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ABSTRACT 

              

The new generation of high-performance decimal floating-point units demands 

efficient implementations of parallel decimal multipliers. In this paper we discuss about 

the implementation of the decimal parallel multipliers used in the decimal floating-point 

units. Here we discuss two architectures using SD radix-5 and SD radix-10 encoding of 

the multiplier with which the partial products are generated and a multioperand carry 

save algorithm is used for the reduction of the partial products. The proposed method 

allows the reuse of the binary CSA for computing the sum of BCD operands. Corrections 

required for decimal operands are done in parallel, separately from the calculation of the 

binary sum such that the layout of the binary carry save adder is not rearranged. 16 digit 

adders while implemented using the proposed architectures gives excellent are area-delay 

values when compared with the conventional binary multipliers. 
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CHAPTER 1 

INTRODUCTION 

         The microprocessor manufacturers include decimal floating–point units in 

their products, oriented to mainframe servers, to satisfy the high performance demands of 

current financial, commercial and user–oriented applications. Providing hardware support 

for decimal floating-point (DFP) arithmetic is becoming a topic of interest. Although 

software DFP implementations satisfy the precision requirements, they are about an order 

of magnitude slower than hardware implementations and could not satisfy the high-

performance demands. Specifically, the revision of the IEEE 754 Standard for Floating-

Point Arithmetic (IEEE 754-2008) incorporates specifications for DFP arithmetic that can 

be implemented in software, hardware, or in a combination of both. An important and 

frequent operation in decimal computations is multiplication. However, due to the 

inherent in-efficiency of decimal arithmetic implementations in binary logic, practically 

most of the proposed decimal multipliers are sequential units. Parallel multipliers are 

used extensively in most of the binary floating–point units and are of interest for decimal 

applications to scale performance. 

1.1 PROJECT GOAL 

An important and frequent operation in decimal computations is multiplication. 

However, decimal multiplication is more difficult to implement due to the complexity in 

the generation of multiplicand multiples and the inefficiency of representing decimal 

values in systems based on binary signals. These issues complicate the generation and 

reduction of partial products. Thus, while decimal adders are implemented in a parallel 

fashion and are almost as efficient as binary ones, commercial implementations of 

decimal multipliers are sequential. The goal of this project is to introduce two novel 

architectures which are fully combinational for fixed point parallel decimal multipliers.

We also describe new techniques for partial product generation and reduction that can be 

implemented in combined binary/decimal floating point units so as to reduce the latency 

and the hardware complexity of the previous designs
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1.2 OVERVIEW  

In this project, we describe the architectures of two parallel decimal multipliers. 

The parallel generation of partial products is performed using signed-digit radix-10 or 

radix-5 recodings of the multiplier and a simplified set of multiplicand multiples. The 

reduction of partial products is implemented in a tree structure based on a combined 

decimal/binary multioperand carry-save addition algorithm that uses unconventional (non 

BCD) decimal-coded number systems. The synthesis results of the 16 bit operands of the 

proposed architecture (combined binary/decimal multiplier) will be compared with 

existing decimal multiplier architectures (SD radix-10 and SD radix-5) and the binary 

multipliers in terms of area, delay, power consumption. 

Figure 1: Project Flow 

Implementation of the 16 bit multiplier using the signed 

digit radix-10 and signed digit radix 5 architectures 

Implementation of digit recoders 

Generation of multiplicand multiples 

Partial product generation 

Partial product reduction 

Implementation of the combined decimal/binary Carry- 

save adder tree 

Comparison of the synthesis results of the proposed 

architecture (combined binary/decimal multiplier) with 

existing decimal multiplier and the binary multipliers in 

terms of area, delay, power consumption. 
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1.3 SOFTWARE USED 

� ModelSim  XE 111 6.2g 

� Xilinx ISE 9.2i 

1.4       ORGANIZATION OF THE REPORT 

� Chapter 2 discusses about fixed point decimal multiplication.

� Chapter 3 briefs about fixed point decimal architectures.

� Chapter 4 explains about partial product generation.

� Chapter 5 discusses about partial product reduction.

�  Chapter 6 describes in detail about the proposed architecture.

� Chapter 7 mentions about the radix-4 binary multiplier

� Chapter 8 shows the evaluation results.

� Chapter 9 provides the conclusion and future scope.
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CHAPTER 2 

FIXED-POINT DECIMAL MULTIPLICATION 

Multiplication consists of three stages: generation of partial products, fast 

reduction (addition) of partial products to a two operand and a final carry propagate 

addition. Decimal multiplication is more complex than binary multiplication mainly for 

two reasons: the higher range of decimal digits ([0, 9]), which increments the number of 

multiplicand multiples and the inefficiency of representing decimal values in systems 

based on binary logic using BCD–8421 (since only 9 out of the 16 possible 4–bit 

combinations represent a valid decimal digit). These issues complicate the generation and 

reduction of partial products 

2.1 AN OVERVIEW OF DECIMAL MULTIPLICATION 

A digit Zi of a decimal integer operand Zi 10
i 
is coded as a positive 

weighted 4-bit vector as  

Zi = zi,jrj                          (1) 

Where, Zi � [0,9] is the i
th

 decimal digit and zi,j is the j
th

 bit of the i
th

 digit, and rj �

1 is the weight of the j
th

 bit. The previous expression represents a set of coded decimal 

number systems that includes BCD (with rj= 2j), shown in Table 1. The other decimal 

codes shown in Table 1 are also used for representing different decimal operands as 

required by the methods used in the project. These codes are represented by their weight 

bits as (r3r2r1r0). The 4-bit vector that represents the decimal digit Zi in a decimal code 

(r3r2r1r0) is denoted by Zi(r3r2r1r0). 

The multiplicand Xi 10
i 
and multiplier Yi 10

i 
are unsigned 

decimal integer d-digit BCD words. Fixed-point multiplication (both binary and decimal) 

consists of three stages 

• generation of partial products 

• reduction (addition) of partial products to two operands 

• final conversion (usually a carry propagate addition) to a non-

redundant 2d-digit BCD representation Pi 10
i
. 

5 

Table 1: Decimal Codings 

Zi Zi(BCD) Zi(5421) Zi(4221) Zi(5211) Zi(4311) Zi(3321) 

0 0000 0000 0000 0000 0000 0000 

1 0001 0001 0001 0001  0010 0001 0010 0001 

2 0010 0001 0100  0010 0100  0011 0011 0010 

3 0011 0011 0101  0011 0101  0110 0100 0100  1000  0011 

4 0100 0100 0110  1000 0111 1000  0110  0101 1001  0101 

5 0101 1000 0111  1001 1000 1001  0111  1010 1010  0110 

6 0110 1001 1010  1100 1010  1001 1011 1100  1011  0111 

7 0111 1010 1011  1101 1011  1100 1100 1101 

8 1000 1011 1110  1101 1110  1101 1110  1101 1110 

9 1001 1100 1111 1111 1111 1111 

Extension to decimal floating-point multiplication involves exponent addition, 

rounding of P = X × Y to fit the required precision, sign calculations and exception 

detection and handling. 

In Table 1 diverse BCD codings are represented. For BCD–8421, rj = 2j. BCD–

4221 and BCD–5211 are the coding schemes characterized by the use of redundancy in 

decimal digit representation. As we have mentioned, the use of BCD–8421 to represent 

decimal digits means introducing costly decimal corrections in the partial product 

reduction binary CSA tree to obtain the correct decimal carry and sum. To avoid these 

corrections we use the BCD–4221 coding of Table 1 to represent partial product digits 

which will be later discussed in detail.                

2.2 EXISITING METHODS    

Proposed methods for the generation of decimal partial products follow mainly 

two approaches. The first alternative performs a digit by digit multiplication of the input 

operands, using digit by digit lookup table methods .In this magnitude range reduction of 

the operand digits by a signed-digit radix-10 recoding (from [0, 9] to  [-5,5]) is suggested. 

This recoding of both operands speeds up and simplifies the generation of partial 

products. Then, signed-digit partial products are generated using simplified tables and 

combinational logic. This class of methods is only suited for serial implementations, 

since the high hardware demands make them impractical for parallel partial product 
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generation. The second approach generates and stores all the required multiplicand 

multiples. Next, multiples are distributed to the reduction stage through multiplexers 

controlled by the BCD multiplier digits ([0; 9]).This approach requires several wide 

decimal carry-propagate additions to generate some complex BCD multiplicand multiples 

{3X,6X,7X,8X,9X}. Usually only even multiples {2X; 4X; 6X; 8X} are computed and 

stored. Odd multiples {3X; 5X; 7X; 9X} are obtained on demand. A reduced set of BCD 

multiples {X; 2X; 4X; 5X} is pre-computed without a carry propagation. All the 

multiples can be obtained from the sum of two elements of this set. The other alternative 

is that 2X and 5X multiples can be computed in few levels of combinational logic. 

Negative multiples require an additional 10’s complement operation. 

Decimal carry-save addition methods use two BCD words to represent sum and 

carry or a BCD sum word and a carry bit per digit. The first group implements decimal 

addition mixing binary CSAs with combinational logic for decimal correction. A scheme 

of two levels of 3:2 binary CSAs is used to add the partial products iteratively. Since it 

uses BCD to represent decimal digits, a digit addition of +6 or +12 (modulo 16) is 

required to obtain the decimal carries and to correct the sum digit. In order to reduce the 

contribution of the decimal corrections to the critical path, three different techniques for 

multioperand decimal carry-save addition were proposed. Two of them perform BCD 

corrections (+6 digit additions) using combinational logic and an array of binary carry-

save adders (speculative adders), although a final correction is also required. A sequential 

decimal multiplier based on these techniques uses BCD invalid combinations (overloaded 

BCD representation) to simplify the sum digit logic. The other approach basically a non-

speculative adder uses a binary CSA tree followed by a single decimal correction. Among 

these proposals, the non-speculative adders present the best area-delay figures and are 

suited for tree topologies. Another recent proposal uses a binary carry-free tree adder and 

a subsequent binary to BCD conversion to add up to N d-digit BCD operands. 

The second group of methods uses different topologies of 4-bit radix-10 carry-

propagate adders to implement decimal carry-save addition. A serial multiplier can be 

implemented using an array of radix-10 carry look-ahead adders (CLAs). A CSA tree 

using these radix-10 CLAs is implemented in the using combinational decimal parallel 
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multiplier and to optimize the partial product reduction, they also use an array of decimal 

digit counters. 

The reduction of all decimal partial products in parallel requires the use of 

efficient multioperand decimal tree adders. Among the different schemes, the most 

promising ones for fast parallel addition seem to be those using binary CSA trees or some 

parallel network of full adders due to their faster and simpler logic cells (full adders 

against SD adder cells or radix-10 CLAs). These methods assume that decimal digits are 

coded in BCD. However, BCD is highly inefficient for implementing decimal carry save 

addition using binary arithmetic because of the need to correct the invalid 4-bit 

combinations (those not representing a decimal digit). The previous methods use different 

schemes to perform these BCD corrections. Moreover, the BCD carry digit must be 

multiplied by 2, which requires additional logic. We also implement multioperand 

decimal tree adders using a binary CSA tree, but with operands coded in decimal codings 

that are more efficient than BCD, namely (4221) or (5211). These multioperand decimal 

CSA trees are detailed in later chapters. 
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CHAPTER 3 

DECIMAL FIXED- POINT ARCHITECTURES 

In this chapter we present a general overview of the architectures for d-digit (4d-

bit) BCD decimal fixed-point parallel multiplication. These designs are based on the 

techniques for partial product generation and reduction as mentioned earlier. The main 

feature of these architectures is the use of codes (4221) and (5211), instead of BCD, to 

represent the partial products. This improves the reduction of decimal partial products 

with respect to other proposals, in terms of both area and latency. 

  

3.1 Signed Digit Radix-10 Architecture 

The architecture of the d-digit SD radix-10 multiplier is shown in Fig. 2. The 

multiplier consists of the following stages: generation of decimal partial products coded 

in (4221) (generation of multiplicand multiples and SD radix-10 encoding of the 

multiplier), reduction of partial products, and a final BCD carry-propagate addition. 

 The generation of the d + 1 partial products is performed by an encoding of the 

multiplier into d SD radix-10 digits and an additional leading bit. Each SD radix-10 digit 

controls a level of 5:1 muxes, which selects a positive multiplicand multiple {0;X; 2X; 

3X; 4X; 5X} coded in (4221). The generation of these multiples is detailed in Section 4.3. 

To obtain each partial product, a level of XOR gates inverts the output bits of the 5:1 

muxes when the sign of the corresponding SD radix-10 digit is negative.  

Before being reduced, the d+ 1 partial product, coded in (4221), are aligned 

according to their decimal weights. Each p-digit column of the partial product array is 

reduced to two (4221) decimal digits using one of the decimal digit p:2 CSA trees 

described in chapter 5. The number of digits to be reduced for each column varies from p 

= d+1 to p = 2. Thus, the d+1 partial products are reduced to two 2d digit operands S 

and H coded in (4221). 

The final product is a 2d-digit BCD word given by P = 2H + S. Before being 

added, S and H need to be processed. S is recoded from (4221) to BCD excess-6 (BCD 

value plus 6, which requires practically the same logical complexity as a recoding to  
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Figure 2: Combinational SD radix-10 architecture. 

BCD). The H × 2 multiplication is performed in parallel with the recoding of S. This ×2 

block uses a (4221) to (5421) digit recoder and a 1-bit wired left shift to obtain the 

operand 2H coded in BCD. 

For the final BCD carry-propagate addition, we use a quaternary tree (Q-T) adder 

based on conditional speculative decimal addition. It has low latency (about 10 percent 

more than the fastest binary adders) and requires less hardware than other alternatives. 

3.2 Signed Digit  Radix-5 Architecture 

The dataflow of the d-digit SD radix-5 architecture is shown in Fig. 3. The 

multiplier consists of the following stages: generation of decimal partial products 

(generation of multiplicand multiples and SD radix-5 encoding of the multiplier), 
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Figure 3: Combinational SD radix-5 architecture. 

reduction of partial products, and a final BCD carry-propagate addition. SD radix-5 

recoding, described in Section 4.2, generates 2d decimal partial products, half coded in 

(4221) and the other half in (5211). This improved scheme only requires the generation 

of simple multiplicand multiples {-2X;-X;X; 2X} coded in (4221), as shown in Section 

4.2. The reduction of the aligned partial products is carried out using the mixed 

(4221/5211) decimal digit p:2 CSA trees (2 � p � 2d) described in chapter 5. As in the 

SD radix-10 architecture, the 2d-digit operands S and H are processed before being 

assimilated in the 2d-digit BCD carry-propagate adder. 
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CHAPTER 4 

DECIMAL PARTIAL PRODUCT GENERATION 

For simplified multiplication we aim for parallel generation of a reduced number 

of partial products coded in (4221) or (5211). This is achieved with the recoding of the  

d- digit BCD multiplier and the generation of a reduced and simple set of multiplicand 

multiples. We present two different schemes with good trade-offs between fast generation 

of partial products and the number of partial products generated. A minimally redundant 

SD radix-10 recoding of the multiplier (with digits in {-5; . . . ; 0; . . . ; 5}) produces only 

d+1 partial products but requires a carry-propagate addition to generate complex 

multiples 3X and -3X. A second scheme, named SD radix-5 recoding, encodes each BCD 

digit Yi of the multiplier into two digits        � {0; 1; 2};         �{ -2;-1; 0; 1; 2} such that 

Yi =    • 5+     It generates 2d partial products (2 digits per radix-10 digit), but all 

multiplicand multiples are produced in a few levels of combinational logic. Furthermore, 

the (4221) and (5211) codes are self-complementing. Thus, an advantage with respect to 

previous schemes, which use BCD multiples, is that the 9’s complement of each digit can 

be obtained by inverting its bits. This simplifies the generation of the negative 

multiplicand multiples from the positive ones. In addition, the previous methods based on 

the decomposition Yi =      • 5+     require combinational logic to generate the 5X multiple. 

We use mixed (4221/5211) decimal codings to remove this logic.

4.1 SD Radix-10 Recoding 

  

Figure 4: Partial product generation for SD radix-10. 
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Fig. 4 shows the block diagram of the generation of one partial product using the 

SD radix-10 recoding. This recoding transforms a BCD digit Yi � {0; . . . ; 9} into an SD 

radix-10 Ybi � {-5; . . . ; 5}. The value of the recoded digit Ybi depends on the decimal 

value of Yi and on a signal ysi-1 (sign signal) that indicates if Yi-1 is greater than or equal 

to 5. Thus, the d-digit BCD multiplier Y is recoded into the d+1- digit SD radix-10 

multiplier                                 with  

Table 2: SD radix-10 selection signals. 

Dec 

 Value 

BCD 

Yi

Yi-1 � 5 

ysi-1

SD radix-10 digit 

Ybi

Hot one code signals 

ysi y5i y4i y3i y2i y1i

0 0000 
0 

1 

0 

1 

000000 

000001 

1 0001 
0 

1 

1 

2 

000001 

000010 

2 0010 
0 

1 

2 

3 

000010 

000100 

3 0011 
0 

1 

3 

4 

000100 

001000 

4 0100 
0 

1 

4 

5 

001000 

010000 

5 0101 
0 

1 

-5 

-4 

110000 

101000 

6 0110 
0 

1 

-4 

-3 

101000 

100100 

7 0111 
0 

1 

-3 

-2 

100100 

100010 

8 1000 
0 

1 

-2 

-1 

100010 

100001 

9 1001 
0 

1 

-1 

0 

100001 

100000 

Ybi 10
i Ybd = ysd-1  {0,1}. 
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Each digit Ybi generates a partial product PP[i] selecting the proper multiplicand 

multiple coded in (4221). This is performed in a similar way to a modified Booth 

recoding: Y bi is represented as five “hot one code” signals {y1i; y2i; y3i; y4i; y5i} and a 

sign bit ysi. “Hot one code” refers to a group of bits among which the legal combinations 

of values are only those with a single high (1) bit and all the others low (0).These signals 

are obtained directly from the BCD multiplier digits Yi using the following logical 

expressions: 

ysi = yi,3 � yi,2 • (yi,1 � yi,0) 

y5i = yi,2 • yi,1 • (yi,0 �  ysi-1) 

                   y4i = ysi-1 • yi,0 • (yi,2 � yi,1 )� ysi-1• yi,2 • yi,0 

      y3i = yi,1 • (yi,0 � ysi-1) 

          y2i = ysi-1 • yi,0  • (yi,3  �  yi,2 • yi,1) � ysi-1 • yi,3 •   yi,0 • yi,2 � yi,1 

     y1i = yi,2 � yi,1 • (yi,0 � ysi-1) 

Symbols �, •, and � indicate Boolean operators OR, AND, and XOR, 

respectively. The five “hot one code” signals are used as selection control signals for 

the 5:1 muxes to select the positive d+1- digit multiples {0;X; 2X; 3X; 4X; 5X}. The 

generation of the positive multiples {X; 2X; 3X; 4X; 5X} coded in (4221) from the 

BCD multiplicand is detailed in Section 4.3. To obtain the correct partial product, the 

selected positive multiple is 10’s complemented if ysi is one. This is performed 

simply by a bit inversion of the positive (4221) decimal-coded multiple using a row 

of XOR gates controlled by ysi. The addition of one ulp (unit in the last place) is 

performed enclosing a tail-encoded bit ysi (hot one) to the next significant partial 

product PP[i+1], since it is shifted a decimal position to the left from PP[i]. To avoid 

a sign extension, and thus, to reduce the complexity of the partial product reduction 

tree, the partial product sign bits ysi are encoded at each leading position into two 

digits as 

(PP [i]d+2 , PP [i]d+2)   =            (ys0. ys0 ys0 ys0 ys0),     i  =  0, 

              (0,111 ysi),                       0 < i < d-1, 

              (0, 0000),              i  = d -1. 

Therefore, each partial product PP[i] is at most of (d+3) - digit length. 
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4.2 SD Radix-5 Recoding 

Figure 5: Partial product generation for SD radix-5.

Fig. 5 shows the diagram for partial product generation using the SD radix-5 

recoding scheme. Each BCD digit of the multiplier is encoded into two digits       � {0; 1; 

2} and       � {-2,-1,0,1,2} so that Yi =      • 5+     . SD radix-5 “hot one code” selection 

signals are obtained from the BCD input digits using the following equations 

              =  yi,3; 

  = yi,2 �  yi,1 • yi,0; 

                       = yi,1 • ( yi,2 •  yi,0 � yi,2 •  yi,0) 

           = yi,3 • yi,2 •  yi,1 • yi,0 �  yi,2 • yi,1 • yi,0

           = yi,3 • yi,0 �  yi,2 • yi,1 • yi,0

       = yi,3 • yi,0  �  yi,2 • yi,1 • yi,0 

Each multiplier digit Yi generates two partial products PP[i]
U
 and PP[i]

L
. 

Therefore, this scheme generates 2d partial products for a d-digit multiplier. The 

advantage of this recoding is that it uses a simple set of multiplicand multiples {-2X,-X,X, 

2X} coded in (4221). This decimal partial product generation is comparable in latency to 

binary Booth radix-4, due to a faster generation of multiples. 
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Table 3: SD radix-5 selection signals. 

Dec 

Value

BCD

(Yi) 

Recoded Bits   Hot one signals sign 

  

0 0000 0 0 0 0 0 0 0 0 0 

1 0001 0 1 0 0 0 1 0 0 0 

2 0010 0 2 0 0 1 0 0 0 0 

3 0011 1 -2 0 1 0 0 0 1 1 

4 0100 1 -1 0 1 0 0 1 0 1 

5 0101 1 0 0 1 0 0 0 0 0 

6 0110 1 1 0 1 0 1 0 0 0 

7 0111 1 2 0 1 1 0 0 0 0 

8 1000 2 -2 1 0 0 0 0 1 1 

9 1001 2 -1 1 0 0 0 1 0 1 

Moreover, the generation of PP[i]U (positive) only requires multiples {X, 2X}.. 

To obtain the correct value of PP[i]
U
, the multiples selected by       must be first 

multiplied by 5. This is performed by shifting 3 bits to the left the bit vector 

representation of the (4221) coded multiples {X, 2X}, producing, respectively, the 

multiples {5X; 10X} but coded in (5211). We denote by Lmshift a left arithmetic binary 

shift of m bits, implemented with fixed wiring. The negative multiples {-X;-2X} are 

obtained by bit inverting the multiples {X; 2X}, coded in (4221), and adding an ulp as a 

hot one in the corresponding partial product. The sign bits        , given by 

          =     yi,3 � yi,2 • yi,1 • yi,0 ��yi,2 • yi,1 • yi,0; 

are encoded to the left of PP[i]
L 

and PP[0]
U
 as  

 =      (1,1,1,      )   if (0 � i < d – 1)

               (0,0,0,0)            if (i = d-1) 

      =     (0,0,0, ) 

The hot ones produced by the 10’s complement of the partial products, (0,0,0,      )are just 

placed in the least significant digit of PP[i]
U 

and           which have a value of 0 or 5 coded 
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in (5211). The 2d partial products generated are at most of d+2- digit length, d of them 

coded in (5211) (PP[i]
U
) and the other half in (4221) (PP[i]

L
). 

4.3 Generation of Multiplicand Multiples 

All the required decimal multiplicand multiples, except the 3X multiple, are 

obtained in a few levels of combinational logic using different digit recoders and 

performing different fixed m-bit left shifts (Lmshift) in the bit-vector representation of 

operands. The structure of these digit recoders is discussed in Section 4.4. 

Figure 6: Generation of multiplicand multiples for SD radix-10. 

Fig. 6 shows the block diagram for the generation of the positive multiplicand 

multiples {X, 2X, 3X, 4X, 5X} for the SD radix-10 recoding. All these multiples are 

coded in (4221). The X BCD multiplicand is easily recoded to (4221) using the logical 

expressions 

(wi,3, wi,2, wi,1, wi,0) =(xi,3 �  xi,2; xi,3; xi,3 �  xi,1; xi,0); 

where, xi,j and wi,j are, respectively, the bits of the BCD and (4221) representations of X. 

The generation of multiples is as follows: 

Multiple 2X: Each BCD digit is first recoded to the (5421) decimal coding shown in 

Table 1 (the mapping is unique). An L1shift is performed to the recoded multiplicand, 

obtaining the 2X multiple in BCD. Then, the 2X BCD multiple is recoded to (4221) using 

Expressions (4).  
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Multiple 4X: It is obtained as 2X × 2, where the 2X multiple is coded in (4221). The 

second ×2 operation is implemented as a digit recoding from (4221) to code (5211), 

followed by an L1shift. The design of the (4221) to (5211) digit recoders is described in 

Section 4.4. The ×2 operation, with input operands coded in (4221) or (5211), is also 

implemented in the decimal CSA trees used for partial product reduction, and therefore, it 

is more detailed in Section 5.1. 

Multiple 5X: It is obtained by a simple L3shift of the (4221) recoded multiplicand, with 

resultant digits coded in (5211). Then, a digit recoding from (5211) to (4221) is 

performed (see Section 4.4). Fig. 7 shows an example of this operation. 

Figure 7: Calculation of ×5 for decimal operands coded in (4221). 

Multiple 3X: It is evaluated by a carry-propagate addition of BCD multiples X and 2X in 

a d-digit BCD adder. The BCD sum digits are recoded to (4221) as indicated by previous 

expression. The latency of the partial product generation for the SD radix-10 scheme is 

constrained by the generation of 3X.The generation of (4221) decimal-coded multiples {-

2X;-X; X; 2X} for the SD radix-5 recoding is shown in Fig. 8. The BCD multiplicand is 

first recoded to (4221) using Expressions (4). The 2X multiple is implemented as a digit 

recoding from (4221) to (5211) followed by an L1shift. The negative multiples {-X;-2X}, 

coded in (4221), are obtained inverting the bits of the (4221) decimal-coded positive 

multiples and encoding the sign as described in Section 4.2. 
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Figure 8: Generation of multiplicand multiples for SD radix-5. 

4.4 Implementation of Digit Recoders 

 The design of efficient digit recoders is a critical issue, due to their high 

impact on the performance and area of the whole multiplier. Digit recoders are used to 

compute the decimal multiplicand multiples and in the reduction of partial products 

(Section 5) to compute ×2
n
 (n > 0) operations. 

 The logical implementation of digits recoders for BCD, BCD excess-6, and 

(5421) decimal codes is straightforward; since there is only a mapping of decimal digits 

to these codes (each decimal digit has a single 4-bit representation). However, due to the 

redundancy of (4221) and (5211) decimal codes, there are several choices for the digit 

recoding to (4221) or (5211). The sixteen 4-bit vectors of a coding can be mapped 

(recoded) into different subsets of 4-bit vectors of the other decimal coding representing 

the same decimal digit. These subsets of the (4221) and (5211) codes are also decimal 

codings. 

 Among all the subsets analyzed, the non-redundant decimal codes (4221s) and 

(5211s) (subsets of ten 4-bit vectors), shown in Table 2, present interesting properties. In 

particular, these codes verify 

2Z(4221s) = L1shift[Z(5211s)], 

that is, after shifting 1 bit to the left an operand Z represented in (5211s), the resultant bit-

vector represents the decimal value of 2Z coded in (4221s). This fact simplifies the 

implementation of ×2
n
 operations for n > 1. Specifically, for a decimal operand Z(4221), 

Z × 2
n
 is implemented  by a first level of Zi(4221) to Zi(5211s) digit recoders followed by 

n - 1 levels of Zi(4221s) to Zi(5211s) digit recoders. The output of each level of digit 
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recoders is shifted 1 bit to the left such that the most significant bit of each (5211s) digit 

(weight 5) is shifted out to the next decimal position (weight 10).  

Table 4: Selected Decimal Codes for the Recoded Digits 

Zi 0 1 2 3 4 

Zi(4221s)

Zi(5211s)

0000

0000

0001

0001

0010

0100

0011

0101

1000

0111

Zi 5 6 7 8 9 

Zi(4221s)

Zi(5211s)

1001

1000

1010

1001

1011

1100

1110

1101

1111

1111

 Moreover, in some cases, the ×2 may be simplified. In particular, the recoding 

given by Expression (4) maps the BCD representation into the subset (4221s). Therefore, 

the subsequent ×2 operations in Figs. 5 and 7 are implemented using a level of simpler 

(4221s) to (5211s) digit recoders. A (4221) to (5211s) digit recoder has a hardware 

complexity of about 27 NAND2 gates, and its critical path has (roughly) the delay of a 

full adder. The (4221s) to (5211s) digit recoder has a simpler hardware complexity (about 

19 NAND2 gates) with 25 percent less latency. 

 Additionally, the inverse digit recoding (from (5211) to (4221)) is easily 

implemented using a single full adder, since 

Zi(5211) = zi,3 • 4 + z i,2 • 2 +       • 2 +          ; 

with         • 2 +          = (zi,3 + zi,1 + zi,0)   � 3. 

This recoder is used to generate the ×5 multiple for the (4221) coding and in mixed 

(4221/5211) multioperand CSAs to convert a (5211) decimal-coded operand into the 

equivalent (4221) coded one. 
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CHAPTER 5 

PARTIAL PRODUCT REDUCTION 

 First, the partial product arrays are generated by the SD radix-10 and SD 

radix-5 encodings. Each column of p digits is reduced to two digits by means of a 

decimal digit p:2 CSA tree. Also, decimal carries are passed between adjacent digit 

columns. Here, we present the set of preferred decimal codings and the method for 

decimal carry-save addition. We propose the use of the (4221) and (5211) decimal 

codings instead of BCD for an efficient implementation of decimal carry-save addition 

with binary CSAs or full adders. The use of these codes avoids the need for decimal 

corrections, so we only need to focus on the ×2 decimal multiplications. The 

implementation of decimal 3:2 CSAs for the proposed codings is also described in 

Section 5.2. To reduce the latency of the p:2 CSA trees, we make use of the decimal digit 

adders introduced in Section 5.3.These digit adders, implemented with bit counters, 

reduce up to 9 digits coded in (4221) or (5211) to 4 digits coded in (4221). Finally, we 

detail the design of the proposed p:2 decimal CSA trees implemented in the SD radix-10 

(in Section 5.4) and SD radix-5 architecture (in Section 5.5). We present schemes 

optimized for area and for delay 

5.1. Partial Product Arrays 

 The SD radix-10 architecture produces d + 1 partial products coded in (4221) 

of d + 3 digit length. Before being reduced, the d + 1 partial products PP[i] are aligned 

according to their decimal weights by 4i-bit wired left shifts (PP[i]× 10i). The resultant 

partial product array for 16-digit input operands is shown in Fig. 9. In this case, the 

number of digits to be reduced varies from p = 17 to p = 2. In particular, the highest 

columns can be reduced with the area-optimized or delay-optimized decimal 17:2 CSA 

trees presented in Section 5.4.  
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Figure 9: Partial product arrays generated for 16-digit operands in the case of SD 

Radix-10 architecture 

In this figure, 

S: Sign Encoding 

H: Hot-One 10’s complement encoding 

X: Regular 4221 digit 

F: Extra digit position to support the width of multiplicand multiples 

 For the SD radix-5 architecture, the number of partial products generated is 

equal to 2d, d of them coded in (5221) and the other d coded in (4221) (see Section 4.2). 

Both PP[i]
U 

(5211) and PP[i]
L
(4221) have the same weight 10

i
.Thus, for 16-digit input 

operands, the alignment of the 32 partial products results in the digit array of Fig. 10. The 

p-digit columns of the SD radix-5 partial product array are reduced using the mixed 

(4221/5211) decimal p:2 CSA trees presented in Section 5.5. The worst case for d = 16 

corresponds to a column of p = 32 digits, reduced using a mixed (4221/5211) decimal 

32:2 CSA. 
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Figure 10: Partial product arrays generated for 16-digit operands in the case of SD 

radix-5 architecture 

In this figure, 

S: Sign Encoding 

H: Hot-One 10’s complement encoding 

V: Regular 4221 digit 

B: Regular 5211 digit 

F: Extra digit position to support the width of multiplicand multiples 

5.2. Method for Decimal Carry-Save Addition 

 Decimal carry-save addition methods use a two BCD word to represent sum 

and carry or a BCD sum word and a carry bit per digit. The first group implements 

decimal addition mixing binary CSAs with combinational logic for decimal correction. 
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 In another scheme two levels of 3:2 binary CSAs is used to add the partial 

products iteratively. Since it uses BCD to represent decimal digits, a digit addition of +6 

or +12 (Modulo 16) is required to obtain the decimal carries and to correct the sum digit. 

In order to reduce the contribution of the decimal corrections to the critical path, three 

different techniques for multioperand decimal carry-save addition were proposed. Two of 

them perform BCD corrections (+6 digit additions) using combinational logic and an 

array of binary carry-save adders (speculative adders), although a final correction is also 

required. A sequential decimal multiplier using these techniques uses BCD invalid 

combinations (overloaded BCD representation) to simplify the sum digit logic. The other 

approach (non-speculative adder) uses a binary CSA tree followed by a single decimal 

correction. In the non-speculative adder, preliminary BCD sum digits are obtained using 

a level of 4-bit carry propagate adders after the binary CSA tree. Finally, decimal carry 

and sum digit corrections are determined from the preliminary sum digit and the carries 

passed to the next more significant digit position in the binary CSA tree. Decimal 

correction is performed using combinational logic (its complexity depends on the number 

of input operands added) and a 3-bit carry propagate adder per digit. Among these 

proposals, the non-speculative adders present the best area-delay figures and are suited 

for tree topologies. 

 The addition of all decimal operands in parallel requires the use of efficient 

multioperand decimal tree adders. Among the different schemes, the most promising ones 

for fast parallel addition seem to be those using binary CSA trees or some parallel 

network of full adders, due to their faster and simpler logic cells (full adders against SD 

adder cells or radix- 10 CLAs). These methods assume that decimal digits are coded in 

BCD. However, BCD is highly inefficient for implementing decimal carry-save addition 

by by means of binary arithmetic, because the need to correct the invalid 4-bit 

combinations (those not representing a decimal digit). Fig. 11 shows an example of the 

addition of 3 BCD digits using a 4-bit binary 3:2 CSA directly. In this case, the 4-bit 

representation (1100) of the decimal sum digit (’12’) is an invalid BCD value and must 

be corrected to avoid overflows in subsequent BCD carry-save additions. The previous 

methods use different schemes to perform these BCD corrections. Moreover, the BCD 

carry digit must be multiplied by 2, which requires additional logic. We also implement 

24 

Figure 11: BCD carry-save addition using a 4-bit 3:2 CSA 

multioperand decimal tree adders using a binary CSA tree, but with operands coded in 

decimal codings that are more efficient than BCD.. 

5.3. Alternative Decimal Digit Encodings 

 Among all the possible decimal codes defined by Expression (1) in Section 2 , 

there is a family of codes suitable for simple decimal carry-save addition. This family of 

decimal codings verifies that the sum of their weight bits is 9, that is, 

which includes the (4221), (5211), (4311), and (3321) codes, shown in Table 1. Some of 

these decimal codings are already known , but we use them in a different context, to 

design components for decimal carry-save arithmetic. Moreover, they are redundant 

codes, since two or more different 4-bit vectors may represent the same decimal digit. 

These codes have the following two properties 

• All the sixteen 4-bit vectors represent a decimal digit (Zi  � [0,9]). Therefore, any 

Boolean function (AND, OR, XOR) operating over the 4-bit vector representation 

of two or more input digits produces a 4-bit vector that represents a valid decimal 

digit (input and output digits represented in the same code). 

 rj= 9 
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• The 9’s complement of a digit Zi can be obtained by inverting their bits (as a 1’s 

complement) since 

Negative operands can be obtained by inverting the bits of the positive bit vector 

representation and adding a 1 ulp, that is, 

- Z (r3,r2,r1,r0) = Z (r3,r2,r1,r0) + 1 

Next, we show how these codes can be used to improve multioperand decimal carry-save 

addition/subtraction using these two properties 

5.4. Algorithm 

Using the first property of these alternative decimal codings, we perform fast 

decimal carry-save addition using a conventional 4-bit binary 3:2 CSA as 

with (r3r2r1r0) � {(4221); (5211); (4311); (3321)}, si,j and hi,j are the sum and carry bit of 

a full adder, and Hi � [0, 9] and Si � [0, 9] are the decimal carry and sum digits at 

position i. No decimal correction is required because the 4-bit vector expressions of Hi 

and Si  represent valid decimal digits in the selected coding. 

However, a decimal multiplication by 2 is required before using the carry digit Hi

for later computations. Here, we restrict the analysis of decimal carry-save addition to 

only (5211) and (4221) decimal codes, since the generation of multiples of two for 

operands coded in (4311) and (3321) is more complex. Fig. 12 shows an example of ×2 

multiplications for decimal operands represented in (4221) and (5211) decimal codes. To 

simplify the notation, we use H for the carry vector coded in (4221) and W for the carry 

vector coded in (5211). Thus, we have that 

2H  =  2 ×H  =   L1shift[W] 

9-Zi =  rj =  zi,j rj=  (1-zi,j ) rj 

                                           =  zi,j  rj

Ai + Bi + Ci           = (ai,j + bi,j + ci,j) rj 

si,jrj + 2× hi,jrj = Si + 2×Hi 
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Figure 12: Calculation of ×2 for decimal operands coded in (4221) and (5211). 

The resultant bit vector after shifting 1 bit to the left W represents the double of H. 

The operand 2H is coded in (4221), since the weight bits of W are multiplied by 2 after 

the 1-bit left shift. The whole 2 × H multiplication is performed by a digit recoding of Hi 

into Wi  followed by an L1shift[W]. The bits of Wi are denoted by wi,j. The bit shifted out 

(wi,3) represents a decimal carry out (weight 10) to the next digit position, while the bit 

shifted in (wi-1,3) is a decimal carry input (weight 1).  

To subtract a decimal operand coded in (4221) or (5211) using a carry-save adder, 

we first invert the bits of the operand and add one ulp (unit in the last place). This ulp can 

be placed in the free room at the least significant bit position that results from the left 

shift of the carry operand H. 

In the following Sections, we describe how to design decimal CSAs of any 

number of input operands coded in (4221) or (5211). We first detail the implementation 

of decimal 3:2 and 4:2 CSAs using the proposed method.  

5.5. Decimal 3:2 and 4:2 CSAs 

In this Section we detail the proposed implementations of a decimal 3:2 and 4:2 

CSAs. We also describe the gate level implementation of the digit recoders required to 

perform conversions between different decimal codings. These recoders are the core logic 

components to compute ×2
n
 multiplications, which are also required for partial product 

generation in multiplication. 
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5.5.1. 4:2 Compressors 

                 The 4:2 compressor structure actually compresses five partial products bits 

into three [1, 2, 3]. The architecture is connected in such a way that four of the inputs are 

coming from the same bit position of the weight j while one bit is fed from the 

neighboring position j-1(known as carry-in). The outputs of 4:2 compressor consists of 

one bit in the position j and two bits in the position j+1.This structure is called 

compressor since it compresses four partial products into two(while using one bit 

laterally connected between adjacent 4:2 compressors). Figure 13 shows the block 

diagram of 4-2 compressor. A 4-2 compressor can also be built using 3-2 compressors. It 

consists of two 3-2 compressors (full adders) in series and involves a critical path of 4 

XOR delays as shown in Figure 14. An alternative implementation is shown in Figure 

15. This implementation is better and involves a critical path delay of three XOR's , 

hence reducing the critical path delay by 1 XOR. The output Cout, being independent of 

the input Cin accelerates the carry save summation of the partial products 

Figure13: Block diagram of a 4:2 compressor 

Figure14: Compressor design with full adder 

28 

Figure15: Alternative Implementation of 4:2 Compressor with 3 XOR Delay  

5.5.2. Gate level implementation 

The proposed decimal 3:2 CSAs adds three decimal operands (A,B,C) coded in 

(4221) or (5211) and produce a decimal sum word (S) and a carry word (H) multiplied by 

2 (2 × H) coded in (4221) or (5211), such that A + B + C = S + 2H. Depending on the 

decimal coding of the operands, we have three possible implementations of a decimal 

digit 3:2 CSA using a 4-bit binary 3:2 CSA, as shown in Fig. 16 

(a)Operands coded in (4221) 
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(b)Operands coded in (5211) 

(c)Mixed (5211/4221) coded output operands.  

(d)Full adder with fast              (e) Full adder with 

      carry output                                  fast input 

Figure 16(a)-(e): Proposed decimal digit (4-bit) 3:2 CSAs. 

• Input operands and output operands (S, H, 2H) coded in (4221) (Fig. 16(a)). The 

weight bits in Fig. 16 are placed in brackets above each bit column. In this case, 

the decimal digit 3:2 CSA consists of a 4-bit binary 3:2 CSA and a digit recoder 

from (4221) to (5211).In this section we show two gate level implementations of a 

1-bit 3:2 CSA: one with a fast carry output (Fig. 16(d)) and one with a fast input 

(Fig. 16(e)). The output of the digit recoder (Hi(5211)) is then left shifted by one 



30 

bit position (L1shift[Hi(5211)]). The recoder is placed in the carry path, so choosing 

an appropriate gate implementation of the binary 3:2 CSA, in this case the fast 

carry output configuration (Fig. 16(d)), part of the recoder delay can be hidden. 

• Input and output operands coded in (5211) (Fig. 16(b)). The implementation of 

the (5211) decimal digit 3:2 CSA is similar to the (4221) case, except that here the 

4-bit carry vector Hi(5211) is 1-bit left shifted before the digit recoding. 

• Input operands coded in (5211), S, H coded in (5211) but 2H coded in (4221) 

(Fig. 16(c)).The decimal digit 3:2 CSA consists only of a level of 4-bit 3:2 CSA 

with the carry output shifted 1-bit to the left. 

The gate level implementation of two decimal 4:2 CSAs for input and   output 

operands coded in (4221) is shown in Fig. 17. The first decimal 4:2 CSA (Fig. 17(a)) 

uses a specialized gate configuration. The carry bit-vector H is computed as in binary 

from operands A, B and C coded in (4221).The  intermediate decimal carry operand W is 

then obtained as 2 × H. The sum operand S (coded in (4221)) is obtained by XOR-ing 

the bits of A, B, C, D and W (approximately in 4 XOR gate delays). The decimal carry 

operand V is obtained (approximately in 6 XOR gate delays) by selecting the appropriate 

bits of D or W, depending on the xor of A, B, C and D, and multiplying the resulting bit 

vector (coded in (4221)) by 2.  

The second decimal 4:2 CSA (Fig. 17(b)) is designed by interconnecting two 

decimal 3:2 CSAs (Fig. 17(a)). The blocks labeled as 3:2 represent a 4-bit binary 3:2 

CSA. The intermediate decimal carry W is connected to a fast input of the second full 

adder (indicated by a letter F in Fig. 17(b)) to reduce the delay of the critical path. Thus, 

both implementations present a similar critical path delay (6 XOR gate delays in the 

carry path). 
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(a) Using a specialized gate configuration 

(b) Using two decimal 3:2 trees 

Figure 17: Proposed decimal (1-digit slice) 4:2 CSAs. 

5.5.3. Implementation of digit recoders 

The design of efficient digit recoders is a critical issue, due to their high impact on 

the performance and area of a decimal multiplier. Due to the redundancy of (4221) and 

(5211) decimal codes, there are many choices for the digit recoding between (4221) and 

(5211). The sixteen 4-bit vectors of a coding can be mapped (recoded) into different 

subsets of 4-bit vectors of the other decimal coding representing the same decimal digit. 

These subsets of the (4221) and (5211) codes are also decimal codings. Among all the 

subsets analyzed, we have selected the non-redundant decimal codes (subsets of ten 4-

bit vectors) shown in Table 2 to represent the recoded digits. These codes lead to two 
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different configurations of digit recoders (S1 and S2) for the recoding from (4221) to 

(5211): 

• The first group of codes, S1 = {(4221-S1), (5211-S1)} leads to a simpler 

implementation of a digit recoder when all the sixteen 4-bit input combinations are 

possible. Therefore, in general, a ×2 block is implemented by digit recoding 

Z(4221) into Z(5211-S1) and shifting the output one bit to the left. The gate level 

implementation of a S1 digit recoder is shown in Fig. 18. This operation can be 

seen as a two-step digit recoding of Zi(4221) to Zi(4221-S1) and Zi(4221-S1) into 

Zi(5211-S1). This operation can be seen as a two-step digit recoding of Zi(4221) to 

Zi(4221-S1) and Zi(4221-S1) into Zi(5211-S1). The digit recoding between 

Zi(4221-S1) and Zi(5211-S1) is very simple, since the 4-bit vectors representing 

each decimal digit value in both decimal codes are almost similar. 

Zi Zi(4221-S1) Zi(5211-S1) Zi(4221-S1) Zi(5211-S1)

0 0000 0000 0000 0000 

1 0001 0001 0001 0001 

2 0100 0100 0010 0100 

3 0101 0101 0011 0101 

4 0110 0111 1000 0111 

5 1001 1000 1001 1000 

6 1010 1010 1010 1001 

7 1011 1011 1011 1100 

8 1110 1110 1110 1101 

9 1111 1111 1111 1111 

Table 4. Selected decimal codes for the recoded digits 

• The second group of codes, S2 = {(4221-S2), (5211- S2)} verifies  

2Z(4221- S2) = L1shift[Z(5211- S2)] 

that is, after shifting one bit to the left an operand represented in (5211-S2), the 

resultant digits are  represented in (4221- S2). This fact simplifies the 

implementation of ×2
n
 operations with |n| > 1. Specifically, 2

n
 × Z can be 
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implemented recoding each digit Zi(4221) to Zi(4221-S2) followed by n stages of 

Zi(4221-S2) to Zi(5211-S2) digit recoders. The implementation of this S2 digit 

recoder is shown in Fig. 18(b) (the Zi(4211- S2) to Zi(5211- S2) recoder is shown 

inside the dashed line box). Moreover, when input digits into a 4-bit binary 3:2 

CSA are coded in a S2 decimal coding then the resultant carry digit Hi is 

represented in the same S2 coding. In this case, 2×H is implemented as a row of 

the simpler Hi(4211-S2) to Hi(5211- S2) digit recoders with outputs or inputs 1-

bit left shifted. 

Figure 18: Gate level implementation of the (4221) to (5211) digit recoders. 

Additionally, the inverse digit recoding (from (5211) to (4221)) is easilyimplemented 

using a single full adder as shown in Fig. 19, since 
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Zi(5211) = zi,3 (4 + 1) + zi,2 • 2 + zi,1 + zi,0 = zi,3 • 4 + zi,2 • 2 +       • 2 +        . 

with           • 2 +       = (zi,3+zi,1+zi,0)  �  3. This recoder is used in mixed (4221/5211) 

multioperand CSAs to convert a (5211) decimal coded operand into the equivalent (4221) 

coded one. 

Figure 19: Implementation of a (5211) to (4221) digit recoder.
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CHAPTER 6 

PROPOSED ARCHITECTURE - 

COMBINED DECIMAL/BINARY CARRY SAVE ADDER 

In this implementation the whole binary carry-save adder tree is shared for both 

binary and decimal operations. The latency of the binary operation is unaffected by the 

incorporation of hardware support for decimal and there is reduction in the power 

consumption also apart from the additional area required. This additional hardware 

computes a decimal correction amount which is added to the binary sum to produce the 

correct decimal result. Since the most part of this computation is overlapped with the 

binary carry-save addition, the maximum overhead delay of decimal multioperand 

addition is bounded approximately by 10 XOR gate delays. In this design decimal 

correction is completely separated from the binary carry-save adder, so that decimal 

hardware can be easily turned off to reduce power consumption in binary operation mode. 

Furthermore, it has a very regular and simple structure, which facilitates the integration 

of the proposed method into a CAD tool for automatic synthesis. 

6.1 ALGORITHM 

Figure20: Decimal 3:2 carry-save adder (1 digit) 

The block diagram of a 1-digit (4-bit) decimal 3:2 carry-save adder is detailed in 

Fig. 20. The blocks labeled as FA, 3:2, and ×2 are respectively full adders with a fast 
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input (of 1 XOR delay, indicated with an F), 4-bit binary 3:2 carry save adders and 

decimal digit doubling units. A fixed left shift of one bit is denoted by <<1. 

A binary/decimal 3:2 carry-save-adder is build in by a straightforward 

modification of the digit doubling unit of Fig. 20: a 4-bit 2:1 multiplexer is placed after 

each digit recoder and selects either the carry output of the 3:2 carry-save adder for 

binary mode or the output of the digit recoder for decimal mode. The output of the 

multiplexer is shifted one bit to the left. A combined multi-operand adder is implemented 

as a tree of these modified carry-save adders. Fig. 21 shows an example for 12 operands. 

The binary/decimal doubling units require an additional input signal dec to indicate the 

operation mode (dec=1 for the decimal mode). 

Figure 21: Combined multi-operand adder tree: (1 digit/4-bit column) 

For further area savings a more interesting alternative would be to fully reuse the 

binary carry-save adder for both binary and decimal multi-operand additions. In this 

Section we present a method to implement decimal multi-operand addition using any 

binary carry-save adder (such as a binary 4:2 compressor tree) and separate hardware for 

decimal correction. The key idea is to perform the decimal doubling C × 2 of the carry 
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operand C coded in 4221 2 as a 1-bit left shift (C <<1), that is, as a binary doubling. This 

would allow us to compute both binary and decimal carry-save additions in the same 

fashion, just by left shifting the carry output of the binary 3:2 carry-save adder. 

However, since a left shift of a 4221 decimal coded operand C does not produce 

exactly its double 2C, we have to estimate a correction amount to be added to the binary 

result in order to get the correct decimal sum. Thus, a left shift of a p-digit decimal 

operand C coded in 4221 produces that each digit Ci is modified as 

(Ci << 1) = ci,3 • 10 + ci,2 • 4 + ci,1 • 2 + ci,0 • 2 

On the other hand, the double of a 4221 decimal coded digit is given by 

Ci ×2 = ci,3 (10 − 2) + ci,2 • 4 + ci,1 (2 + 2) + ci,0 • 2 

The operand 2C = C × 2 (represented in code 4221) and the 1-bit shifted operand 

(C <<1) are then related by: 

2C = (C <<1) + 2 ×           (Ci,1 - Ci,3 )  ×  10
i

Therefore, we have to increment the decimal correction amount W into +2 units at 

digit Wi if the carry bit ci,1 is one or decrement it by -2 if the carry bit ci,3 is one. 

For multi-operand addition, each intermediate carry operand C[k] of the binary carry-

save adder contributes to the decimal correction amount, but not for the final carry 

operand, which is multiplied by 2 for decimal. A functional scheme of the proposed 

method for 4p-bit binary/p-digit decimal 4221 coded operands is shown in Fig. 15. For 

simplicity, we consider in Fig. 15 that the m input operands X[k] are aligned to the 

decimal point and that the sum does not overflow. For m operands, the number of 

intermediate carry operands C[k] generated in a binary m : 2 carry-save adder is m − 3.  

The decimal correction amount W is computed in parallel with the binary carry-

save addition using an array of bit counters and a decimal carry-save addition. We 

separate the positive (c[k]i,1) and the negative (c[k]i,3) carry bits, as soon as they are 

generated in the binary carry-save addition, in groups of 9 bits at most for each decimal 

position i. These groups of bits are added as 

Wi|2l-1| =          c[k]i,3                 ,       Wi|2l| =          c[k]i,1 
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using 2q rows of 9-bit counters (or simpler counters) with output coded in 4221, where q 

= [(m − 3)/9] and l goes from 1 to q. The 4-bit sum value of a 9-bit counter represents a 

decimal digit Wi[l] � [0, 9] coded in 4221, so that the output of each row of counters is a 

decimal operand W[2l-1] or W[2l] of p digits coded in 4221. The decimal correction

amount W is given by            

 W =  2× 

Since the representation 4221 is self-complementing the negative operands −W[2l - 1] are 

obtained by a bit inversion of W[2l - 1] and a subsequent addition of a unit in the least 

significant place, i.e. as if they are two’s complement operands. To obtain the final sum 

Figure22: Block diagram of the combined binary/decimal multi-operand addition method. 
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S[2q+m−2] and carry C[2q+m−2] × 2 operands, we add the 2q operands W[2l] × 2 and 

−W[2l - 1] × 2 to the result of the binary carry-save addition S[m−2], C[m−2] × 2. Since 

all operands are in 4221 code, we use binary 3:2 carry-save adders and decimal doubling 

units to perform a decimal (2q + 2) : 2 carry-save addition. 

6.2 Implementation of combined decimal/binary carry save adder 

                Here we consider some pre-existing binary carry-save adder such a optimized 

tree of 3:2 or 4:2 compressors and reuse it to also support decimal multi-operand addition. 

In Fig. 23 we show a block diagram of 1-digit column (4-bit slice) of the proposed 

implementation for m = 12 input operands. The binary adder tree consists of two levels of 

4:2 compressors and one level of 3:2 compressors (binary 3:2 carry-save adder). The 4:2 

compressors are build of two levels of 3:2 compressors optimally interconnected so that 

the critical path only goes through 3 XOR gates. A total of 9 intermediate carry operands 

are generated by the compressor tree. The carry bits c[k]i,3 and c[k]i,1 are summed 

separately by two 9-bit counters, resulting 4221 coded digits Wi[1] and Wi[2]. The 

internal structure of the 9-bit counter is detailed in the upper left corner of Fig. 19. It is 

build of 5 full adders arranged in two levels which calculates the sum of the input bits in 

code 4221. The fastest input goes through 2 XOR levels, while the slowest signal goes 

through 4 XOR levels. To obtain the negative sum in 4221 code, the counter outputs are 

inverted. Since carries arrive to the counters with different delays, those produced in the 

last levels of the binary adder tree are connected to faster inputs of the counter in order to 

balance the different path delays.  
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 Figure 23: Multi-operand adder tree 

             The decimal digits Wi[1] and Wi[2], and the sum Si[10] and carry Ci[10] 

ouputs of the compressor tree are dispatched to a decimal 4:2 carry-save adder. To 

reduce the number of doubling units needed, the calculation 

( Wi[1] +Wi[2] + Ci[10] ) ×2 = Si[11] × 2 + Ci[11] × 2 × 2 

is performed first using a binary 3:2 carry-save adder and three doubling units. The two 

cascaded doubling units can be merged into a ×4 unit to obtain a small reduction in area 

and delay. The critical path of the decimal operation is indicated in Fig. 4 by a thick 

dotted line. It goes through 15 levels of XOR gates, eight of them corresponding to the 

binary adder tree. 
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CHAPTER 7 

HIGH-PERFORMANCE RADIX-4 MULTIPLIER USING THE PASS 

TRANSISTOR LOGIC 

A high-performance adder has been designed with modified complementary pass 

transistor logic technique. The adder has been implemented on a radix-4 multiplier. 

7.1 Adder Architecture Using The CPL Technique 

The CPL technique eliminates the occurrence of P-type Metal Oxide 

Semiconductor (PMOS) latch, and techniques capable of overcoming the pass transistor 

logic threshold voltage loss problem do so by adding an inverter at the output. The logic 

style of CPL results in a smaller number of transistors and smaller input loads, especially 

when N-type Metal Oxide Semiconductor (NMOS) networks are used. However, the 

CPL circuit has some drawbacks due to body effects, source follower action, and high 

power leakage. When it is not cross-coupled, it will cause low performance at large stage 

counts and limited fan-out capability. According to Markovic et al.,the duality principle 

of the proposed CPL adder circuit topology, with inverted gate signals, gives the dual 

logic function. Dual logic functions include AND-OR, NAND-NOR and XOR-XNOR. 

Referring to the basic structure of pass transistor logic style, by simply modifying the 

input nodes, AND, OR, NAND and NOR logic gates can be constructed. By changing the 

input nodes at the source terminal, XOR and NXOR logic gates can be constructed. 

            The full adder cell is designed with the CPL technique and the multiplexing 

control input technique (MCIT) for both sum and carry operations. The sum and carry 

operation is designed based on the given equation, where two XOR logic gates are used, 

since pass-transistor logic is advantageous in constructing XOR logic gates. By 

combining the sum and carry circuits, the XOR gate in the carry operation can be omitted, 

and both circuits can share the common term, A�B, in the sum operation. 

                                 Sum = A�B�C 

                                Cout =  (A�B) Cin + AB 
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The inputs A, A's complement (A'), B, and B's complement (B') are fed as inputs 

to the pass transistors and form an XOR logic gate. These four inputs construct an XOR 

logic operation at the transistor level, which is designed using two transistors. In order to 

reduce the number of transistors, the output of the XOR gate (A�B) is fed through an 

NOT gate from the differential node to the pass transistors as a control input. On the 

other hand, Cin is treated as variable input, which is fed through the pass transistor source 

terminal. At this stage, the functionality of the circuit is equivalent to the sum operation, 

sum A�B�C, and six transistors have been used. As mentioned before, the number of 

transistors in the carry operation can be reduced by taking A�B as the input from the 

sum operation circuit AND with Cin in order to produce the operation equivalent to 

(A�B)Cin , which only uses another two transistors. Meanwhile, the inputs A, A', B, and 

B' are fed into pass transistors in order to produce an AND logic gate, which represents 

the AB operation. The outputs of both (A�B) Cin and AB are used as multiplexing 

inputs in order to sum both terms with the OR gate operation. The transistor count can be 

reduced by modifying the OR gate at the last stage of the carry equation. This is done by 

removing the inverter and the transistor fed by the inverter. Markovic's full adder circuit 

has 22 transistors. At an earlier point, 3 transistors were omitted in this design and the 

number of transistors of the full adder cell was reduced to 17 transistors, which is lower 

than the number of transistors in the circuit described by Markovic , which is 22.  

Figure 24: Full adder circuit 
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Fig.24 shows the proposed full adder circuit using 17 transistors after applying the 

redundant transistor reduction technique. The basic architectures of the 16 × 16 bit basic 

CSA multiplier were constructed based on the architectures given by Yeo et al. The full 

adder blocks presented were placed with our proposed full adder cell, and all the logic 

gates in both multiplier architectures were designed based on the CPL technique in order 

to compare their performance under identical conditions. 

7.2 Architecture of Radix-4 Multiplier 

Figure 25: 4 × 4 bit radix-4 multiplier circuit 

PPS : Partial Product Selector 

HA : Half Adder 

FA : Full Adder 

OR : OR Logic gate 

The architecture of our proposed radix-4 multiplier circuits comprises partial 

product selectors, partial product pre-computation blocks, and half adder and full adder 

block, which is shown in Fig.25. In the radix-4 circuits, 2 bits per cycle will be 

considered. Therefore, 4 multiples, 0a, 1a, 2a and 3a, are pre-computed, where "a" is the 
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multiplicand. This is done by the partial product pre-computed blocks, where 2a is 

simply the shifted version of "a", and 3a = 2a + 1a . The pre-computation circuit for 3a

consists of half adder and full adder blocks configured using the ripple carry adder (RCA) 

architecture. The half adder circuit is designed based on the CPL technique, and the full 

adder blocks are used with our proposed full adder circuit. Partial product selectors are 

formed by OR and AND gates, which are used to determine the partial products. By 

connecting all the pre-computation blocks and partial product selectors, a 4-to-1 

multiplexer can be realized, as shown in Fig.26. The multiplexer is functioned such that 

the first 2 bits of the multiplier, x, will be grabbed to determine the first partial product 

and shifted to the next 2 bits of the multiplier to determine the successive partial products 

by repeating the same process. For a 4-bit radix-4 multiplier, two partial products will be 

generated. As a result, half of the number of partial products has been reduced compared 

to the normal 1-bit shift-add algorithm. 

Figure 26: Generation of multiples in a radix-4 multiplier 

Before adding the partial product, all pre-computed partial products are OR-ed with each 

other, since  

Partial Product = 0a+1a+2a+3a 

At the end, all partial products with proper shifts are connected to RCAs to compute the 

final output product of the radix-4 multiplier. The multiplicand, "a", and multiplier, "x", 

are two inputs that are calculated in parallel by the multiplier circuit. A 4-bit binary 
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number can be interpreted as a 2-digit radix-4 number, and radix-4 multiplication can be 

represented as 

where p = product, a = multiplicand and x = multiplier. Based on the 

multiplication recurrences above, a more practical example of radix multiplication is 

shown below. Without considering whether the 3a multiple will be needed during the 

multiplication, the 3a multiple is always computed at the outset and stored in a register 

for future use. 
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CHAPTER 8 

EVALUATION RESULTS 

The simulation of this project has been done using MODELSIM XE111 6.2g and 

XILINX ISE 9.1i.  

Modelsim is a  simulation tool for programming {VLSI} {ASIC}s, {FPGA}s, 

{CPLD}s, and {SoC}s. Modelsim provides a comprehensive simulation and debug 

environment for complex ASIC and FPGA designs. Support is provided for multiple 

languages including Verilog, SystemVerilog, VHDL and SystemC. The Modelsim 

conceptual overview is shown below. 

                            Figure 27: Conceptual Overview of Modelsim 

In ModelSim, all designs, be they VHDL, Verilog, or some combination thereof, 

are compiled into a library. We can stat a new simulation in ModelSim by creating a 

working library called "work". "Work" is the library name used by the compiler as the 

default destination for compiled design units. After creating the working library, we 

compile our design units into it. The ModelSim library format is compatible across all 

supported platforms. We can simulate our design on any platform without having to 

recompile your design. With the design compiled, invoke the simulator on a top-level 

module (Verilog) or a configuration or entity/architecture pair (VHDL). Assuming the 

design loads successfully, the simulation time is set to zero, and enter a run command to 

begin simulation. If the results are not as expected, use ModelSim’s robust debugging 

environment to track down the cause of the problem.  

Xilinx, Inc. is an American technology company, which designs, develops and  

markets programmable logic products including integrated circuits (ICs), software design 

Create a working library 

Compile design files 

Run Simulation

Debug results 

47 

tools, predefined system functions delivered as intellectual property (IP) cores, design 

services, customer training, field engineering and technical support. Xilinx sells both 

FPGAs and CPLDs programmable logic devices for electronic equipment manufacturers 

in end markets such as communications, industrial, consumer, automotive and data 

processing The Virtex-II Pro, Virtex-4, Virtex-5, and Virtex-6 FPGA families are 

particularly focused on system-on-chip (SOC) designers because they include up to two 

embedded IBM PowerPC cores. Xilinx has offered two main FPGA families: the high-

performance Virtex series and the high-volume Spartan series, with a cheaper EasyPath 

option for ramping to volume production. With the introduction of its 28 nm FPGAs in 

June 2010, Xilinx replaced the high-volume Spartan family with a Kintex family and the 

low-cost Artix family. The Spartan series targets applications with a low-power footprint, 

extreme cost sensitivity and high-volume; e.g. displays, set-top boxes, wireless routers 

and other applications 

The ISE Design Suite is the central electronic design automation (EDA) product 

family sold by Xilinx. The ISE Design Suite features include design entry and synthesis 

supporting Verilog or VHDL, place-and-route (PAR), completed verification and debug 

using Chip Scope Pro tools, and creation of the bit files that are used to configure the chip.  

Xilinx is a synthesis tool which converts Schematic/HDL design entry into 

functionally equivalent logic gates on Xilinx FPGA, with optimized speed & area. So, 

after specifying behavioral description for HDL, the designer merely has to select the 

library and specify optimization criteria; and Xilinx synthesis tool determines the net list 

to meet the specification; which is then converted into bit-file to be loaded onto FPGA-

PROM. Also, Xilinx tool generates post-process simulation model after every 

implementation step, which is used to functionally verify generated net list after 

processes, like map, place & route 

The synthesis and the simulation results of the proposed and the existing 

architecture are shown below.  
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8.1. SIMULATION RESULTS 

8.1.1.SD Radix-10 Architecture 

Figure 28: Simulation result of SD radix-10 architecture

In the above figure x and y are the multiplicand and the multiplier respectively (in 

BCD). The final product in BCD is p.pp0,pp1,pp2,pp3 shows the partial products. All 

the other variables are intermediate results. 

Here x in decimal      = 1234    

              x in BCD           =  0001001000110100 

  y  in decimal     =   2211    

              y in BCD          =   0010001000010001 

              p in decimal     =   2728374 

              p in BCD         =  0010011100101000001101110100 
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8.1.2. SD Radix-5 Architecture 

Figure 29: Simulation result of SD radix-5 architecture

In the above figure x and y are the multiplicand and the multiplier respectively (in 

BCD). The final product in BCD is p. ppu and ppl shows the partial products 

corresponding to 4221 and 5211 recoding. All the other variables are intermediate 

results. 

Here x in decimal      = 1234    

              x in BCD           =  0001001000110100 

  y  in decimal     =   2211    

              y in BCD          =   0010001000010001 

              p in decimal     =   2728374 

              p in BCD          =  0010011100101000001101110100 

. 
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8.1.3. SD Radix-10 Architecture using Combined Decimal/Binary 

CSA 

Figure 30: Simulation result of SD radix-10 architecture using combined 

decimal/binary CSA

In the above figure x and y are the multiplicand and the multiplier respectively (in 

BCD). The final product in BCD is p. pp0,pp1,pp2,pp3 shows the partial products as 

per the SD radix-10 recoding scheme and b1,b2,b3,b4 corresponds to binary partial 

products. All the other variables are intermediate results. ’sel’ corresponds to 

selection signal for mux (decimal/binary) 

Here x in decimal      = 1234    

              x in BCD           =  0001001000110100 

  y  in decimal     =   2211    

              y in BCD          =   0010001000010001 

              p in decimal     =   2728374 

              p in 4221          =  0100110101001110010111011000 

              p in binary        =  1010011010000110110110 
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8.1.4. SD Radix-5 Architecture using Combined Binary-Decimal 

CSA 

Figure 31: Simulation result of SD radix-5 architecture using combined 

decimal/binary CSA 

In the above figure x and y are the multiplicand and the multiplier respectively (in 

BCD). The final product in BCD is p. ppu and ppl shows the partial products as per 

the SD radix-5 recoding scheme in 4221 and 5211 respectively and b1, b2, b3, b4, b5, 

b6, b7 corresponds to binary partial products. All the other variables are intermediate 

results. ’sel’ corresponds to selection signal for mux (decimal/binary) 

Here x in decimal      = 1234    

              x in BCD           =  0001001000110100 

  y  in decimal     =   2211    

              y in BCD          =   0010001000010001 

              p in decimal     =   2728374 

              p in 4221          =  0100110101001110010111011000 

             p in binary        =  1010011010000110110110 
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8.1.5. Radix-4 Binary Multiplier 

Figure 32: Simulation result of radix-4 binary multiplier 

In the above figure x and y are the inputs and z is the final product.p1,p2,p3,p4 

represents the partial products. In the first cycle, 

 x in decimal          =  1234 

x in binary             =  101101 

y in decimal          =  2211 

z  in binary           =  1010011010000110110110 

z in decimal         =  2728374 

z in BCD             =  0010011100101000001101110100 
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8.2. SYNTHESIS RESULTS 

8.2.1.  Power Report  

8.2.1.1. SD Radix-10 architecture  

Figure 33: Power report of SD radix-10 architecture

8.2.1.2. SD Radix-5 architecture  

Figure 34: Power report of SD radix-5 architecture
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8.2.1.3. SD Radix-10 Architecture using Combined Decimal/Binary 

CSA 

Figure 35: Power report of SD radix-10 architecture using combined decimal/binary 

CSA

8.2.1.4. SD Radix-5  architecture using combined binary-decimal CSA 

Figure 36: Power report of SD radix-5 architecture using combined decimal/binary 

CSA
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8.2.1.5. Radix-4 Binary Multiplier 

Figure 37: Power report of radix-4 binary multiplier

8.2.2.   MAP REPORT 

8.2.2.1. SD Radix-10 architecture 

Area report: 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   16 

Logic Utilization: 

  Number of Slice Latches:          123 out of 13,824    1% 

  Number of 4 input LUTs:         1,016 out of 13,824    7% 

Logic Distribution: 

  Number of occupied Slices:                         530 out of  6,912    7% 

  Number of Slices containing only related logic:    530 out of    530  100% 

  Number of Slices containing unrelated logic:         0 out of    530    0% 
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Total Number 4 input LUTs:        1,032 out of 13,824    7% 

   Number used as logic:                     1,016 

   Number used as a route-thru:                 16 

   Number of bonded IOBs:            68 out of    510   13% 

   Number of GCLKs:                   3 out of      4   75% 

Total equivalent gate count for design:  7,056 

Additional JTAG gate count for IOBs:  3,264 

Delay Report: 

Timing Summary: 

------------------------ 

   Minimum input arrival time before clock: 29.986ns 

   Maximum output required time after clock: 66.863ns 

------------------------ 

Therefore the total delay =  36.877ns

8.2.2.2. SD Radix-5  architecture  

Area report: 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   12 

Logic Utilization: 

  Number of Slice Latches:           437 out of 13,824    3% 

  Number of 4 input LUTs:           492 out of 13,824    3% 

Logic Distribution: 

  Number of occupied Slices:                         244 out of  6,912    3% 

  Number of Slices containing only related logic:    244 out of    244  100% 

  Number of Slices containing unrelated logic:         0 out of    244    0% 
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Total Number of 4 input LUTs:       469 out of 13,824    3% 

  Number of bonded IOBs:            68 out of    510   13% 

Total equivalent gate count for design:  8,670

Additional JTAG gate count for IOBs:  8,356 

Delay Report: 

Timing Summary: 

------------------------ 

   Minimum input arrival time before clock: 31.623ns 

   Maximum output required time after clock: 64.419ns 

------------------------ 

Therefore the total delay =  32.796ns

8.2.2.3. SD Radix-10  architecture using combined decimal/binary CSA

Area report: 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:    8 

Logic Utilization: 

  Number of Slice Latches:           88 out of 13,824    1% 

  Number of 4 input LUTs:         1,045 out of 13,824    7% 

Logic Distribution: 

  Number of occupied Slices:                         547 out of  6,912    7% 

  Number of Slices containing only related logic:    547 out of    547  100% 

  Number of Slices containing unrelated logic:         0 out of    547    0% 

Total Number 4 input LUTs:        1,069 out of 13,824    7% 

  Number used as logic:                     1,045 

  Number used as a route-thru:                 24 
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Number of bonded IOBs:           229 out of    510   44% 

Total equivalent gate count for design:  7,978 

Additional JTAG gate count for IOBs:  11,115 

Delay Report: 

Timing Summary: 

--------------- 

Speed Grade: -7 

   Minimum input arrival time before clock: 9.929ns

   Maximum output required time after clock: 77.816ns 

--------------- 

Therefore the total delay =  67.887 ns

8.2.2.4. SD Radix-5  architecture using combined decimal/binary CSA

Area report: 

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:   11 

Logic Utilization: 

  Number of Slice Latches:          139 out of 13,824    1% 

  Number of 4 input LUTs:         1,489 out of 13,824   10% 

Logic Distribution: 

  Number of occupied Slices:                         791 out of  6,912   11% 

  Number of Slices containing only related logic:    791 out of    791  100% 

  Number of Slices containing unrelated logic:         0 out of    791    0% 

Total Number 4 input LUTs:        1,527 out of 13,824   11% 

  Number used as logic:                     1,489 

  Number used as a route-thru:                 38 

  Number of bonded IOBs:           149 out of    510   29% 
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 Number of GCLKs:                   4 out of      4  100% 

Total equivalent gate count for design:  10,831 

Additional JTAG gate count for IOBs:  7,697 

Delay Report: 

Timing Summary: 

--------------- 

Speed Grade: -7 

   Minimum input arrival time before clock: 28.279ns 

   Maximum output required time after clock: 79.862ns 

--------------- 

Therefore the total delay =  51.583 ns 

8.2.2.5. Radix-4 Binary Multiplier

Design Summary 

-------------- 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

  Number of Slice Flip Flops:       143 out of 13,824    1% 

  Number of 4 input LUTs:           387 out of 13,824    2% 

Logic Distribution: 

    Number of occupied Slices:                         290 out of  6,912    4% 

    Number of Slices containing only related logic:    290 out of    290  100% 

    Number of Slices containing unrelated logic:         0 out of    290    0% 

Total Number 4 input LUTs:          573 out of 13,824    4% 

    Number used as logic:                       387

    Number used as a route-thru:                 42

    Number used as Shift registers:             144

    Number of bonded IOBs:            68 out of    510   13% 
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   IOB Flip Flops:                               1 

   Number of GCLKs:                   1 out of      4   25% 

   Number of GCLKIOBs:                1 out of      4   25% 

Total equivalent gate count for design:  22,941 

Additional JTAG gate count for IOBs:  3,312 

Delay Report

Timing Summary: 

--------------- 

Speed Grade: -6 

   Minimum period: 3.792ns (Maximum Frequency: 263.713MHz) 

   Minimum input arrival time before clock: 10.571ns 

   Maximum output required time after clock: 16.507ns 

--------------- 

Therefore the total delay =  5.936 ns 

8.3. COMPARISON  

To obtain the area, delay and power estimate’s, the designs have been modeled in  

modelsim and synthesized in Xilinx. We have also compared and evaluated the area and 

delay figures obtained from synthesis of representative proposals of decimal with a 

binary radix-4 multiplier. Table 6 shows the comparison results of the various 

architectures. From the table given below it is clear that the SD radix-10 and the SD 

radix-5 multiplier with the combined decimal/binary CSA is an interesting option when 

compared to the representative proposals for decimal multiplication namely SD radix-10 

and SD radix-5. SD radix-10 multiplier is an interesting option for high performance with 

moderate area but when comparing the power delay product the SD radix-5 architecture 

has about 3.5% improvement. The graphs have been plotted for the area and power for 

the different architectures. 
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Table 6: Comparison of various multiplier architectures 

Architecture Gate count Delay(nS) Power(mW) 

Power- 

Delay 

Product(nW)

SD Radix-10 7,056 36.877 105 
3.872 

SD Radix-5 8,670 32.796 137 4.493 

SD Radix-10 

using combined 

decimal/binary 

CSA 

7,978 67.887 111 7.535 

SD Radix-5 using 

combined 

decimal/binary 

CSA 

10,831 51.583 125 6.447 

Radix-4 binary 

multiplier 
22,941 5.936 56 3.3241 

SD Radix-10 

+ 

Radix-4 binary 

multiplier 

29997 42.813 161 6.892 

SD Radix-5 

+ 

Radix-4 binary 

multiplier 

31611 38.732 193 7.475 
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 Figure 38: Area graph obtained from synthesis

 Figure 39: Power graph obtained from synthesis 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

In this project, we have discussed the different techniques to implement decimal 

parallel multiplication in hardware. The two architectures for decimal multiplication 

employing two different Signed Digit encodings for the multiplier that lead to fast 

parallel and simple generation of partial products have been implemented Also a  decimal 

carry-save algorithm based on unconventional (4221) and (5211) decimal encodings for 

partial product reduction has been discussed. It makes possible the construction of p:2 

decimal CSA trees that outperform the area and delay figures of binary multipliers. The 

area and delay figures of these decimal multiplier architectures from a comparative study 

including conventional binary parallel multipliers show that our decimal SD radix-10 

multiplier is an interesting option for high performance with moderate area. A new 

method for the combined computation of binary/decimal multi-operand additions is 

presented. It relies on a fully reuse of a binary carry-save adder to reduce area, power 

consumption and design time. There is drastic reduction in are and power consumption of 

the combined binary/decimal architecture when compared to using both binary and 

decimal multipliers. Decimal operands are represented in a 4221 coding different than 

BCD that allows to perform decimal addition via binary carry-save addition and small 

decimal corrections. As the decimal corrections are computed separately from the carry-

save adder tree, there is no impact on the latency of the binary operation. 

FUTURE WORK

Future scope of this project is to optimize the decimal fixed-point parallel 

multipliers to provide pipelined implementations that fit adequately in the dataflow and 

cycle time of current commercial decimal floating point units. 
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