
 FPGA IMPLEMENTATION OF ADAPTIVE VITERBI DECODER

USING VHDL

By

BALASUBRAMANIAM.D

Reg. No. 1020106002

of

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University, Coimbatore)

COIMBATORE - 641049

A PROJECT REPORT

Submitted to the

FACULTY OF ELECTRONICS AND COMMUNICATION

 ENGINEERING

In partial fulfillment of the requirements

for the award of the degree

of

MASTER OF ENGINEERING

IN

APPLIED ELECTRONICS

APRIL 2012

ii

BONAFIDE CERTIFICATE

 Certified that this project report entitled “FPGA IMPLEMENTATION OF

ADAPTIVE VITERBI DECODER USING VHDL” is the bonafide work of

Mr.D.Balasubramaniam [Reg. no. 1020106002] who carried out the project work under

my supervision. Certified further, that to the best of my knowledge the work reported

herein does not form part of any other project or dissertation on the basis of which a

degree or award was conferred on an earlier occasion on this or any other candidate.

Project Guide Head of the Department

Dr. D. Mohanageetha Dr. Rajeswari Mariappan

 The candidate with university Register no. 1020106002 is examined by us in the

project viva-voce examination held on …………………….

Internal Examiner External Examiner

iii

ACKNOWLEDGEMENT

First I would like to express my praise and gratitude to the Lord, who has showered

his grace and blessing enabling me to complete this project in an excellent manner. He

has made all things beautiful in his time.

I express my sincere thanks to our beloved Director Dr.J.Shanmugam, Ph.D.,

Kumaraguru College of Technology, I thank for his kind support and for providing

necessary facilities to carry out the work.

I express my sincere thanks to our beloved Principal Dr.S.Ramachandran, Ph.D.,

Kumaraguru College of Technology, who encouraged me in each and every steps of the

project work.

I would like to express my sincere thanks and deep sense of gratitude to our HOD,

Dr.Rajeswari Mariappan, Ph.D., Department of Electronics and Communication

Engineering, for her valuable suggestions and encouragement which paved way for the

successful completion of the project work. I also thank her for her kind support and for

providing necessary facilities to carry out the work.

In particular, I wish to thank and everlasting gratitude to the project coordinator

Ms.R.Hemalatha, M.E., Assistant Professor(SRG), Department of Electronics and

Communication Engineering for her expert counseling and guidance to make this project

to a great deal of success.

I am greatly privileged to express my deep sense of gratitude to my guide

Dr.D.Mohanageetha, Ph.D., Senior Associate Professor, Department of Electronics and

Communication Engineering, Kumaraguru College of Technology throughout the course

of this project work and I wish to convey my deep sense of gratitude to all the teaching

and non-teaching of ECE Department for their help and cooperation.

Finally, I thank my parents and my family members for giving me the moral

support and abundant blessings in all of my activities and my dear friends who helped me

to endure my difficult times with their unfailing support and warm wishes.

iv

ABSTRACT

In wireless data communications, errors occur frequently due to the non-overlook

noises in the air. The convolutional coding technique is used to overcome this problem.

By inserting additional bits into the transmitted bits, the convolutional coding technique

can achieve good error resilience. When the transmission is done, the error bits can be

corrected with the help of some particular decoding algorithms.

The Viterbi algorithm (VA) is often used to perform decoding procedure for

convolutional code since it can obtain the maximum-likelihood decoding results. In the

past, some high-speed VLSI designs for Viterbi decoder (VD) implementation were

proposed to meet the need of high throughput applications. The main drawback of them

is that they do not consider the issue of power consumption. VD may consume more than

one-third of power for baseband processing in communication applications. Hence, it is

desirable to have a low-power VD since the battery capacity of the most portable

electronic communication devices is limited.

By computing and keeping all possible 2K-1 survivor paths, VA achieves an optimal

performance of bit error rate (BER) with higher computational complexity and larger

path storage requirement. In the hardware, higher complexity means more power is

consumed. To reduce the power consumption required for VD, the adaptive Viterbi

algorithm (AVA) has been proposed. It employs preset threshold values, T and Nmax, to

reduce the average number of survivor paths and thus can decrease the power

consumption efficiently. Hence, T and Nmax should be decided carefully.

v

TABLE OF CONTENT

CHAPTER

NO

TITLE PAGE

NO

1

2

3

4

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 Motivation

1.2 Project Goal

1.3 Overview

1.4 Literature Survey

CONVOLUTIONAL CODES

2.1 Applications

2.2 Popular Convolutional Codes

2.3 Decoding Convolutional Codes

VITERBI ALGORITHM

3.1 Background

3.2 Algorithm Description

3.3 Applications

VITERBI DECODER

4.1 Architecture of K=7, rate=1/3, 64 states Viterbi

Decoder

iv

viii

ix

x

1

2

2

2

3

6

9

10

10

11

11

12

15

16

17

vi

5

6

 4.1.1 Branch Metric Unit

 4.1.2 Add Compare Select Unit

 4.1.3 Survivor Memory Unit

 4.1.4 Trace Back Unit

 4.1.5 State Table for 64 states Viterbi Decoder

ADAPTIVE VITERBI DECODER

5.1 Adaptive Viterbi Algorithm

5.2 Architecture of Adaptive Viterbi Decoder

RESULTS AND DISCUSSIONS

6.1 Simulation Results

 6.1.1 Simulation Result for (3,1,7) Convolutional

 Encoder

 6.1.2 Simulation Result for K=5 Viterbi Decoder

 6.1.3 Simulation Result of Branch Metric Unit

 6.1.4 Simulation Result of Add Compare Select Unit

 6.1.5 Simulation Result of K=7 Viterbi Decoder for

 TL=22

 6.1.6 Simulation Result of K=7 Viterbi Decoder for

 TL=38

 6.1.7 Simulation Result of K=7 Viterbi Decoder for

 TL=38 with State Enabling Block

 6.1.8 Simulation Result of K=7 Adaptive Viterbi

 Decoder for TL=38

 6.2 Synthesis Report

 6.2.1 Convolutional Encoder

 6.2.2 K=7 Viterbi Decoder

 6.2.3 K=7 Adaptive Viterbi Decoder

6.3 Power Report

 6.3.1 Convolutional Encoder

17

18

21

21

22

26

26

27

29

29

30

31

32

33

34

35

36

37

38

39

39

40

41

42

42

vii

7

 6.3.2 K=7 Viterbi Decoder

 6.3.3 K=7 Adaptive Viterbi Decoder

 6.3.4 Comparisons

CONCLUSION & FUTURE SCOPE

BIBLIOGRAPHY

43

44

45

46

47

viii

LIST OF FIGURES

FIGURE

NO

CAPTION PAGE

NO

2.1

2.2

2.3

2.4

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

A (3, 1, 3) convolutional encoder

State diagram for the convolutional encoder in Figure 2.1

Trellis diagram for convolutional encoder in Figure 2.1

K=7, r=1/3 Convolutional Encoder

Convolutional Decoding

Viterbi Decoding for (3,1,3) Convolutional codes

Functional blocks of VD

Branch Metric Unit

Branch Metric Generator

ACS components for 64 states in K=7 VD

Butterfly Block 0 of ACSU

Single Butterfly Wing

Adaptive Viterbi Decoder Architecture

ACS unit of the Adaptive Viterbi Decoder

Simulation Results for (3,1,7) Convolutional Encoder

Simulation Result for K=5 Viterbi Decoder

Simulation Result of Branch Metric Unit

Simulation Result of Add Compare Select Unit

Simulation Result of K=7 Viterbi Decoder for TL=22

Simulation Result of K=7 Viterbi Decoder for TL=38

Simulation Result of K=7 Viterbi Decoder for TL=38 with

State Enabling Block

Simulation Result of K=7 Adaptive Viterbi Decoder

Power Report of (3,1,7) Convolutional encoder

Power Report of K=7 Viterbi Decoder

Power Report of K=7 Adaptive Viterbi Decoder

7

7

8

9

13

14

16

17

17

18

20

21

27

28

30

31

32

33

34

35

36

38

42

43

44

ix

LIST OF TABLES

TABLE

NO

CAPTION PAGE

NO

1.1

2.1

4.1

4.2

6.1

Channel coding parameters for different

wireless standards

Generator Polynomial for different rate and

constraint Length of Viterbi Decoders

State Table for K=7, r=1/3 Viterbi Decoder

States enabled for computation of survivor

paths at each Trellis Stage

Comparison of Viterbi Decoder and Adaptive

Viterbi Decoder

1

8

22,23

24,25

45

x

LIST OF ABBREVIATIONS

FPGA ------- Field-Programmable Gate Arrays

VHDL ------- Very High Speed Integrated Circuit HDL

HDL ------- Hardware Description Language

VD ------- Viterbi Decoder

VA ------- Viterbi Algorithm

AVA ------- Adaptive Viterbi Algorithm

AVD ------- Adaptive Viterbi Decoder

BMU ------- Branch Metric Unit

BMG ------- Branch Metric Generators

ACSU ------- Add Compare Select Unit

SMU ------- Survivor Memory Unit

1

CHAPTER 1

INTRODUCTION

With the rapid development of communication technology and the emergence of

various wireless devices, communication standards are becoming diverse. In such diverse

environment, a mobile terminal must have the ability to adapt to various communication

standards. Conventionally, this problem was solved by an adaptive solution that collects

several single function components and then configures them statically or dynamically

every time the standard changes. However, there is a multimode, multifunctional solution

that has only one component and does not need to configure when the standard changes.

To adapt to the current standard, the system can change the fabric instantaneously

according to the parameters to switch among various functions. As a result, the mobile

termination or wireless station can perform several different functions on a single

hardware without extra fabric.

 Among various wireless standards, Viterbi algorithm is the most popular

decoding algorithm which is used to decode the convolutional code. The reconfigurable

Viterbi decoder is the critical part of a multimode multifunctional wireless

communication system, which needs to support parameters such as code rate, constraint

length, polynomial and truncation length. Each standard can be described with a series of

parameters that can be sent to the Viterbi decoder. The wireless communication standards

using the Viterbi algorithm as the decoding algorithm are listed in Table 1. The code rates

of conventional standards range from 1/2–1/3 and constraint lengths vary from 5–9.

Table 1.1 Channel Coding Parameter for Different Wireless Communication

Standard

Standard Code Rate Constraint Length Number of States

GPRS ½ 5 16

GSM ½ 5 16

WiMAX ½ 7 64

802.11a/g ½ 7 64

CDMA 2000 ½,1/3 9 256

3G 1/3 9 256

2

1.1 MOTIVATION

Viterbi decoders are mostly implemented on three types of platforms, namely,

DSPs, ASICs, and FPGAs. The flexibility and parallelism of DSPs are restricted by its

Instruction Set Architectures. ASICs have the best area-power performance, but they

have a long development cycle, high design cost, and fixed functionality. In contrast,

FPGAs have higher flexibility at the cost of shorter development cycle and lower design

cost. Multiple functions can be merged into a single fabric on FPGAs because of their

high flexibility. As to the reconfigurable Viterbi decoder, the platform must be a

combination of the flexibility of software and the high performance of hardware, which is

the characteristic of FPGAs. FPGA is the most suitable platform for the reconfigurable

Viterbi decoder.

1.2 PROJECT GOAL

The goal of the project is to implement a Viterbi decoder which uses adaptive

Viterbi algorithm for decoding convolutional codes of constraint length K=7, rate r=1/3

and generator polynomials (117,127,155)8.

1.3 OVERVIEW OF THE PROJECT

Convolutional codes become more powerful when its constraint length K

increases and this increases the complexity of Viterbi decoders. The Viterbi Algorithm, a

decoding algorithm for convolutional codes. Viterbi algorithm, the maximum likelihood

decoding algorithm for convolutional codes, works well for less-complex codes,

indicated by constraint length K, but it requires an exponential increase in hardware

complexity to achieve greater decode accuracy. The VA’s memory requirement and

computation count pose a performance obstacle when decoding more powerful codes

with large constraint lengths. The AVA reduces the average number of computations

required per bit of decoded information. In the adaptive Viterbi algorithm, the number of

candidate data sequences (survivor paths) retained per received symbol (transmitted data

bit) varies over time.

3

1.4 LITERATURE SURVEY

An Adaptive Viterbi Decoder for constraint length K=7, rate=1/3 has been

discussed in [1] and implemented on Spartan 3E FPGA using VHDL.

In [2], power reduction is achieved at the architecture level and its Register

Transfer Level (RTL) implementation is discussed. A Viterbi Decoder with architectural

modification for Add Compare Select Unit and clock gated Survivor Memory Unit have

been designed for low power wireless applications. A decoder system with constraint

length K=7 and rate=1/2 have been synthesized on FPGA using Verilog HDL. Additional

circuitries in Branch Metric Unit for pre-calculated differences and pre-calculated

comparisons were done.

 A low-power, Viterbi Decoder for Software Defined WiMAX receiver used for

decoding convolutional codes of constraint length K=7 and code rate r=1/2 with

generating polynomials g(171,133)8 has been implemented [3] on Xilinx Vertex 2 Pro

using VHDL. This Viterbi Decoder reduces the dynamic power by using the concept of

traceback along with clock gating technique and disables the decoding circuits when

traceback process is not activated. The number of input codes given to this decoder is 40

per frame and optimal traceback depth of 5*K was used.

The Viterbi Algorithm (VA) has two methods to extract the decoded bits: the

Register Exchange (RE) and the Trace Back (TB). The RE technique is acceptable for

trellises with only a small number of states, whereas the TB approach is acceptable for

trellises with a larger number of states. A Viterbi decoder with constraint length K=3,

rate=1/2 which can correct up to two errors in 16 bits of transmitted data had been

discussed in [4]. The implementation of Viterbi Algorithm is given here in detail. The

generator polynomial of convolutional encoder used are (7, 3)8. Truncation length of 16

and Trace Back approach are employed in this decoder.

 The Modified State Exchange (MSE) Algorithm that simplifies the Trace back

approach with block decoding capability to achieve low power, low latency and low

memory requirements were given in [5]. The Viterbi Decoder using MSE architecture for

decoding (2,1,6) convolutional codes can record “survival state numbers” which is

resulted decoded data and so no decision bits are required during Trace Back and storing.

4

 A new Survivor memory unit architecture which combines the benefits of Trace-

forward and Trace-backward is given in [6]. Its features were low power and low latency.

The power consumption of this architecture is slightly higher than 3-pointer even Trace

Back architecture.

 When the constraint length used in the convolutional encoding process is

increased, the more powerful the code is produced. A Viterbi Algorithm (VA) based on

strongly connected trellis decoding of binary convolutional codes has been presented.

The FPGA implementation of Viterbi Decoders with K=11 and code rate=1/3 has been

discussed in [7]. Here the decoded data bits are stored in registers using shift update and

selective update methods in Traceback approach.

 [8] proposes a new class of hybrid VLSI architectures for survivor path

processing to be used in Viterbi Decoders which combines the benefits of Register

Exchange and Trace Forward algorithms. It can be efficiently applied to codes with a

larger number of states where Traceback architectures are dominant. Latency and storage

requirements are traded for implementation complexity.

 A high performance soft input hard output prototyped version of Viterbi Decoder

(VD) is presented in [10]. The generic parameters of Viterbi Decoders are constraint

length, generator polynomials of encoder, metric size and number of surviving paths.

Other parameters of VD such as the trellis window length, number of the best traceback

paths, and the bit width of the metrics are kept generic as well. This prototyped VD

accepts two soft inputs and makes a hard decision producing one bit to output.

 The thesis in [11] analyses the different Viterbi decoders and implement a

reconfigurable Viterbi Decoder with shared hardware structure for GSM, GPRS, EDGE

and WiMAX technology. The shared hardware structure would help in limiting the

number of logic cells used compared to if implementation were to be done separately.

The designed decoder could be adapted to any wireless communications that requires

robust error correction and also supports high data rate. The hardware implementation

combines the Viterbi decoder of constraint length K=7 and K=5 and it could be used on

EDGE (Enhanced Data rates for Global Evolution) and IEEE 802.11 (WLAN) / 802.16

(WiMAX) systems.

5

 The Viterbi decoder in [13] uses pointer concept to obtain the decoded data and

bit serial architecture for the Add Compare Select Unit implementation. A low power VD

has been proposed in [14] using Trace Back and Register Exchange method for

producing the decoded data bits.

The concept of convolutional codes, encoding, constraint length, code rate, Viterbi

Algorithm, Viterbi decoding, Trellis diagram and Survivor paths were well explained and

discussed in [15], [16], [17], [18]. The concept of VHDL and its programming were

explained in [20], [21], [22], [23], [24], [25], [26], [27].

�

6

CHAPTER 2

CONVOLUTIONAL CODES

Error correction coding is used to detect and correct data transmission errors in

communication channels. Encoding is accomplished through the addition of redundant

bits to transmitted information symbols. These redundant bits provide decoders with the

capability to correct transmission errors. The process of adding this redundant

information is known as channel coding.

Convolutional coding and block coding are the two major forms of channel

coding. Convolutional codes operate on serial data, one or a few bits at a time. Block

codes operate on relatively large (typically, up to a couple of hundred bytes) message

blocks. There are a variety of useful convolutional and block codes, and a variety of

algorithms for decoding the received coded information sequences to recover the original

data.

Convolutional Codes were first introduced by Elias in 1955, which offer an

alternative to block codes for transmission over a noisy channel. Convolutional coding

can be applied to a continuous input stream (which cannot be done with block codes), as

well as blocks of data.

A convolutional encoder can be viewed as a finite state machine. A convolutional

encoder consists of one or more shift registers and multiple XOR gates. The stream of

information bits flows in to the shift register from one end and is shifted out at the other

end. A convolutional encoder is a Mealy machine, where the output is a function of the

current state and the current input. In convolutional coding, the encoded output of a

transmitter (encoder) depends not only on the set of encoder inputs received during a

particular time step, but also on the set of inputs received within a previous span of K-1

time units, where K is greater than 1. The parameter K is the constraint length of the code.

The encoding of convolutional codes can be accomplished with shift registers and

generator polynomials (XOR functions).

A convolutional encoder is represented by the number of output bits per input bit

(v), the number of input bits accepted at a time (b), and the constraint length (K), leading

to representation (v, b, K). Figure 1 depicts a (2, 1, 3) convolutional encoder since the

7

encoder accepts one input bit per time step and generates two output bits. The two output

bits are dependent on the present input and the previous two input bits. The operation of

the encoder can be represented by a state diagram. Nodes represent the present state of

the shift register while edges represent the output sequence and point to the next state of

transition.

Figure 2.1 A (3, 1, 3) convolutional encoder

Figure 2.2 State diagrams for the convolutional encoder in Figure 2.1

Successive evaluation of state over time leads to the trellis diagram. The diagram

is a time-ordered mapping of encoder state with each possible state represented by a point

on the vertical axis. Nodes represent the present state of the shift register at specific

points in time while edges represent the output sequence and point to the next state of

transition. The horizontal axis represents time steps. Branch lines indicate the transition

of the present state of the shift register to the next state upon receiving a particular input

bit, b. The upper branch leaving a node implies an input of 0 while the lower branch

implies an input of 1.

8

The code rate, k/n, is expressed as a ratio of the number of bits into the

convolutional encoder (k) to the number of channel symbols output by the convolutional

encoder (n) in a given encoder cycle. The constraint length parameter, K, denotes the

"length" of the convolutional encoder, i.e. how many k-bit stages are available to feed the

combinatorial logic that produces the output symbols.

Figure 2.3 Trellis diagram for the convolutional encoder in Figure 2.1

 The trellis diagram is used to display the computed branch and path measures, at

each branch of initial state and each time sample. There is no theoretical basis for the

optimal location of the shift register stages to be connected to XOR gates. It is based on

an empirical approach. The following table introduces the common generator sequence of

the convolutional coding with constrain length from 7 to 9.

Table 2.1 Generator Polynomial for different Rate and Constraint Length of Viterbi

Decoders

Rate Constraint Length Generator Polynomials

1/2 7 1001111, 1101101

1/2 8 10011111, 11100101

1/2 9 110101111, 100011101

1/3 7 1001111, 1010111,1101101

1/3 8 11101111,10011001,10101101

9

The location of stages is determined by the generator sequence, which also

determines the minimum Hamming distance. Minimum Hamming distance determines

the maximal number of correctable bits also the decoding performance. Usually with a

lower coding rate and a longer constrain length; there must be a larger minimum

Hamming distance.

The convolutional encoder used in this project has a constraint length K=7 and

rate r=1/3. The encoder produces 3 output code bits (G0, G1, G2) for each input bit and

has totally 64 states. The generator polynomials (are usually denoted in the octal

notation) used in this encoder are G0=1178, G1=1278, G2=1558. The convolutional

encoder k=7 and r=1/3 is shown below.

Figure 2.4 K=7, r=1/3 Convolutional Encoder

2.1 Applications

Convolutional codes are used extensively in numerous applications in order to

achieve reliable data transfer, including digital video, radio, mobile communication, and

satellite communication. These codes are often implemented in concatenation with a

10

hard-decision code, particularly Reed Solomon. Prior to turbo codes, such constructions

were the most efficient, coming closest to the Shannon limit.

2.2 Popular convolutional codes

An especially popular Viterbi-decoded convolutional code, used at least since the

Voyager program has a constraint length k of 7 and a rate r of 1/2.

• Longer constraint lengths produce more powerful codes, but the complexity of the

Viterbi algorithm increases exponentially with constraint lengths, limiting these

more powerful codes to deep space missions where the extra performance is

easily worth the increased decoder complexity.

• Mars Pathfinder, Mars Exploration Rover and the Cassini probe to Saturn use a k

of 15 and a rate of 1/6; this code performs about 2 dB better than the simpler k=7

code at a cost of 256× in decoding complexity (compared to Voyager mission

codes).

2.3Decoding convolutional codes

Several algorithms exist for decoding convolutional codes. For relatively small

values of k, the Viterbi algorithm (VA) is universally used as it provides maximum

likelihood performance and is highly parallelizable. Viterbi decoders (VD) are thus easy

to implement in VLSI hardware and in software on CPUs with SIMD instruction sets.

Longer constraint length codes are more practically decoded with any of several

sequential decoding algorithms, of which the Fano algorithm is the best known. Unlike

Viterbi decoding, sequential decoding is not maximum likelihood but its complexity

increases only slightly with constraint length, allowing the use of strong, long-constraint-

length codes. Such codes were used in the Pioneer program of the early 1970s to Jupiter

and Saturn, but gave way to shorter, Viterbi-decoded codes, usually concatenated with

large Reed-Solomon error correction codes that steepen the overall bit-error-rate curve

and produce extremely low residual undetected error rates.

11

CHAPTER 3

VITERBI ALGORITHM

3.1 BACKGROUND

A Viterbi Decoder (VD) uses the Viterbi Algorithm (VA) for decoding a bit

stream that has been encoded using forward error correction based on a convolutional

code. There are other algorithms for decoding a convolutionally encoded stream (for

example, the Fano algorithm). The Viterbi Algorithm (VA) is the most resource-

consuming, but it does the maximum likelihood decoding. It is most often used for

decoding convolutional codes with constraint lengths k<=10, but values up to k=15 are

used in practice. Viterbi decoding was developed by Andrew J. Viterbi and published in

the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages

260-269, in April, 1967.

The Viterbi algorithm is a dynamic programming algorithm for finding the most

likely sequence of hidden states – called the Viterbi path – that results in a sequence of

observed events, especially in the context of Markov information sources, and more

generally, hidden Markov models. The forward algorithm is a closely related algorithm

for computing the probability of a sequence of observed events. These algorithms belong

to the realm of probability theory.

The Viterbi algorithm was conceived by Andrew Viterbi in 1966 as a decoding

algorithm for convolutional codes over noisy digital communication links. The algorithm

has found universal application in decoding the convolutional codes used in both CDMA

and GSM digital cellular, dial-up modems, satellite, deep-space communications, and

802.11 wireless LANs. It is now also commonly used in speech recognition, keyword

spotting, computational linguistics, and bioinformatics. The Viterbi decoding algorithm is

also used in decoding trellis-coded modulation, the technique used in telephone-line

modems to squeeze high ratios of bits-per-second to Hertz out of 3 kHz-bandwidth

analog telephone lines. Viterbi decoding is one of two types of decoding algorithms used

with convolutional encoding-the other type is sequential decoding. Sequential decoding

12

has the advantage that it can perform very well with long-constraint-length convolutional

codes, but it has a variable decoding time.

Viterbi decoding has the advantage that it has a fixed decoding time. It is well

suited to hardware decoder implementation. But its computational requirements grow

exponentially as a function of the constraint length, so it is usually limited in practice to

constraint lengths of K = 9 or less. Stanford Telecom produces a K = 9 Viterbi decoder

that operates at rates up to 96 kbps, and a K = 7 Viterbi decoder that operates at up to 45

Mbps. Advanced Wireless Technologies offers a K = 9 Viterbi decoder that operates at

rates up to 2 Mbps.

3.2 ALGORITHM DESCRIPTION

 A. J. Viterbi proposed an algorithm as an ‘asymptotically optimum’ approach to

the decoding of convolutional codes in memory-less noise. The Viterbi algorithm (VA) is

knows as maximum likelihood (ML)-decoding algorithm for convolutional codes.

Maximum likelihood decoding means finding the code branch in the code trellis that was

most likely to be transmitted. The algorithm is based on calculating the Hamming

distance for every branch and the path that is most likely through the trellis will

maximize that metric. Viterbi algorithm performs ML decoding by reducing its

complexity. The algorithm reduces the complexity by eliminating the least likely path at

each transmission stage. The path with the best metric is known as the survivor, while the

other entering paths are non-survivors. If the best metric is shared by two or more paths,

the survivor is selected from among the best paths at random. The selection of survivors

lies at the heart of the Viterbi algorithm and ensures that the algorithm terminates with

the maximum likelihood path. The algorithm terminates when all of the nodes in the

trellis have been labeled and their entering survivors are determined. We then go to the

last node in the trellis and trace back through the trellis. At any given node, we can only

continue backward on a path that survived upon entry into that node. Since each node has

only one entering survivor, our trace-back operation always yields a unique path. This

path is the maximum likelihood estimate that predicts the most likely transmitted

sequence. The Viterbi algorithm is an optimum algorithm for estimating the state

sequence of a finite state process, given a set of noisy observations.

13

A data sequence x is encoded to generate a convolutional code word y. after y is

transmitted through a noisy channel. The convolutional decoder takes the received vector

r and generates an estimate z of the transmitted code word.

The maximum likelihood (ML) decoder selects the estimate that maximizes the

probability p (r|z), while the maximum a posteriori probability (MAP) decoder selects the

estimate that maximizes p(z|r). If the distribution of the source bits x is uniform, the two

decoders are identical.

Figure 3.1 Convolutional Decoding

 The Viterbi algorithm based on the ML algorithm and the hard decision is

illustrated in figure3.2. The trellis in the figure corresponds to the convolutional encoder.

The received code symbols are shown at the bottom of the trellis. The encoder encodes an

input sequence (11010100) and generates the code word

(111,000,001,001,111,001,111,110). This code word is transmitted over a noisy channel,

and (101,100,001,011,111,101,111,110) is received at the other end. As mentioned earlier,

the length of the trellis is equal to the length of the input sequence, which consists of the

information bits followed by the reset sequence. The reset sequence, “00”, forces the

trellis into the initial state, so that the traceback can be started at the initial state.

 A ML path is found with the aid of a branch metric and a path metric. A branch

metric is the Hamming distance between the estimate and the received code symbol. The

branch metrics accumulated along a path form a path metric. A partial path metric at a

state, often referred as state metric, is the path metric for the path from the initial state to

the given state. After the trellis grows to its maximal size, there are two incoming

branches for each node. Between two branches, the branch with a smaller (in terms of

Hamming distance) partial metric survives, and the other one is discarded. After

14

surviving branches at all nodes in the trellis have been identified, there exists a unique

path starting and ending at the same initial state in the trellis. The decoder generates an

output sequence corresponding to the input sequence for this unique path.

Figure 3.2 Viterbi Decoding for (3,1,3) Convolutional codes

 The procedure is explained below using the trellis diagram in figure 3.2. The path

metric for state S0 at time t=0 is initialized to zero. At time t=1 there is only one branch

entering state S0. This branch metric is the Hamming distance between the expected

input “000” and the received input “101”, which is two. The path metric of S0 at time t=1

is the sum of the old path metric of S0 and the branch metric. Similarly, the path metric

of S1 at t=1 is one. At t=1 there is only one branch entering these nodes. The sole branch

is the survivor branch. The same process repeats for t=2. At t=3 there are two branches

entering each node. For example, at state S0, a branch with the partial path metric six

(which is the sum of the path metric 3 of S2 and the branch metric 3) enters to the state

from S2. The other branch with the partial path metric four also enters the state from S0.

Between the two branches, the branch from S0 survives and the other one is discarded.

Surviving branches are depicted in solid lines and discarded ones are in dotted lines in

Figure. Once the trellis is tagged with partial path metrics at each node, we perform a

traceback to extract the decoded output sequence from the trellis. We start with state S0

at time t=8 and go backward in time. The sole survivor path leads to state S2 at time t=7.

15

From state S2 at time t=7, we traceback to S1 at time t=6. In this manner, a unique path

shown in the bold line is identified. Note that each branch is associated with specific

source input bit. For example, the branch from state S2 at time t=7 to node S0 at time t=8

corresponds to a bit ‘0’ whose bit position is the seventh in the source input sequence. So

while tracing back through the trellis, the decoded output sequence corresponding to

these branches is generated.

3.3 Applications

The Viterbi decoding algorithm is widely used in the following areas:

• Decoding trellis-coded modulation (TCM), the technique used in telephone-line

modems to squeeze high spectral efficiency out of 3 kHz-bandwidth analog

telephone lines. The TCM is also used in the PSK31 digital mode for amateur

radio and sometimes in the radio relay and satellite communications.

• Automatic speech recognition

• Decoding convolutional codes in satellite communications.

• Computer storage devices such as hard disk drives.

16

CHAPTER 4

VITERBI DECODER

A Viterbi Decoder consists of four functional units namely

• Branch Metric Unit,

• Add Compare Select Unit,

• Survivor Memory Unit, and

• Path Metric Memory Unit

The block diagram of general Viterbi Decoder is shown in Fig.4.1:

Figure 4.1 Functional blocks of VD

1. Branch Metric Unit (BMU): It calculates the hamming distance between the received

code and the expected code for each path in trellis diagram.

2. Add-Compare-Select Unit (ACSU): It calculates the sum of current branch metrics

and previous path metrics, then compares and selects the survivor path metric by

discarding suboptimal trellis branches in each trellis stage and stores the decision bit.

3. Path Metric Memory Unit (PMMU): It stores the survivor path metric for ACSU to be

used in the next cycle.

4. Survivor Memory Unit (SMU): Based on the decision bit from the ACSUs, the SMU

produce the decoded bits along the reconstructed state sequence through the trellis

and the survivor path metric.

Two main general approaches for the SMU are register exchange (RE) and trace

back (TB) approaches. The hardware complexity of RE compared to that of TB is lower,

but the power consumption is usually much higher compared to that of trace back. On the

contrary, power consumption of TB is lower. However, larger memory and register

requirement as well as higher latency are its drawbacks.

17

4.1 Architecture of K=7, rate r=1/3, 64 states Viterbi Decoder

The block diagram of basic Viterbi decoder is given in figure 4.1, but its

architecture varies according to the constraint length, code rate and truncation length of

convolutional codes. As the constraint length increases, its complexity also increases due

to the computation of ACSUs. The VD starts with a single state, at initial stage. At each

trellis stage less than K, the number of states enabled will be doubled and at trellis stage

greater or equal to K, the number of states enabled will be 2(K-1).

4.1.1 Branch Metric Unit (BMU)

This unit calculates the hamming distance between the received convolutional

code from the channel and expected code for all the state transition from present state to

the next state in the trellis diagram. This hamming distance is the branch metric for each

of the 64 states.

Figure 4.2 Branch Metric Unit

Figure 4.3 Branch Metric Generator

Each state may lead to two next states creating two paths upon receiving an input

code. These paths may have expected code which could be understood from state

transition table given below. Out of 64 states, 128 paths would be created and 16 paths

18

have same branch metric. Hence the branch metric generator has one input port and eight

output ports as shown below.

4.1.2 Add Compare Select Unit (ACSU)

The ACSU is the important block in Viterbi decoder architecture as it computes

the decision bit for each surviving path of each state. It selects the optimal path to each

state in the Viterbi trellis. The ACS module decodes for each state in the trellis. The

entire trellis is multiple images of the same simple element; a single circuit called Add-

Compare-Select may be assigned to each trellis state.ACS is being used repeatedly in the

decoder. A separate ACS circuit can be dedicated to every element in the trellis, resulting

in a fast, massively parallel implementation. For a given code with rate 1/n and total

memory M, the number of ACS required to decode a received sequence of length L is

L×2M. The ACSU is composed of 32 butterfly blocks and is given below. Thus for a

constraint length K=7 decoder which has 64 states, there are 64 sub-blocks in the ACS

block.

Figure 4.4 ACS components for 64 states in K=7 VD

19

Figure 4.4 ACS components for 64 states in K=7 VD (cont.,)

20

Figure 4.5 Butterfly Block 0 of ACSU

The above figure 4.5 shows the butterfly block 0 of ACSU. It has two input states

S0, S1 with path metrics, which denotes the present state of Viterbi decoder. It has two

output states S0, S32 with path metric, which denotes the possible next states for each

present state in this block. S0 may lead to two next states {S0, S32} and the expected

codes for these two transitions are {000, 111}. S1 may lead to two next states {S0, S32}

and the expected codes for these two transitions are {111, 000}. These butterfly blocks

are created from the state transition table given below. The Viterbi decoder does the

reverse process of convolutional encoder. At state S0, the encoder’s shift register consists

of the value “000000”. When input 1(0) bit is given to it, the shift register content would

be “100000” (“000000”) and the output code would be {000, 111}. Therefore the next

states would be {S0, S32}. Like that the next states could be found out for all the present

states in the Viterbi decoder. Let us denote the states with even number as even states and

states with odd number as odd states. When the output states S0, S1 receives the path

metric from input states S0, S32; it selects the path with the minimum value. This path is

called surviving path. The decision bit d0 indicates whether the surviving path is from

which state either even or odd and its value would be 0 for even and 1 for odd state.

These decision bits from all the 32 butterfly blocks are stored in Survivor Memory Unit.

A single wing for one butterfly block is given in the figure 4.6.

21

Figure 4.6 Single Butterfly Wing

The branch metrics for each two present states are added with its state metric for

each transition to the same state and then compared and the minimum path metric is

selected and the state is updated with its new value.

4.1.3 Survivor Memory Unit

The survivor memory unit is used for storing the decision bits which is used to

produce the decoded bits. Here a RAM of size 64*22 and 64*38 is used for truncation

length TL=22 and TL=38. When the decoder receives the complete set of codes equal to

truncation length, then it starts producing the decoded bits using traceback technique. For

TL=38, the path metrics of all the states at trellis stage 37 will be stored in memory array

of size 64*1 of width 7 bits. Then the minimum path metric and its corresponding state

are identified and used in traceback unit.

4.1.4 Trace Back Unit:

The final block in the decoder is traceback block. The actual decoding of symbols

into original data is accomplished by tracing the maximum likelihood path backwards

through the trellis. Up to a limit, a longer sequence of tracing results in a more accurate

path through the trellis. After a number of symbols equal to at least six times the

constraint length, the decoded data is output. The trace back starts from best state; the

best state is estimated from the ACS costs.

22

4.1.5 State Table for 64 States Viterbi Decoder

 The following is the state table for Viterbi decoder of constraint length K=7 and

rate r=1/3. This table is derived from the state table of convolutional encoder.

Table 4.1 State Table for K=7, r=1/3 Viterbi Decoder

Present
State

Next State
SL
Lower Path

Next State
SU
Upper Path

Expected Code
Lower Path

Expected Code
Upper Path

S0 S0 S32 000 111
S1 S0 S32 111 000
S2 S1 S33 011 100
S3 S1 S33 100 011
S4 S2 S34 111 000
S5 S2 S34 000 111
S6 S3 S35 100 011
S7 S3 S35 011 100
S8 S4 S36 101 010
S9 S4 S36 010 101
S10 S5 S37 110 001
S11 S5 S37 001 110
S12 S6 S38 010 101
S13 S6 S38 101 010
S14 S7 S39 001 110
S15 S7 S39 110 001
S16 S8 S40 010 101
S17 S8 S40 101 010
S18 S9 S41 001 110
S19 S9 S41 110 001
S20 S10 S42 101 010
S21 S10 S42 010 101
S22 S11 S43 110 001
S23 S11 S43 001 110
S24 S12 S44 111 000
S25 S12 S44 000 111
S26 S13 S45 100 011
S27 S13 S45 011 100
S28 S14 S46 000 111
S29 S14 S46 111 000
S30 S15 S47 011 100
S31 S15 S47 100 011
S32 S16 S48 100 011
S33 S16 S48 011 100

23

S34 S17 S49 111 000
S35 S17 S49 000 111
S36 S18 S50 011 100
S37 S18 S50 100 011
S38 S19 S51 000 111
S39 S19 S51 111 000
S40 S20 S52 001 110
S41 S20 S52 110 001
S42 S21 S53 010 101
S43 S21 S53 101 010
S44 S22 S54 110 001
S45 S22 S54 001 110
S46 S23 S55 101 010
S47 S23 S55 010 101
S48 S24 S56 110 001
S49 S24 S56 001 110
S50 S25 S57 101 010
S51 S25 S57 010 101
S52 S26 S58 001 110
S53 S26 S58 110 001
S54 S27 S59 010 101
S55 S27 S59 101 010
S56 S28 S60 011 100
S57 S28 S60 100 011
S58 S29 S61 000 111
S59 S29 S61 111 000
S60 S30 S62 100 011
S61 S30 S62 011 100
S62 S31 S63 111 000
S63 S31 S63 000 111

24

The Viterbi decoder of K=7 has 64 states. The following table shows the

computations for which all states takes place at each trellis stage. The Viterbi decoder has

a maximum of 64 states.

Table 4.2 States enabled for computation of survivor paths at each Trellis Stage

Trellis
Stage 0

Trellis
Stage 1

Trellis
Stage 2

Trellis
Stage 3

Trellis
Stage4

Trellis
Stage 5

Trellis
Stage 6

Trellis
Stage 7

Present
States

Present
States

Present
States

Present
States

Present
States

Present
States

Present
States

Present
States

S0 S0 S0 S0 S0 S0 S0 S0
 S32 S16 S8 S4 S2 S1 S1
 S32 S16 S8 S4 S2 S2
 S48 S24 S12 S6 S3 S3
 S32 S16 S8 S4 S4
 S40 S20 S10 S5 S5
 S48 S24 S12 S6 S6
 S56 S28 S14 S7 S7
 S32 S16 S8 S8
 S36 S18 S9 S9
 S40 S20 S10 S10
 S44 S22 S11 S11
 S48 S24 S12 S12
 S52 S26 S13 S13
 S56 S28 S14 S14
 S60 S30 S15 S15
 S32 S16 S16
 S34 S17 S17
 S36 S18 S18
 S38 S19 S19
 S40 S20 S20
 S42 S21 S21
 S44 S22 S22
 S46 S23 S23
 S48 S24 S24
 S50 S25 S25
 S52 S26 S26
 S54 S27 S27
 S56 S28 S28
 S58 S29 S29
 S60 S30 S30
 S62 S31 S31
 S32 S32
 S33 S33

25

 S34 S34
 S35 S35
 S36 S36
 S37 S37
 S38 S38
 S39 S39
 S40 S40
 S41 S41
 S42 S42
 S43 S43
 S44 S44
 S45 S45
 S46 S46
 S47 S47
 S48 S48
 S49 S49
 S50 S50
 S51 S51
 S52 S52
 S53 S53
 S54 S54
 S55 S55
 S56 S56
 S57 S57
 S58 S58
 S59 S59
 S60 S60
 S61 S61
 S62 S62
 S63 S63

26

CHAPTER 5

ADAPTIVE VITERBI DECODER

The Viterbi algorithm (VA) is often used to perform decoding procedure for

convolutional code since it can obtain the maximum-likelihood decoding results. In the

past, some high-speed VLSI designs for Viterbi decoder (VD) implementation were

proposed to meet the need of high throughput applications. The main drawback of them

is that they do not consider the issue of power consumption. VD may consume more than

one-third of power for baseband processing in communication applications. Hence, it is

desirable to have a low-power VD since the battery capacity of the most portable

electronic communication devices is limited.

By computing and keeping all possible 2K-1 survivor paths, VA achieves an

optimal performance of bit error rate (BER) with higher computational complexity and

larger path storage requirement. In the hardware, higher complexity means more power is

consumed. To reduce the power consumption required for VD, the Adaptive Viterbi

Algorithm (AVA) is presented.

5.1 Adaptive Viterbi Algorithm

In this project, path pruning technique which is to be used in each trellis stage is

the main concern. The AVA reduces the average computation and path storage by

computing and retaining only the path which satisfies the following conditions:

1) A path is retained only when its cost is less than the sum of threshold T and

minimum path cost dm of the previous trellis stage.

2) The total number of surviving paths per trellis stage is limited to Nmax.

The first criterion does not allow the high costs paths to be transmitted to the next

trellis stage. The second criterion restricts the number of surviving paths to Nmax. At each

stage, the minimum cost of the previous stage dm, threshold T, and maximum survivors

Nmax are used to prune the number of surviving paths. The effective use of AVA depends

on the careful calculation of T and Nmax. The average number of surviving paths retained

at each trellis stage will be reduced for a small value of T which results in an increased

27

BER, since the decision on the most likely path has to be taken from a reduced number of

survivor paths. For a larger value of T, the average number of survivor paths increases

resulting in a reduced BER. Hence an optimal value of T and Nmax so that the

performance is not affected.

5.2 Architecture of Adaptive Viterbi Decoder

A high-level view of the implemented Adaptive Viterbi Decoder architecture is

shown in figure. 5.1. The decoder contains a datapath and an associated control path.

Like most Viterbi decoders, the datapath is split into four parts: the branch metric

generators (BMG), add–compare– select (ACS) units, the survivor memory unit, and

path-metric storage and control. A BMG unit determines distances between received and

expected symbols. The ACS unit determines path costs and identifies lowest-cost paths.

The survivor memory stores lowest-cost bit-sequence paths based on decisions made by

the ACS units, and the path metric array holds per-state path metrics. The flow of data in

the datapath and the storage of results is determined by the control path.

�

Figure 5.1. Adaptive Viterbi Decoder Architecture

28

In this Adaptive Viterbi decoder, the expected symbol value (BM select) is used to

select the appropriate branch metric from the BMG, as shown at the left in figure 5.2.

This branch metric value is combined with the path metric of its parent present state to

form a new path metric, di. At each trellis stage, the minimum-value surviving path

metric among all path metrics for the preceding trellis stage, dm, is computed. New path

metrics are compared with the sum dm+T to identify path metrics with excessive cost.

Fig.5.2. ACS unit of the Adaptive Viterbi Decoder

Comparators are then used to determine the life of each path based on the

threshold, T. If the threshold condition is not satisfied by path metric dm + T, the

corresponding path is discarded. Once the paths that meet the threshold condition are

determined, the lowest-cost Nmax paths are selected. Sorting circuitry is eliminated by

allowing feedback adjustments to the parameter T for each received symbol. If the

number of paths that survive the threshold is less than Nmax, no iteration is required. As

shown in figure 5.2, for stages when the number of paths surviving the threshold

condition is greater than Nmax, T is iteratively reduced by two for the current trellis stage,

until the number of paths surviving the threshold condition is equal to or less than Nmax.

The AVA decoders for higher constraint length codes requires larger amount of logic

resources and consumes more power than decoders for codes with smaller constraint

length.

29

CHAPTER 6

RESULTS AND DISCUSSION

The simulation of this project has been done using MODELSIM SE 6.1f and

synthesized it on a Xilinx SPARTAN 3 FPGA using Xilinx ISE 8.1i.

Modelsim is a simulation tool for programming {VLSI} {ASIC}s, {FPGA}s,

{CPLD}s, and {SoC}s. Modelsim provides a comprehensive simulation and debug

environment for complex ASIC and FPGA designs. Support is provided for multiple

languages including Verilog, System Verilog, VHDL and System C.

The Spartan-3 generation of FPGAs includes the Extended Spartan-3A family

(Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms), along with the earlier

Spartan-3 and Spartan-3E families. These families of Field Programmable Gate Arrays

(FPGAs) are specifically designed to meet the needs of high volume, cost-sensitive

electronic applications, such as consumer products. The Spartan-3 generation includes 25

devices offering densities ranging from 50,000 to 5 million system gates.

The Spartan-3 platform was the industry’s first 90 nm FPGA, delivering more

functionality and bandwidth per dollar than was previously possible, setting new

standards in the programmable logic industry. The Spartan-3E platform builds on the

success of the earlier Spartan-3 platform by adding new features that improve system

performance and reduce the cost of configuration. Because of their exceptionally low cost,

Spartan-3 generation FPGAs are ideally suited to a wide range of consumer electronics

applications, including broadband access, home networking, display/projection, and

digital television equipment. The Spartan-3 generation FPGAs provide a superior

alternative to mask-programmed ASICs. FPGAs avoid the high initial cost, the lengthy

development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA

programmability permits design upgrades in the field with no hardware replacement

necessary, an impossibility with ASICs.

The ISE Design Suite is the central electronic design automation (EDA) product

family sold by Xilinx. The ISE Design Suite features include design entry and synthesis

supporting Verilog or VHDL, place-and-route (PAR), completed verification and debug

using Chip Scope Pro tools, and creation of the bit files that are used to configure the chip.

30

The VHDL code for K=5 VD; K=7 VD with TL=22 and TL=38; K=7, TL=38 VD

with state enabling logic and K=7, TL=38 Adaptive Viterbi Decoder has been written.

The simulation results for these decoders and convolutional encoder is given in the

upcoming sections while the synthesis report will be listed in the latter sections.

6.1 SIMULATION RESULTS

6.1.1 Simulation Results for (3,1,7) Convolutional Encoder

Figure 6.1 Simulation Results of (3,1,7) Convolutional Encoder

In the figure 6.1, “din” is the input sequence given to the encoder and “code” is

the output 3 bit convolutional codes obtained according to the given input sequence.

When one bit is given as input to the encoder, 3 bit output code is produced according to

the generator polynomial of the encoder at rising edge of each clock cycle. When reset is

given, the encoder’s shift register contents would be set to all zeros therefore producing

“000” at the output.

31

6.1.2 Simulation Result for K=5 Viterbi Decoder

Figure 6.2 Simulation Result for K=5 Viterbi Decoder

The figure 6.2 shows the output of K=5 Viterbi Decoder where “inp” is the input

sequence to the convolutional encoder, “eop” is the output convolutional code and “sout”

is the decoded output sequence from the Viterbi decoder. After 44 clock cycles, the

decoded output is produced at the “sout” output port of the K=5 Viterbi Decoder

corresponding to the convolutional codes given to it. The truncation length used in this

decoder is 22.

32

6.1.3 Simulation Result of Branch Metric Unit

Figure 6.3 Simulation Result of Branch Metric Unit

 In the figure 6.3, “rc” is the received code from the channel to the Viterbi

Decoder and the eight branch metrics generated are bm0, bm1, bm2, bm3, bm4, bm5,

bm6, bm7. When “000” is given as input to Branch Metric Generator, the outputs

produced are “00”, “01”, “01”, “10”, “01”, “10”, “10”, “11”.

33

6.1.4 Simulation Result of Add Compare Select Unit

Figure 6.4 Simulation Result of Add Compare Select Unit

 In the figure 6.4, the path metric for each two input states in butterfly block are

added and compared to find the minimum path metric for each of the two output states.

The path metrics of two input states are “1110001” and “0010101”. The branch metrics

“01” and “10” are another two inputs which are added with each of the path metrics of

two input states. From this addition, each output state has two metrics and they select the

minimum path metric. The output decision bit du = ’1’ and dl = ’1’ denotes that two

output states come from odd state.

34

6.1.5 Simulation Result of K=7 Viterbi Decoder for TL=22

Figure 6.5 Simulation Result of K=7 Viterbi Decoder for TL=22

In the figure 6.5, an input sequence of 22 convolutional codes were given as input

to the Viterbi decoder and after 49 clock cycles, it produces the decoded output bit

corresponding to given convolutional codes. Here the truncation length used is of 22

codes.

35

6.1.6 Simulation Result of K=7 Viterbi Decoder for TL=38

Figure 6.6 Simulation Result of K=7 Viterbi Decoder for TL=38

In the figure 6.6, an input sequence of 38 convolutional codes were given as input

to the Viterbi decoder and after 81 clock cycles, it produces the decoded output bit

corresponding to given convolutional codes. Here the truncation length used is of 38

codes.

 In figure 6.7 a and 6.7 b, an input sequence of 38 convolutional codes were given

as input to the Viterbi decoder and after 117 clock cycles, it produces the decoded output

bit corresponding to given convolutional codes. Here the truncation length used is of 38

codes. Here at each clock cycle, the number of states enabled will be increasing to 64 at

trellis stage 6 and thereafter it will be 64.

36

6.1.7 Simulation Results of K=7 Viterbi Decoder for TL=38 with State

Enabling Block

Figure 6.7 a) Simulation Result of K=7 Viterbi Decoder with State Enabling Block

Figure 6.7 b) Simulation Result of K=7 Viterbi Decoder with State Enabling block

37

6.1.8 Simulation Results of K=7 Adaptive Viterbi Decoder for TL=38

Figure 6.8 a) Simulation Result of K=7 Adaptive Viterbi Decoder

In figure 6.8 a, an input sequence of 38 convolutional codes were given as input

to the Viterbi decoder and after 117 clock cycles, it produces the decoded output bit

corresponding to given convolutional codes. Here the truncation length used is of 38

codes. Here at third clock cycle, the number of states enabled and number of survivor

paths computed will be eight. At fourth and other clock cycles, the number of survivor

paths will be kept less than or equal to eight, by calculating the state with maximum path

metric and state with minimum path metric; taking the average of them and keeping it as

a threshold value. The states with path metric value greater than threshold are discarded

and those states which are less than it are transmitted to the next trellis stage.

38

Figure 6.8 b) Simulation Result of K=7 Adaptive Viterbi Decoder

In figure 6.8 b, the decision bits whose states are enabled are stored in memory

and others are discarded. At clock cycle = 39 the path metric of all the states are taken in

an array, and the state with minimum path metric is found out. From that state, the

traceback is done for clock cycles 41 to 78; the output bit decoded will be in the reverse

order, so a last in first out register is implemented to produce the output in correct order.

This register is activated for clock cycles 79 to116. At clock cycle = 117, the decoder

produces the correct output bit sequence.

39

6.2 SYNTHESIS REPORT

The K=7 Viterbi Decoder and Adaptive Viterbi Decoder has been implemented

on Xilinx Spartan 3E FPGA using Xilinx ISE 8.1i design tool. The device utilisation and

timing report for the convolutional encoder, Viterbi Decoder and Adaptive Viterbi

Decoder is as follows.

6.2.1 CONVOLUTIONAL ENCODER

Device utilization summary:

Selected Device : 3s1000fg320-4

Number of Slices: 6 out of 7680 0%

Number of Slice Flip Flops: 9 out of 15360 0%

Number of 4 input LUTs: 6 out of 15360 0%

Number of bonded IOBs: 6 out of 221 2%

Number of GCLKs: 1 out of 8 12%

Total equivalent gate count for design: 111

Additional JTAG gate count for IOBs: 288

Peak Memory Usage: 179 MB

Timing Summary:

Speed Grade: -4

Minimum period: 3.566ns (Maximum Frequency: 280.426MHz)

Minimum input arrival time before clock: 3.947ns

Maximum output required time after clock: 7.165ns

Maximum combinational path delay: No path found

40

6.2.2 K=7 VITERBI DECODER

Device utilization summary:

Selected Device : 3s1000fg320-4

Number of Slices: 3237 out of 7680 42%

Number of Slice Flip Flops: 1513 out of 15360 9%

Number of 4 input LUTs: 5882 out of 15360 38%

 Number used as logic: 5498

 Number used as RAMs: 384

Number of bonded IOBs: 6 out of 221 2%

Number of GCLKs: 6 out of 8 75%

Total equivalent gate count for design: 71,828

Additional JTAG gate count for IOBs: 288

Peak Memory Usage: 220 MB

Timing Summary:

Speed Grade: -4

Minimum period: 295.727ns (Maximum Frequency: 3.381MHz)

Minimum input arrival time before clock: 11.902ns

Maximum output required time after clock: 7.165ns

Maximum combinational path delay: No path found

41

6.2.3 K=7 ADAPTIVE VITERBI DECODER

Device utilization summary:

Selected Device: 3s1000fg320-4

Number of Slices: 1995 out of 7680 25%

Number of Slice Flip Flops: 764 out of 15360 4%

Number of 4 input LUTs: 3111 out of 15360 20%

Number used as logic: 2727

Number used as RAMs: 384

Number of bonded IOBs: 6 out of 221 2%

Number of GCLKs: 1 out of 8 12%

Total equivalent gate count for design: 49,946

Additional JTAG gate count for IOBs: 288

Peak Memory Usage: 203 MB

Timing Summary:

Speed Grade: -4

Minimum period: 285.267ns (Maximum Frequency: 3.505MHz)

Minimum input arrival time before clock: 11.736ns

Maximum output required time after clock: 7.165ns

Maximum combinational path delay: No path found

42

6.3 POWER REPORT

6.3.1 CONVOLUTIONAL ENCODER

Figure 6.9 Power Report of (3,1,7) Convolutional encoder

The figure 6.9 shows that the power dissipated for (3,1,7) convolutional encoder

is 94mW.

43

6.3.2 K=7 VITERBI DECODER

Figure 6.10 Power Report of K=7 Viterbi Decoder

The figure 6.9 shows that the power dissipated for K=7 Viterbi Decoder is

112mW.

44

6.3.3 K=7 ADAPTIVE VITERBI DECODER

Figure 6.11 Power Report of K=7 Adaptive Viterbi Decoder

The figure 6.9 shows that the power dissipated for K=7 Adaptive Viterbi Decoder

is 105mW.

45

6.4 COMPARISONS

The results obtained from the synthesis report and power report of Viterbi

Decoder and Adaptive Viterbi decoder are compared in the given table.

Table 6.1 Comparison of Viterbi Decoder and Adaptive Viterbi Decoder

SUMMARY

K=7 VITERBI

DECODER

K=7 ADAPTIVE

VITERBI

DECODER

% REDUCTION

POWER 112mW 105mW 6.25

AREA

Total Gate Count

71828 49946 30.46

In the table 6.1, the power and area for Viterbi Decoder and Adaptive Viterbi

Decoder are presented and compared. The comparison shows that the Adaptive Viterbi

decoder consumes less area and less power to that of Viterbi Decoder.

46

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

A Viterbi decoder (VD) which uses Adaptive Viterbi Algorithm (AVA) for

decoding (3,1,7) convolutional codes has been implemented using VHDL, simulated

using ModelSim SE 6.1f and synthesized on Xilinx Spartan 3 FPGA using Xilinx ISE

8.1i design tool. This adaptive Viterbi decoder reduces the memory requirements and

power consumption of VD using Viterbi Algorithm by reducing the number of surviving

paths calculated at each trellis stage.

The future scope of this project is to design an adaptive Viterbi Decoder with

specifications for variable constraint length, variable code rate and variable constraint

length for decoding convolutional codes.

47

BIBLIOGRAPHY

1 S. Y. Ameen, M. H. Al-Jammas, A. S. Alenezi, “FPGA Implementation of

Adaptive Viterbi Decoder”, IEEE Transactions on Very Large scale Integration

(VLSI) Systems, September2011.

2 Sunil P. Joshi and Roy Paily “ Low Power Viterbi Decoder by Modified ACSU

architecture and Clock Gating Method”, IEEE International Symposium on VLSI

Design Automation, and Test, 2010, pp. 236-241.

3 S. W. Shaker, S. H. Alramely and K. A. Shehata, “Design and implementation of

low-power Viterbi decoder for software-defined WiMAX receiver”, 17th

Telecommunication Forum TELFOR, Serbia, Belgrade, 2009.

4 M. Pramod and M. K. Patil, “Implementation of Viterbi encoder and decoder on

FPGA”, Project Report, Digital System Design with FPGAs, Indian Institute of

Science, Nov. 2009.

5 Y. Tang, , D. Hu, , W. Wei,, W. Lin and H. Lin “A Memory-Efficient

Architecture for Low Latency Viterbi Decoders” International Symposium on

VLSI design, Automation and Test, VLSI-DAT09, Hsinchu, July, 2009.

6 C.-Y. Chu, Y.-C. Huang and A.Y. Wu, “Power Efficient Low Latency Survivor

Memory Architecture for Viterbi Decoder”. IEEE International Symposium on

VLSI Design Automation, and Test, 2008, pp. 228-231.

7 H. .S, Suresh and B. . .V, Ramesh, “FPGA implementation of Viterbi decoder”,

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and

Optical Communications, Corfu Island, Greece, February 16-19, 2007

48

8 M. Kamuf, V. Öwall and J. B. Anderson “Survivor Path Processing in Viterbi

Decoders Using Register Exchange and Traceforward”, IEEE Transaction on

circuit and systems, Vol. 54, No. 6, June 2007.

9 S. Swaminathan, R. Tressier, D. Goeckel., and W. Burleson, "A dynamically

reconfigurable Viterbi decoder", IEEE Transactions on Very Large scale

Integration (VLSI) Systems, Vol. 13, No. 4, pp. 484-488 , April 2005.

10 Obeid A. M., Ortiz A. G., Ludewig R., and Glenser M., "Prototype of a high

performance generic Viterbi decoder", Proceedings. 13th IEEE International

Workshop on Rapid System Prototyping I2002.

11 M.F.Batcha, “Implementation of Reconfigurable Viterbi Decoders in Hardware”,

Universiti Teknologi Malaysia, April 2010.

12 “RTL implementation of Viterbi decoder”, Dept. Of Computer Engineering at

Linkpings university, June 2006.

13 D. A. Wahed, “Low Power Register Exchange Viterbi Decoder for Wireless

Applications,” University of Waterloo, April 2004.

14 S. Ranpara, “On a viterbi decoder design for low power dissipation,” Master’s

thesis, Virginia Polytechnic Institute and State University, 1999.

15 Xilinx (2011), “ LogiCORE IP Viterbi Decoder v7.0 Product Specification ” ,

March 2011.

16 Stephen Fleming, “A Tutorial on Convolutional Coding with Viterbi Decoding”

Spectrum Applications, June 2002.

49

17 Charan Langton, “Coding and decoding with convolutional codes”,

http://www.complextoreal.com

18 S. Haykin. “Communication Systems” Wiley, 1994.

19 G.D.Forney, Jr. “ The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, pp.

268 – 278, 1973.

20 A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm,” IEEE Trans. on Information Theory, vol. IT-13,

pp. 300-303, April 1967.

21 Michael J Smith, “Application Specific Integrated Circuits”, Pearson Education,

2008.

22 Zainalabedin Navabi, “VHDL Modular Design and Synthesis”, McGraw Hill,

2008.

23 Peter J. Ashenden, “The Designers Guide to VHDL”, Elsevier, 2008.

24 M. Morris Mano, “Digital design”, Pearson Education, 2006.

25 Volnei A. Pedroni, “Circuit Design with VHDL”, PHI, 2005.

26 Douglas L. Perry, “VHDL Programming by Example”, McGraw. Hill, 2002.

27 J. Bhasker, “A VHDL Synthesis Primer”, B S Publications, 2001.

