
 ENHANCING QUALITY OF SERVICE

 WIRELESS SENSOR

in partial fulfilment

MASTER OF ENGINEERING

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

KUMARAGURU COLLEGE OF TECHNOLOGY

 (An Autonomous

NHANCING QUALITY OF SERVICE

 IN LOW DUTY-CYCLE

WIRELESS SENSOR NETWORK

A PROJECT REPORT

Submitted by

SHERIN GEORGE

partial fulfilment for the requirement of award of the degree

of

MASTER OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

MARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE 641 049

Institution Affiliated to Anna University, Chennai

APRIL 2013

NHANCING QUALITY OF SERVICE

NETWORKS

for the requirement of award of the degree

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

MARAGURU COLLEGE OF TECHNOLOGY

University, Chennai)

���

�

BONAFIDE CERTIFICATE

Certified that this project work titled “ENHANCING QUALITY OF SERVICE IN

LOW DUTY-CYCLE WIRELESS SENSOR NETWORKS” is the bonafide work of

Ms. SHERIN GEORGE (1120108017), who carried out the research under my

supervision. Certified further, that to the best of my knowledge the work reported herein

does not form part of any other thesis or dissertation on the basis of which a degree or

award was conferred on an earlier occasion on this or any other students.

Prof. N. JAYAPATHI, M.Tech.,

HEAD OF THE DEPARTMENT

Professor

Dept. of Computer Science and

Engineering

Kumaraguru College of Technology

Coimbatore- 641 049

Mr.K.SIVAN ARUL SELVAN, M.E., (Ph.D)

SUPERVISOR

Associate Professor

Dept. of Computer Science and

Engineering

Kumaraguru College of Technology

Coimbatore- 641 049

Submitted for the Project Viva-Voce examination held on ____________.

-------------------------------- -------------------------------

Internal Examiner External Examiner

���

�

ABSTRACT�
�

Recent technologies in wireless communications have enabled the development of

low-cost Wireless Sensor Networks (WSNs). Wireless Sensor Networks usually have

limited energy and transmission capability and hence turn active only when they perform

sensing tasks or communications and remain dormant during idle periods. Broadcasting is

one of the essential services in Wireless Sensor Networks (WSN) and is used to propagate

messages from a node or a source to all other nodes in the network. The control messages

have to be broadcasted from source to other nodes during network configuration. Also, to

query the nodes about an event, message has to be broadcasted to all the nodes. The

broadcasting is also used to propagate routes to the nodes. Hence implementing an

effective broadcast service, which is simple, reliable and energy-efficient with less

overhead, is critical for the effective functioning of Wireless Sensor Networks. In this

project, the Quality of Service of the broadcasting is enhanced by reducing the message

cost and the time cost for low duty-cycle WSNs. This project provides two solutions,

namely, centralized dynamic and distributed solution which improves the Quality of

Service of broadcasting.�

�

�

�

�

�

�

�

�

����

�

� � � � ACKNOWLEDGEMENT

�

First and foremost, I would like to thank the Lord Almighty for enabling me to

complete this project. I express my profound gratitude to Padmabhusan Arutselvar

Dr.N.Mahalingam, B.Sc., F.I.E, Chairman, Dr.B.K. Krishnaraj Vanavarayar, Co-

Chairman, Mr. M. Balasubramaniam, M.Com, M.B.A, Correspondent, Mr.Sankar

Vanavarayar, M.B.A., PGDIEM, Joint Correspondent and Dr.S.Ramachandran,

Ph.D., Principal for providing the necessary facilities to complete my project.�

 I take this opportunity to thank Prof.N.Jayapathi, M.Tech., Head of the

Department, Department of Computer Science and Engineering, for his support and

motivation. Special thanks to my Project Coordinator Dr.V.Vanitha, M.E., Ph.D., Senior

Associate Professor, Department of Computer Science and Engineering for arranging

brain storming project review sessions.

 I register my sincere thanks to my guide Mr. K. Sivan Arul Selvan, M.E.,

(Ph.D.), Associate Professor, Department of Computer Science and Engineering, my

project supervisor. I am grateful for his support, encouragement and ideas. I would like to

convey my honest thanks to all Teaching and Non Teaching Staff members of the

department and my classmates for their support. �

I dedicate this project work to my Parents for no reasons but feeling from bottom

of my heart that without their love this work wouldn’t be possible.

 -SHERIN GEORGE

���

�

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.�

 ABSTRACT iv

 LIST OF FIGURES vii

��LIST OF ABBREVIATIONS viii

1. INTRODUCTION 1

1.1 SENSOR NODE 1 �

1.2 WIRELESS SENSOR NETWORKS ARCHITECTURE 3

1.2.1 Layered Architecture 3

 1.2.2 Clustered Architecture 5�

1.3 ISSUES AND CHALLENGES IN DESIGNING A WSN 7

 1.4 DATA GATHERING 8�

1.4.1 Direct Transmission 8�

 1.4.2 Power-Efficient Gathering for Sensor Information �

 Systems 9�

1.4.3 Binary Scheme 9�

1.4.4 Chain-based Three-level Scheme 9�

 1.5 DATA DISSEMINATION (BROADCASTING) 10�

1.5.1 Need for Broadcasting 10

1.5.2 Basic Techniques in Broadcasting 10

 1.6 LITERATURE SURVEY 12�

 1.6.1 Smart Gossip 12

 1.6.2 Broadcast Storm Problem 14

 1.6.3 Trickle 17

 1.6.4 RI-MAC (Receiver Initiated Medium

 Access Control) 19

 1.6.5 PBBF (Probability Based Broadcast

��

�

Forwarding) 22

 1.6.6 ADB (Asynchronous Duty-Cycle Broadcasting) 25 �

 1.6.7 Opportunistic Flooding 28

 1.6.8 DSF (Dynamic Switch Forwarding) 31 �

 1.6.9 TRAMA (Traffic Adaptive Medium Access) 34

 1.6.10 Reliable Broadcast 39

 �

2. IMPLEMENTATION OF BROADCASTING 42

 2.1 PROBLEM DEFINITION 41

 2.2 QUALITY OF BROADCAST SERVICE 43

 2.3 CENTRALIZED DYNAMIC SOLUTION 45

� � 2.4 DISTRIBUTED SOLUTION 46

�

3. RESULTS 49

� � � 3.1�SYSTEM SPECIFICATION 49�

 3.1.1 Hardware Specifications 49�

 3.1.2 Software Specifications 49�

 3.1.3 Software Descriptions 49

 3.2 SNAP SHOTS 50

 3.3 ANALYSIS 52

 3.3.1 Throughput Curve 52

 3.3.2 Energy Efficiency Curve 52

 3.3.3 Message Cost Curve 53

 3.3.4 Time Cost Curve 54

 3.3.5 Duty Cycle Curve 55

 3.5 CONCLUSION AND FUTURE WORK 57

 APPENDIX 58

� � � REFERENCES� � � � � � � 67�

� � � LIST OF PUBLICATIONS 69

���

�

LIST OF FIGURES�
�

 FIGURE NO. FIGURE NAME PAGE NO. �

 1.1 Components of Sensor Node 2�

 1.2 Layered Architecture 4�

 1.3 Clustered Architecture 6�

 1.4 Overview of RI-MAC 21�

 1.5 Broadcast in PBBF 23�

 1.6 Overview in ADB 27 �

 1.7 Example of Dynamic Scheduling 33�

 1.8 Time Slot Organisation 36�

 2.1 An example of duty-aware broadcast 44�

 2.2 Operations of Distributed Solution 48

 3.1 Broadcasting in centralized solution 50�

 3.2 Low Energy Nodes 51�

 3.3 Broadcasting in Distributed Solution 51�

 3.4 Throughput Curve 52�

 3.5 Energy Efficiency Curve 53�

 3.6 Message Cost Curve 54�

 3.7 Time Cost Curve 55�

 3.8 Duty-Cycle Curve 56�

 �

�

�

����

�

LIST OF ABBREVIATIONS

 ACK - Acknowledgment

 ADB - Asynchronous Duty-Cycle Broadcast

 ADC - Analog to Digital Converter

 AEA - Adaptive Election Algorithm

 CDMA - Code Division Multiple Access

 DSF - Dynamic Switch Forwarding

 MEMS - Micro Electro Mechanical Systems

 PBBF - Probability Based Broadcast Forwarding

 QoS - Quality of Service

 RI-MAC - Receiver Initiated Medium Access Control

 SEP - Schedule Exchange Protocol

 TRAMA - TRaffic Adaptive Medium Access

 WSN - Wireless Sensor Network

��

�

 CHAPTER 1
�

�

INTRODUCTION
�
�

�

�

The Wireless Sensor Networks (WSNs) are highly distributed networks of small,

light-weight wireless nodes, deployed in large numbers to monitor the

environment or system. Monitoring the system includes the measurement of

physical parameters such as temperature, pressure, or relative humidity and co-

operatively passes their data to the main location (sink). The advancements in

Micro-Electro Mechanical Systems (MEMS) have made building sensors

possible.

�

�

�

� The sensor networks are used in a variety of applications. The military

application include battlefield surveillance and monitoring, guidance systems of

intelligent missiles and detection of attacks. The WSNs are also used for forest

fire and flood detection, habitat exploration of animals, patient diagnosis and

monitoring. The WSNs are also making their way into a host of commercial

applications at home and in industries.

 1.1 SENSOR NODES

The Wireless Sensor Networks consists of sensor nodes ranging from few

hundred or even thousands depending on the application. Each sensor node may

be connected to one or more other sensor nodes. Each node of the sensor

networks consists of four units: the sensor unit, the processing unit, the

transceiver unit and the power unit. In addition to the above units, a wireless

sensor node may include a number of application-specific components, for

example a location detection system or mobilizer; for this reason, many

��

�

commercial sensor node products include expansion slots and support serial

wired communication.

Fig 1.1 Components of Sensor Node

�

�

�

Sensing Unit: The main functionality of the sensing unit is to sense or measure

physical data from the target area. The analog voltage or signal is generated by

the sensor corresponding to the observed phenomenon. The continual waveform

is digitized by an Analog-to-Digital Converter (ADC) and then delivered to the

processing unit for further analysis. The sensing unit is a current technology

bottleneck because the sensing technologies are much slower than those of the

semi-conductors.

�

�

�

�Processing Unit: The processing unit which is generally associated with a small

storage unit manages the procedures that make the sensor nodes collaborate with

the other nodes to carry out the assigned sensing tasks.

�

� �

Transceiver Unit: There are three deploying communication schemes in sensors

including optical communication (Laser), Infrared, and Radio-Frequency (RF).

Laser consumes less energy than radio and provides high security, but requires

line of sight and is sensitive to atmospheric conditions. InfraRed uses diffuse

��

�

light or directed light but are limited in its broadcasting capacity. RF is the most

easy to use but requires antenna. Various transmission strategies have been

developed such as modulation, filtering, and demodulation. Amplitude

modulation, which assigns different amplitudes to the binary values (0, 1) and

frequency modulation, which assigns frequencies to the binary values (0, 1) are

standard mechanisms. Amplitude modulation is simple but susceptible to noise.

�

�

�

Power Unit: One of the most important components of a sensor node is the

power unit. Every sensor node is equipped with a battery that supplies power to

remain in active mode. Power consumption is a major weakness of sensor

networks. Any energy preservation schemes can help to extend sensor’s lifetime.

Batteries used in sensors can be categorized into two groups; rechargeable and

non-rechargeable. Often in harsh environments, it is impossible to recharge or

change a battery. While individual sensors have limited sensing region,

processing power and energy, networking a large number of sensors give rise to

a robust, reliable, and accurate sensor network covering a wider region. The

network is fault-tolerant because many nodes sense the same events.

1.2 WIRELESS SENSOR NETWORKS ARCHITECTURE�

�

�

The design of Wireless Sensor Networks is influenced by the factors such

as scalability, fault tolerance and power consumption. The basic kinds of WSN

architecture are layered and clustered.

�

�

1.2.1 Layered Architecture

�

�

A layered architecture has a single powerful base station (BS), and the

layers of sensor nodes around it correspond to the nodes that have same hop-

count to the BS. The Fig 1.2 describes the layered architecture.�

��

�

Applications of layered architecture:�

• In-building wireless backbones�

• Military sensor-based infrastructure �

�

 Unified Network Protocol Framework (UNPF)

�

UNPF is a set of protocols for the implementation of a layered

architecture for WSNs. UNPF integrates three main operations in its protocol

structure: Network initialisation and maintenance Protocol, MAC (Medium

Access Control) protocol and routing protocols.

�

 �

Fig 1.2. Layered Architecture

�

Network initialisation and maintenance Protocol

�

�

• Organises the sensor nodes into different layers. �

• BS broadcasts their identifier (ID) using a known CDMA (Code Division

Multiple Access) common control channel.�

��

�

• All nodes which hear this broadcast record the BS ID.�

• Nodes send a beacon signal with their own IDs.�

• Nodes at single-hop distance form layer one.�

• BS now broadcasts control packet with layer one node IDs.�

• Layer one nodes inform the BS of layer two nodes.�

• BS again broadcast its ID to layer two nodes.�

• Layered structure build by successive rounds of beacons.�

�

MAC protocol

• Each node is assigned a reception channel by BS channel allocation.�

• Channel reuse is such that collisions are avoided.�

• Nodes schedule the transmission lots for all neighbours and broadcasts

the schedules- channel scheduling.�

�

Routing Protocol

�

�

• Downlink from BS is by direct broadcast on the control channel.�

• Enables multi-hop data forwarding from nodes to the BS.�

• Node to which a packet is to be forwarded is selected considering the

remaining energy of the nodes.�

�

1.2.2 Clustered Architecture

�

�

The clustered architecture organises the sensor nodes into clusters, each

governed by a clustered-head. The nodes in each cluster are involved in message

exchanges with their respective cluster-heads, and these heads send messages to

a BS, which is usually an access point connected to a wired network.

�

�

��

�

Clustered architecture is especially useful for sensor networks because of

its inheritance suitability for data fusion. The data gathered by all members of

the cluster can be fused at the cluster-head, and only the resulting information

need to be communicated to the BS. Sensor networks should be self-organising,

hence the cluster formation and election of cluster-heads must be an

autonomous, distributed process. This is achieved through network layer

protocols such as the Low-Energy Adaptive Clustering Hierarchy (LEACH).�

�

�

Fig 1.3 Clustered architecture

�

�

Low-Energy Adaptive Clustering Hierarchy (LEACH)

�

�

• LEACH is an example for clustered architecture.�

• Minimizes energy dissipation in sensor networks.�

• Randomly selects nodes as cluster-heads and performs periodic re-

election.�

• The operation of LEACH is divided into rounds.�

• Each round is divided into two phases in LEACH: set-up and steady

phase.�

�

��

�

Set-up phase

�

�

• A cluster head advertises its neighbours using a CSMA MAC (Carrier

Sense Multiple Access Medium Access Control).�

• Surrounding nodes decide which cluster to join based on the signal

strength of these messages.�

• Cluster heads assign a TDMA (Time Division Multiple Access) schedule

for their members.�

�

Steady phase

�

�

• All source nodes send their data to their cluster heads.�

• Cluster heads perform data aggregation/fusion through local transmission.�

• Cluster heads send them back to the BS using a single direct transmission.�

• After a certain period of time, cluster heads are selected again through the

set-up phase.�

�

�

1.3 ISSUES AND CHALLENGES IN DESIGNING A WSN�

�

�

The WSN has many design issues and challenges. A few are discussed below.�

1. Random Deployment: Sensor nodes are randomly deployed and hence

do not fit into any regular topology. The setup and maintenance of the

network should be entirely autonomous.�

2. Lack of Infrastructure: Therefore, all routing and maintenance

algorithms need to be distributed.�

3. Limited Energy: As the sensors rely on their battery for power, which

cannot be replaced or recharged, the available energy should be used

efficiently.�

	�

�

4. Hardware Design and Energy efficiency: The micro-controller,

operating system and application software should be designed to conserve

power.�

5. Synchronization: Sensor nodes should be able to synchronize with each

other in a completely distributed manner so that TDMA schedules can be

imposed and ordering of the events can be performed without ambiguity.�

6. Adaptability: A WSN should be capable of adapting to changing

connectivity due to the failure of nodes or new nodes powering up.�

7. Real-Time communication: WSN must be supported through provision

of guarantees on maximum bandwidth or other QoS parameters. �

8. Secure Communication: The communication of WSNs in military

applications should be made secure.�

�

�

1.4 DATA GATHERING

�

�

The objective of the data-gathering is to transmit the sensed data from

each sensor node to a BS. One round is defined as the BS collecting data from

all sensor nodes once. The goal of algorithms which implement data gathering is

to maximize the number of rounds of communication before the nodes die and

the network becomes inoperable. This means minimum energy should be

consumed and the transmission should occur with minimum delay, which is a

conflicting requirements. A few data gathering algorithms are discussed below.

�

1.4.1 Direct Transmission

�

�

All sensor nodes transmit their data directly to the BS. This is expensive is

BS is far away from some nodes. Also care should be taken in order to enable

nodes to transmit during their turn to avoid collisions. But this in turn imposes

access delay.

�

�

�

1.4.2 Power-Efficient Gathering for Sensor Information Systems

�

�

• The topology information is available to all nodes.�

• Any node which has one-hop distance to the BS is selected as the leader. �

• A chain of nodes starting from the farthest node is constructed.�

• At every node data fusion is carried out.�

• The leader finally transmits one message to the BS.�

• The leadership is carried out in a sequential order.�

�

1.4.3 Binary Scheme

�

�

• Chain-based scheme, which classifies nodes into different levels.�

• All nodes which receive message rise to the next.�

• The number of nodes is halved from one level to the next.�

• Possible when CDMA, so that transmissions of each level can take place

simultaneously.�

�

1.4.4 Chain-based Three-level Scheme

�

�

• For non-CDMA sensor nodes, chain is constructed as in PEGASIS.�

• The chain is divided into a number of groups to enable simultaneous

transmissions with minimum interference.�

• Within group nodes transmit one at a time.�

• One node from each group aggregates data from all group members and

rises to the next level.�

• In second level, all nodes are divided into two groups.�

• In third level, message exchange between one node from each group of

second level.�

• Finally leader transmits a single message to the BS.�

�

���

�

1.5 DATA DISSEMINATION (BROADCASTING)

�

�

Data dissemination or broadcasting is a process by which queries or data

are routed in the WSN. A node (sink) which is interested in an event seeks

information about it. An interest is a descriptor for a particular kind of data or

event that a node is interested in, such as temperature, intrusion, or presence of

bio-agents. For every event that a sink is interested in, it broadcasts its interest to

its neighbours and periodically refreshes its interest. The interest is propagated

across the network and every node maintains a cache of events to be reported.

The intermediate nodes maintain a data cache and can aggregate the data or

modify the rate of reporting the data. The paths used for data propagation are

modified by preferring the shortest paths and deselecting the weaker or longer

paths. The basic idea of broadcasting is made efficient and intelligent by

different algorithms for interest and data routing.

�

1.5.1 Need for Broadcasting

�

�

• Broadcasting is the way the sink or base station can propagate

information to all nodes.�

• During network configuration control information has to propagate

throughout the network.�

• Upon observing an event, queries have to be propagated across the

network.�

�

1.5.2 Basic Techniques in Broadcasting

�

�

Two basic techniques of broadcasting are flooding and gossiping.�

�

�

Flooding

�

�

In flooding, each node which receives a packet broadcasts it if the

maximum hop-count of the packet is not reached and the node itself is not the

���

�

destination of the packet. This technique does not require complex topology

maintenance or route discovery algorithms. The flooding has some

disadvantages such as propagation of duplicate message to the same node,

overlapping regions of coverage and lack of resource consideration.

�

Gossiping

�

�

Gossiping is a modified version of flooding, where the nodes do not

broadcast a packet, but sent it to a randomly selected neighbour. This avoids the

problem of implosion but it takes a long time for message to propagate

throughout the network. Though gossiping has considerably lower overhead than

flooding, it does not guarantee that all nodes of the network will receive the

same message. It relies on the random neighbour selection to eventually

propagate the message throughout the network. �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

1.6 LITERATURE SURVEY

�

�

In this section, the papers related to broadcasting in Wireless Sensor

Networks are discussed. From that, the QoS in broadcasting is focused and

studied.

�

1.6.1 Smart Gossip

�

�

Kyasanur et al (2006) presented a broadcasting technique called Smart

Gossip which enumerates the “importance” of each node to propagating the

messages. The importance of a node increases if other nodes depend on it for

receiving a message. Hence the node which is more important has to broadcast

with higher probability. Other nodes which are less important propagate with

lower probability. There is no unique subset for dissemination and hence the

responsibility of broadcasting is distributed among multiple subsets which in

turn balance the load. This also leads to better fault tolerance properties. In

Smart Gossip, when a node overhears a message, it tries to infer the sender of

message as a parent, child or sibling by applying simple rules. Based on the

deduced relationships, Smart Gossip assigns different gossip probabilities to

each node. Each node computes a gossip probability its parent should use and

announces this probability to its parent. The parent uses this probability to

broadcast the forth-coming messages. The gossip probabilities assigned to

different nodes are revised periodically considering the changes in topology.

�

Gossip Probability

�

Nodes extract information from overheard gossip messages and attempt to

deduce whether the sender of the message is a parent, child, or a sibling. The

header of each gossip message contains a parent identifier field (pid), and a

required gossip probability field (���������). When a node forwards a gossip

message, it sets the pid field to the identifier of the node from which it received

���

�

the gossip message. Initially, when dependencies are not known, each node

gossips with probability one. Over time, as nodes learn about their dependencies,

the gossip probabilities are refined. Each node computes a gossip probability its

parents should use, and sets the��������� field to this value. Over time, a node

remembers the latest ���������
� value announced by each child i. The gossip

probability used by a node is given by, ��	

��= max(���������
�). If a node has no

children, it still gossips with a low probability to ensure its parents are aware of

the presence of the node.�

�

�

A node may designate the sender of a gossip message as its parent.

However, this is not sufficient because when a child forwards a packet; its parent

may overhear the packet and incorrectly identify the child as a parent. To avoid

this, add an additional check where a node Y, on receiving a packet from node

X, checks if X’s parent (specified in pid field) is either Y or one among Y’s

parents. If pid field is set to Y, then Y adds X as its child. If pid field is set to one

of Y’s parents, then Y adds X as its sibling (i.e., sibling(Y) = {X}). Failing both

these conditions, Y adds X as its parent.�

�

�

Each node maintains four sets - Neighbourset, ParentSet, SiblingSet,

ChildSet. During initialization, a node permanently inserts itself into

Neighbourset and SiblingSet, while the other two sets are empty. Whenever the

node receives a message from any node X with pid field set to some Y, it uses

the following concise rules:

�

• Add X to Neighbourset�

• If Y is not in Neighbourset, add X to ParentSet�

• else if Y is in ParentSet, add X to SiblingSet�

• else if Y is in SiblingSet, add X to ChildSet

���

�

�

�

�

The application that utilizes smart gossip can specify its reliability

requirement as an average reception percentage, �arp. For example, �arp = 90%

implies that the application at the gossip source expects each node in the

network to receive at least 90 out of 100 packets sent out from the source, with

high probability.

�

Advantages

�

�

• The Smart Gossip keeps track of the previous broadcasts and adaptively

adjusts the gossip probabilities.�

• It is adaptable to different topologies. As the gossip probabilities are

revised often it has the advantage of being distributed and light-weight.�

�

Disadvantages

�

�

• This protocol assumes only one message originator at an instant.�

• Also it requires every node to be awake during dissemination.�

�

1.6.2 Broadcast Storm Problem

�

�

Broadcasting refers to sending messages to other hosts in a network. The

broadcast is spontaneous which makes the rebroadcasting result redundant

messages. As the rebroadcasting nodes are close to each other this leads to heavy

contention. Since the timing of the rebroadcasts is highly correlated it ends in

collision. Collectively the problems associated with flooding are known as

broadcast storm problem. An approach used to alleviate the broadcast storm

problem is to inhibit the hosts from rebroadcasting to reduce redundancy. The

contention and collision can be solved by differentiating the timing of

���

�

rebroadcasting. A node does not rebroadcast if the expected additional coverage

is low. Based on this observation, Ni et al (1999) described five schemes

suggested to lessen the effect of broadcast storm problem. The schemes are

probability-based scheme, counter-based scheme, distance-based scheme,

location-based scheme and cluster-based scheme.

�

Probabilistic Scheme

�

�

In probabilistic scheme, when a node receives a message for the first

time, it rebroadcasts with a probability P. This probability decreases when the

same message is heard multiple times. To solve the problems of contention and

collision insert a small delay before rebroadcasting the message. So the timing

can be differentiated.

�

Counter-based scheme

�

�

In counter-based scheme, a counter is used to keep track of the previous

messages. When the same message is heard multiple times, the expected

additional coverage decreases. The rebroadcasting is inhibited if the counter

value is greater than a predetermined threshold value. It facilitates the message

to be propagated only when there is reasonable number of nodes hearing it for

the first time.

�

Distance-based scheme

�

�

In distance-based scheme, the distance between the sender and the host is

computed. When the computed distance is small, there is only little additional

coverage for the host. When the distance is large, the additional coverage is

larger. A minimum distance threshold is computed so that rebroadcasting is

allowed only if the computed distance is smaller than the threshold distance,

rebroadcasting is cancelled. For instance, suppose host H heard a broadcast

���

�

message from S for the first time. If the distance, say d, between H and S is very

small, there is little additional coverage H’s rebroadcast can provide. If d is

larger, the additional coverage will be larger. In the extreme case, if d = 0, the

additional coverage is 0 too. The relationship between the distance d and the

additional coverage is �� - INTC(d). So this can be used as a metric by H to

determine whether to rebroadcast or not. Now, suppose that before a rebroadcast

message is actually sent, host H has heard the same message several times. Let

���� be the distance to the nearest host from which the same message is heard.

Then H’s rebroadcast will provide additional coverage no more than �� -

INTC(����). In the distance-based scheme, ���� is used as the metric to evaluate

whether to rebroadcast or not. If ���� is smaller than some distance threshold D,

the rebroadcast transmission of H is cancelled.

�

Location-based scheme

�

�

The location-based scheme, the location of the broadcasting hosts are

acquired with the use of GPS (Global Positioning System) with respect to

longitude, latitude and altitude. The additional area that can be covered if the

host rebroadcasts the message is calculated. The additional coverage is

compared with a predefined coverage threshold to determine whether the

receiving host should rebroadcast or not. This information is used to estimate the

additional coverage more accurately.�

�

Cluster-based scheme
�

�

The cluster-based scheme allows only the gateway nodes to propagate the

message. In a cluster, the head’s rebroadcast can cover all other hosts in that

cluster if its transmission experiences no collision. Apparently, to propagate the

broadcast message to hosts in other clusters, gateway hosts should take the

responsibility. But there is no need for a non-gateway member to rebroadcast the

message. Hence, the non-gateway nodes are inhibited from rebroadcasting.�

���

�

�

Advantages

�

�

• The broadcast storm problem alleviates the effect of rebroadcasting and

hence contention and collision. �

Disadvantages
�

�

• It suffers from the need that all nodes to be awake during broadcasting.�

• Among the above methods, location based scheme is used more

commonly. But it requires all nodes to be equipped with the GPS devices

with the appropriate accuracy.�

�

�

1.6.3 Trickle

�

�

The first step towards sensor network reprogramming is an efficient

algorithm for determining when motes should propagate code, which can be

used to trigger the actual code transfer. Levis et al (2004) proposed Trickle, an

algorithm for code propagation and maintenance in wireless sensor networks.

Trickle uses the concept of polite gossip. A node periodically broadcasts its

metadata. The metadata describes the code each node has. Trickle sends the

metadata to local broadcast address.�

�

�

There are two options when a node receives the metadata; it either finds

that the code is up to date or it finds that it has an older version of the code.

When a node hears a metadata that is identical to its metadata, it stays quiet.

When a node finds that any other node has old metadata, it generates a code

update so that the node which has old metadata can be made up to date. Each

mote maintains a counter c, a threshold k, and a timer t in the range [0,�]. k is a

small, fixed integer (e.g., 1 or 2) and � is a time constant. When a node hears a

metadata identical to its own, it increments c. At time t, the mote broadcasts its

metadata if c < k. When the interval of size� completes, c is reset to zero and t is

�	�

�

reset to a new random value in the range [0, �]. If a mote with code �� hears a

summary for����, it broadcasts the code necessary to bring ���� up to��. If it

hears a summary for ����, it broadcasts its own summary, triggering the mote

with ���� to send updates.

�

�

�

Using the Trickle algorithm, each mote broadcasts a summary of its data

at most once per period �. If a mote hears k motes with the same program before

it transmits, it suppresses its own transmission. In perfect network conditions – a

lossless, single-hop topology – there will be k transmissions every�. If there are

n motes and m non-interfering single-hop networks, there will be km

transmissions, which is independent of n. Instead of fixing the per-mote send

rate, Trickle dynamically regulates its send rate to the network density to meet a

communication rate, requiring no a priori assumptions on the topology. In each

interval � , the sum of receptions and sends of each mote is k.� The random

selection of t uniformly distributes the choice of who broadcasts in a given

interval. This evenly spreads the transmission energy load across the network. If

a mote with n neighbours needs an update, the expected latency to discover this

from the beginning of the interval is
�

���
. Detection happens either because the

mote transmits its summary, which will cause others to send updates, or because

another mote transmits a newer summary. A large � has a lower energy overhead

(in terms of packet send rate), but also has a higher discovery latency.

Conversely, a small � sends more messages but discovers updates more quickly.

This km transmission count depends on three assumptions: no packet loss,

perfect interval synchronization, and a single-hop network. Trickle’s

maintenance algorithm can be easily adapted to also rapidly propagate code

while imposing a minimal overhead. Trickle assumes that motes can succinctly

describe their code with metadata, and by comparing two different pieces of

metadata can determine which mote needs an update.

�

�
�

�

Advantages

�

�

Trickle has been designed for three important benefits.�

• It imposes low maintenance overhead. �

• It can propagate codes quickly.�

• It can scale to thousand-fold changes in network density.�

• In addition, it is capable of handling network repopulations, and is

healthy to manage network transience, loss and disconnections.�

�

�

�

Disadvantages

�

�

• It does not consider the active/dormant schedules of the WSN and

assumes nodes that a awake receive the periodic updates. �

• Also the transmission scalability suffers under the CSMA protocol as

utilization increases. �

�

�

1.6.4 RI-MAC (Receiver Initiated Medium Access Control)

�

�

Sun et al (2008) proposed RI-MAC, an asynchronous duty-cycle protocol,

which does not require synchronization among the nodes in the network. The

sender of the RI-MAC stays silent until it receives an explicit signal from the

receiver announcing when to start data transmission.� Every node periodically

wakes up based on its active/dormant schedule and checks if there are any

incoming data for this node. If the medium is idle, it immediately broadcasts a

beacon announcing it is awake and is ready to receive data frame. A node which

has data to send transmits the data as soon as it receives the beacon from the

intended receiver. The data transmission will be acknowledged by another

beacon. The beacon serves as an acknowledgement and also invites new data

���

�

transmission to same receiver. If there is no data for the receiver, the node goes

to sleep. The working of RI-MAC is shown in Fig 1.4.

�

�

�

In RI-MAC, each node periodically wakes up based on its own schedule

to check if there are any incoming DATA frames intended for this node. After

turning on its radio, a node immediately broadcasts a beacon if the medium is

idle, announcing that it is awake and ready to receive a DATA frame. A node

with pending DATA to send, node S in this figure, stays active silently while

waiting for the beacon from the intended receiver R. Upon receiving the beacon

from R, node S starts its DATA transmission immediately, which will be

acknowledged by R with another beacon. The ACK beacon’s role is twofold:

first, it acknowledges the correct receipt of the sent DATA frame, and second, it

invites a new DATA frame transmission to the same receiver. If there is no

incoming DATA after broadcasting a beacon, the node goes to sleep. RI-MAC

significantly reduces the amount of time a pair of nodes occupy the medium

before they reach a rendezvous time for data exchange. This short medium

occupation time enables more contending nodes to exchange DATA frames with

their intended receivers, which helps to increases capacity of the network and

thus potential throughput. More importantly, this increase is adaptive, by letting

a beacon serve both as an acknowledgment to previously received DATA and as

a request for the initiation of the next DATA transmission. In RI-MAC, medium

access control among senders that want to transmit DATA frames to the same

receiver is mainly controlled by the receiver.

�

���

�

�

Fig 1.4: Overview of RI-MAC

�

�

�

A beacon frame in RI-MAC always contains a Src field, which is the

address of the source transmitting node of the beacon. A beacon can also include

two optional fields, depending on the roles the beacon serves: Dst, for

destination address, and BW, for backoff window size. A node that receives a

beacon can determine which fields are present in the beacon by looking at the

size of the beacon. A beacon in RI-MAC can play two simultaneous roles: as an

acknowledgment to previously received DATA, and as a request for the

initiation of the next DATA transmission. After node R wakes up and senses

clear medium, R transmits a base beacon. If the medium is busy, R does a

backoff and attempts to transmit the beacon later. After receipt of the first

DATA frame from S, in the following beacon transmission by R, the Dst field is

set to S to indicate that this beacon also serves as the acknowledgment for the

DATA received from S. Similar to ACK transmission, transmission of this

acknowledgment beacon starts after SIFS delay, regardless of medium status.

Nodes other than S ignore the Dst field in the beacon and treat it as a request for

the initiation of a new data transmission.

�

Advantages

�

�

• RI-MAC support broadcasting either by unicast data transmission or by

repeated transmission of data back-to-back for a time equal to sleep

���

�

interval. The RI-MAC reduces the time a sender and its intended receiver

occupies the medium. �

• As the medium access is controlled by the receiver, the RI-MAC is more

capable in detecting collisions and recovering lost data frames. �

• RI-MAC also reduces overhearing, as a receiver expects incoming data

only within a small window after beacon transmission.�

• It has lower cost for detecting collisions and recovering lost DATA

frames, and higher power efficiency, especially when the network load

increases.�

�

Disadvantages�

• The end-to-end latency is high in RI-MAC.�

• The RI-MAC suffers for power efficiency under light load.�

�

�

1.6.5 PBBF (Probability-Based Broacasting Forwarding)

�

�

Miller et al (2005) described PBBF, which is a MAC layer approach

which can be incorporated into any sleep scheduling protocols. PB BF can be

integrated into MAC protocols via two parameters: (1) p, which is the

probability that a node rebroadcast immediately without ensuring that any of its

neighbours are awake, and (2) q, which is the probability that at a given instant,

a given node which is expected to be asleep stays awake due to its

active/dormant schedule and is the receiver of the immediate broadcast.� PBBF

can be described using Fig 1.5. Node 1 has to broadcast the message which is to

be sent after AW1.Utilizing parameter p, Node 1 broadcasts message

immediately without waiting for AW2 to announce it. Node 3 which stays awake

due to the parameter q, receives the immediate broadcast. Node rebroadcasts the

message via normal broadcast and hence waits for AW2 to announce it, so as to

���

�

ensure that each of the neighbouring nodes receive the message. Node 2 receives

this message and rebroadcasts it to its neighbours.�

�

�

 Fig 1.5 Broadcast in PBBF

�

The pseudo-code of changes to any sleep scheduling protocol required for PBBF

is given below. �

Sleep-Decision-Handler ()�

 /* Called at the end of active time */�

 /* If stayOn is true, remain on; otherwise sleep*/�

 stayOn false�

if DataToSend = true or DataToRecv = true�

 then�

 stayOn true�

 else if Uniform-Rand(0, 1) < q�

 then stayOn true�

Receive-Broadcast (pkt)�

 /* Called when broadcast packet pkt is received */�

 if Uniform-Rand(0, 1) < p�

���

�

 then Send(pkt)�

else Enqueue(nextPktQueue, pkt)

�

�

The original sleep scheduling protocol is a special case of PBBF with p =

0 and q = 0. The always-on mode (i.e., no active-sleep cycles) can be

approximated by setting p = 1and q = 1. PBBF is still slightly different than

always-on in this case because it still has the byte overhead (e.g., sending

synchronization beacons) and temporal overhead (i.e., PBBF cannot send data

packets during the ATIM window) of active-sleep cycles. Through the use of

two parameters, p and q, PBBF protocol provides a trade-off between energy,

latency, and reliability. While p presents a trade-off between latency and

reliability (i.e., the fraction of nodes receiving a broadcast), q presents a trade-off

in terms of energy and reliability. As p increases, latency decreases while the

fraction of nodes not receiving a broadcast increases (unless q = 1). As q

increases, energy consumption increases, but the fraction of nodes receiving a

broadcast increases (unless p = 0).� Whenever a node decides to rebroadcast a

message immediately, all the neighbours that are currently awake receives the

message. But if there are no neighbours that are currently awake there will be no

receivers for immediate broadcast. The parameter q allows the nodes to stay

awake regardless of their active/dormant schedules and hence become the

receivers of immediate broadcast.

�

�

�

Advantages

�

�

• PBBF ensures that each node receives at least one copy of the broadcast

message with high probability.�

• It also reduces the latency due to sleeping. �

• The PBBF investigates the trade-offs between reliability, latency and

energy consumption.�

���

�

�

Disadvantages

�

�

• It is difficult to set threshold values for parameters ‘p’ and ‘q’.�

• It has the disadvantage that duty-cycles are subject to changes in network

traffic. �

�

�

1.6.6 ADB (Asynchronous Duty-Cycle Broadcasting)

�

�

Sun et al (2009) proposed ADB which utilises asynchronous duty-cycle

and optimizes the level of transmission to each neighbour individually. As the

neighbours wake up at different schedules, ADB makes use of unicast to

propagate broadcast message to neighbours so that it can learn which of the

neighbours have received the broadcast. ARQ (Automatic Repeat Request) is

used as the part of unicast to improve reliability. Each receiver is updated with

the information on the progress of the broadcast using footer in the data frame.

This avoids redundant transmissions. ADB also allows delegating the

transmission from some neighbour to another neighbour which has better link

quality. This avoids transmission over poor links and hence allows the nodes to

sleep as early as possible. This, in turn reduces the energy consumption and

delivery latency. The working of ADB is explained in Fig 1.6.

�

�

�

In this example, the network consists of three nodes, nodes S, R1, and R2,

all within transmission ranges of each other. Node S wants to broadcast a DATA

packet to all nodes. When R1 wakes up, node S transmits the packet upon

receiving R1’s beacon in the same way as for unicast in RI-MAC. However,

ADB includes a new “footer” in DATA frames and acknowledgment beacons

(ACKs), indicating the progress of the broadcast, including some transmissions

that are about to happen. A receiving node uses this information to avoid

���

�

unnecessary transmissions and to decide whether it should forward the packet to

a neighbour that has not received it. In this example, the ADB footer in the

DATA frame from S informs R1 that R2 has not been reached yet by the

broadcast and that the quality of the link (S, R2) is poor.

�

�

�

Suppose the quality of link (R1,R2) is good (e.g., because of the short

distance). Node R1 decides to deliver the packet to R2 and indicates the good

quality of (R1,R2) in the footer of the ACK to R1. Upon receiving this ACK, S

learns that it is better for R1 to transmit the packet to R2, so S delegates handling

of R2 to R1. As S has no other neighbour to be reached, S then goes to sleep

immediately. When R2 wakes up, R1 unicasts the DATA frame to R2 in the

same way, except that the ADB footer in the DATA frame indicates that S has

received the DATA frame, allowing R2 to sleep immediately because all

neighbours of R2 have been reached. When a node wakes up and receives a

broadcast DATA packet, the node must decide whether or not to transmit it to

each of its neighbours. To facilitate this decision, ADB propagates information

on the progress of the broadcast and on link qualities by embedding this

information into DATA packets and acknowledgment beacons. In order to

efficiently embed this information, each node v includes the status of each of its

neighbours in the footer of DATA and ACK frames. Node v assigns one of the

following values as the status of each neighbour w: REACHED, if w has

received the packet; DELEGATED, if some other node is going to deliver the

packet to w; or P(v,w), an integer representing Q(v,w), otherwise. The P(v,w) is

referred as the priority of this link. If node w’s status is REACHED or

DELEGATED, v does not attempt to transmit the packet to w. Otherwise, v

attempts to transmit the packet to w, and the quality of link (v,w) is indicated by

priority P(v,w). ADB includes the status of all direct neighbours in the footer of

a frame to a node, rather than the status of a subset of neighbours that the

receiver node might be interested in. �

�

���

�

�

Fig 1.6. Overview of ADB

�

�

ADB distributes the status of neighbours using a bitmap that is

constructed based on an append-only neighbour list: once a node v detects a new

neighbour, it appends the neighbour to the end of its neighbour list N(v). A node

v lists the status of neighbours using a bitmap with segments of equal length,

with each segment corresponding to a node in N(v), the set of neighbours of

node v. In order to refer to a node by its position in N(v), N(v) is organized as an

array, with the segments arranged in the same order as the corresponding node in

N(v). In order for a recipient node to be able to decode this bitmap, node v

distributes the neighbour list to direct neighbours. Let Nw(v) denote w’s local

view of v’s neighbour list. Due to packet losses caused by collisions or dynamics

of wireless channels, Nw(v) could be stale and different from N(v). ADB

ensures that Nw(v) is a prefix of N(v). With this property, even if a node w does

not have a current copy of node v’s neighbour list, w can still decode the

beginning portion of a received bitmap without ambiguity. In a more dynamic

network such as with mobility, a version number is assigned to each neighbour

list to avoid ambiguity, but the neighbour list is used to efficiently handle the

common case where sensor nodes are essentially stationary. Also, a node v will

not remove any existing neighbour, say w, from its neighbour list N(v) even if

node w has moved away or has failed. Instead, a node v will use the value zero

for P(v,w) in its bitmap to tell its neighbours it does not currently have a valid

�	�

�

link to node w. When a node receives a broadcast data packet, it decides whether

to transmit it to its neighbours or not, utilising the information on the progress of

the broadcast and link qualities.

�

Advantages

�

�

• ADB coordinates transmissions to a node from its neighbours by

efficiently distributing information on the progress of a broadcast together

with DATA transmissions.�

• Such information also indicates quality of the wireless links from the

neighbours to the node, helping ADB avoid transmission attempts over

poor links.�

• ADB reduces redundant transmissions, collisions and energy

consumption. �

�

Disadvantages
�

�

• ADB has higher message cost and transmission energy.�

• ADB lacks efficiency in large scale networks and while delivering large

chunks of data. �

�

�

1.6.7 Opportunistic Flooding
�

�

Guo et al (2009) described Opportunistic Flooding, which is a flooding

method for low duty-cycle Wireless Sensor Networks. The main aim of

Opportunistic Flooding is to allow packets travels in multiple paths. The

Opportunistic Flooding makes the forwarding decision, so that the packet is

forwarded with higher probability, if the packet reaches opportunistically earlier.

When a node receives a packet it forwards it to its next-hop node if and only if

the packet arrives opportunistically earlier than the packet delivered via an

energy optimal tree.� The Opportunistic Flooding calculates probability mass

�
�

�

function (pmf) of the delay of each node via energy optimal tree to aid the

decision making process. A packet is forwarded opportunistically outside the

energy optimal tree only if this forwarding can reduce the delay significantly.�

For a low-duty-cycle network in which two neighbours seldom wake up at the

same time, a broadcasting packet cannot be received by many nodes

simultaneously. In addition, the delivery ratio of traditional flooding methods

becomes even worse when unreliable links and collisions are taken into account.

Based on the network model, a flooding packet can only be forwarded from

nodes with smaller hop counts to those with larger ones. As a result, the flooding

structure of the network is a directed acyclic graph (DAG) of N vertices. The

weights of the directed edges are the corresponding link quality. Based on the

DAG, a tree structure can be constructed by assigning each node an incoming

link with the best link quality among all incoming links. It can be easily proved

that this tree structure is the energy-optimal one for flooding among all tree

structures generated from the DAG. In other words, if a flooding packet is

forwarded based on this tree, (i.e., a node only receives a flooding packet from

its parent), the expected total number of transmissions is minimized. However,

the flooding via the energy-optimal tree may have a long flooding delay, since a

node’s parent may not receive the flooding packet as early as its other

neighbours, due the opportunistic nature of wireless communication. Based on

this observation, the key idea of opportunistic flooding is to utilize opportunistic

links outside an energy-optimal tree if the transmissions via these links have a

high chance of making the receiving node receive the packet “statistically

earlier” than its parent. Clearly, the flooding structure of the design is

dynamically changing, where a node decides to forward its received flooding

packet to a next-hop node if and only if this transmission is expected to deliver a

new packet to that node, instead of an old/redundant one. In other words, the

packet to be forwarded opportunistically shall be statistically earlier than the

packet that is otherwise delivered via the energy-optimal tree. In order to

���

�

forward opportunistically early packets while avoiding late ones, opportunistic

flooding consists of three major steps:

�

1. The pmf Computation�

�

 Due to unreliable links, the delay of a flooding packet arriving at each

node from its parent through the energy-optimal tree is a random variable.

The probability mass function (pmf) of this delay is first derived for each

node to guide the decision making process. From the pmf, each node

computes its p-quantile delay Dp as the statistically significant threshold

and shares this with all its pervious-hop nodes.

�

2. Decision Making Process �

�

A packet is forwarded opportunistically via the links outside of the

energy-optimal tree only if this forwarding can significantly reduce the

delay . Specifically, a node makes its forwarding decision locally based

on three inputs: (i) the receiving time of the flooding packet, (ii) the link

quality between itself and the next-hop node, and (iii) the p-quantile. The

structure of decision making is dynamically changed for different

flooding packets.

�

3. Decision Conflict Resolution�

�

 Since each node makes its forwarding decision in a purely distributed

manner, it would be the case that multiple nodes decide to forward the

same packet to a common neighbour, which is called decision conflict.

Two conflict resolution techniques are designed to avoid collisions and

save energy further. With dynamic decisions per packet, the design

permits a packet to travel along an opportunistically-fast route instead of a

���

�

fixed one via the energy-optimal tree. At the same time, late packets are

not forwarded to reduce redundancy and save energy.

�

Advantages

�

• The opportunistic flooding reduces the flooding delay and redundancy in

transmission. �

• To improve performance further, a forwarder selection method is used to

alleviate the hidden terminal problem and a link-quality based backoff

method to resolve simultaneous forwarding operations.�

�

Disadvantages

�

�

• The forwarding decision is made based on the receiving time of the

packet, link quality and computed delay.�

• The working schedules of the nodes are fixed and decided by the network.�

�

�

1.6.8 DSF (Dynamic Switch-Based Forwarding)

�

�

Gu et al (2007) proposed DSF, which is designed for networks with

unreliable links and programmed node communication schedules. The delivery

latency is not only due to the fixed schedules but also due to the communication

links. DSF uses multiple potential forwarding nodes at each hop. Each node

retains a sequence of wake-up schedules of forwarding nodes. When the link

quality is perfect, the end-to-end delay is the sum of two types of delays: (1) the

total transmission delay, which is the product of number of hops and t, and (2)

The sleep latency, which is the time spent on waiting for the receivers to wake

up at each hop. However, the unreliable radio links between low-power sensor

���

�

devices suggests that the packet transmission between a sender and a receiver

would not always be 100% successful. As a result, the waiting time at each hop

is highly impacted not only by the node working schedule but also by the link

quality.

�

�

When a node has a packet to be sent it looks up in the wake-up schedule

and wakes up at the earliest time schedule when any of the forwarding nodes

wakes up. The node attempts to send the packet to the forwarding node, which is

awake. If the node receives the packet, forwarding is done. Else the node has to

wake up in the next earlier schedule of any forwarding nodes. This continues

until the transmission is successful. Fig 1.7 demonstrates the packet transmission

process between one sender and n nodes in its forwarding sequence. In Fig 1.7,

node A has a packet with forwarding sequence ��
� = (B1,B2, · · · ,Bn). First, node

A wakes up at time t1 and tries to transmit the packet to the node B1. If the data

delivery is successful, node A ends the current packet forwarding session.

However, if the transmission fails, the node A wakes up again at time �� and tries

to send the packet to the node��. This retransmission process continues with

node A repeatedly trying to send the packet to the node in the sequence ��
�. If the

transmission fails at the last node��, node A drops the packet. For a given sink,

each node maintains a sequence of forwarding nodes sorted in the order of the

wake-up time associated with them.

�

�

To start sending a packet, a node looks up the time associated with the

first node in the sequence, wakes up at that time interval, and tries to send the

packet. If the transmission is successful, forwarding is done. Otherwise, the node

fetches the next wake-up time from the sequence and tries to send the packet

again. This retransmission process over a single hop continues until the sending

node confirms that the packet has been successfully received by one of

forwarding nodes or the sending node reaches the end of the sequence and drops

the packet. DSF reduces the time spent on transmitting a packet. It also

���

�

optimizes the end-to-end delay, source-to-sink delivery ratio and energy

consumption. The maximum time bound for a sender to retransmit a particular

packet is set as T. Consequently, at node e, with known neighbouring nodes and

their corresponding working schedule G, a full sequence of potential forwarding

nodes that wake up before T is available. Because the length of the potential

forwarding sequence of a node is finitely subject to the maximum retransmission

time interval T, under the reality of unreliable link quality among pairs of

wireless sensor devices, packets sent by a source node may not all arrive the

destination sink node. Therefore, when reliable transmission has the highest

priority for a sensor network application, the optimization of the expected data

delivery ratio is critical.

�

�

Fig 1.7. Example of Dynamic Scheduling�

�

�

�

Advantages

�

�

• The major advantage of dynamic switching is the use of a forwarding

sequence to reduce the time spent on transmitting a packet successfully at

each hop rather than waiting for a particular forwarding node to wake up

again after failure.�

�

���

�

Disadvantages

�

�

• DSF is inadequate for low duty-cycle flooding which is an important

function for dissemination�

• In low duty-cycle sensor networks, a sender should not endlessly

retransmit a packet because it would consume significant energy at the

sending nodes.�

�

�

1.6.9 TRAMA (TRaffic Adaptive Medium Access)

�

�

Rajendran et al (2003) proposed TRAMA, which uses a distributed

election method based on the traffic information to determine which nodes can

send during a particular time slot. TRAMA assigns clots to the nodes which has

traffic to send and avoids slots for nodes with no traffic. This makes nodes go to

sleep when there is no traffic. TRAMA consists of three components; (1)

Neighbour Protocol (NP) (2) Schedule Exchange Protocol (SEP) and (3)

Adaptive Election Algorithm (AEA) [9].There are two types of slots namely

signalling slots and transmission slots. NP is used to propagate one-hop

neighbour information to all nodes during signalling slots. As all nodes tries to

propagate their information, the signalling slot is subject to collisions. SEP is

used for exchanging schedules or traffic information during transmission slots.

The schedules contain traffic information which informs about the set of

receivers of a particular node. Every node has to announce its schedule using

SEP before starting actual transmission. AEA is used select the transmitter and

receiver for a particular slot. The selected transmitter can transmit data without

any collision during the transmission slot to the selected receiver.

�

�

���

�

TRAMA selects receivers based on schedules announced by transmitters.

Nodes using TRAMA exchange their two-hop neighbourhood information and

the transmission schedules specifying which nodes are the intended receivers of

their traffic in chronological order, and then select the nodes that should transmit

and receive during each time slot. Accordingly, TRAMA consists of three

components: the Neighbour Protocol (NP) and the Schedule Exchange Protocol

(SEP), which allow nodes to exchange two-hop neighbour information and their

schedules; and the Adaptive Election Algorithm (AEA), which uses

neighbourhood and schedule information to select the transmitters and receivers

for the current time slot, leaving all other nodes in liberty to switch to low-power

mode. TRAMA assumes a single, time-slotted channel for both data and

signalling transmissions. Fig 1.8 shows the overall time-slot organization of the

protocol. Time is organized as sections of random- and scheduled-access

periods. The random-access slots are referred as signalling slots and scheduled-

access slots as transmission slots. Because the data rates of a sensor network are

relatively low, the duration of time slots is much larger than typical clock drifts

NP propagates one-hop neighbour information among neighbouring nodes

during the random access period using the signalling slots, to obtain consistent

two-hop topology information across all nodes. As the name suggests, during the

random access period, nodes perform contention-based channel acquisition and

thus signalling packets are prone to collisions.

�

�

Transmission slots are used for collision-free data exchange and also for

schedule propagation. Nodes use SEP to exchange traffic-based information, or

schedules, with neighbours. Essentially, schedules contain current information

on traffic coming from a node, i.e., the set of receivers for the traffic originating

at the node. A node has to announce its schedule using SEP before starting

actual transmissions.�

�

���

�

�

Fig 1.8: Time slot Organisation

�

SEP maintains consistent schedule information across neighbours and

updates the schedules periodically. AEA selects transmitters and receivers to

achieve collision-free transmission using the information obtained from NP and

SEP. This is the case, because electing both the transmitter and the receiver(s)

for a particular time slot is a necessity to achieve energy efficiency in a collision-

free transmission schedule. AEA uses traffic information (i.e., which sender has

traffic for which receivers) to improve channel utilization. The length of a

transmission slot is fixed based on the channel bandwidth and data size.

Signalling packets are usually smaller than data packets and thus transmission

slots are typically set as a multiple of signalling slots to allow for easy

synchronization.

�

TRAMA starts in random access mode where each node transmits by

selecting a slot randomly. Nodes can only join the network during random

access periods. The duty cycle of random- versus scheduled access depends on

the type of network. In the case of sensor networks, there is very little or no

mobility, depending on the type of application. Hence, the main function of

random access periods is to permit node additions and deletions. Time

synchronization could be done during this period.

���

�

During random access periods, all nodes must be in either transmit or

receive state, so they can send out their neighbourhood updates and receive

updates from neighbours. Hence, the duration of the random access period plays

a significant role in energy consumption. During random access periods,

signalling packets may be lost due to collisions, which can lead to inconsistent

neighbourhood information across nodes. To guarantee consistent

neighbourhood information with some degree of confidence, the length of the

random access period and the number of retransmissions of signalling packets

are set accordingly. NP gathers neighbourhood information by exchanging small

signalling packets during the random access period. Signalling packets carry

incremental neighbourhood updates and if there are no updates, signalling

packets are sent as keep-alive" beacons. Each node sends incremental updates

about its one-hop neighbourhood as a set of added and deleted neighbours.

These signalling packets are also used to maintain connectivity between the

neighbours. A node times out a neighbour if it does not hear from that neighbour

for a certain period of time. The updates are retransmitted such that 0:99

probability of success is ensured. Because a node knows the one-hop neighbours

of its one-hop neighbours, eventually consistent two-hop neighbourhood

information makes its way across the network.

�

SEP establishes and maintains traffic-based schedule information required

by the transmitter and receiver selection. A node's schedule captures a window

of traffic to be transmitted by the node. This information is periodically

broadcast to the node's one-hop neighbours during scheduled access. Nodes

announce their schedule via schedule packets. Because nodes have two-hop

topology information obtained through NP, there is no need to send receiver

addresses in the schedule packet. Instead, nodes convey intended receiver

information using a bitmap whose length is equal to the number of one-hop

neighbours. Each bit in the bitmap corresponds to one particular receiver ordered

by their identities.

�	�

�

�

The total number of receivers supported by this scheme depends on the

size of the data slot and the number of slots for which receivers are announced.

To broadcast a packet, all bitmap bits are set to 1, indicating that all one-hop

neighbours are intended receivers of the packet. If the packet needs to be

multicast to just 14 and 4, then only these bits are set in the bitmap. A node

forms the bitmap for the winning slots based on the current traffic information

for its queue. If the node's queue size is smaller than the number of bitmaps

contained in the schedule, some of the winning slots will go unused. For these

vacant slots, the node announces a zero bitmap. Slots with zero bitmaps could

potentially be used by some other node in the two-hop neighbourhood.

�

The slot after which all the winning slots go unused is called ChangeOver

slot. All unused slots happen contiguously toward the end before the last

winning slot, which is reserved for announcing the next schedule. This

maximizes the length of sleep periods. Nodes maintain schedule information for

all their one-hop neighbours. The schedule information is consulted whenever a

node has the highest two-hop priority to decide if the node will actually transmit

(i.e., it has data to send and thus will use the slot) or will give up the slot to

another node in the neighbourhood. Based on this decision, the schedule

information for the node is updated either using the short summary from the data

packet (if the node is receiving), or assuming transmissions (if the node is

sleeping since it is not the intended receiver of transmitter).

�

Advantages

�

• Avoids the assignment of time slots to nodes with no traffic to send �

• Allows nodes to determine when they can become idle�

�
�

�

• Self adaptive to changes in traffic, node state, or connectivity�

• Prolongs the battery life of each node. �

�

Disadvantages

�

• Signaling slots consume significant energy.�

• Latency gets higher as the load gets higher in the network.�

• Transmission slots are set to be several times longer than the random-

access period�

�

1.6.10 Reliable Broadcast

�

�

Feng and Jiangchuan (2012) described the broadcast problem in low duty-

cycle WSNs. The solution provided, together with their application/deployment-

specific duty cycles, renders the all-node-active assumption impractical. This in

turn introduces a series of new challenges toward implementing network wide

broadcast. From a local viewpoint, since the neighbours of a node are not active

simultaneously, a node would have to forward a message multiple times at

different instances; from a global viewpoint, since the topology is time varying

with no persistent connectivity, if not well planned, the latency for a message to

reach all nodes can be significantly prolonged. Hence the authors solve this

problem in two respective namely centralised dynamic solution and distributed

solution.

�

In the centralised solution, there are two kinds of edges in the graph,

referred to as time edges and forwarding edges, respectively. A time edge

connects two neighbouring vertices along a row, from the earlier to the later. It

corresponds to the case that no node among the receivers R will forward the

message at a time t, and the same coverage state is, thus, inherited by the next

���

�

time slot. A forwarding edge corresponds to forwarding events. Specifically, a

forwarding edge from �� !to ��" !" means that, at time t, one or more active nodes

in R will forward the message, which leads to a new coverage status R’. The R

#R0, and R’ $ R is the set of nodes that newly receive the message in this round

of forwarding. The time-coverage graph can be naturally related to the duty-

cycle-aware broadcast problem: each forwarding sequence corresponds to a path

from �%
& ! to a vertex in the last row, and vice versa. The objective function

'(� �� $ �)* + ,-�-+.-�� $ �)- assigns weight . to each time edge since a delay of

one time unit is incurred, and weight ,� / .(�0 $ �* to a forwarding edge

from�� !to ��" !", where p is the number of nodes in R that forward the message at

time t.

�

The distributed solution focuses on optimal forwarding sequence covering

nodes within two hops, the 1-hop neighbours and 2-hop neighbours. Three

reasons to choose two hops are: (1) it minimizes the computation overhead, and

yet keeps reasonable accuracy; (2) since every node must maintain information

about its direct neighbours, the topology and active/dormant information for 1-

and 2-hop neighbours can be obtained through a simple beacon protocol, without

any extra broad-scope protocols for information dissemination; (3) such

information is sufficient to avoid most of message forwarding contentions.

�

For any node w, a Covering set, or CovSet is defined as the set of 1- and

2-hop neighbours that are known (by w) being covered by at least one

forwarding. A CovSet is created when a new broadcast message is received, and

is updated when node w forwards a broadcast message or a broadcast message is

received or overheard. Specifically, when node w forward a broadcast message,

based on the active/dormant patterns of its neighbours, it will find out those

neighbours that are currently active and thus covered by this message, and then

���

�

add them to its CovSet. And similarly, when a broadcast message is received or

overheard, node w will also find out the currently active neighbours of the

message’s sender and add them to its CovSet. An issue in distributed

implementation is that the sequence calculation at different nodes is not

necessarily synchronized, and is not consistent. This in turn makes the

forwarding sequence calculated by node w differ from another node sequences.

To solve the inconsistency, when the CovSet is changed (updated), node w will

check if this change follows its current forwarding sequence. If the CovSet is

changed due to an overheard message, node w then checks if this message is

forwarded by the sender as indicated in its current forwarding sequence. If not,

node w will recompute the forwarding sequence by incorporating the updated

CovSet. Since the CovSet expands over time, the first row will become closer to

the last row in each recomputation, implying that the computation cost reduces

over time.

�

Advantages

�

• The distributed solurion and centralized dynamic solution is applicable to

diverse schedules.�

• Provides a generic tool for cross-layer optimization�

• Can be easily extended to broadcast a series of messages or broadcast

messages from multiple sources.�

• A balance between efficiency and latency with coverage guarantees. �

�

Disadvantages

�

• Higher computation cost due to maintenance of 2-hop information.�

• Difficulty in obtaining the global connectivity and active/dormant

patterns.�

���

�

• QoS is not considered.�

���

�

�

CHAPTER 2

�

IMPLEMENTATION OF BROADCASTING

�

2.1 PROBLEM DEFINITION

 Broadcasting is one of the essential services in Wireless Sensor Networks

(WSN). Broadcasting is used to propagate messages from a node or source to all

other nodes in the network. The broadcasting involves propagation of data and

control packets. Any node which wishes to query the network about an event has

a query message that is to be broadcasted to all other nodes. The control

messages have to be broadcasted from sink to other nodes during network

configuration. Hence a reliable broadcast service is very important in the

effective functioning of WSNs. Two basic approaches of broadcasting are

flooding and gossiping. Their basic forms are inefficient as they assume all

nodes are active. If all nodes are active during the broadcast process every node

can receive or forward the message. This process of assuming the nodes to be

active is referred as all-node-assumption. The all-node-active assumption fails to

detain the distinguishing character of energy constraint WSNs. The energy

constraint sensor nodes swap between dormant and active states. During the

active state, the nodes execute sensing tasks and communications and thereby

dispose of considerably excessive energy. But during the dormant state the nodes

remain idle consuming less energy. In this context, the term duty cycle is defined

as ratio between active period and full active and dormant period.

���

�

�

 A low duty cycle WSN minimize the time a node spends in overhearing

an unnecessary activity by placing the node in the dormant state. Hence, a low

duty cycle WSN, the nodes have longer existence in the place where they are

deployed for operation. In a low duty cycle WSN, where the number of nodes is

small the broadcast can be enabled by waking up all the nodes through global

synchronization. But it is not possible in large networks as it is difficult to

provide prior knowledge about local timing information and schedules

throughout the entire network. Also, the duty cycles are optimized based on the

application or deployment and hence the broadcast service accepting the

schedules must be a cross-layer optimization of the system. As the nodes in a

network wake up during different time intervals, a node will have to send the

message to its neighbouring nodes several times at different chances. This, in

turn, prolongs the time necessary for a message to reach all the nodes. The

performance degradation also occurs during broadcast in low duty cycle WSN as

it fails to cover the entire network within the acceptable time. This problem can

be overcome by providing two solutions for enhancing the quality of broadcast

service in low duty cycle WSNs namely centralized dynamic and distributed

solution. The centralized dynamic solution is acquired from the tree formed

during the broadcast process. This is applicable to diverse duty-cycle aware

strategies. The distributed solution relies only on local information and

operations for reliable and scalable broadcast service.

2.2 QUALITY OF BROADCAST SERVICE

 In a low duty cycle network, a node can forward the message to its

neighbour only if the neighbour is awake. In addition a node that has already

received the message can only forward it. Also the broadcast message should be

���

�

�

reached to all nodes in the network. Consider a low duty cycle network as shown

in the Fig 2.1. The sink forwards the message to the nodes 1 to 3 only if the three

nodes are awake. Else the sink has to send the message to the three nodes at

different instances depending on the wake-up schedules of the nodes. If there is

no overlapping of the active periods of the nodes (1 to 3), the sink will have to

send the message three times at dissimilar instances. In case of multiple hops for

example the message to reach node 5, if the node 2 is not awake for long time

the message will take longer route through node 1.

�

�

 The quality of the broadcast mainly depends on message cost and time

cost. The message cost which is defined as the number of times the message is

sent can be minimized if there are overlapping active periods of the nodes in the

tree through which the message is propagated. The time cost which is defined as

the time taken for the message to cover the entire network can also be minimized

by forwarding through the active nodes irrespective of the shortest path.

�

Fig.2.1. An example for duty-cycle-aware broadcast

���

�

�

 If the propagation of message is denoted as1(23 43 �, where the node 5�

propagate the message at time ��, then the propagation schedule can be denoted

as described in equation 2.1.�

� + (5� ��* (5� ��* 6 (5� ��*� � � � 2.1)

�

 The message cost is the calculated as -7- � and the time cost can be

calculated from (�) $ ��*, where �) is the starting time of propagation from node

s. The combination of message cost and time cost, ' + -7- 1 / (�) $ ��*, is the

focus of this paper. This can be extended to a wide range of applications by

assigning different weights (89 8:). For the applications that need a message to

be broadcasted immediately can use small 89 with a large 8: . For the

applications that use large message which does not require immediate

propagation can use large 89 with a small 8: which helps in saving the message

cost and the energy. The propagation schedules actually depend on the ratio of

89 8:; and also influence the message cost and the time cost.

2.3 CENTRALIZED DYNAMIC SOLUTION

 The centralized solution is constructed on the basis of time and coverage.

Consider a vertex �� ! , where < represents the sensor nodes that have received

the broadcast message at time �, i.e., the nodes in < have been covered. The set

of nodes in < starts from {sink} and increase until {n}, where n is the total

number of nodes. Each set in < denotes a connected sub-tree of the network from

sink. The sink can be either the sink or any of the nodes in the network that acts

as the source for the message. Only a few set of <s among the =� sub-trees are

active due to the duty cycles of the nodes. The vertex �� ! consists of two kinds

of edges namely time edges and the propagation edges. The time edge is

concerned with the case that no node in the set < is active and hence the

���

�

�

propagation for coverage is carried out in next time slot. The propagation edge

from�� ! to ��> !> correspond to the case that one or more active nodes have

propagated the message and the resulting new coverage at time1�> is denoted

by1<>. This time-space coverage vertex corresponds to the propagation sequence

discussed above. In the function ' + -7- 11 / (�) $ ��*,, for the time edge a weight

18: and a weight 89� / (�) $ ��* is assigned to each propagation edge from�� ! to

��> !> where p is the total number of nodes in the set< that propagate the message

at time �?

�

2.4 DISTRIBUTED SOLUTION

�
�

�

 Using the centralized dynamic solution, the lower bounds of message cost

and time cost can be calculated. It can also be used for assessing different

broadcast strategies. Practically, it very well suited for small networks with

centralized entity and also for large broadcast messages with are low frequent.

For large networks the centralized dynamic solution results in higher

computational cost and also the complexity in obtaining the global connectivity

and the active/dormant schedules. To solve these issues the distributed solution

is addressed in this section.

�

 The distributed solution focuses on the one-hop and two-hop neighbours.

This reduces the computational overhead but still maintains reasonable accuracy.

The global information about two-hop neighbours can be obtained by sending a

simple beacon signal and this also reduces the message forwarding contentions.

For a node w, a Covering Set is defined, which is set of nodes that can be

covered by w in one or more propagations. When a new broadcast message is

received, the Covering Set is created and it is updated when the node w

broadcast the message. For the node w to forward a message, the node will find

out which of the neighbours are active based on the active and dormant

�	�

�

�

schedules and these neighbours will be added to the Covering Set. Also when

any broadcast message is received or overheard, the currently active neighbours

of the message’s sender is also added to the Covering Set. The Covering Set of a

node gives the node’s perception about its neighbours on the broadcast coverage.

The centralized dynamic algorithm is modified accordingly to calculate the

propagation schedule based on the Covering Set. Whenever the Covering Set is

updated, the node w checks if it follows the propagation schedule. Since the

Covering Set gets updated and expanded, the computational cost is lowered over

time.

�

�

�

 The Receiving Set for each node w is introduced to enhance strict

coverage. The Receiving Set is defined as the set of 1-hop and 2-hop neighbours

of node w that have already received the message. When a new broadcast

message is received by w, the Receiving Set is created and appends the sender of

this message to it. Later when the same message is received or overheard from

some other neighbours, the node w appends sender into the Set, if it is not

already in it. If all 1-hop neighbours are included in the Receiving Set, which

ensures that all 1-hop neighbours have received this message, the node w can

stop its propagation. In addition, each node piggy backs its Receiving Set along

with the message. The receiving nodes updates their Receiving Set based on the

piggy backed Receiving Set. A timeout is used to prevent the over-expanding of

the Covering Set. The Covering Set is periodically reset to Receiving Set. The

distributed solution is summarized in Fig 2.2. When a node w wakes-up, it

checks if there is any message arrived for it. If so it checks the message type. If

it is a new broadcast message, the node w creates the Covering Set and

Receiving Set and appends the sender of the message and the nodes in Receiving

Set piggy backed with this message. Also the node w adds the neighbours that

are presently active and are covered by the set into the Covering Set. An ACK is

scheduled, if the received message targets particularly on the node w. If the

�
�

�

�

received message is an ACK, the node w adds the sender of the message into

Covering Set and Receiving Set. Now the node w will check its Receiving Set to

know if all of its neighbours have received the message. If all neighbours are

included in the Set then the node w require no further forwarding and hence can

safely stop releasing the memory used for Covering Set and Receiving Set. Else

the node w checks if its Covering Set follows the current propagation sequence.

If not, node w re-compute the propagation schedule further and the message will

be send until the timeout occurs.�

�

�

Fig.2.2. Operations of a Distributed Solution�

���

�

�

CHAPTER 3�

�

RESULTS �
�

�

�

�

�

3.1 SYSTEM SPECIFICATION

�

3.1.1 Hardware Requirements

�

 Processor : Pentium Dual Core and above�

 Clock speed : 1 GHz�

 Hard Disk : 160 GB �

 RAM : 1 GB or above�

 Cache Memory : 512KB�

 Monitor : Color Monitor �

 Keyboard : 104Keys�

Mouse : 3Buttons�
�

�

3.1.2 Software Requirements

�

 Operating System : Fedora 13�

 Language : Network Simulator 2.32

�

�

3.1.3 Software Specification

�

 The proposed work is implemented using Network Simulator NS2. For

the evaluation purpose, 100 sensor nodes are deployed randomly. The sensing

values for each of the sensor node at each time of sampling are varied randomly

in the range from 0 to 10 joules. The nodes are given a random dormant and

active cycles. A node with a broadcast packet sends the message to other nodes

considering their active state and the remaining energy of the receiving node.

���

�

�

The nodes use the beacon signal to announce their neighbour tables. The

performance of the solution proposed is examined through various simulations.

The metrics used for evaluation are message cost, delay, interval, overhead

involved, throughput and average energy. The various factors that affect the

performance of the solution have been scrutinized. The sensing field is set to a

square of 200m and the range of wireless communication is set to 10m. The

number of nodes is varied between 800 and 2000. A number of topologies have

been generated for each of the settings. During the set-up phase, the active and

dormant schedules of the nodes are developed and exchanged between

neighbours.

3.2 SNAP SHOTS

�

�

Fig 3.1 Broadcasting in centralised solution�

�

���

�

�

�

Fig 3.2 Low Energy Nodes

�

�

 Fig 3.3 Broadcasting in Distributed Solution�

�

�

3.3 ANALYSIS

�

3.3.1 Throughput

�

The throughput of the centralized and the distribut

considered with the packet interval and the

result shows that a better throughput is achieved when the

It concludes that the centralized and distributed s

when there is need for frequent transmission of pac

�

�

3.3.2 Energy Efficiency
�

�

�

 In sensor networks, consumed energy is the primary perfor

measure. Since the transmission of the packets is t

consuming energy,

dynamic and distributed solution has higher energy

Fig 3.4 Throughput Curve

�

�

�

The throughput of the centralized and the distribut

considered with the packet interval and the results are shown in the Fig 3.4

shows that a better throughput is achieved when the packet interval is less.

It concludes that the centralized and distributed solution can be applied even

when there is need for frequent transmission of packets.�

3.3.2 Energy Efficiency�

sor networks, consumed energy is the primary perfor

measure. Since the transmission of the packets is the dominant fa

consuming energy, the interval used as efficiency metric. Both centralised

dynamic and distributed solution has higher energy consumption when the

���

The throughput of the centralized and the distributed solutions are

results are shown in the Fig 3.4. The

shows that a better throughput is achieved when the packet interval is less.

olution can be applied even

sor networks, consumed energy is the primary performance

measure. Since the transmission of the packets is the dominant factor in

as efficiency metric. Both centralised

dynamic and distributed solution has higher energy consumption when the

���

�

�

interval of packet transmission is less. But when the energy consumption slows

down as the interval of packet transmission is more. The results for energy

efficiency are shown in Fig 3.5. The analysis shows a drip in the energy

consumption when the packet transmission is less.�

�

�

�

Fig 3.5 Energy Efficiency Curve
�

�

�

3.3.3 Message Cost
�

�

 The message cost is the number of transmissions required to cover the

entire network. The message cost is considered with the interval of

transmissions. The results are tabulated in Fig 3.6. In centralised dynamic

solution the message cost is same irrespective of the frequency of the messages

send. This is due the smaller size of the network used in centralised dynamic

solution where the entire network can be covered with limited number of

messages. But the distributed solution higher message cost and message cost

��

��

��

��

�	

��

��

��

��

�	

��

��� � ��� � ��� � ��� � ��� � ���

�
�
�
��
�
�
��
	
�

��
�
�

��
��
��
��
��

�������������

������������������������������

!�������"���������������������

���

�

�

decreases as the interval increases. This is due the easy propagation of messages

in a less traffic environment.

�

�

Fig 3.6 Message Cost Curve

�

�

3.3.4 Time Cost
�

�

 The time cost is the time taken for the message to cover the entire

network. The time cost is considered with the interval of transmissions. The

results are tabulated in Fig 3.7. In centralised dynamic solution the time cost is

same irrespective of the frequency of the messages send. This is due the smaller

size of the network used in centralised dynamic solution where the entire

network can be covered with limited number of messages. But the distributed

solution higher time cost and time cost decreases as the interval increases. This

is due the easy propagation of messages in a less traffic environment.

���

�

���

�

���

�

���

�

���

�

��� � ��� � ��� � ��� � ��� � ���

�
�
��
�
�
�
�
��
��
�

�
�
�

�������������

���������������������#�������!$��

!�������"������������#�������!$��

���

�

�

�

�

�

 Fig 3.7 Time Cost Curve�

�

3.3.5 Duty Cycle
�

�

The duty cycle is an important constraint in the low duty cycle WSN. The

duty cycle consists of active and dormant periods. A low duty cycle WSN has

more dormant periods. The dormant time is considered with the overheads

required for transmission and the results are tabulated in Fig 3.8. In centralised

dynamic solution the overhead required is same in spite of the dormant time. In

distributed solution the overhead required increases as the dormant time

increases.

�

�

�

�

	

��

��

��

��

�	

��

��

��

��� � ��� � ��� � ��� � ��� � ���

�
�
��
	
�

�
�
�
��
�

�������������

�������������������������

!�������"����������������

���

�

�

�

�

�

Fig 3.8 Duty-Cycle Curve�

�

���

���

���

���

���

���

���

��� � ��� � ��� � ��� � ��� � ���

�
�
�
��
�
�
�
��

�
�
�

�������� !�������

�������������$�%������%��$���&����

!�������"����$�%������%��'���&����

�	�

�

�

3.4 CONCLUSION AND FUTURE WORK�

�

�

In this project, the quality of broadcast service has been analysed. The

solutions proposed can be used for broadcasting, as the traditional approaches

fail due to their all-node-active assumption. The centralized dynamic solution is

used for small networks and also for assessing other approaches. The distributed

solution which relies on local information and operations has also implemented

as an extension of centralised solution. The performance of both solutions has

been examined under various network configurations and also compared the

solutions with each other. The results obtained shows that the distributed

solution works better than the centralized solution.�

In future, more aspects of quality such as bandwidth and jitter can be

considered for low duty cycle WSN. The solution can also be implemented in

the real world sensor networks to carry out experiments to investigate the quality

of its performance. The solution can also be extended to delay tolerant networks.�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

APPENDIX

�

SOURCE CODE

�

#include <senserp/senserp.h>�

#include <random.h>�

#include <cmu-trace.h>�

#include <energy-model.h>�

#define max(a,b) ((a) > (b) ? (a) : (b))�

#define CURRENT_TIME Scheduler::instance().clock()�

int hdr_senserp::offset_;�

static class SENSERPHeaderClass : public PacketHeaderClass {�

public:�

SENSERPHeaderClass() :�

PacketHeaderClass("PacketHeader/SENSERP", sizeof(hdr_all_senserp)) {�

bind_offset(&hdr_senserp::offset_); }�

} class_rtProtoSENSERP_hdr;�

static class SENSERPclass : public TclClass {�

public:�

SENSERPclass() : TclClass("Agent/SENSERP") {}�

TclObject* create(int argc, const char*const* argv) {�

assert(argc == 5);�

return (new SENSERP((nsaddr_t)�

Address::instance().str2addr(argv[4]))); }�

} class_rtProtoSENSERP;�

int SENSERP::command(int argc, const char *const * argv) {�

if(argc == 2) {�

Tcl& tcl = Tcl::instance();�

if(strncasecmp(argv[1], "id", 2) == 0) {�

���

�

�

tcl.resultf("%d", index); return TCL_OK; }�

if(strncasecmp(argv[1], "rt_entry", 2) == 0) {�

if(scheme==1) sendMsg();�

return TCL_OK; }�

if(strcmp(argv[1], "nbr_table") == 0) {�

if(scheme==1) nb_print(); return TCL_OK;}�

if(strcmp(argv[1], "Routing") == 0) {�

if(scheme==1) Routing(); return TCL_OK;}�

if(strcmp(argv[1], "Routing_table") == 0) {�

if(scheme==1) Routing_tables(); return TCL_OK;}�

if(strcmp(argv[1], "tree_table") == 0) {�

if(scheme==1) tree_print(); return TCL_OK; }�

if(strcmp(argv[1], "nbr_table_announce") == 0) {�

if(scheme==1) sendNbrTableAnn(); return TCL_OK; }�

if(strncasecmp(argv[1], "start", 5) == 0) {�

ntimer.handle((Event*) 0);htimer.handle((Event*) 0);if(index != 0)�

ptimer.handle((Event*) 0);if(scheme == 2) { dtimer.handle((Event*) 0);�

ctimer.handle((Event*) 0);} if(scheme==1) bwtimer.handle((Event*) 0);�

return TCL_OK;} if(strncasecmp(argv[1], "sink", 4) == 0) {if(scheme==1)�

send_announce(); �

printf("N (%.6f): sink node is set to %d, start announceing", CURRENT_TIME,

index);�

return TCL_OK; }�

if(strncasecmp(argv[1], "send_announce", 4) == 0) �

{ if(scheme==1) send_announce();�

return TCL_OK;}} else if(argc == 3) {�

if(strcmp(argv[1], "index") == 0) { �

index = atoi(argv[2]);return TCL_OK;}�

else if(strcmp(argv[1],"log-target") ==0 ||strcmp(argv[1], "tracetarget") == 0) {�

logtarget = (Trace*) TclObject::lookup(argv[2]);if(logtarget == 0)�

���

�

�

return TCL_ERROR; return TCL_OK;}�

else if(strcmp(argv[1], "drop-target") == 0) �

{return TCL_OK;}else if(strcmp(argv[1], "if-queue") == 0) {�

ifqueue = (PriQueue*) TclObject::lookup(argv[2]); �

if(ifqueue == 0) return TCL_ERROR;�

return TCL_OK;}�

else if (strcmp(argv[1], "port-dmux") == 0) {�

dmux_ = (PortClassifier*)TclObject::lookup(argv[2]);�

if (dmux_ == 0){�

fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__, argv[1], argv[2]);�

return TCL_ERROR;}return TCL_OK; }}�

return Agent::command(argc, argv);}�

SENSERP::SENSERP(nsaddr_t id) :Agent(PT_SENSERP),htimer(this),

dtimer(this), ntimer(this), bwtimer(this),ctimer(this), ptimer(this), rqueue() {�

printf("N (%.6f): Routing agent is initialized for node %d \n",

CURRENT_TIME, id);�

index=id; logtarget = 0;�

ifqueue=0;seqno=0;LIST_INIT(&nbhead);�

LIST_INIT(&nbnbhead);bid = 0;bind("MAC_BW",&MAC_BW);�

bandwidth=MAC_BW;bind("sleep_time",&sleep_time);�

bind("dormant_time",&dormant_time);bind("scheme",&scheme);�

TS=2.0;TW=5.0;} void SENSERP::sendHello(){�

Packet *p = Packet::alloc();�

struct hdr_cmn *ch = HDR_CMN(p);�

struct hdr_ip *ih = HDR_IP(p);�

struct hdr_senserp_announce *am = HDR_SENSERP_ANNOUNCE(p);�

am->bw=bandwidth;�

am->x=node_->X();�

am->y=node_->Y();�

am->pkt_type = SENSERP_HELLO;�

���

�

�

am->hop_count=1;�

cout<<"Node: "<<index<<" send hello at "<<CURRENT_TIME<<endl;�

if(scheme == 2){�

nb_set* n_s = new nb_set();�

SENSERP_Neighbour *nb = nbhead.lh_first;�

int i=0;�

for(; nb; nb = nb->nb_link.le_next) {�

n_s->nbrs[i] = nb->nb_addr;�

i++;}�

n_s->count = i;am->nb_set_=n_s;�

am->seqno=++bid; am->hop_count=2;}�

ch->ptype() = PT_SENSERP;�

ch->size() = IP_HDR_LEN + am->size();�

ch->addr_type() = NS_AF_NONE;�

ch->prev_hop_ = index;�

ih->ttl_ = 1;�

Scheduler::instance().schedule(target_, p, 0.0);}�

void SENSERP::recvHello(Packet *p){�

struct hdr_cmn *ch = HDR_CMN(p);�

struct hdr_ip *ih = HDR_IP(p);�

struct hdr_senserp_announce *am = HDR_SENSERP_ANNOUNCE(p);�

if(scheme == 2){if(ih->saddr() == index){�

Packet::free(p);return;}}�

double d= getDistance(node_->X(),node_->Y(),am->x,am->y);�

if(scheme == 2){�

cout<<"Node: "<<index<<" recv hello from "<<ih->saddr()<<" at

"<<CURRENT_TIME<<endl;�

if(am->hop_count == 2)�

for(int i=0;i<am->nb_set_->count;i++){�

���

�

�

set_changed = (set_changed || cov_set.add(am->nb_set_-

>nbrs[i],CURRENT_TIME + (2 * Hello_interval)));}�

set_changed = (set_changed || cov_set.add(ih->saddr(),CURRENT_TIME + (2 *

Hello_interval)));�

set_changed = (set_changed || recv_set.add(ih->saddr(),CURRENT_TIME + (2

* Hello_interval)));�

if(!(--am->hop_count <= 0)){�

if(!(my_seq_list.get_seqno(ih->saddr()) >= am->seqno)) {�

my_seq_list.add(ih->saddr(),am->seqno);�

Packet *np = p->copy();�

struct hdr_cmn *ch1 = HDR_CMN(np);�

ch1->direction() = hdr_cmn::DOWN;�

Scheduler::instance().schedule(target_, np, 0.1 * Random::uniform());}}}�

double wt=0;�

wt=getWeight(ch->size(),am->bw,d);�

nb_insert(ih->saddr(),wt);}�

else {�

nb->weight=wt;�

nb->nb_expire = CURRENT_TIME +(1.5* Hello_Loss * Hello_interval);}�

Packet::free(p);}�

int SENSERP::check_all_nbrs_active(){�

int f=1;�

SENSERP_Neighbour *nb = nbhead.lh_first;�

for(; nb; nb = nb->nb_link.le_next){�

MobileNode *n1;�

n1=(MobileNode*)(Node::get_node_by_address(nb->nb_addr));�

if(n1->energy_model()->sleep_mode_==1)�

f=0;}�

return f;} �

void SENSERP::distributed(){�

���

�

�

if(msg_recv_flag == 0){�

check_for_forwarding_seq();}�

else { message_arrival_proc();}}�

void SENSERP::check_for_forwarding_seq(){�

if(need_to_compute_seq() == 1){�

Compute_forwarding_seq();�

if(check_scheduling_forwarding_seq() == 1){�

issue_message_forwarding();�

if(check_coverset_timeout() == 1){�

reset_coverset();}}else{�

if(check_coverset_timeout() == 1){�

reset_coverset();}}}else {�

if(check_scheduling_forwarding_seq() == 1){�

issue_message_forwarding();�

if(check_coverset_timeout() == 1){�

reset_coverset();}} else {�

if(check_coverset_timeout() == 1){�

reset_coverset();}}}}�

�

int SENSERP::need_to_compute_seq(){�

for(int i=0;i<dest_list_.count;i++){�

if(rt_table_.check(dest_list_.nodeid[i]) == -1)�

return 1;} return 0;}�

void SENSERP::Compute_forwarding_seq(){�

for(int i=0;i<nb_recvset_.count;i++){�

rt_table_.add(nb_recvset_.nodeid[i],nb_recvset_.nexthop[i]);}�

for(int i=0;i<nb_coverset_.count;i++){�

rt_table_.add(nb_coverset_.nodeid[i],nb_coverset_.nexthop[i]);}}�

int SENSERP::check_scheduling_forwarding_seq() {�

for(int i=0;i<dest_list_count;i++){�

���

�

�

if(rt_table_check(dest_list_nodeid[i]) == -1)�

return 1; } return 0;}�

void SENSERP::issue_message_forwarding(){�

double delay=0;�

for(int i=0;i<dest_list_.count;i++){�

if(rt_table_.check(dest_list_.nodeid[i]) == -1){�

issue_message_forwarding(dest_list_.nodeid[i],delay);�

delay += ARP_DELAY;}}}�

void SENSERP::reset_coverset(){{�

nsaddr_t c_nid[100];�

int count=0;�

for(int i=0;i<nb_recvset_.count;i++){�

if(nb_recvset_.exp[i] < CURRENT_TIME){�

c_nid[count++] = nb_recvset_.nodeid[i];}}�

for(int i=0;i<count;i++){�

nb_recvset_.remove(c_nid[i]);}}�

int SENSERP::is_it_new(nsaddr_t nid,int s){�

 if(my_seq_list.get_seqno(nid) < s)�

return 1; return 0; }�

void SENSERP::create_update_coverset(set_ *s) {�

for(int i=0;i<s->c_count;i++){�

nb_recvset_.add(s->cov_set[i],s->sender,Hello_interval);}}�

void SENSERP::create_update_recvset(set_ *s){�

for(int i=0;i<s->c_count;i++){�

nb_coverset_.add(s->recv_set[i],s->sender,Hello_interval);}}�

int SENSERP::update_recvset_coverset(set_ *s){�

int flag=0;�

for(int i=0;i<s->c_count;i++){�

flag = (flag || nb_recvset_.add(s->cov_set[i], s->sender, Hello_interval));}�

for(int i=0;i<s->c_count;i++){�

���

�

�

flag = (flag || nb_coverset_.add(s->recv_set[i],s->sender,Hello_interval));}�

return flag;}�

void SENSERP::send_Ack(Packet *new_p){�

struct hdr_ip *ih1 = HDR_IP(new_p);�

Packet *p = Packet::alloc();�

struct hdr_cmn *ch = HDR_CMN(p);�

struct hdr_ip *ih = HDR_IP(p);�

struct hdr_senserp_announce *am = HDR_SENSERP_ANNOUNCE(p); �

am->pkt_type = SENSERP_ACK;�

set_ *set = new set_();�

set->sender = index;�

for(int i=0;i<recv_set.count;i++) {�

set->recv_set[i] = recv_set.nodeid[i]; }�

set->r_count = recv_set.count;�

for(int i=0;i<cov_set.count;i++){�

set->cov_set[i] = cov_set.nodeid[i];}�

set->c_count = cov_set.count;�

am->set = set;�

ch->ptype() = PT_SENSERP;�

ch->size() = IP_HDR_LEN + am->size();�

ch->addr_type() = NS_AF_INET;�

ch->prev_hop_ = index;�

 ch->next_hop_ = ih1->saddr();�

 ih->saddr() = index;�

ih->daddr() = ih1->saddr();�

 ih->sport() = RT_PORT;�

ih->dport() = RT_PORT;�

ih->ttl_ = 1;�

Scheduler::instance().schedule(target_, p, 0.0);}�

void SENSERP::check_nbr_hav_msg(){�

���

�

�

int nbr_msg = check_neighbours_all_hav_msg();�

if(nbr_msg == 1){�

hdr_senserp_announce *rh = HDR_SENSERP_ANNOUNCE(new_msg);�

delete_rcvset_coverset(rh->set);�

if(check_coverset_timeout() == 1){�

reset_coverset();}}else{�

check_for_forwarding_seq(); }}�

int SENSERP::check_neighbours_all_hav_msg() {�

if(new_msg != NULL){�

hdr_senserp_announce *am = HDR_SENSERP_ANNOUNCE(new_msg);�

if(am->hop_count != 1) �

return 1; }return 0;}�

void SENSERP::delete_rcvset_coverset(set_ *s){�

for(int i=0;i<s->c_count;i++){�

nb_coverset_.rt_delete(s->cov_set[i],s->sender);}�

for(int i=0;i<s->r_count;i++){�

nb_recvset_.rt_delete(s->recv_set[i],s->sender);}}}�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	�

�

�

REFERENCES

�

1. Feng Wang and Jiangchuan Liu “On Reliable Broadcast in Low Duty-Cycle

Wireless Sensor Networks”, IEEE Transactions on Mobile Computing 2012.

2. Guo, S., Gu, Y., Jiang, B., and He, T. “Opportunistic Flooding in Low-Duty-

Cycle Wireless Sensor Networks with Unreliable Links,” Proc. ACM

MobiCom, 2009.

3. Gu, Y. and He, T. “Data Forwarding in Extremely Low Duty-Cycle Sensor

Networks with Unreliable Communication Links,” Proc. ACM Int’l Conf.

Embedded Networked Sensor Systems (SenSys), 2007.

4. Kyasanur, P., Choudhury, R.R. and Gupta, I. “Smart Gossip: An Adaptive

Gossip-based Broadcasting Service for Sensor Networks,” Proc. IEEE Int’l

Conf. Mobile Adhoc and Sensor Systems(MASS), 2006.

5. Levis, P., Patel, N., Culler, D. and Shenker, S. “Trickle: A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor

Networks,” Proc. First Conf. Symp. Networked Systems Design and

Implementation (NSDI), 2004.

6. Miller, M., Sengul, C. and Gupta, I. “Exploring the Energy-Latency Tradeoff

for Broadcasts in Energy-Saving Sensor Networks,” Proc. IEEE Int’l Conf.

Distributed Computing Systems (ICDCS), 2005.

7. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S. and Sheu, J.-P. “The Broadcast Storm

Problem in a Mobile Ad Hoc Network,” Proc. ACM MobiCom, 1999.

8. Rajendran, V., Obraczka, K., and Garcia-Luna-Aceves, J. “Energy-Efficient,

Collision-Free Medium Access Control for Wireless Sensor Networks,” Proc.

ACM Int’l Conf. Embedded Networked Sensor Systems (SenSys), 2003.

9. Sun, Y., Gurewitz, O., Du, S., Tang, L., and Johnson, D. B. “ADB: An

Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling

in Wireless Sensor Networks,” Proc. ACM Conf.Embedded Networked

Sensor Systems (SenSys), 2009.

10. Sun, Y., Gurewitz, O., and Johnson, D.B. “RI-MAC: A Receiver-Initiated

Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in

Wireless Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor

Systems (SenSys), 2008.

�
�

�

�

LIST OF PUBLICATIONS

1. Sherin George and Sivan Arul Selvan, K. “Enhancing the Quality of

Broadcast Service in Low Duty-Cycle WSN” International Conference on

Global Innovations in Technology and Sciences, Saintgits College of

Engineering, Kottayam, 4
th

April 2013.

2. Sherin George and Sivan Arul Selvan, K., “Enhancing Quality of Service in

Duty Cycle Aware Wireless Sensor Networks” National Conference on

Information Technology, Communications and Signal Processing,

Government Engineering College, Wayanad, 2
nd

 March 2013.

3. Sherin George and Sivan Arul Selvan, K., “A Consistent Data Propagation in

Low Duty-Cycle Wireless Sensor Networks” Fifth National Conference on

Computing, Communication and Information Systems, Sri Krishna College

of Engineering and Technology, Coimbatore, 9
th

 February 2013.

�

�

�

�

�

�

�

