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ABSTRACT 

In wireless data communications, errors occur frequently due to the non-overlook 

noises in the air. The convolutional coding technique is used to overcome this problem. 

By inserting additional bits into the transmitted bits, the convolutional coding technique 

can achieve good error resilience. When the transmission is done, the error bits can be 

corrected with the help of some particular decoding algorithms.  

The Viterbi algorithm (VA) is often used to perform decoding procedure for 

convolutional code since it can obtain the maximum-likelihood decoding results. In the 

past, some high-speed VLSI designs for Viterbi decoder (VD) implementation were 

proposed to meet the need of high throughput applications. The main drawback of them 

is that they do not consider the issue of power consumption. VD may consume more than 

one-third of power for baseband processing in communication applications. Hence, it is 

desirable to have a low-power VD since the battery capacity of the most portable 

electronic communication devices is limited.  

By computing and keeping all possible 2K-1 survivor paths, VA achieves an optimal 

performance of bit error rate (BER) with higher computational complexity and larger 

path storage requirement. In the hardware, higher complexity means more power is 

consumed. To reduce the power consumption required for VD, the adaptive Viterbi 

algorithm (AVA) has been proposed. It employs preset threshold values, T and Nmax, to 

reduce the average number of survivor paths and thus can decrease the power 

consumption efficiently. Hence, T and Nmax should be decided carefully.  
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CHAPTER 1 

INTRODUCTION 

With the rapid development of communication technology and the emergence of 

various wireless devices, communication standards are becoming diverse. In such diverse 

environment, a mobile terminal must have the ability to adapt to various communication 

standards. Conventionally, this problem was solved by an adaptive solution that collects 

several single function components and then configures them statically or dynamically 

every time the standard changes. However, there is a multimode, multifunctional solution 

that has only one component and does not need to configure when the standard changes. 

To adapt to the current standard, the system can change the fabric instantaneously 

according to the parameters to switch among various functions. As a result, the mobile 

termination or wireless station can perform several different functions on a single 

hardware without extra fabric. 

 Among various wireless standards, Viterbi algorithm is the most popular 

decoding algorithm which is used to decode the convolutional code. The reconfigurable 

Viterbi decoder is the critical part of a multimode multifunctional wireless 

communication system, which needs to support parameters such as code rate, constraint 

length, polynomial and truncation length. Each standard can be described with a series of 

parameters that can be sent to the Viterbi decoder. The wireless communication standards 

using the Viterbi algorithm as the decoding algorithm are listed in Table 1. The code rates 

of conventional standards range from 1/2–1/3 and constraint lengths vary from 5–9. 

Table 1.1 Channel Coding Parameter for Different Wireless Communication 

Standard

Standard Code Rate Constraint Length Number of States 

GPRS ½ 5 16 

GSM ½ 5 16 

WiMAX ½ 7 64 

802.11a/g ½ 7 64 

CDMA 2000 ½,1/3 9 256 

3G 1/3 9 256 
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1.1 MOTIVATION 

Viterbi decoders are mostly implemented on three types of platforms, namely, 

DSPs, ASICs, and FPGAs. The flexibility and parallelism of DSPs are restricted by its 

Instruction Set Architectures. ASICs have the best area-power performance, but they 

have a long development cycle, high design cost, and fixed functionality. In contrast, 

FPGAs have higher flexibility at the cost of shorter development cycle and lower design 

cost. Multiple functions can be merged into a single fabric on FPGAs because of their 

high flexibility. As to the reconfigurable Viterbi decoder, the platform must be a 

combination of the flexibility of software and the high performance of hardware, which is 

the characteristic of FPGAs. FPGA is the most suitable platform for the reconfigurable 

Viterbi decoder. 

1.2 PROJECT GOAL 

The goal of the project is to implement a Viterbi decoder which uses adaptive 

Viterbi algorithm for decoding convolutional codes of constraint length K=7, rate r=1/3 

and generator polynomials (117,127,155)8.  

1.3 OVERVIEW OF THE PROJECT 

Convolutional codes become more powerful when its constraint length K 

increases and this increases the complexity of Viterbi decoders. The Viterbi Algorithm, a 

decoding algorithm for convolutional codes. Viterbi algorithm, the maximum likelihood 

decoding algorithm for convolutional codes, works well for less-complex codes, 

indicated by constraint length K, but it requires an exponential increase in hardware 

complexity to achieve greater decode accuracy. The VA’s memory requirement and 

computation count pose a performance obstacle when decoding more powerful codes 

with large constraint lengths.  The AVA reduces the average number of computations 

required per bit of decoded information. In the adaptive Viterbi algorithm, the number of 

candidate data sequences (survivor paths) retained per received symbol (transmitted data 

bit) varies over time. 
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1.4  LITERATURE SURVEY

An Adaptive Viterbi Decoder for constraint length K=7, rate=1/3 has been 

discussed in [1] and implemented on Spartan 3E FPGA using VHDL. 

In [2], power reduction is achieved at the architecture level and its Register 

Transfer Level (RTL) implementation is discussed. A Viterbi Decoder with architectural 

modification for Add Compare Select Unit and clock gated Survivor Memory Unit have 

been designed for low power wireless applications. A decoder system with constraint 

length K=7 and rate=1/2 have been synthesized on FPGA using Verilog HDL. Additional 

circuitries in Branch Metric Unit for pre-calculated differences and pre-calculated 

comparisons were done. 

  A low-power, Viterbi Decoder for Software Defined WiMAX receiver used for 

decoding convolutional codes of constraint length K=7 and code rate r=1/2 with 

generating polynomials g(171,133)8 has been implemented [3] on Xilinx Vertex 2 Pro 

using VHDL. This Viterbi Decoder reduces the dynamic power by using the concept of 

traceback along with clock gating technique and disables the decoding circuits when 

traceback process is not activated. The number of input codes given to this decoder is 40 

per frame and optimal traceback depth of 5*K was used.  

The Viterbi Algorithm (VA) has two methods to extract the decoded bits: the 

Register Exchange (RE) and the Trace Back (TB). The RE technique is acceptable for 

trellises with only a small number of states, whereas the TB approach is acceptable for 

trellises with a larger number of states. A Viterbi decoder with constraint length K=3, 

rate=1/2 which can correct up to two errors in 16 bits of transmitted data had been 

discussed in [4]. The implementation of Viterbi Algorithm is given here in detail. The 

generator polynomial of convolutional encoder used are (7, 3)8. Truncation length of 16 

and Trace Back approach are employed in this decoder. 

 The Modified State Exchange (MSE) Algorithm that simplifies the Trace back 

approach with block decoding capability to achieve low power, low latency and low 

memory requirements were given in [5]. The Viterbi Decoder using MSE architecture for 

decoding (2,1,6) convolutional codes can record “survival state numbers” which is 

resulted decoded data and so no decision bits are required during Trace Back and storing. 
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 A new Survivor memory unit architecture which combines the benefits of Trace-

forward and Trace-backward is given in [6]. Its features were low power and low latency. 

The power consumption of this architecture is slightly higher than 3-pointer even Trace 

Back architecture. 

 When the constraint length used in the convolutional encoding process is 

increased, the more powerful the code is produced. A Viterbi Algorithm (VA) based on 

strongly connected trellis decoding of binary convolutional codes has been presented. 

The FPGA implementation of Viterbi Decoders with K=11 and code rate=1/3 has been 

discussed in [7]. Here the decoded data bits are stored in registers using shift update and 

selective update methods in Traceback approach. 

 [8] proposes a new class of hybrid VLSI architectures for survivor path 

processing to be used in Viterbi Decoders which combines the benefits of Register 

Exchange and Trace Forward algorithms. It can be efficiently applied to codes with a 

larger number of states where Traceback architectures are dominant. Latency and storage 

requirements are traded for implementation complexity. 

 A high performance soft input hard output prototyped version of Viterbi Decoder 

(VD) is presented in [10]. The generic parameters of Viterbi Decoders are constraint 

length, generator polynomials of encoder, metric size and number of surviving paths. 

Other parameters of VD such as the trellis window length, number of the best traceback 

paths, and the bit width of the metrics are kept generic as well. This prototyped VD 

accepts two soft inputs and makes a hard decision producing one bit to output. 

 The thesis in [11] analyses the different Viterbi decoders and implement a 

reconfigurable Viterbi Decoder with shared hardware structure for GSM, GPRS, EDGE 

and WiMAX technology. The shared hardware structure would help in limiting the 

number of logic cells used compared to if implementation were to be done separately. 

The designed decoder could be adapted to any wireless communications that requires 

robust error correction and also supports high data rate. The hardware implementation 

combines the Viterbi decoder of constraint length K=7 and K=5 and it could be used on 

EDGE (Enhanced Data rates for Global Evolution) and IEEE 802.11 (WLAN) / 802.16 

(WiMAX) systems. 
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 The Viterbi decoder in [13] uses pointer concept to obtain the decoded data and 

bit serial architecture for the Add Compare Select Unit implementation. A low power VD 

has been proposed in [14] using Trace Back and Register Exchange method for 

producing the decoded data bits. 

The concept of convolutional codes, encoding, constraint length, code rate, Viterbi 

Algorithm, Viterbi decoding, Trellis diagram and Survivor paths were well explained and 

discussed in [15], [16], [17], [18]. The concept of VHDL and its programming were 

explained in [20], [21], [22], [23], [24], [25], [26], [27]. 

�
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CHAPTER 2 

CONVOLUTIONAL CODES 

Error correction coding is used to detect and correct data transmission errors in 

communication channels. Encoding is accomplished through the addition of redundant 

bits to transmitted information symbols. These redundant bits provide decoders with the 

capability to correct transmission errors. The process of adding this redundant 

information is known as channel coding.  

Convolutional coding and block coding are the two major forms of channel 

coding. Convolutional codes operate on serial data, one or a few bits at a time. Block 

codes operate on relatively large (typically, up to a couple of hundred bytes) message 

blocks. There are a variety of useful convolutional and block codes, and a variety of 

algorithms for decoding the received coded information sequences to recover the original 

data.  

Convolutional Codes were first introduced by Elias in 1955, which offer an 

alternative to block codes for transmission over a noisy channel. Convolutional coding 

can be applied to a continuous input stream (which cannot be done with block codes), as 

well as blocks of data. 

A convolutional encoder can be viewed as a finite state machine. A convolutional 

encoder consists of one or more shift registers and multiple XOR gates. The stream of 

information bits flows in to the shift register from one end and is shifted out at the other 

end. A convolutional encoder is a Mealy machine, where the output is a function of the 

current state and the current input.  In convolutional coding, the encoded output of a 

transmitter (encoder) depends not only on the set of encoder inputs received during a 

particular time step, but also on the set of inputs received within a previous span of K-1 

time units, where K is greater than 1. The parameter K is the constraint length of the code. 

The encoding of convolutional codes can be accomplished with shift registers and 

generator polynomials (XOR functions). 

A convolutional encoder is represented by the number of output bits per input bit 

(v), the number of input bits accepted at a time (b), and the constraint length (K), leading 

to representation (v, b, K). Figure 1 depicts a (2, 1, 3) convolutional encoder since the 
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encoder accepts one input bit per time step and generates two output bits. The two output 

bits are dependent on the present input and the previous two input bits. The operation of 

the encoder can be represented by a state diagram. Nodes represent the present state of 

the shift register while edges represent the output sequence and point to the next state of 

transition.  

Figure 2.1 A (3, 1, 3) convolutional encoder 

Figure 2.2 State diagrams for the convolutional encoder in Figure 2.1 

Successive evaluation of state over time leads to the trellis diagram. The diagram 

is a time-ordered mapping of encoder state with each possible state represented by a point 

on the vertical axis. Nodes represent the present state of the shift register at specific 

points in time while edges represent the output sequence and point to the next state of 

transition. The horizontal axis represents time steps. Branch lines indicate the transition 

of the present state of the shift register to the next state upon receiving a particular input 

bit, b. The upper branch leaving a node implies an input of 0 while the lower branch 

implies an input of 1. 
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The code rate, k/n, is expressed as a ratio of the number of bits into the 

convolutional encoder (k) to the number of channel symbols output by the convolutional 

encoder (n) in a given encoder cycle. The constraint length parameter, K, denotes the 

"length" of the convolutional encoder, i.e. how many k-bit stages are available to feed the 

combinatorial logic that produces the output symbols. 

Figure 2.3 Trellis diagram for the convolutional encoder in Figure 2.1

  The trellis diagram is used to display the computed branch and path measures, at 

each branch of initial state and each time sample. There is no theoretical basis for the 

optimal location of the shift register stages to be connected to XOR gates. It is based on 

an empirical approach. The following table introduces the common generator sequence of 

the convolutional coding with constrain length from 7 to 9.  

Table 2.1 Generator Polynomial for different Rate and Constraint Length of Viterbi 

Decoders 

Rate Constraint Length Generator Polynomials 

1/2 7 1001111, 1101101 

1/2 8 10011111, 11100101 

1/2 9 110101111, 100011101 

1/3 7 1001111, 1010111,1101101 

1/3 8 11101111,10011001,10101101 
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The location of stages is determined by the generator sequence, which also 

determines the minimum Hamming distance. Minimum Hamming distance determines 

the maximal number of correctable bits also the decoding performance. Usually with a 

lower coding rate and a longer constrain length; there must be a larger minimum 

Hamming distance. 

The convolutional encoder used in this project has a constraint length K=7 and 

rate r=1/3. The encoder produces 3 output code bits (G0, G1, G2) for each input bit and 

has totally 64 states. The generator polynomials (are usually denoted in the octal 

notation) used in this encoder are G0=1178, G1=1278, G2=1558. The convolutional 

encoder k=7 and r=1/3 is shown below.   

Figure 2.4 K=7, r=1/3 Convolutional Encoder

2.1 Applications 

Convolutional codes are used extensively in numerous applications in order to 

achieve reliable data transfer, including digital video, radio, mobile communication, and 

satellite communication. These codes are often implemented in concatenation with a 

10 

hard-decision code, particularly Reed Solomon. Prior to turbo codes, such constructions 

were the most efficient, coming closest to the Shannon limit. 

2.2 Popular convolutional codes 

An especially popular Viterbi-decoded convolutional code, used at least since the 

Voyager program has a constraint length k of 7 and a rate r of 1/2. 

• Longer constraint lengths produce more powerful codes, but the complexity of the 

Viterbi algorithm increases exponentially with constraint lengths, limiting these 

more powerful codes to deep space missions where the extra performance is 

easily worth the increased decoder complexity. 

• Mars Pathfinder, Mars Exploration Rover and the Cassini probe to Saturn use a k 

of 15 and a rate of 1/6; this code performs about 2 dB better than the simpler k=7 

code at a cost of 256× in decoding complexity (compared to Voyager mission 

codes). 

2.3Decoding convolutional codes 

Several algorithms exist for decoding convolutional codes. For relatively small 

values of k, the Viterbi algorithm (VA) is universally used as it provides maximum 

likelihood performance and is highly parallelizable. Viterbi decoders (VD) are thus easy 

to implement in VLSI hardware and in software on CPUs with SIMD instruction sets. 

Longer constraint length codes are more practically decoded with any of several 

sequential decoding algorithms, of which the Fano algorithm is the best known. Unlike 

Viterbi decoding, sequential decoding is not maximum likelihood but its complexity 

increases only slightly with constraint length, allowing the use of strong, long-constraint-

length codes. Such codes were used in the Pioneer program of the early 1970s to Jupiter 

and Saturn, but gave way to shorter, Viterbi-decoded codes, usually concatenated with 

large Reed-Solomon error correction codes that steepen the overall bit-error-rate curve 

and produce extremely low residual undetected error rates. 
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CHAPTER 3 

VITERBI ALGORITHM 

3.1 BACKGROUND 

A Viterbi Decoder (VD) uses the Viterbi Algorithm (VA) for decoding a bit 

stream that has been encoded using forward error correction based on a convolutional 

code. There are other algorithms for decoding a convolutionally encoded stream (for 

example, the Fano algorithm). The Viterbi Algorithm (VA) is the most resource-

consuming, but it does the maximum likelihood decoding. It is most often used for 

decoding convolutional codes with constraint lengths k<=10, but values up to k=15 are 

used in practice. Viterbi decoding was developed by Andrew J. Viterbi and published in 

the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum 

Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 

260-269, in April, 1967. 

The Viterbi algorithm is a dynamic programming algorithm for finding the most 

likely sequence of hidden states – called the Viterbi path – that results in a sequence of 

observed events, especially in the context of Markov information sources, and more 

generally, hidden Markov models. The forward algorithm is a closely related algorithm 

for computing the probability of a sequence of observed events. These algorithms belong 

to the realm of probability theory. 

The Viterbi algorithm was conceived by Andrew Viterbi in 1966 as a decoding 

algorithm for convolutional codes over noisy digital communication links. The algorithm 

has found universal application in decoding the convolutional codes used in both CDMA 

and GSM digital cellular, dial-up modems, satellite, deep-space communications, and 

802.11 wireless LANs. It is now also commonly used in speech recognition, keyword 

spotting, computational linguistics, and bioinformatics. The Viterbi decoding algorithm is 

also used in decoding trellis-coded modulation, the technique used in telephone-line 

modems to squeeze high ratios of bits-per-second to Hertz out of 3 kHz-bandwidth 

analog telephone lines. Viterbi decoding is one of two types of decoding algorithms used 

with convolutional encoding-the other type is sequential decoding. Sequential decoding 
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has the advantage that it can perform very well with long-constraint-length convolutional 

codes, but it has a variable decoding time.  

Viterbi decoding has the advantage that it has a fixed decoding time. It is well 

suited to hardware decoder implementation. But its computational requirements grow 

exponentially as a function of the constraint length, so it is usually limited in practice to 

constraint lengths of K = 9 or less. Stanford Telecom produces a K = 9 Viterbi decoder 

that operates at rates up to 96 kbps, and a K = 7 Viterbi decoder that operates at up to 45 

Mbps. Advanced Wireless Technologies offers a K = 9 Viterbi decoder that operates at 

rates up to 2 Mbps. 

3.2 ALGORITHM DESCRIPTION 

 A. J. Viterbi proposed an algorithm as an ‘asymptotically optimum’ approach to 

the decoding of convolutional codes in memory-less noise. The Viterbi algorithm (VA) is 

knows as maximum likelihood (ML)-decoding algorithm for convolutional codes.  

Maximum likelihood decoding means finding the code branch in the code trellis that was 

most likely to be transmitted. The algorithm is based on calculating the Hamming 

distance for every branch and the path that is most likely through the trellis will 

maximize that metric. Viterbi algorithm performs ML decoding by reducing its 

complexity. The algorithm reduces the complexity by eliminating the least likely path at 

each transmission stage. The path with the best metric is known as the survivor, while the 

other entering paths are non-survivors. If the best metric is shared by two or more paths, 

the survivor is selected from among the best paths at random. The selection of survivors 

lies at the heart of the Viterbi algorithm and ensures that the algorithm terminates with 

the maximum likelihood path. The algorithm terminates when all of the nodes in the 

trellis have been labeled and their entering survivors are determined. We then go to the 

last node in the trellis and trace back through the trellis. At any given node, we can only 

continue backward on a path that survived upon entry into that node. Since each node has 

only one entering survivor, our trace-back operation always yields a unique path. This 

path is the maximum likelihood estimate that predicts the most likely transmitted 

sequence. The Viterbi algorithm is an optimum algorithm for estimating the state 

sequence of a finite state process, given a set of noisy observations.
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A data sequence x is encoded to generate a convolutional code word y. after y is 

transmitted through a noisy channel. The convolutional decoder takes the received vector 

r and generates an estimate z of the transmitted code word. 

The maximum likelihood (ML) decoder selects the estimate that maximizes the 

probability p (r|z), while the maximum a posteriori probability (MAP) decoder selects the 

estimate that maximizes p(z|r). If the distribution of the source bits x is uniform, the two 

decoders are identical. 

Figure 3.1 Convolutional Decoding 

 The Viterbi algorithm based on the ML algorithm and the hard decision is 

illustrated in figure3.2. The trellis in the figure corresponds to the convolutional encoder. 

The received code symbols are shown at the bottom of the trellis. The encoder encodes an 

input sequence (11010100) and generates the code word 

(111,000,001,001,111,001,111,110). This code word is transmitted over a noisy channel, 

and (101,100,001,011,111,101,111,110) is received at the other end. As mentioned earlier, 

the length of the trellis is equal to the length of the input sequence, which consists of the 

information bits followed by the reset sequence. The reset sequence, “00”, forces the 

trellis into the initial state, so that the traceback can be started at the initial state. 

 A ML path is found with the aid of a branch metric and a path metric. A branch 

metric is the Hamming distance between the estimate and the received code symbol. The 

branch metrics accumulated along a path form a path metric. A partial path metric at a 

state, often referred as state metric, is the path metric for the path from the initial state to 

the given state. After the trellis grows to its maximal size, there are two incoming 

branches for each node. Between two branches, the branch with a smaller (in terms of 

Hamming distance) partial metric survives, and the other one is discarded. After 
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surviving branches at all nodes in the trellis have been identified, there exists a unique 

path starting and ending at the same initial state in the trellis. The decoder generates an 

output sequence corresponding to the input sequence for this unique path. 

Figure 3.2 Viterbi Decoding for (3,1,3) Convolutional codes 

 The procedure is explained below using the trellis diagram in figure 3.2. The path 

metric for state S0 at time t=0 is initialized to zero. At time t=1 there is only one branch 

entering state S0. This branch metric is the Hamming distance between the expected 

input “000” and the received input “101”, which is two. The path metric of S0 at time t=1 

is the sum of the old path metric of S0 and the branch metric. Similarly, the path metric 

of S1 at t=1 is one. At t=1 there is only one branch entering these nodes. The sole branch 

is the survivor branch. The same process repeats for t=2. At t=3 there are two branches 

entering each node. For example, at state S0, a branch with the partial path metric six 

(which is the sum of the path metric 3 of S2 and the branch metric 3) enters to the state 

from S2. The other branch with the partial path metric four also enters the state from S0. 

Between the two branches, the branch from S0 survives and the other one is discarded. 

Surviving branches are depicted in solid lines and discarded ones are in dotted lines in 

Figure. Once the trellis is tagged with partial path metrics at each node, we perform a 

traceback to extract the decoded output sequence from the trellis. We start with state S0 

at time t=8 and go backward in time. The sole survivor path leads to state S2 at time t=7. 
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From state S2 at time t=7, we traceback to S1 at time t=6. In this manner, a unique path 

shown in the bold line is identified. Note that each branch is associated with specific 

source input bit. For example, the branch from state S2 at time t=7 to node S0 at time t=8 

corresponds to a bit ‘0’ whose bit position is the seventh in the source input sequence. So 

while tracing back through the trellis, the decoded output sequence corresponding to 

these branches is generated. 

3.3 Applications 

The Viterbi decoding algorithm is widely used in the following areas: 

• Decoding trellis-coded modulation (TCM), the technique used in telephone-line 

modems to squeeze high spectral efficiency out of 3 kHz-bandwidth analog 

telephone lines. The TCM is also used in the PSK31 digital mode for amateur 

radio and sometimes in the radio relay and satellite communications. 

• Automatic speech recognition 

• Decoding convolutional codes in satellite communications. 

• Computer storage devices such as hard disk drives. 
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CHAPTER 4 

VITERBI DECODER 

A Viterbi Decoder consists of four functional units namely 

• Branch Metric Unit, 

• Add Compare Select Unit, 

• Survivor Memory Unit, and 

• Path Metric Memory Unit 

The block diagram of general Viterbi Decoder is shown in Fig.4.1: 

Figure 4.1 Functional blocks of VD 

1. Branch Metric Unit (BMU): It calculates the hamming distance between the received 

code and the expected code for each path in trellis diagram. 

2. Add-Compare-Select Unit (ACSU): It calculates the sum of current branch metrics 

and previous path metrics, then compares and selects the survivor path metric by 

discarding suboptimal trellis branches in each trellis stage and stores the decision bit.  

3. Path Metric Memory Unit (PMMU): It stores the survivor path metric for ACSU to be 

used in the next cycle.  

4. Survivor Memory Unit (SMU): Based on the decision bit from the ACSUs, the SMU 

produce the decoded bits along the reconstructed state sequence through the trellis 

and the survivor path metric.  

Two main general approaches for the SMU are register exchange (RE) and trace 

back (TB) approaches. The hardware complexity of RE compared to that of TB is lower, 

but the power consumption is usually much higher compared to that of trace back. On the 

contrary, power consumption of TB is lower. However, larger memory and register 

requirement as well as higher latency are its drawbacks. 
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4.1 Architecture of K=7, rate r=1/3, 64 states Viterbi Decoder 

The block diagram of basic Viterbi decoder is given in figure 4.1, but its 

architecture varies according to the constraint length, code rate and truncation length of 

convolutional codes. As the constraint length increases, its complexity also increases due 

to the computation of ACSUs. The VD starts with a single state, at initial stage. At each 

trellis stage less than K, the number of states enabled will be doubled and at trellis stage 

greater or equal to K, the number of states enabled will be 2(K-1). 

4.1.1 Branch Metric Unit (BMU) 

This unit calculates the hamming distance between the received convolutional 

code from the channel and expected code for all the state transition from present state to 

the next state in the trellis diagram. This hamming distance is the branch metric for each 

of the 64 states. 

Figure 4.2 Branch Metric Unit 

Figure 4.3 Branch Metric Generator 

Each state may lead to two next states creating two paths upon receiving an input 

code. These paths may have expected code which could be understood from state 

transition table given below. Out of 64 states, 128 paths would be created and 16 paths 
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have same branch metric. Hence the branch metric generator has one input port and eight 

output ports as shown below.

4.1.2 Add Compare Select Unit (ACSU) 

The ACSU is the important block in Viterbi decoder architecture as it computes 

the decision bit for each surviving path of each state. It selects the optimal path to each 

state in the Viterbi trellis. The ACS module decodes for each state in the trellis. The 

entire trellis is multiple images of the same simple element; a single circuit called Add-

Compare-Select may be assigned to each trellis state.ACS is being used repeatedly in the 

decoder. A separate ACS circuit can be dedicated to every element in the trellis, resulting 

in a fast, massively parallel implementation. For a given code with rate 1/n and total 

memory M, the number of ACS required to decode a received sequence of length L is 

L×2M. The ACSU is composed of 32 butterfly blocks and is given below. Thus for a 

constraint length K=7 decoder which has 64 states, there are 64 sub-blocks in the ACS 

block. 

Figure 4.4 ACS components for 64 states in K=7 VD 
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Figure 4.4 ACS components for 64 states in K=7 VD (cont.,) 
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Figure 4.5 Butterfly Block 0 of ACSU 

The above figure 4.5 shows the butterfly block 0 of ACSU. It has two input states 

S0, S1 with path metrics, which denotes the present state of Viterbi decoder. It has two 

output states S0, S32 with path metric, which denotes the possible next states for each 

present state in this block. S0 may lead to two next states {S0, S32} and the expected 

codes for these two transitions are {000, 111}. S1 may lead to two next states {S0, S32} 

and the expected codes for these two transitions are {111, 000}. These butterfly blocks 

are created from the state transition table given below. The Viterbi decoder does the 

reverse process of convolutional encoder. At state S0, the encoder’s shift register consists 

of the value “000000”. When input 1(0) bit is given to it, the shift register content would 

be “100000” (“000000”) and the output code would be {000, 111}. Therefore the next 

states would be {S0, S32}. Like that the next states could be found out for all the present 

states in the Viterbi decoder. Let us denote the states with even number as even states and 

states with odd number as odd states. When the output states S0, S1 receives the path 

metric from input states S0, S32; it selects the path with the minimum value. This path is 

called surviving path. The decision bit d0 indicates whether the surviving path is from 

which state either even or odd and its value would be 0 for even and 1 for odd state. 

These decision bits from all the 32 butterfly blocks are stored in Survivor Memory Unit. 

A single wing for one butterfly block is given in the figure 4.6. 
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Figure 4.6 Single Butterfly Wing 

The branch metrics for each two present states are added with its state metric for 

each transition to the same state and then compared and the minimum path metric is 

selected and the state is updated with its new value. 

4.1.3 Survivor Memory Unit 

The survivor memory unit is used for storing the decision bits which is used to 

produce the decoded bits. Here a RAM of size 64*22 and 64*38 is used for truncation 

length TL=22 and TL=38. When the decoder receives the complete set of codes equal to 

truncation length, then it starts producing the decoded bits using traceback technique. For 

TL=38, the path metrics of all the states at trellis stage 37 will be stored in memory array 

of size 64*1 of width 7 bits. Then the minimum path metric and its corresponding state 

are identified and used in traceback unit.  

4.1.4 Trace Back Unit:  

The final block in the decoder is traceback block. The actual decoding of symbols 

into original data is accomplished by tracing the maximum likelihood path backwards 

through the trellis. Up to a limit, a longer sequence of tracing results in a more accurate 

path through the trellis. After a number of symbols equal to at least six times the 

constraint length, the decoded data is output. The trace back starts from best state; the 

best state is estimated from the ACS costs.  
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4.1.5 State Table for 64 States Viterbi Decoder  

 The following is the state table for Viterbi decoder of constraint length K=7 and 

rate r=1/3. This table is derived from the state table of convolutional encoder. 

Table 4.1 State Table for K=7, r=1/3 Viterbi Decoder 

Present 
State 

Next State  
SL 
Lower Path 

Next State  
SU 
Upper Path 

Expected Code 
Lower Path 

Expected Code 
Upper  Path 

S0 S0 S32 000 111 
S1 S0 S32 111 000 
S2 S1 S33 011 100 
S3 S1 S33 100 011 
S4 S2 S34 111 000 
S5 S2 S34 000 111 
S6 S3 S35 100 011 
S7 S3 S35 011 100 
S8 S4 S36 101 010 
S9 S4 S36 010 101 
S10 S5 S37 110 001 
S11 S5 S37 001 110 
S12 S6 S38 010 101 
S13 S6 S38 101 010 
S14 S7 S39 001 110 
S15 S7 S39 110 001 
S16 S8 S40 010 101 
S17 S8 S40 101 010 
S18 S9 S41 001 110 
S19 S9 S41 110 001 
S20 S10 S42 101 010 
S21 S10 S42 010 101 
S22 S11 S43 110 001 
S23 S11 S43 001 110 
S24 S12 S44 111 000 
S25 S12 S44 000 111 
S26 S13 S45 100 011 
S27 S13 S45 011 100 
S28 S14 S46 000 111 
S29 S14 S46 111 000 
S30 S15 S47 011 100 
S31 S15 S47 100 011 
S32 S16 S48 100 011 
S33 S16 S48 011 100 
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S34 S17 S49 111 000 
S35 S17 S49 000 111 
S36 S18 S50 011 100 
S37 S18 S50 100 011 
S38 S19 S51 000 111 
S39 S19 S51 111 000 
S40 S20 S52 001 110 
S41 S20 S52 110 001 
S42 S21 S53 010 101 
S43 S21 S53 101 010 
S44 S22 S54 110 001 
S45 S22 S54 001 110 
S46 S23 S55 101 010 
S47 S23 S55 010 101 
S48 S24 S56 110 001 
S49 S24 S56 001 110 
S50 S25 S57 101 010 
S51 S25 S57 010 101 
S52 S26 S58 001 110 
S53 S26 S58 110 001 
S54 S27 S59 010 101 
S55 S27 S59 101 010 
S56 S28 S60 011 100 
S57 S28 S60 100 011 
S58 S29 S61 000 111 
S59 S29 S61 111 000 
S60 S30 S62 100 011 
S61 S30 S62 011 100 
S62 S31 S63 111 000 
S63 S31 S63 000 111 
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The Viterbi decoder of K=7 has 64 states. The following table shows the 

computations for which all states takes place at each trellis stage. The Viterbi decoder has 

a maximum of 64 states. 

Table 4.2 States enabled for computation of survivor paths at each Trellis Stage

Trellis 
Stage 0 

Trellis 
Stage 1 

Trellis 
Stage 2 

Trellis 
Stage 3 

Trellis 
Stage4 

Trellis 
Stage 5 

Trellis 
Stage 6 

Trellis 
Stage 7 

Present 
States 

Present 
States 

Present 
States 

Present 
States 

Present 
States 

Present 
States 

Present 
States 

Present 
States 

S0 S0 S0 S0 S0 S0 S0 S0 
 S32 S16 S8 S4 S2 S1 S1 
  S32 S16 S8 S4 S2 S2 
  S48 S24 S12 S6 S3 S3 
   S32 S16 S8 S4 S4 
   S40 S20 S10 S5 S5 
   S48 S24 S12 S6 S6 
   S56 S28 S14 S7 S7 
    S32 S16 S8 S8 
    S36 S18 S9 S9 
    S40 S20 S10 S10 
    S44 S22 S11 S11 
    S48 S24 S12 S12 
    S52 S26 S13 S13 
    S56 S28 S14 S14 
    S60 S30 S15 S15 
     S32 S16 S16 
     S34 S17 S17 
     S36 S18 S18 
     S38 S19 S19 
     S40 S20 S20 
     S42 S21 S21 
     S44 S22 S22 
     S46 S23 S23 
     S48 S24 S24 
     S50 S25 S25 
     S52 S26 S26 
     S54 S27 S27 
     S56 S28 S28 
     S58 S29 S29 
     S60 S30 S30 
     S62 S31 S31 
      S32 S32 
      S33 S33 
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      S34 S34 
      S35 S35 
      S36 S36 
      S37 S37 
      S38 S38 
      S39 S39 
      S40 S40 
      S41 S41 
      S42 S42 
      S43 S43 
      S44 S44 
      S45 S45 
      S46 S46 
      S47 S47 
      S48 S48 
      S49 S49 
      S50 S50 
      S51 S51 
      S52 S52 
      S53 S53 
      S54 S54 
      S55 S55 
      S56 S56 
      S57 S57 
      S58 S58 
      S59 S59 
      S60 S60 
      S61 S61 
      S62 S62 
      S63 S63 
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CHAPTER 5 

ADAPTIVE VITERBI DECODER 

The Viterbi algorithm (VA) is often used to perform decoding procedure for 

convolutional code since it can obtain the maximum-likelihood decoding results. In the 

past, some high-speed VLSI designs for Viterbi decoder (VD) implementation were 

proposed to meet the need of high throughput applications. The main drawback of them 

is that they do not consider the issue of power consumption. VD may consume more than 

one-third of power for baseband processing in communication applications. Hence, it is 

desirable to have a low-power VD since the battery capacity of the most portable 

electronic communication devices is limited.  

By computing and keeping all possible 2K-1 survivor paths, VA achieves an 

optimal performance of bit error rate (BER) with higher computational complexity and 

larger path storage requirement. In the hardware, higher complexity means more power is 

consumed. To reduce the power consumption required for VD, the Adaptive Viterbi 

Algorithm (AVA) is presented.  

5.1 Adaptive Viterbi Algorithm

In this project, path pruning technique which is to be used in each trellis stage is 

the main concern. The AVA reduces the average computation and path storage by 

computing and retaining only the path which satisfies the following conditions: 

1) A path is retained only when its cost is less than the sum of threshold T and 

minimum path cost dm of the previous trellis stage. 

2) The total number of surviving paths per trellis stage is limited to Nmax. 

The first criterion does not allow the high costs paths to be transmitted to the next 

trellis stage. The second criterion restricts the number of surviving paths to Nmax. At each 

stage, the minimum cost of the previous stage dm, threshold T, and maximum survivors 

Nmax are used to prune the number of surviving paths. The effective use of AVA depends 

on the careful calculation of T and Nmax. The average number of surviving paths retained 

at each trellis stage will be reduced for a small value of T which results in an increased 
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BER, since the decision on the most likely path has to be taken from a reduced number of 

survivor paths. For a larger value of T, the average number of survivor paths increases 

resulting in a reduced BER. Hence an optimal value of T and Nmax so that the 

performance is not affected.  

5.2 Architecture of Adaptive Viterbi Decoder 

A high-level view of the implemented Adaptive Viterbi Decoder architecture is 

shown in figure. 5.1. The decoder contains a datapath and an associated control path. 

Like most Viterbi decoders, the datapath is split into four parts: the branch metric 

generators (BMG), add–compare– select (ACS) units, the survivor memory unit, and 

path-metric storage and control. A BMG unit determines distances between received and 

expected symbols. The ACS unit determines path costs and identifies lowest-cost paths. 

The survivor memory stores lowest-cost bit-sequence paths based on decisions made by 

the ACS units, and the path metric array holds per-state path metrics. The flow of data in 

the datapath and the storage of results is determined by the control path. 

�

Figure 5.1. Adaptive Viterbi Decoder Architecture 
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In this Adaptive Viterbi decoder, the expected symbol value (BM select) is used to 

select the appropriate branch metric from the BMG, as shown at the left in figure 5.2. 

This branch metric value is combined with the path metric of its parent present state to 

form a new path metric, di. At each trellis stage, the minimum-value surviving path 

metric among all path metrics for the preceding trellis stage, dm, is computed. New path 

metrics are compared with the sum dm+T to identify path metrics with excessive cost.  

Fig.5.2. ACS unit of the Adaptive Viterbi Decoder 

Comparators are then used to determine the life of each path based on the 

threshold, T. If the threshold condition is not satisfied by path metric dm + T, the 

corresponding path is discarded. Once the paths that meet the threshold condition are 

determined, the lowest-cost Nmax paths are selected. Sorting circuitry is eliminated by 

allowing feedback adjustments to the parameter T for each received symbol. If the 

number of paths that survive the threshold is less than Nmax, no iteration is required. As 

shown in figure 5.2, for stages when the number of paths surviving the threshold 

condition is greater than Nmax, T is iteratively reduced by two for the current trellis stage, 

until the number of paths surviving the threshold condition is equal to or less than Nmax. 

The AVA decoders for higher constraint length codes requires larger amount of logic 

resources and consumes more power than decoders for codes with smaller constraint 

length. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

The simulation of this project has been done using MODELSIM SE 6.1f and 

synthesized it on a Xilinx SPARTAN 3 FPGA using Xilinx ISE 8.1i. 

Modelsim is a  simulation tool for programming {VLSI} {ASIC}s, {FPGA}s, 

{CPLD}s, and {SoC}s. Modelsim provides a comprehensive simulation and debug 

environment for complex ASIC and FPGA designs. Support is provided for multiple 

languages including Verilog, System Verilog, VHDL and System C. 

The Spartan-3 generation of FPGAs includes the Extended Spartan-3A family 

(Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms), along with the earlier 

Spartan-3 and Spartan-3E families. These families of Field Programmable Gate Arrays 

(FPGAs) are specifically designed to meet the needs of high volume, cost-sensitive 

electronic applications, such as consumer products. The Spartan-3 generation includes 25 

devices offering densities ranging from 50,000 to 5 million system gates. 

The Spartan-3 platform was the industry’s first 90 nm FPGA, delivering more 

functionality and bandwidth per dollar than was previously possible, setting new 

standards in the programmable logic industry. The Spartan-3E platform builds on the 

success of the earlier Spartan-3 platform by adding new features that improve system 

performance and reduce the cost of configuration. Because of their exceptionally low cost, 

Spartan-3 generation FPGAs are ideally suited to a wide range of consumer electronics 

applications, including broadband access, home networking, display/projection, and 

digital television equipment. The Spartan-3 generation FPGAs provide a superior 

alternative to mask-programmed ASICs. FPGAs avoid the high initial cost, the lengthy 

development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA 

programmability permits design upgrades in the field with no hardware replacement 

necessary, an impossibility with ASICs. 

The ISE Design Suite is the central electronic design automation (EDA) product 

family sold by Xilinx. The ISE Design Suite features include design entry and synthesis 

supporting Verilog or VHDL, place-and-route (PAR), completed verification and debug 

using Chip Scope Pro tools, and creation of the bit files that are used to configure the chip. 
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The VHDL code for K=5 VD; K=7 VD with TL=22 and TL=38; K=7, TL=38 VD 

with state enabling logic and K=7, TL=38 Adaptive Viterbi Decoder has been written. 

The simulation results for these decoders and convolutional encoder is given in the 

upcoming sections while the synthesis report will be listed in the latter sections. 

6.1 SIMULATION RESULTS 

6.1.1 Simulation Results for (3,1,7) Convolutional Encoder 

Figure 6.1 Simulation Results of (3,1,7) Convolutional Encoder 

In the figure 6.1, “din” is the input sequence given to the encoder and “code” is 

the output 3 bit convolutional codes obtained according to the given input sequence. 

When one bit is given as input to the encoder, 3 bit output code is produced according to 

the generator polynomial of the encoder at rising edge of each clock cycle. When reset is 

given, the encoder’s shift register contents would be set to all zeros therefore producing 

“000” at the output. 
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6.1.2 Simulation Result for K=5 Viterbi Decoder 

Figure 6.2 Simulation Result for K=5 Viterbi Decoder 

The figure 6.2 shows the output of K=5 Viterbi Decoder where “inp” is the input 

sequence to the convolutional encoder, “eop” is the output convolutional code and “sout” 

is the decoded output sequence from the Viterbi decoder.  After 44 clock cycles, the 

decoded output is produced at the “sout” output port of the K=5 Viterbi Decoder 

corresponding to the convolutional codes given to it. The truncation length used in this 

decoder is 22. 
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6.1.3 Simulation Result of Branch Metric Unit 

Figure 6.3 Simulation Result of Branch Metric Unit 

 In the figure 6.3, “rc” is the received code from the channel to the Viterbi 

Decoder and the eight branch metrics generated are bm0, bm1, bm2, bm3, bm4, bm5, 

bm6, bm7. When “000” is given as input to Branch Metric Generator, the outputs 

produced are “00”, “01”, “01”, “10”, “01”, “10”, “10”, “11”. 
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6.1.4 Simulation Result of Add Compare Select Unit 

Figure 6.4 Simulation Result of Add Compare Select Unit 

 In the figure 6.4, the path metric for each two input states in butterfly block are 

added and compared to find the minimum path metric for each of the two output states. 

The path metrics of two input states are “1110001” and “0010101”. The branch metrics 

“01” and “10” are another two inputs which are added with each of the path metrics of 

two input states. From this addition, each output state has two metrics and they select the 

minimum path metric. The output decision bit du = ’1’ and dl = ’1’ denotes that two 

output states come from odd state.
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6.1.5 Simulation Result of  K=7 Viterbi Decoder for TL=22

Figure 6.5 Simulation Result of K=7 Viterbi Decoder for TL=22 

In the figure 6.5, an input sequence of 22 convolutional codes were given as input 

to the Viterbi decoder and after 49 clock cycles, it produces the decoded output bit 

corresponding to given convolutional codes. Here the truncation length used is of 22 

codes. 
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6.1.6 Simulation Result of K=7 Viterbi Decoder for TL=38 

Figure 6.6 Simulation Result of K=7 Viterbi Decoder for TL=38 

In the figure 6.6, an input sequence of 38 convolutional codes were given as input 

to the Viterbi decoder and after 81 clock cycles, it produces the decoded output bit 

corresponding to given convolutional codes. Here the truncation length used is of 38 

codes.  

 In figure 6.7 a and 6.7 b, an input sequence of 38 convolutional codes were given 

as input to the Viterbi decoder and after 117 clock cycles, it produces the decoded output 

bit corresponding to given convolutional codes. Here the truncation length used is of 38 

codes. Here at each clock cycle, the number of states enabled will be increasing to 64 at 

trellis stage 6 and thereafter it will be 64. 
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6.1.7 Simulation Results of K=7 Viterbi Decoder for TL=38 with State 

Enabling Block 

Figure 6.7 a) Simulation Result of K=7 Viterbi Decoder with State Enabling Block 

Figure 6.7 b) Simulation Result of K=7 Viterbi Decoder with State Enabling block 
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6.1.8 Simulation Results of K=7 Adaptive Viterbi Decoder for TL=38 

Figure 6.8 a) Simulation Result of K=7 Adaptive Viterbi Decoder  

In figure 6.8 a, an input sequence of 38 convolutional codes were given as input 

to the Viterbi decoder and after 117 clock cycles, it produces the decoded output bit 

corresponding to given convolutional codes. Here the truncation length used is of 38 

codes. Here at third clock cycle, the number of states enabled and number of survivor 

paths computed will be eight. At fourth and other clock cycles, the number of survivor 

paths will be kept less than or equal to eight, by calculating the state with maximum path 

metric and state with minimum path metric; taking the average of them and keeping it as 

a threshold value. The states with path metric value greater than threshold are discarded 

and those states which are less than it are transmitted to the next trellis stage. 
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Figure 6.8 b) Simulation Result of K=7 Adaptive Viterbi Decoder  

In figure 6.8 b, the decision bits whose states are enabled are stored in memory 

and others are discarded. At clock cycle = 39 the path metric of all the states are taken in 

an array, and the state with minimum path metric is found out. From that state, the 

traceback is done for clock cycles 41 to 78; the output bit decoded will be in the reverse 

order, so a last in first out register is implemented to produce the output in correct order. 

This register is activated for clock cycles 79 to116. At clock cycle = 117, the decoder 

produces the correct output bit sequence. 
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6.2 SYNTHESIS REPORT 

The K=7 Viterbi Decoder and Adaptive Viterbi Decoder has been implemented 

on Xilinx Spartan 3E FPGA using Xilinx ISE 8.1i design tool. The device utilisation and 

timing report for the convolutional encoder, Viterbi Decoder and Adaptive Viterbi 

Decoder is as follows. 

6.2.1 CONVOLUTIONAL ENCODER 

Device utilization summary: 

Selected Device : 3s1000fg320-4  

Number of Slices:                       6  out of   7680     0%   

Number of Slice Flip Flops:             9  out of  15360     0%   

Number of 4 input LUTs:                 6  out of  15360     0%   

Number of bonded IOBs:                  6  out of    221     2%   

Number of GCLKs:                        1  out of      8    12%   

Total equivalent gate count for design:  111 

Additional JTAG gate count for IOBs:  288 

Peak Memory Usage:  179 MB 

Timing Summary: 

Speed Grade: -4 

Minimum period: 3.566ns (Maximum Frequency: 280.426MHz) 

Minimum input arrival time before clock: 3.947ns 

Maximum output required time after clock: 7.165ns 

Maximum combinational path delay: No path found 

40 

6.2.2 K=7 VITERBI DECODER 

Device utilization summary: 

Selected Device : 3s1000fg320-4  

Number of Slices:                    3237 out of   7680    42%   

Number of Slice Flip Flops:          1513 out of 15360     9%   

Number of 4 input LUTs:              5882 out of 15360    38%   

    Number used as logic: 5498 

    Number used as RAMs: 384 

Number of bonded IOBs:                  6 out of    221     2%   

Number of GCLKs:                        6 out of      8    75%   

Total equivalent gate count for design:  71,828 

Additional JTAG gate count for IOBs:  288 

Peak Memory Usage:  220 MB 

Timing Summary: 

Speed Grade: -4 

Minimum period: 295.727ns (Maximum Frequency: 3.381MHz) 

Minimum input arrival time before clock: 11.902ns 

Maximum output required time after clock: 7.165ns 

Maximum combinational path delay: No path found 
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6.2.3 K=7 ADAPTIVE VITERBI DECODER 

Device utilization summary: 

Selected Device: 3s1000fg320-4  

Number of Slices:                    1995 out of   7680    25%   

Number of Slice Flip Flops:           764 out of 15360     4%   

Number of 4 input LUTs:              3111 out of 15360    20%   

Number used as logic: 2727 

Number used as RAMs: 384 

Number of bonded IOBs:                  6 out of    221     2%   

Number of GCLKs:                        1 out of      8    12%   

Total equivalent gate count for design:  49,946 

Additional JTAG gate count for IOBs:  288 

Peak Memory Usage:  203 MB 

Timing Summary: 

Speed Grade: -4 

Minimum period: 285.267ns (Maximum Frequency: 3.505MHz) 

Minimum input arrival time before clock: 11.736ns 

Maximum output required time after clock: 7.165ns 

Maximum combinational path delay: No path found 
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6.3 POWER REPORT 

6.3.1 CONVOLUTIONAL ENCODER 

Figure 6.9 Power Report of (3,1,7) Convolutional encoder

The figure 6.9 shows that the power dissipated for (3,1,7) convolutional encoder 

is 94mW. 
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6.3.2 K=7 VITERBI DECODER 

Figure 6.10 Power Report of K=7 Viterbi Decoder

The figure 6.9 shows that the power dissipated for K=7 Viterbi Decoder is 

112mW.
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6.3.3 K=7 ADAPTIVE VITERBI DECODER 

Figure 6.11 Power Report of K=7 Adaptive Viterbi Decoder

The figure 6.9 shows that the power dissipated for K=7 Adaptive Viterbi Decoder 

is 105mW.
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6.4 COMPARISONS 

The results obtained from the synthesis report and power report of Viterbi 

Decoder and Adaptive Viterbi decoder are compared in the given table. 

Table 6.1 Comparison of Viterbi Decoder and Adaptive Viterbi Decoder

SUMMARY 

K=7 VITERBI 

DECODER 

K=7 ADAPTIVE 

VITERBI 

DECODER 

% REDUCTION 

POWER 112mW 105mW 6.25 

AREA 

Total Gate Count 

71828 49946 30.46 

In the table 6.1, the power and area for Viterbi Decoder and Adaptive Viterbi 

Decoder are presented and compared. The comparison shows that the Adaptive Viterbi 

decoder consumes less area and less power to that of Viterbi Decoder. 

46 

CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

A Viterbi decoder (VD) which uses Adaptive Viterbi Algorithm (AVA) for 

decoding (3,1,7) convolutional codes has been implemented using VHDL, simulated 

using ModelSim SE 6.1f and synthesized on Xilinx Spartan 3 FPGA using Xilinx ISE 

8.1i design tool. This adaptive Viterbi decoder reduces the memory requirements and 

power consumption of VD using Viterbi Algorithm by reducing the number of surviving 

paths calculated at each trellis stage. 

The future scope of this project is to design an adaptive Viterbi Decoder with 

specifications for variable constraint length, variable code rate and variable constraint 

length for decoding convolutional codes. 
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