);

soc=new Socket(list.get(0).toString(),Integer.parseInt((String)list.get(1)));

oos=new ObjectOutputStream(soc.getOutputStream());

oos.writeObject("same");

oos.writeObject(fn);

���

�

oos.writeObject(data);

oos.writeObject(oP);

ois = new ObjectInputStream(soc.getInputStream());

String zipnam=(String)ois.readObject();

System.out.println("Returned File our Method :"+zipnam);

data=(byte[])ois.readObject();

FileOutputStream fos = new FileOutputStream("middleware//"+zipnam);

fos.write(data);

fos.flush();

fis.close();

fos.close();

oos.close();

ois.close();

jTAWorkDetail.append("\nFile :"+zipnam+" is Received from SameMiddleware as

:'"+oP+"'file");

}

catch(Exception e)

{

e.printStackTrace();

}

}

�	�

�

REFERENCES

1. Brian Towles, William J. Dally, Fellow,” Guaranteed Scheduling For Switches

With Configuration Overhead”, IEEE/ACM Transactions on Networking, Vol. 11,

No. 5, Octomber 2003.

2. Daphne Lopez, S. V. Kasmir raja,” A Dynamic Error Based Fair Scheduling

Algorithm for a Computational Grid”, Journal of Theoretical and Applied

Information Technology - 2009 JATIT.

3. Doulamis, N.D.; Doulamis, A.D.; Varvarigos, E.A.; Varvarigou, T.A "Fair

Scheduling Algorithms in Grids" IEEE Transactions on Parallel and

Distributed Systems, Volume18, Issue 11, Nov. 2007 Page(s):1630 – 1648.

4. Foster, I., and Kesselman, C. (editors), “The Grid: Blueprint for a New Computing

Infrastructure”, Morgan Kaufmann Publishers, USA, 1999.

5. K.Somasundaram, S.Radhakrishnan,” Task Resource Allocation in Grid using

Swift Scheduler”, International Journal of Computers, Communications & Control,

ISSN 1841-9836, EISSN 1841-9844 Vol. IV, 2009.

6. Kyeong-Deok Moon, Young-Hee Lee, and Young-Sung Son, Chae-Kyu Kim,

�Universal Home Network Middleware Guaranteeing Seamless Interoperability

among the Heterogeneous Home Network Middleware”, IEEE Transactions on

Consumer Electronics, Vol. 49, No. 3, AUGUST 2003.

7. M.Kamarunisha, S.Ranichandra, T.K.P.Rajagopal, ”Recitation of Load Balancing

Algorithms In Grid Computing Environment Using Policies And Strategies An

Approach,” International Journal of Scientific & Engineering Research Volume 2,

Issue 3, March- 2011.

8. Pal Nilsson1 and Michał Pi´oro,” Unsplittable max-min demand allocation a

routing problem”.

9. Prabhat Kr.Srivastava, Sonu Gupta, Dheerendra Singh Yadav,” Improving

Performance In Load Balancing Problem On The Grid Computing System”,

International Journal of Computer Applications (0975 – 8887) Volume 16– No.1,

February 2011.

10. R. Buyya, D. Abramson, and J.Giddy Nimro,” An Architecture for a Resource

Management and Scheduling System in a Global Computational Grid,” Proc.

Fourth Int’l Conf. High Performance Computing in Asia- Pacific Region, 2000.

�
�

�

11. Rajkumar Buyya, David Abramson, and Jonathan Giddy,” A Case for Economy

Grid Architecture for Service Oriented Grid Computing “.

12. Saravana kumar E. and Gomathy Prathima,” A novel load balancing algorithm for

computational grid,” International Journal of Computational Intelligence

Techniques, ISSN: 0976–0466 & EISSN:0976–0474 Volume 1, Issue 1, 2010, PP-

20-26.

13. U. Karthick Kumar,” A Dynamic Load Balancing Algorithm in Computational

Grid Using Fair Scheduling”, IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 5, No 1, September 2011 ISSN (Online): 1694-0814.

���

�

LIST OF PUBLICATIONS

1. M. Yogadharani, P. Devaki, “A Dynamic Load Balancing Algorithm In

Computational Grid Using Zero Configuration Scheduling” International

Conference, Advanced Computing, Machines and Embedded Technology,

J.K.K.Nattraja College of Engineering and Technology, komarapalayam, 8
th

and 9
th

March 2013.

2. M. Yogadharani, P. Devaki, “Implementation of Auto Configuration

Scheduling In Computational Grid Using Dynamic Load Balancing

Algorithm”, International Journal of Technical Journals/Google Journals,

May 2013.

