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ABSTRACT

Electronics communications have increasingly become more and more the centre of 

our day to day life. As a result methods that allow reliable transmission of information 

will become more and  more important. Information Theory and Error Correction 

codes are the research areas that study how to achieve such a goal. Many error 

correction codes have been presented in the past but in recent years Low Density 

Parity Check Codes (LDPC) has imposed themselves as the best candidate to solve the 

problem. LDPC codes are a class of codes that can achieve reliable communication 

while keeping the complexity of encoder and decoder implementation tractable. If the 

generated LDPC codes have the property that when there  is a single shifts in  a 

codeword it  will  generate another codeword they are  called Quasi-Cyclic LDPC 

codes. In this project an analysis on serial, parallel and partially parallel architectures 

of decoder has been done and based on it the partially parallel architecture optimizes 

area and speed throughput. It is proposed to design a high throughput partially parallel 

architecture for  QC-LDPC decoder  based  on  min  sum algorithm.  This  approach 

reduces the complexity of the architecture and also reduces the storage memories for 

message passing. Regularity in parity check matrices using QC-LDPC makes them 

well suited for VLSI implementation especially in cases where there is heavy use of 

parallelism. They are used as error correcting code in the new DVB-S2 standard for 

satellite transmission of digital television and also in applications where reliable and 

high efficient information transfer is required. 
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Communication systems transmit data from source to destination through a channel or 

medium such as air, wire line and optical fiber. Reliability of the received data depends on the 

channel and external noises that could interface or distort the signal representing the data. Noise 

introduces errors in the received data. Error detection and correction is achieved by adding 

redundant symbols to the original data. Forward Error Correction Code (FEC) is used for error 

correction easily without data need to be retransmitted. Retransmission will result in delay, cost 

and wastes system throughput. Several error correction codes have been developed to improve 

the reliability of the data transfer. Forward Error Correction Codes (FEC)  includes Viterbi, 

convolution codes, Bose Chaudhuri Hocquenghen (BCH) codes, Reed Solomon (RS) codes, turbo 

codes and low density parity check codes (LDPC).[1]

Low Density Parity Check (LDPC) codes are a class of linear block codes, shows good 

error correcting performance approaching Shannon� s limit. Good error correcting performance 

enables efficient and reliable communication. They were first introduced by Gallager in his 

Ph.D. thesis in 1960. But due to the computational complexity in implementing encoder and 

decoder for such codes and the introduction of Reed-Solomon codes, they were mostly ignored 

until about ten years ago. They remained largely neglected for over 35 years. In the mean time 

the field of forward error correction was dominated by highly structured algebraic block and 

convolutional codes. Despite the enormous practical success of these codes, their performance 

fell well short of the theoretically achievable limits set down by Shannon in his seminal 1948 

paper. The relative quiescence of the coding field was utterly transformed by the introduction of 

turbo codes, proposed by Berrou, Glavieux and Thitimajshima, wherein all the key ingredients of 

successful error correction codes were replaced: turbo codes involve very little algebra, emplo y 

iterative, distributed algorithms, focus on average (rather than worst-case) performance, and rely 

on soft (or probabilistic) information extracted from the channel. 

��

New generalizations of Gallager � s LDPC codes by a number of researchers including 

Luby, Mitzenmacher, Shokrollahi, Spielman, Richardson and Urbanke, produced new irregular 

LDPC  codes  which  offer  certain  practical  advantages  and  an  arguably  cleaner  setup  for 

theoretical results. Today, design techniques for LDPC codes exist which enable the co nstruction 

of codes which approach the Shannon� s capacity to within hundredths of a decibel. The main 

research interests are low complexity encoding and efficient decoding schemes.[2] 

The future wireless standards need different scalable properties like multiple code rates, 

multiple code lengths, fixed code lengths, different throughputs depending on the applications. 

LDPC  codes  can  be  designed  to  meet  the  above  requirements.  In  addition  to  the  strong 

theoretical interest  in LDPC codes, such codes have already been adopted in satellite-based 

digital video broadcasting and long-haul optical communication standards, are highly likely to be 

adopted in the IEEE wireless local area network standard, and are under consideration for the 

long-term evolution of third generation mobile telephony. The idea behind these codes dates 

back to the sixties, but recently such coding schemes has been given a fresh analysis and it has 

been shown that they can approach the information theoretical limits at  unprecedented  low 

complexity��The name Low Density comes from the characteristic of their parity-check matrix 

which contains only a few 1 � s in comparison to the number of 0 � s. Their main advantage is 

that they provide a performance which is very close to the capacity for a lot of different channels 

and linear time algorithms for decoding. Furthermore they are suited for implementations that 

make heavy use of parallelism. They use parallel decoding and the simple computation 

operations are the main advantage of the LDPC codes. 

1.2 PROJECT GOAL

The  project  aim  is  to  design  and  implement  a  high  throughput  quasi-cyclic  LDPC 

decoder in FPGA using min sum algorithm. In this project an analysis on serial, parallel and 

partially parallel architectures of decoder has been done and based o n it the partially parallel 

architecture optimizes area and speed throughput. It is proposed to design a high throughput 

partially parallel architecture for QC-LDPC decoder. Pipelining is introduced and the power, 

throughput and delay are compared. [1] 
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Figure 1.1.Overall block Diagram

1.3 SOFTWARES USED

�  ModelSim SE 6.3f 

�  Xilinx ISE 9.2i 

�  Matlab R2008b 

1.4 ORGANIZATION OF THE REPORT

�  Chapter 2  discusses about the LDPC codes. 

�  Chapter 3  discusses the encoding and decoding of LDPC codes 

�  Chapter 4 discusses the min sum algorithm 

�  Chapter 5 discusses the decoder architecture design 

�  Chapter 6  explains the applications 

�  Chapter 7 explain the results and discussions 

�  Chapter 8 discusses conclusion and future work 
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CHAPTER 2

LOW DENSITY PARITY CHECK CODES

2.1 PARITY CHECK CODES

A basic communication system is composed of three parts: a transmitter, channel, and 

receiver. Transmitted information is usually corrupted due to noise and channel distortion. To 

correct these errors, redundancy coding is intentionally introduced, and the receiver employs a 

decoder to make corrections based on the redundancy. [1]LDPC codes is the most popular error - 

correcting control codes (ECC) which shows results very close to the Shannon limit. It also has 

lower error floor and less computation requirement. As a matter of fact, LDPC code has been 

considered in many industrial standards, such as WLAN (802.11n), WiMAX (802.16e), DVB- 

S2, CMMB, and 10GBaseT (802.3an) systems. [3]- [5] 

Figure 2.1: Transmitter Receiver model.

In communication systems the noise are added when the messages are passed over the 

channel. So different error correcting methods are introduced. Parity check method of error 

correction is one of the simplest methods. In parity check method we will only consider binary 

messages and so the transmitted messages consist of strings of 0� s and 1 � s. The essential idea 

of forward error control coding  is to  augment  these  message bits with deliberately 

introduced redundancy in the form of extra check bits to produce a codeword for the message. 

These check bits are added in such a way that code words are sufficiently distinct from one 

another that the transmitted  message  can  be  correctly  inferred  at  the receiver,  even when 

some  bits  in  t he codeword are corrupted during transmission over the channel. 
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The simplest possible coding scheme is the single parity check code (SPC). The SPC 

involves the addition of a single extra bit to the binary message, the value of which depends on 

the bits in the message. In an even parity code, the additional bit added to each message ensures 

an even number of 1s in every codeword. More formally, for the 7-bit ASCII plus even parity 

code we define a codeword c to have the following structure: 

c = [c1 c2 c3 c4 c5 c6 c7 c8]                                                  (2.1) 

Where each ci is either 0 or 1, and every codeword satisfies the constraint 

c1 � �c2 � �c3 � �c4 � �c5 � �c6 � �c7 � �c8 = 0                                                                 (2.2) 

Equation (2.2)  is called  a  parity-check  equation,  in  which the symbol � �� represents 

modulo-2 addition. 

While the inversion of a single bit due to channel noise can easily be detected with a 

single parity check code, this code is not sufficiently powerful to indicate which bit, or indeed 

bits, were inverted. Moreover, since any even number of bit inversions produces a string 

satisfying the constraint (2.2), patterns of even numbers of errors go undetected by this simple 

code. Detecting  more than a single bit  error calls for  increased redundancy in the form of 

additional parity bits and more sophisticated codes contain multiple parity-check equations and 

each codeword must satisfy every one of them. 

2.2 LDPC CODES

Low Density Parity Check (LDPC) codes are error checking and correcting codes, which 

show good error correcting performance approaching Shannon� s limit. The matrix „H � is called 

a parity-check matrix. In LDPC codes the H matrix is sparse. The number of ones in the matrix 

is lesser compared to the number of zeroes. Each row of H corresponds to a parity-check 

equation and each column of H corresponds to a bit in the codeword. Thus for a binary 

code with m parity-check constraints and length n codeword the parity-check matrix is an m × n 

binary matrix 

��

�1 1 0 1 0 0�
� 
�0 1 1 0 1 �

�1 0 0 0 1 1�

�0 0 1 1 0 1�

2.3 REPRESENTATION OF LDPC CODES

Basically there are two different possibilities to represent LDPC codes. Like all linear 

block codes they can be described in two ways 

•    Matrix representation. 

•    Graphical representation. 

2.3.1 MATRIX REPRESENTATION

The parity check constrain can be represented in the form of matrix with 1 � s and 0 � s. 

The matrix given in eqn (2.3) is a parity check matrix with dimension n × m for a (6, 2) code. We 

can now define two numbers describing these matrixes. Wr, (row weight) represent the number of 

1 � s in each row and Wc (column weight) represent number of ones in each column. For a 

matrix to 

be called low-density the two conditions Wc << n and Wr << m must be satisfied. [6], [7]. 

H =                              
0� 

 

�                              � 

 

 
(2.3) 

The matrix H is called a parity-check matrix. Each row of H corresponds to a parity- 

check equation and each column of H corresponds to a bit in the codeword. Thus for a binary 

code with „m� parity-check constraints and length „n� codeword � s the parity-check matrix is 

an m × n binary matrix. The matrix is called sparse since the number of ones in the matrix is less 

compared to the number of zeroes.  In matrix form a string y = [c1 …….cn] is a valid codeword 

for the code with parity-check matrix H if and only if it satisfies the matrix equation Hy
T 

= 0. 

Matrix G is called the generator matrix of the code. The message bits are conventionally 

labeled by u = [u1, u2, …, uk], where the vector „u�   holds the „k �   message bits. Thus the 

codeword c corresponding to the binary message u = [u1u2u3] can be found using the matrix 

equation c = uG. For a binary code with „k � message bits and length „n � code words the 

generator matrix, G, is a k×n binary matrix. The ratio k/n is called the rate of the code. A 

	�

code with k 

	�

message bits contains 2
k  

code words. These code words are a subset of the total possible 2
n

binary vectors of length n. 

2.3.2 GRAPHICAL REPRESENTATION

Tanner introduced an effective graphical representation for LDPC codes. This way of 

representing  the codes  is called  the Tanner  graph.  Tanner  graph  methods are very easy  in 

implementing the message passing between the nodes and the LDPC decoding 
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�

Figure 2.2: Tanner graph representation of parity check matrix

Tanner graphs are bipartite graphs. That means that the nodes of the graph are separated 

into two distinctive sets and edges are only connecting nodes of two different types. The two 

types of nodes in a Tanner graph are called variable nodes (v-nodes) and check nodes (C-nodes). 

Figure 2.2 is an example for such a Tanner graph and represents the same code as the matrix in 

(2.3). The creation of such a graph is straight forward. It consists of m check nodes (the number 

of parity bits) and  n variable nodes (the number of bits in a codeword). Check node fi is 

connected to variable node cj if the element hij of H is a 1. 

The graph representation is analogous to a matrix representation by looking at the 

adjacency matrix of the graph, let H be a binary m x n matrix in which the entry (i; j) is 1 if and 

only if the i
th 

check node is connected to the j
th 

message node in the graph. Then the LDPC code 

defined by the graph is the set of vectors c = (c1…. cn) such that H*c
T  

= 0. The matrix H is 

called a parity check matrix for the code. Conversely, any binary m x n matrix gives rise to a 
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bipartite graph between „n � message and „m� check nodes, and the code defined as the null 

space of  H  is  precisely  the  code  associated  to  this  graph.  Therefore,  any  linear  code  has  

a representation as a code associated to a bipartite graph (note that this graph is not uniquely 

defined by the code). However, not every binary linear code has a representation by a sparse 

bipartite graph if it does, then the code is called a low-density parity-check (LDPC) code. The 

sparsity of the graph structure is key property that allows for the algorithmic efficiency of LDPC 

codes 

2.4 REGULAR AND IRREGULAR LDPC CODES

An LDPC code is called regular if Wc is constant for every column and Wr = Wc * (n/m) 

is constant for every row. The example matrix from equation (2.3) is regular with Wc = 2 and Wr

= 3. It � s also possible to see the regularity of this code while looking at the graphical 

representation. There is the same number of incoming edges for every v-node and also for all the 

c-nodes. If the numbers of 1 � s in each row or column aren� t constant , then the code is called 

an irregular LDPC code. The parity check matrix of LDPC codes is either regular or irregular. 

But the irregular LDPC parity check matrix gives better performance [8], [9]. 

Advantages of LDPC codes are as follows: 

•    LDPC codes have error floor at very lower BER. 

•    The LDPC codes are not trellis based. 

•    LDPC   codes can be made for any arbitrary length according to the requirements. 

•    Rate can be changed for LDPC codes by changing different rows. 

•    They have low decoding complexity. 

•    LDPC   codes are easily implementable. 

•    LDPC   codes have good block error performance.

��

1 0 0 1 0 1 0 1

0 1 1 0 0 1 0 1

0 1 0 1 1 0 0 1

0 1 0 1 0 1 1 0

2.5 QUASI-CYCLIC LDPC CODES

An (n, k) linear block code of dimensions n = mno and k = mko, is called Quasi-Cyclic if 

every cyclic shift of a codeword by no  symbols yields another codeword. Quasi-Cyclic LDPC 

(QC-LDPC) codes have gained the most attention due to the regularity in their parity check 

matrices which is well suited for VLSI implementation. Moreover, QC-LDPC codes can provide 

comparable error correction performance compared with random LDPC codes. As an example, 

consider the following generator matrix of an (8, 4) binary linear code [10]. 

G =                                                                      (2.4) 

This code is Quasi-Cyclic with no = 2, since every row of G is the same as the previous with a 

cyclic shift of two positions. 

QC-LDPC code is a kind of LDPC codes whose parity check matrices consist of the 

blocks of circularly shifted identity matrices.  A codeword is directly generated by a parity check 

matrix. Thus, QC-LDPC code is convenient to choose the parity check matrix H as an array of 

shifting fact (q × q) circulant permutation sub matrices, where some of the sub matrices are given 

an identity matrix or a zero matrix. 

Recently, several quasi-cyclic (QC) LDPC codes are proposed to overcome these 

problems, and they can further be separated into two categories: one is based on finite geometries 

and the other is based on circulant permutation matrices .Both of them can produce medium 

length codes with good minimum distance. Encoding can be done efficiently by using shift 

registers as far as hardware implementation is concerned. 

The results show that these codes perform quite well compared to random LDPC codes at 

moderate block lengths. Furthermore, the required memory for storing these QC-LDPC codes 

can be reduced by a factor 1/p, while p×p circulant permutation matrices are employed. One new 

method to construct the QC-LDPC codes based on the circulant matrices is proposed, and these 

circulant matrices are permuted according to the one-coincidence sequences (OCSs). 
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y

y

�

.

y

This simple method can be used to construct the (j, k)-regular QC-LDPC codes in variety 

of block lengths and rates with no 4-cycles. Since the cycles of short length may degrade the 

performance of LDPC codes, it is necessary to ensure that the Tanner graph of the LDPC codes 

is free of cycles of length 4 and hence has girth at least 6. 

The algebraically constructed QC LDPC codes perform quite well compared to random 

regular LDPC codes at short to moderate block lengths, while for long block lengths, a randomly 

constructed regular LDPC code typically performs somewhat better. Moreover, random regular 

LDPC codes of column weight j>3  are asymptotically good. 

2.6 CONSTRUCTION OF QC-LDPC CODES FROM CIRCULANT 

PERMUTATION MATRICES

A simple method to design a (j, k) regular QC-LDPC code is to construct the preliminary matrix 

Y by constructing the two sequences { a0 ,a1,....a j−1 } and { b0 
,b

1
,...bk−1 } with elements randomly 

selected from GF (p)(p is prime and p>2).The matrix Y is represented as 

� 
� 
� 
� 

Y =  � 
� 

y 0,0 

y1,0 

.

.

y 0,1        .   .

y1,1        .   .

.      .   .

.      .   .

y 0,k −1  � 
y

1,k −1   � 
.    � 

� 
� 

 
 
 
 
 
 

 
(2.5) 

� 
�  j −1,0

y j −1,1      .   . � 
j −1,k −1 � 

 

 

where the (u, v)- th element of Y can be calculated by the following quadratic congruential 

equation for fixed parameter d:

u ,v=[d (au +bv )
2 +eu +ev ] mod(p) 

 
 
(2.6) 

������ �� ����� ���������� �!"������ �������������������� ��

���

1,0 1,1
I (y      ) �

� )

�

�

0

0

0

) ) ) �

) )
.

�

�

�

Then the proposed parity check matrix H can be constructed by using the following equation,

� I (y
� 

 
 
0,0 I (y 0,1         .   . I (y 0,k −1

� 
� I (y    ) I (y   )    .   . 1,k −1 

H = � 
� 
� 
�I (y

. 

. 

j−1,0 I (y

.        .   . 

.        .   . 

j−1,1       
.   . I (y

.      � 
� 
� 
� 

j−i ,k−1  � 

 

 
(2.7) 

Where I(x) is a p × p identity matrix with rows cyclically shifted to the right by x positions. 

For example   I (1) is represented as follows:

�0   1

�0   0

�0   0
I (1) =    � 

� .    .

� .    .
� 
� .    .

�1   0

0   0   .   .   0� 

1   0   .   .     � 

0   1   .   .   0� 

.    .   .   .     
�

 

.    .   .   .   . � 
� 

.    .   .   .   . � 

0   0   .   .     � 

 
 
 
 
 
 

(2.8) 

Hence,  the resulting  H,  which  has  j ones  in  each  column  and  k  ones  in  each row, 

represents a ( , !)-regular LDPC code. This LDPC code is also an [N, K] regular LDPC code, 

where N = kp  is the block length of the QC-LDPC code and K  is the number of message bits. 

Since the cycles of short length may degrade the performance of LDPC codes, it is 

necessary to ensure that the Tanner graph of the LDPC codes is free of cycles of length 4 and 

hence has girth at least 6. It is easy to prove that the parity check H constructed by the proposed 

method can satisfy this. 
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� I (7) I (4) I (20) I (28) I (16)�
� 
� I (5) I (5) I (2) I (18) �

�I (18) I (25) I (19) I (2) I (1) ��

�
�

� �

Example 1: A [155, 64] QC-LDPC code (p = 31). 

Let j=3 and k=5.First construct sequences and then by assuming d=1 and  �  =0 the 

following parity check matrix can be formed by substituting the above parameters in eqns (2.5) 

and (2.6).Therefore the matrix can be represented as

H =                                                   I (0) � 
 
(2.9) 

where I(x) is a 31 × 31 identity matrix with rows shifted cyclically to the right by x positions. 

Example 2: A [305, 64] QC-LDPC code (p = 61).

�I (38)

H  =      � I (17)

��I (25)

I (34) 

I (12) 

I (32)

I (12) 

I (15) 

I (40)

I (47) 

I (13) 

I (55)

I (46)� 

I (27)
� 

I (11) �� 

 
 
 
 
 

 
(2.10)

Example 3: A [905, 64] QC-LDPC code (p = 181).

�I (133)
�
I (168)

H = 

�� I (46)

I (99) 

I (165) 

I (62) 

I (144) 

I (82) 

I (29) 

I (145) 

I (176) 

I (180) 

I (148)� 

I (172)
� 

I (125)�� 
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2.7 IMPORTANT DESIGN PARAMETERS

Design  of  QC-LDPC  codes  involves  many  parameters  which  are  often 

determined in consideration of the target application: 

Code size:

The code size specifies the dimensions of the parity check matrix (M x N).Sometimes the 

term code length is used referring to N. Generally a code is specified using its length and row- 

column weights in the form (N, j, k). M can be deduced from the code parameters N, j, and k. It 

has been shown that very long codes perform better then shorter ones. Long codes therefore are 

desirable to have good performance. However, their hardware implementation requires more 

resources (memory plus professing nodes).[12] 

Code Weights and Rate:

The rate of the code R, is the number of information bits over the total number of bits 

transmitted. It is expressed as   (N – M / N).Higher row and column weights results in more 

computations  at  each  node because of many  incoming  messages.  However,  if  many  nodes 

contribute in estimating the probability of a bit the node reaches a consensus faster. Higher rates 

mean fewer redundancy bits. That is, more information data is transmitted in block resulting in 

higher throughput. However, low redundancy means less protection of bits and therefore less 

decoding performance or higher error rate. Low rate codes have more redundancy with fewer 

throughputs. More redundancy results in more decoding performance. However, very low rate 

codes may have poor performance with a small number of connections. LDPC codes with 

minimum column- weight of two have their minimum distance increasing logarithmically with 

code size as compared to a linear increase for codes with column weight of three or higher. As a 

result column-weight two codes perform poorly when compared to higher column-weight codes. 

Column-weights higher than two are usually used. Although regular codes are commonly used, 

carefully constructed irregular codes could have better error correcting performance. 

Number of iterations:

The number of iterations is the number of times the received bits are estimated before a hard 

decision is made by the decoding algorithm. A large number of iterations may ensure decoding 

���

algorithm convergence but will increase decoder delay and power consumption. The number of 

corrected errors generally decreases with an increasing number of iterations. In performance 

simulations a large number of iterations, (about 100 to 200), can be used. For practical 

applications 20 to 30 iterations are commonly used.

Girth:

Cycles in the Tanner graph lead to correlations in the marginal probabilities passed by the 

sum-product  decoder;  the  smaller  the  cycles  the  fewer  the  number  of  iterations  that  are 

correlation free. Thus cycles in the Tanner graph affect decoding convergence, and the smaller 

the code girth, the larger the effect. Definite performance improvements can be obtained by 

avoiding 4-cycles and 6-cycles from LDPC Tanner graphs but the returns tend to diminish as the 

girth is increased further. 

Expansion:

A related concept to the graph girth is the graph expansion. In a good expander every subset 

of vertices has a large number of neighbors that are not in the subset. More precisely, any subset 

S of bit vertices of size m or less is connected to at least �� |S| constraint vertices, for some 

defined m and �. If a Tanner graph is a good expander then the bit nodes of a small set of 

erroneous codeword bits will be connected to a large number of check nodes, all of which will be 

receiving correct information from an even larger number of the correct codeword bits. Using 

only a simple hard decision decoding algorithm they proved that a fixed fraction of errors can be 

corrected in linear time provided that the Tanner graph is a good enough expander. 

Code structure:

The structure of the code   is determined by the pattern of connections between rows and 

columns. The connection pattern determines the complexity of the communication interconnect 

between check and variable processing nodes in an encoder and decoder hardware 

implementations. Random codes do not follow any predefined or known  pattern in row-column 

interconnections. Structured codes on the other hand have a known inter connection pattern. 

Many methods have been developed for constructing those type of codes. 
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In this chapter, various LDPC code construction approaches have been proposed. All 

these  approach  construct  a  low-density  parity-check  matrix  H  .  Although  the  parity check 

matrices of LDPC codes are sparse by code construction, the generator matrices are usually high 

density matrices. Therefore, the direct encoding approach, c = uG , has the encoding complexity 

of O(N 2 ) , where N is the block length of an LDPC code. To reduce the encoding complexity, 

various efficient encoding method has been proposed. Each one is usually only suitable for a 

specific class of LDPC codes. The encoding details for QC-LDPC codes are presented in the 

coming chapter. 
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CHAPTER 3

ENCODING AND DECODING OF LDPC CODES

3.1 ENCODING PROCESS

The LDPC encoder transforms each input message block „u" into a distinct N-tuple (N-

bit sequence) code word „c" . The codeword length N, where N > K, is then referred to as the 

block- length. And, there are 2k distinct code words corresponding to the 2K message blocks. 

This set of the 2
K 

code words is termed as a C(N,K) linear block code. The word linear signifies 

that the modulo-2 sum of any two or more code words in the code C(N,K) is another valid 

codeword. The number of non-zero symbols of a codeword „c" is called the weight, while the 

number of bit- positions in which two code words differ is termed as the distance. The 

minimum distance of a 

linear code is denoted by dmin, and determined by the weight of that codeword in the code 

C(N,K), which has the minimum weight.[13],[14]. 

The unique and distinctive nature of the code words implies that there is a one-to-one 

mapping between a K-bit information sequence „u" and the corresponding N-bit codeword „c"

described by the set of rules of the encoder. 

A generator matrix „G" is   determined by performing Gauss–Jordan elimination on „H"

to 

obtain it in the form:

H '= [A, I N −K 
] 

 

(3.1) 

Where „A" is a (N-K) × K binary matrix and IN-K is the size N-K identity matrix. The generator 

matrix is then:

G = [A, I
N − K

(3.2) 

Since LDPC codes are linear, a codeword is generated by multiplying the input vector 

with the generator matrix,

c = uG (3.3) 
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Where „c" is the code word and „u" is the input vector bits. Since „G" matrix is not 

sparse, 

the matrix multiplication at the encoder will have complexity in the order of n
2 

operations. 

3.2 DECODING OF LDPC CODES

The class of decoding algorithms used to decode LDPC codes is collectively termed 

message-passing algorithms (MPA) since their operation can be explained by the passing of 

messages along the edges of a Tanner graph. Each Tanner graph node works in isolation, only 

having access to the information contained in the messages on the edges connected to it. The 

message-passing algorithms are also known as iterative decoding algorithms as the messages 

pass back and forward between the bit and check nodes iteratively until a result is achieved (or 

the process halted). Different message-passing algorithms are named for the type of messages 

passed or for the type of operation performed at the nodes. In some algorithms, such as bit- 

flipping decoding, the messages are binary and in others, such as belief propagation decoding, 

the messages are probabilities which represent a level of belief about the value of the code word 

bits.

It is often convenient to represent probability values as log likelihood ratios, and when 

this is done belief propagation decoding is often called sum-product decoding since the use of 

log likelihood ratios allows the calculations at the bit and check nodes to be computed using sum 

and product operations. The decoding algorithms are normally classified in to two they are hard 

decision algorithm and Soft decision algorithms. Soft decision algorithm which is based on the 

concept of belief propagation gives better decoding performance and therefore is a preferred 

method. The decoding can be done iteratively since the parity check matrix is sparse the LDPC 

codes have less complexity compared with Turbo codes [16] 

3.3 MESSAGE PASSING ALGORITHM

The messages passed along the Tanner graph edges are straightforward: a bit node sends 

the same outgoing message M to each of its connected check nodes. This message, labeled Mi. 

for the i-th bit node, declares the value of the bit „1" or „0" . The check nodes send back 
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different messages to each of their connected bit nodes. This message, labeled Ej,i for the 

message from 
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�1 1 0 1 0 0�
� 
�0 1 1 0 1 �

�1 0 0 0 1 1�

�0 0 1 1 0 1�

the j-th check node to the i-th bit node, declares the value of the i-bit „1" or „0" as determined 

by 

the j-th check node. If the bit node of an erased bit receives an incoming message which is „1" or 

„0" the bit node changes its value to the value of the incoming message. This process is 

until some maximum number of decoder iterations has passed and the decoder gives up. 

The advantages of LDPC decoding algorithms are that they will use tanner graph and 

iterative decoding methods. They consist of two sets of nodes check nodes and bit nodes. They 

both are in different levels, Connected each other. Within one level there is no connection so the 

parallel processing can be done easily. This will speed up the decoding process

H  =                                     
0� 
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Figure 3.1: Representation of parity check constrain of LDPC codes
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The notation Bj  is used to represent the set of bits in the j
th  

parity-check equation of the 

code. So for the parity check constrain shown in figure 3.1 we have 

B1 = {1, 2, 4}             B2 = {2, 3, 5}             B3 = {1, 5, 6}             B4 = {3, 4, 6}. 

Similarly, we use the notation Ai to represent the parity-check equations which check on 

the ith bit of the code. So for the parity check constrain shown in figure 3.1 we have 

A1 = {1, 3} A2 = {1, 2} A3 = {2, 4}

A5 = {1, 4} A5 = {2, 3} A6 = {3, 4}.

Algorithm outlines message-passing decoding on the BEC. Input is the received values 

from the detector, y = [y1, . . . , yn] which can be „1" , „0" , and output is M = [M1, . . . ,Mn] 

which can also take the values „1" , „0" . 

The data are sometime send over the erasure channel. The MPA algorithm will help to 

find the erased bit. Thus the message passing algorithm (MAP) helps to find out the reassured 

bits at the decoder. This message passing algorithm can be used in erasure channel where the 

received bits can be „0" ," 1" or x the unknown bit. The specialty of the channel is that it 

will receive either a receive either a true bit or bit x. It will not produce an error bit. The 

unknown bit x can be found out by the message passing algorithm by passing of messages 

between bit nodes and check nodes 

3.4 HARD DECISION DECODING

The bit-flipping algorithm is a hard-decision message-passing algorithm for LDPC codes. 

A binary (hard) decision about each received bit is made by the detector and this is passed to the 

decoder. For the bit-flipping algorithm the messages passed along the Tanner graph edges are 

also binary. A bit node sends a message declaring if it is a one or a zero, and each check node 

sends a message to  each connected bit  node, declaring what  value the bit  is based on  the 

information  available  to  the  check  node.  The  check  node  determines  that  its  parity-check 

���

equation is satisfied if the modulo-2 sum of the incoming bit values is zero. If the majority of the 

messages received by a bit node are different from its received value the bit node changes (flips) 

its current value. This process is repeated until all of the parity-check equations are satisfied, or 

until some maximum number of decoder iterations has passed and the decoder gives up. 

The bit-flipping decoder can be immediately terminated whenever a valid code word has 

been found by checking if all of the parity-check equations are satisfied. This is true of all 

message-passing decoding of LDPC codes and has two important benefits; firstly additional 

iterations are avoided once a solution has been found, and secondly a failure to converge to a 

code word is always detected. The bit-flipping algorithm is based on the principle that a code 

word bit involved in a large number of incorrect check equations is likely to be incorrect itself. 

The sparseness of H helps spread out the bits into checks so that parity-check equations are 

unlikely to contain the same set of code word bits. The bit-flipping algorithm applies the hard 

decision on the received vector, y = [y1, . . . , yn], and output is M = [M1, . . . , Mn]. 

The steps of the message passing algorithm is given below 

Step 1: Initialization 

Step 2: Check-node update 

Step 3: Variable-node update 

Step 4: Decision 

Step 1: initialization 

This is the first phase of MPA. In this phase in tanner graph the bit nodes are assigned the 

value of the received code word, this can or cannot be true. Then the bit nodes will send the 

information in to the corresponding check nodes to which they are connected .at the check node 

exor operations are performed. If all the result of the exor operation is zero then what ever code 

word we got is the actual code word or else there is an error in the code word which have to be 

corrected. So messages are passed between the bit nodes and the check nodes 
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Figure 3.2: Initialization of the bit node

In the case of received bits     [1 0 1 0 1 1]     the value of the check bits are 

B0 = 1              B1 =0              B2 =1             B3=0 

Since all the bits in this case is not zero this is not satisfying the parity check equations and this 

is not the actual code word 

Step 2: Check-node update 

This is the next step in decoding. The check nodes will send the values they hold to all 

the bit nodes to which they have connected. Eij    is the value passed from the j
th 

check node to the 

i
th 

bit node. Since one check node is connected to  three bit nodes .it will take the incoming value 

from any two of the bit node and exor in and passed to the third one .this can be summarised in 

terms of all Eij" s 

E11 = 0            E31 = 0 

E22 = 0            E12 = 0 

E23 = 1            E43 = 1 

E14 = 1            E44 = 0 

E25 = 1            E35 = 0 

E36 = 0            E46 = 1 
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Figure 3.3: Check node message updates

Step 3: Variable-node update 

The variable node values are up dated by looking the message from the check nodes .this 

will look maximum polling algorithm. That means each bit node will get messages from the two 

check nodes .That is two bits it can be of four different combinations they are  {0,0} {0,1} {1,0} 

{1,1}.thus if the update from the check nodes are {1,0} or {0,1} whatever we received at the 

receiver is taken as the correct. But when the received information from the check node are {1, 

1} by maximum polling algorithm we will take the correct bit as „1" whatever we 

received. Similarly in the case of {0,0} we will take the error free received bit as „0" for 

whatever we 

received

Figure 3.4: Variable-node update
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Step 4: Decision 

In this step the decisions will take. This is that by the new updated value of the received 

code word will be sending to check nodes again for the checking of correction .here we got that 

all the B values are zero so we represent it by the tic mark. Thus the error correction of the code 

is done

Figure 3.5: Decision making

Bit-flipping decoding of the received string y = [1 0 1 0 1 1]. Each sub-figure indicates 

the decision made at  each step of the decoding  algorithm based on the messages from the 

previous step. A cross represents that the parity check is not satisfied while a tick indicates that it 

is satisfied. For the messages, a dashed arrow corresponds to the messages “bit = 0” while a solid 

arrow corresponds to “bit = 1”.Thus by repeated message passing between the check nodes and 

the bit nodes we can finally able to tell the received code word is correct or not. If there is any 

error in the code word then the algorithm will correct the errors. Since there is no connection 

with in the bit  nodes and the check nodes and  only connection between them the iterative 

decoding is easy in this case. 

In the previous case the hard decision algorithm is done with 4 x6 parity check matrix. 

The code word length is 6 bits. Hard decision decoding is extended up to 32 bit code word; the 

corresponding parity check matrix dimension is 16 x 32. In the case of LDPC codes as the 

dimension of the H, the parity check matrix increases, the performance shown by the code is 

better.[19] 
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The hard decision decoding algorithm, also known as bit-flipping, does not perform as well as 

the soft decision counterpart, with performance loses that can reach several dB   but it has the 

advantage of having a low complexity that makes it an interesting option for future very-high- 

speed communication systems. The idea underlining the algorithm is based on the observation 

that if a high number of parity check equations containing a certain variable are violated then that 

variable is probably wrong. The message decoder computes all the check parity equations and 

then changes any variable node that is contained in a fixed number, or more, of unsatisfied check 

nodes. The equations are then recomputed with the new values. 

3.5 SOFT DECISION DECODING

It is convenient to represent probability values as log likelihood ratios, and when this is 

done belief propagation decoding is often called sum-product decoding since the use of log 

likelihood ratios allows the calculations at the bit and check nodes to be computed using sum and 

product operations. Soft decision algorithm which is based on the concept of belief propagation 

gives better decoding performance and therefore is a preferred method. 

The sum-product algorithm is a soft decision message-passing algorithm. It is similar to 

the bit-flipping algorithm. But with the messages representing each decision (check met, or bit 

value equal to 1) now probabilities. The sum-product algorithm is a soft decision algorithm 

which accepts the probability of each received bit as input. The input bit probabilities are called 

the a priori probabilities for the received  bits because they were known in advance before 

running the LDPC decoder. The bit probabilities returned by the decoder are called the posterior 

probabilities. In the case of sum-product  decoding these probabilities are expressed as  log- 

likelihood ratios. 

For a binary variable x it is easy to find p(x=1) given p(x=0), since p(x=1) = 1−p(x=0) 

and so we only need to store one probability value for x. Log likelihood ratios are used to 

represent the metrics for a binary variable by a single value 
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where we use log to mean loge. If p(x = 0) > p(x = 1) then L(x) is posit ive and the greater 

the difference between p(x = 0) and p(x = 1), i.e. the more sure we are that p(x) = 0, the 

larger the posit ive value for L(x). Conversely, if p(x = 1) > p(x = 0) then L(x) is negative 

and the greater the difference between p(x = 0) and p(x = 1) the larger the negative value 

for L(x). Thus the sign of L(x) provides the hard decision on x and the magnit ude |L(x)| is 

the   reliabilit y   of   this   decision.   To   transl ate   from   log   likelihood   ratios   back   to 

probabilit ies we note that

p(x = 0) = p(x = 1) p(x = 0) e
− L(x)

−
 

1+ p(x = 1) p(x = 0) 1+ e L(x)

(3.5)

And

p( x = 1) = p( x = 0) p( x = 1) eL(x)

= 
1 + p( x = 0) p( x = 1) 1 + e

L(x)

(3.6)

The benefit of the logarithmic representation of probabilities is that when probabilities 

need to be multiplied log-likelihood ratios need only be added, reducing implementation 

complexity .The sum-product  algorithm iteratively computes an approximation of the MAP 

value for each code bit. Input is the log likelihood ratios for the a priori message probabilities. 

The a priori probabilities for the Binary Symmetric channel (BSC) are:

ri = log p (1− p) if yi = 1      Or

ri = log(1− p) ( p) if yi = 0                                                                            (3.7)

In sum-product decoding the extrinsic message from check node j to bit node i, Eji, is the 

LLR of the probability that bit i causes parity-check j to be satisfied. [22] 
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(3.8)

The intrinsic message from check node j to bit node i, Mji, is given by, 

M j ,i =    
E j ',i

j '∈Ai , j '≠ j

+ ri

(3.9)

The total LLR of the bit stream is

Li  = 
 j∈A 
E 

j ,i + r
i (3.10)

The total LLR can be either positive or negative number. The hard decision is taken. 

When total LLR is positive the decision is „0" else „1" . The code word is z. Then syndrome 

calculation is done by s=zH" . When s is zero then z is a valid codeword, and the decoding 

stops, 

returning z as the decoded word. For an AWGN channel the a priori LLRs are given by

ri  = 4 yi (Es No ) 
 
(3.11)

The extrinsic LLR and  the total LLR calculation are done to find the codeword . 

Various steps of Sum Product Decoding algorithm is given below 

procedure DECODE(r) 

I = 0 

for i = 1 : n do 

for j = 1 : m do 

Mj,i = ri 

end for 

end for 

repeat 
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end for 

end for 

for i = 1 : n do 

Li = � j#Ai" Ej,i  + ri

�1, Li   ≤ 0
zi         � 

�0, Li � 0

end for 

for i = 1 : n do 

for j #$Ai do 

Mj,i = � j�#Ai, j��j Ej�,i + ri

end for 

end for 

I = I + 1 

end if 

until Finished 

end procedure 
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Figure 3.6:  Intrinsic and Extrinsic information transfer between bit nodes and the check 

nodes

The figure 3.6 shows the intrinsic and extrinsic information transfer between bit nodes 

and the check nodes. Finally the total LLR is calculated and the decision is made. 

The aim of sum-product decoding is to compute the maximum a posterior probability 

(MAP)  for  each  codeword  bit.,  which  is  the  probability  that  the  i-th  codeword  bit  is  a  1 

conditional on the event N that all parity-check constraints are satisfied. The extra information 

about bit i received from the parity-checks is called extrinsic information for bit i. The sum- 

product algorithm iteratively computes an approximation of the MAP value for each code bit. 

However, the a posteriori probabilities returned by the sum-product decoder are only exact MAP 

probabilities if the Tanner graph is cycle free. Briefly, the extrinsic information obtained from a 

parity check constraint in the first iteration is independent of the a priori probability information 

for that bit (it does of course depend on the a priori probabilities of the other codeword bits). The 

extrinsic  information provided  to  bit  i  in  subsequent  iterations remains  independent  of the 

original a priori probability for bit i until the original a priori probability is returned back to bit i 

via a cycle in the Tanner graph. The correlation of the extrinsic  information  with the  original a 

priori bit probability is what prevents the resulting posteriori probabilities from being exact. Sum 

Product decoding algorithm results in complexity in computations and much execution time. So 

we  go  for  Min  sum  algorithm  which  is  a  low  complexity  approximation  of  sum  product 

algorithm. 
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CHAPTER 4

MIN SUM ALGORITHM

LDPC  codes  can  be  typically  defined  by  a  parity  check  matrix  H.  The  symbol  N 

represents the length of the block (i.e. the number of bits in the codeword), while the symbol M 

represents the number of parity checks in the code. The rate of such a code is thus (N-M)/N. The 

typical LDPC decoding algorithm is the sum product algorithm which has two phases. In the first 

phase, the variable nodes compute updated information which is sent to adjacent check nodes. In 

the second phase, the check nodes compute updated information based on the new messages 

from the variable nodes. This update information is then sent back to adjacent variable nodes and 

the process is repeated over and over again. The modified min-sum decoding algorithm is similar 

to  the  sum-product  algorithm,  with  an  approximation  of check  node  process.  It  has  some 

advantages in implementation against the sum-product algorithm, such as less computation and 

estimation of noise power is unnecessary for an AWGN channel.[24] 

Min-sum algorithm reduces the complexity of the check node operations. Also, it 

converges much faster and also reduces the storage memories for message passing. Minsum 

decoding algorithm is a low complexity approximation of Sum Product algorithm and it is also 

computed in two phases: the check node processing and the variable node processing. 

Variable Node Operation:

Lv  =   
Rmv  + Iv 

m∈M (v)

(4.1) 

Lvc  = Lv − Rcv (4.2)

Check Node Operation:

Rcv =   ∏sign(L
nc

)×α × 
 

min  Lnc 
n∈N (c) / v

(4.3) 
n∈N (c) / v
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where, Iv  is the input to variable node v, also known as Log Likelihood ratio (LLR), Lvc  is the 

output  of variable  node  v  going  to  check  node  c,  M(v)\c  denotes  the  set  of check  nodes 

connected to variable node v excluding the check node c, Rmv is the output of check nodes going 

to variable node v��

�

From the perspective of implementation, the Min-Sum algorithm requires less 

computation and the noise power estimation is unnecessary for an additive white Gaussian noise 

(AWGN) channel. Furthermore, the Min-Sum algorithm can help reducing the message storage 

requirement because the messages transmitted from a check node to adjacent variable nodes 

have only two possible magnitudes per  iteration. However,  this advantage is not easy to take in 

hardware implementation. The memory requirement reduction is achieved, but the hardware is 

complex, and the decoding latency is extremely high. The efficient use of Min-Sum algorithm in 

decoding LDPC codes still remains unresolved. 
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CHAPTER 5

DECODER ARCHITECTURE DESIGN

5.1TYPES OF DECODER ARCHITECTURE

LDPC decoder architecture can be classified into three types: fully parallel, serial and 

partially parallel. In fully parallel architecture, every check node or variable node corresponds to 

an individual node processor unit, which usually leads to  large hardware cost, complicated 

routing, and less flexible. The serial architecture applies just one check node processor unit to 

perform the computation of all check nodes serially. As a result, it will be too slow for most 

practical applications. For partially parallel architectures, multiple processing units are used to 

allow proper trade-off between hardware cost and throughput. Also, partially parallel method can 

exploit the matrix regularity of specially constructed LDPC codes, such as QC-LDPC 

codes.Besides hardware cost and speed requirement, power consumption is another challenge of 

LDPC decoder design, especially for mobile applications. In this paper, a hardware efficient low- 

power LDPC decoder design for QC-LDPC codes based on min-sum algorithm is presented. The 

partially parallel architecture efficiently reduces the hardware cost and leads to energy-efficient 

design compared with other architectures. 

5.2 PARTIALLY PARALLEL DECODER ARCHITECTURE

A typical partially parallel decoder architecture for a (3,5)-regular QC-LDPC codes is 

shown in below figure  where totally 3×5=15 memory banks are used to store the soft message 

symbols exchanged between two decoding phases, memory banks {Z1, Z2,…, Z5 are used to 

store the intrinsic information, and   memory   banks   {C1, C2,.., C5} are used to store the 

decoded data bits. For QC-LDPC codes, the address generator for each memory bank can be 

realized with a simple binary counter, which not only simplifies the hardware design, but also 

improves  the  circuit  speed.  In  general,  each  node  processing  unit  takes  one  clock  cycle 

(assuming dual port memories are used, otherwise two cycles are needed) to complete message 

updating for one row (or column) of the parity check matrix. 
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Figure 5.1.The structure of a partially parallel decoder for (3, 5)   QC-LDPC codes

There are three major units in this decoder design.

• The posterior Log Likelihood Ratio (LLR) memory which accumulates the check-to- 

variable messages, 

• The extrinsic memory which stores the check-to-variable messages in a shift register, 

and 

•    The prior LLR memory. 

Each Variable Node (VN) participates in the operations in rows. In each operation, a 

variable-to-check message is computed by subtracting the corresponding check-to-variable 

message (of the previous iteration) from the posterior Log Likelihood Ratios (LLR) (of the 

previous  iteration)  .The  variable-to-check  message  is converted to  the sign-magnitude  form 

before it is sent to the Variable Node Unit (VNU) routers destined for a Check Node(CN). The 
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returning messages to the VN could be from one of the six CNs. A multiplexer selects the 

appropriate message based on a schedule. The check node operation is completed in two steps: 

1) The CN computes the minimum (min1) and the second minimum (min2 min1 ) among all the 

variable-to-check messages received from the neighboring VNs, as well as the product of the 

signs(prd) of these messages; 

2) The VN receives min1, min2 and computes the marginals, which is followed by the conversion 

to the two" s  complement. The resulting check-to-variable message is accumulated serially 

to form the posterior LLR Hard decisions are made in every iteration. 

To increase the parallelism, we can enable each node processing unit to process the data 

corresponding to 1-components at multiple rows (or columns) of the parity check matrix at the 

same cycle. However, this will generally cause memory access conflicts since multiple data 

accesses per cycle are required for each memory bank. Two efficient approaches proposed were: 

I) Partition each memory bank into p sub-banks (or called memory segments) where all the 

soft symbols corresponding to 1-components at p adjacent rows of a sub-matrix are stored in p 

different segments. 

II) Store soft messages corresponding to p adjacent rows of a sub-matrix in one memory entry 

while utilizing extra buffers to solve the memory access conflict [25]. 

5.3 CHECKNODE PROCESSOR ARCHITECTURE

The below figure is the CNP architecture according to the min-sum algorithm. It finds the 

smallest two inputs and the index of the minimum one. Function of the sub-module MIN is to 

record the minimum, 2nd-Min and the index of the minimum . This check node process can be 

time consuming for a big row weight matrix. It has log2(t) levels of comparators. Plus the time 

needed in the variable node process, the critical path is long. To increase the clock speed, the 

data paths are cut by two level pipelining. 
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Figure 5.2: Check Node Processor

Also, during the computations of the current iteration, CNU checks the code bits resulting 

from the previous iteration to check if the  code bits satisfy the corresponding parity check 

equation. After the first half of the iteration is complete, the result of all parity checks on the 

codeword will be ready too. With this strategy, computations in Check nodes and Variable nodes 

can be done continuously without the need to wait for checking the codeword resulting from the 

previous iteration. This increases the speed of the decoding. 

5.4 VARIABLE NODE PROCESSOR ARCHITECTURE

Figure 5.3 shows the architecture of variable node processor. The input messages are firstly 

transferred  to  two" s  complement  format  and  then  do  the  add  operation.  Finally  they  are 

transferred back to sign and magnitude format. At each clock cycle it performs read-compute- 

write operations. They are summarized as follows 
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i) Read: Reads check-to-variable extrinsic messages from the memory location associated in its 

PE. 

ii) Compute: Performs the variable node computation and generates hybrid variable-to-check 

extrinsic message with one bit hard decision contained in it. 

iii) Write: The variable-to-check messages are written back to the same memory location from 

where it was read. 

There are some methods to improve the performance of Min-Sum product algorithm to 

scale the variable to check node message or to minus an offset. The algorithm is developed to 

suit for hardware implementation. Here gives the pseudo code: 

if input >= 8 output = 3" b111; 

else if input >= 4 output = input-1; 

else output = input (unchanged);

Figure5.3: Variable node processor
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Figure 5.4 shows the circuit  for scale module architecture [4]. According to performance 

simulation, it is quite clear that this quantized scaling method is accurate and performs well with 

QC-LDPC code. 

Figure 5.4: Scale module architecture
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CHAPTER 6

APPLICATIONS

LDPC codes are fast becoming the new standard in communication in various 

applications, including digital video broadcasting in the DVB-S2 standard, Wi-Fi, and deep 

space satellite communications. LDPC codes allow for higher performance in regions of low 

SNR.  Oftentimes, one cannot simply increase the power of a transmitted signal so it can be 

detected easily without compromising on practicalit y and cost.  In one respect, coding helps to 

save on power consumption.    Devices that communicate via satellite on the DVB-S2 standard 

will be able to decode faster, perhaps from longer distances where the SNR would drop, or 

even in environments that are heavily shielded that would attenuate the power of a received 

signal.  Increased performance means that a wider variety of applications can be developed for 

more massive amounts of information content. 

Additionally,   LDPC   codes   are   excellent   choices   of   codes   in   deep   space 

communications.     Even  in  the  next  mission  to  Mars,  the  Jet  Propulsion  Laboratory  is 

researching LDPC codes for use proximity-link-relay communications.     In deep space 

communications as well as these link relay systems, the SNR will be quite low considering 

that  power  will  attenuate  over  such  long  distances  and  through  different atmospheres if 

transmitted from the surface of another planet.  Thus, communications in low SNR conditions 

require powerful error detection and correction. 

Another  consequence  of  LDPC  codes  increasing  the  performance  of  transmission 

means that communication can be extended even further to more remote places.  Markets such 

as broadband wireless and mobile networks that operate in noisy environments need powerful 

error correction in order to improve reliability for their customers. 
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CHAPTER 7

RESULTS AND DISCUSSION

A  LDPC  decoder  is  modelled  using  VHDL.  Binary  Phase  Shifted  Keying  (BPSK) 

modulated message is passed through an Additive White Gaussian Noise (AWGN) Channel. 

LLR" s are calculated for the message information received from the AWGN channel. These 

LLR" s are the input to the designed LDPC decoder. BPSK modulation ,transmission of 

messages through   an   AWGN   channel   and   estimation   of      LLR" s   are   done   using   

MATLAB 

7.6.0.324(R2008a). 

A 155-bit  (3,  5)-regular  quasi-cyclic  LDPC  code  decoder  is  implemented  using  Xilinx 

Virtex-4 XC4VlX15 device with package SF363. The entire decoder is designed in VHDL. 

Xilinx ISE 9.2i is used for developing, simulating and synthesizing the decoder model. The 

variable node unit (VNU) and check node unit (CNU) architectures are designed using VHDL 

procedures and functions. After its implementation pipelining is introduced and the delay,power 

consumption and resource utilization are being compared. The timing summary, power 

consumption summary and resource utilization summary for a 155-bit (3, 5)-regular LDPC code 

are shown in the tables below. 

7.1 TIMING SUMMARY

TIMING CONSTRAINTS WITHOUT PIPELINING WITH PIPELINING

Mnimum period 2.601ns 2.421ns

Minimum input arrival time

before clock
2.428ns 2.428ns

Maximum output required 

time after clock
3.921ns 3.921ns
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Table 7.1 Timing Summary
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The timing summary  from the synthesis results for  the partially parallel architecture and 

the pipelined partially parallel architecture are being compared above.The minimum period is 

less  for  the  pipelined  architecture.But  the  minimum  inpur  arrival  time  before  clock  and 

maximum output required time after clock are the same. 

7.2 POWER SUMMARY

POWER SUMMARY WITHOUT PIPELINING WITH PIPELINING

Total Power Consumption 176mW 176mW

Table 7.2 : Power Consumption Summary

From the power consumption summary it is clear that both the architectures consume the 

same power. 

7.3 RESOURCE UTILIZATION SUMMARY

RESOURCES WITHOUT PIPELINING WITH PIPELINING

Total Number Of Slice

Registers
32/6144 = 1% 32/6144 = 1%

Number Of 4 Input Luts 60/12288 = 1% 60/12288 = 1%

Number Of Bounded Iobs 25/240 = 10% 25/240 = 10%

Total Equivalent Gate

Count For Design
1376 1376

Table 7.3 : Resource Utilization Summary

The resource utilization is same for both the architectures. 
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7.4  DECODING THROUGHPUT

a) WITHOUT PIPELINING

The throughput of a partially parallel quasi-cyclic  LDPC decoder is given as 

Throughput =  

No of clock cycles required for CNU processing=31 

No of clock cycles required for VNU processing=31 

No of clockcycle required for decoding = 1 

No of iterations = 10 

DecodingThroughput=155×384.460MHz/63×10 

= 94Mb/s

b) WITH PIPELINING

No of clock cycles required for CNU processing=31 

No of clock cycles required for VNU processing=31 

No of clockcycle required for decoding = 1 

No of iterations = 10 

DecodingThroughput=155×413.052MHz/63×10 

= 101.62Mb/s

7.5 COMPARISON  WITH  PREVIOUS  WORK

PARAMETERS PROPOSED Reference [5] Reference [6]

THROUGHPUT 101.62Mbps 40Mbps 1Gbps

POWER 176mW - 690mW

Table 7.4.Comparison of Proposed with previous works
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The throughput and power of   the proposed architecture is compared with 2 previous 

work in this area viz.”A FPGA and ASIC implementation of rate 1/2, 8088-b irregular low 

density parity check decoder”[] and “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity 

check code decoder”[].It  is seen that  the throughput  of the proposed  architecture has  been 

improved to a great extend and also the power consumption has also reduced significantly. 

7.6 DISCUSSIONS

From the above results, we find that throughput is high for a pipelined version of partially 

parallel  decoder  .  A  throughput  of  101.62  Mbps  for  a  155-bit  (3,  5)-regular  code  is  an 

appreciable  one.  Also  the proposed  pipelined  architecture reduces power  to  a great  extend 

compared to the previous works in this area. 
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Low Density Parity Check (LDPC) Codes has wide range of applications in the wireless 

field due to its high capacity performance. Thus the (3, 5)-regular quasi-cyclic LDPC code 

decoder is implemented on FPGA targeting Xilinx Virtex -4 XC4VLX12 device with package 

SF363.  The decoder  was designed  using  VHDL  in Xilinx ISE  9.2i EDA tool.The detailed 

decoder  design  and  architecture  are  presented  in previous  chapter  and  the  results  are  also 

explained. This research helped us to gain knowledge in three different fields namely, digital 

wireless communication, coding theory and VLSI design. 

Our current and future work is the FPGA implementation of LDPC decoder for wireless 

standard 802.16e. At present we are facing the memory conflict problem in Xilinx ISE 9.2 while 

synthesizing the 768x1280 parity check matrix of wireless standard 802.16e. Techniques such as 

block partitioning of generator matrix and utiliziation of internal block memory of FPGA device 

are to be analysed to avert the problem of memory conflict in future. 
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