
i

IMPROVED DESIGN OF HIGH-PERFORMANCE

PARALLEL DECIMAL MULTIPLIERS

By

MANEESHA.V.P

Reg. No. 1020106012

of

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University, Coimbatore)

COIMBATORE - 641049

A PROJECT REPORT

Submitted to the

FACULTY OF ELECTRONICS AND COMMUNICATION

 ENGINEERING

In partial fulfillment of the requirements

for the award of the degree

of

MASTER OF ENGINEERING

IN

APPLIED ELECTRONICS

APRIL 2012

ii

BONAFIDE CERTIFICATE

 Certified that, this project report entitled “DESIGN OF HIGH-PERFOMANCE

PARALLEL DECIMAL MULTIPLIERS” is the bonafide work of Mrs.Maneesha.V.P

[Reg. no. 1020106012] who carried out the project under my supervision. Certified

further, that to the best of my knowledge the work reported herein does not form part of

any other project or dissertation on the basis of which a degree or award was conferred on

an earlier occasion on this or any other candidate.

Project Guide Head of the Department

Prof.K.Ramprakash Dr. Ms. Rajeswari Mariappan

 The candidate with university Register no. 1020106012 is examined by us in the

project viva-voce examination held on …………………….

Internal Examiner External Examiner

iii

ACKNOWLEDGEMENT

I express my profound gratitude to our director J.Shanmugham. for giving this

opportunity to pursue this course

At this pleasing moment of having successfully completed the project work, I

wish to acknowledge my sincere gratitude and heartfelt thanks to our beloved Principal

Prof.Ramachandran, for having given me the adequate support and opportunity for

completing this project work successfully.

I extend my heartfelt thanks to my internal guide Prof.K.Ramprakash, for his

ideas and suggestion, which have been very helpful for the completion of this project

work. His careful supervision has ensured me in the attaining perfection of work.

I express my sincere thanks to Dr.Rajeswari Mariyappan Ph.D., the ever active,

Head of the Department of Electronics and Communication Engineering, who rendering

us all the time by helps throughout this project

In particular, I wish to thank and everlasting gratitude to the project coordinator

Asst.Prof.R.Hemlatha, Department of Electronics and Communication Engineering for

her expert counseling and guidance to make this project to a great deal of success.

Last, but not the least, I would like to express my gratitude to my family

members, friends and to all my staff members of Electronics and Communication

Engineering department for their encouragement and support throughout the course of

this project.

iv

ABSTRACT

The new generation of high-performance decimal floating-point units demands

efficient implementations of parallel decimal multipliers. In this paper we discuss about

the implementation of the decimal parallel multipliers used in the decimal floating-point

units. Here we discuss two architectures using SD radix-5 and SD radix-10 encoding of

the multiplier with which the partial products are generated and a multioperand carry

save algorithm is used for the reduction of the partial products. The proposed method

allows the reuse of the binary CSA for computing the sum of BCD operands. Corrections

required for decimal operands are done in parallel, separately from the calculation of the

binary sum such that the layout of the binary carry save adder is not rearranged. 16 digit

adders while implemented using the proposed architectures gives excellent are area-delay

values when compared with the conventional binary multipliers.

v

CHAPTER

NO

TITLE PAGE

NO

1

2

3

4

5

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 Project Goal

1.2 Overview

1.3 Software’s Used

1.4 Organization of the Chapter

FIXED POINT DECIMAL MULTIPLICATION

2.1 An Overview of Decimal Multiplication

2.2 Existing Methods

DECIMAL FIXED POINT ARCHITECTURES

3.1 Signed Digit Radix-10 Architecture

3.2 Signed Digit Radix-5 Architecture

DECIMAL PARTIAL PRODUCT GENERATION

4.1 SD Radix-10 Recoding

4.2 SD Radix-5 Recoding

4.3 Generation of Multiplicand Multiples

4.4 Implementation of Digit Recoders

PARIAL PRODUCT REDUCTION

iv

viii

x

xi

1

1

2

3

3

4

4

5

8

8

9

11

11

14

16

18

20

vi

6

7

8

5.1 Partial Product Arrays

5.2 Method for Decimal Carry-Save Addition

5.3 Alternative Decimal Digit Encodings

5.4 Algorithm

5.5 Decimal 3:2 and 4:2 CSAs

 5.5.1 4:2 Compressors

 5.5.2 Gate level implementation

 5.5.3 Implementation of digit recoders

PROPOSED ARCHITECTURE- COMBINED

DECIMAL/BINARY CARRY SAVE ADDER

6.1 Algorithm

6.2 Implementation of combined decimal/binary carry-

 save adder

HIGH-PERFORMANCE RADIX-4 MULTIPLIER

USING THE PASS TRANSISTOR LOGIC

7.1 Adder Architecture Using The CPL Technique

7.2 Architecture of Radix-4 Multiplier

EVALUATION RESULTS

8.1 Simulation Results

 8.1.1 SD Radix-10 Architecture

 8.1.2 SD Radix-5 Architecture

 8.1.3 SD Radix-10 Architecture using Combined

 Decimal/Binary CSA

 8.1.4 SD Radix-10 Architecture using Combined

 Decimal/Binary CSA

 8.1.5 Radix-4 Binary Multiplier

8.2 Synthesis Results

 8.2.1 Power Report

20

22

24

25

26

27

28

31

35

35

39

41

41

43

46

48

48

49

50

51

52

53

53

vii

9

 8.2.1.1 SD Radix-10 Architecture

 8.2.1.2 SD Radix-5 Architecture

 8.2.1.3 SD Radix-10 Architecture using

 Combined Decimal/Binary CSA

 8.2.1.4 SD Radix-10 Architecture using

 Combined Decimal/Binary CSA

 8.2.1.5 Radix-4 Binary Multiplier

 8.2.2 Xilinx Synthesis Report

 8.2.2.1 SD Radix-10 Architecture

 8.2.2.2 SD Radix-5 Architecture

 8.2.2.3 SD Radix-10 Architecture using

 Combined Decimal/Binary CSA

 8.2.2.4 SD Radix-10 Architecture using

 Combined Decimal/Binary CSA

 8.2.2.5 Radix-4 Binary Multiplier

8.3 Comparison

CONCLUSION & FUTURE WORK

REFERENCES

53

53

54

54

55

55

55

56

57

58

59

60

63

64

viii

LIST OF FIGURES

FIGURE

NO

 CAPTION PAGE

NO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Project Flow

Combinational SD radix-10 architecture.

Combinational SD radix-5 architecture

Partial product generation for SD radix-10

Partial product generation for SD radix-5

Generation of multiplicand multiples for SD radix-10

Calculation of ×5 for decimal operands coded in (4221)

Generation of multiplicand multiples for SD radix-5

Partial product arrays generated for 16-digit operands in the

case of SD Radix-10 architecture

Partial product arrays generated for 16-digit operands in the

case of SD Radix-5 architecture

BCD carry-save addition using a 4-bit 3:2 CSA

Calculation of ×2 for decimal operands coded in (4221) and

(5211)

Block diagram of a 4:2 compressor

Compressor design with full adder

Alternative Implementation of 4:2 Compressor with 3 XOR

Delay

Proposed decimal digit (4-bit) 3:2 CSAs

Proposed decimal (1-digit slice) 4:2 CSAs

Gate level implementation of the (4221) to (5211) digit

recoders

Implementation of a (5211) to (4221) digit recoder

Decimal 3:2 carry-save adder (1 digit)

2

9

10

11

14

16

17

18

21

22

24

26

27

27

28

28-29

31

33

34

35

ix

21

22

23

24

25

26

27

28

29

30

31

 32

 33

 34

 35

 36

 37

38

39

Combined multi-operand adder tree: (1 digit/4-bit column)

Block diagram of the combined binary/decimal multi-

operand addition method

Multi-operand adder tree

Full adder circuit

4 × 4 bit radix-4 multiplier circuit

Generation of multiples in a radix-4 multiplier

Conceptual Overview of Modelsim

Simulation result of SD Radix-10 architecture

Simulation result of SD Radix-5 architecture

Simulation result of SD Radix-10 architecture using

combined decimal/binary CSA

Simulation result of SD Radix-5 architecture using

combined decimal/binary CSA

Simulation result of radix-4 binary multiplier

Power report of SD Radix-10 architecture

Power report of SD Radix-5 architecture

Power report of SD Radix-10 architecture using combined

decimal/binary CSA

Power report of SD Radix-5 architecture using combined

decimal/binary CSA

Power report of radix-4 binary multiplier

Area graph obtained from synthesis

Power graph obtained from synthesis

36

38

 40

42

43

44

46

48

49

50

51

52

53

53

54

54

55

62

62

x

LIST OF TABLES

TABLE

NO

CAPTION PAGE

NO

1

2

3

4

5

6

Decimal Codings

SD radix-10 selection signals

SD radix-5 selection signals

Selected Decimal Codes for the Recoded Digits

Selected decimal codes for the recoded digits

Comparison of various multiplier architectures

5

12

15

19

32

61

xi

LIST OF ABBREVIATIONS

DFP ------- Digital Floating Point

SD ------- Signed Digit

BCD ------- Binary Coded Decimal

CSA ------- Carry Save Adder

CLA ------- Carry Look-ahead Adder

CPL ------- Complementary Pass-transistor Logic

NMOS ------- N-type Metal Oxide Semiconductor

PMOS ------- P-type Metal Oxide Semiconductor

MCIT ------- Multiplexing Control Input Technique

VLSI ------- Very Large Scale Integration

FPGA ------- Field Programmable Gate Array

ASIC ------- Application Specific Integrated Circuits

CPLD ------- Complex Programmable Logic Device

SoC ------- System-On-Chip

VHDL ------- Very High Speed Integrated Circuit Hardware

 Description Language

1

CHAPTER 1

INTRODUCTION

 The microprocessor manufacturers include decimal floating–point units in

their products, oriented to mainframe servers, to satisfy the high performance demands of

current financial, commercial and user–oriented applications. Providing hardware support

for decimal floating-point (DFP) arithmetic is becoming a topic of interest. Although

software DFP implementations satisfy the precision requirements, they are about an order

of magnitude slower than hardware implementations and could not satisfy the high-

performance demands. Specifically, the revision of the IEEE 754 Standard for Floating-

Point Arithmetic (IEEE 754-2008) incorporates specifications for DFP arithmetic that can

be implemented in software, hardware, or in a combination of both. An important and

frequent operation in decimal computations is multiplication. However, due to the

inherent in-efficiency of decimal arithmetic implementations in binary logic, practically

most of the proposed decimal multipliers are sequential units. Parallel multipliers are

used extensively in most of the binary floating–point units and are of interest for decimal

applications to scale performance.

1.1 PROJECT GOAL

An important and frequent operation in decimal computations is multiplication.

However, decimal multiplication is more difficult to implement due to the complexity in

the generation of multiplicand multiples and the inefficiency of representing decimal

values in systems based on binary signals. These issues complicate the generation and

reduction of partial products. Thus, while decimal adders are implemented in a parallel

fashion and are almost as efficient as binary ones, commercial implementations of

decimal multipliers are sequential. The goal of this project is to introduce two novel

architectures which are fully combinational for fixed point parallel decimal multipliers.

We also describe new techniques for partial product generation and reduction that can be

implemented in combined binary/decimal floating point units so as to reduce the latency

and the hardware complexity of the previous designs

2

1.2 OVERVIEW

In this project, we describe the architectures of two parallel decimal multipliers.

The parallel generation of partial products is performed using signed-digit radix-10 or

radix-5 recodings of the multiplier and a simplified set of multiplicand multiples. The

reduction of partial products is implemented in a tree structure based on a combined

decimal/binary multioperand carry-save addition algorithm that uses unconventional (non

BCD) decimal-coded number systems. The synthesis results of the 16 bit operands of the

proposed architecture (combined binary/decimal multiplier) will be compared with

existing decimal multiplier architectures (SD radix-10 and SD radix-5) and the binary

multipliers in terms of area, delay, power consumption.

Figure 1: Project Flow

Implementation of the 16 bit multiplier using the signed

digit radix-10 and signed digit radix 5 architectures

Implementation of digit recoders

Generation of multiplicand multiples

Partial product generation

Partial product reduction

Implementation of the combined decimal/binary Carry-

save adder tree

Comparison of the synthesis results of the proposed

architecture (combined binary/decimal multiplier) with

existing decimal multiplier and the binary multipliers in

terms of area, delay, power consumption.

3

1.3 SOFTWARE USED

� ModelSim XE 111 6.2g

� Xilinx ISE 9.2i

1.4 ORGANIZATION OF THE REPORT

� Chapter 2 discusses about fixed point decimal multiplication.

� Chapter 3 briefs about fixed point decimal architectures.

� Chapter 4 explains about partial product generation.

� Chapter 5 discusses about partial product reduction.

� Chapter 6 describes in detail about the proposed architecture.

� Chapter 7 mentions about the radix-4 binary multiplier

� Chapter 8 shows the evaluation results.

� Chapter 9 provides the conclusion and future scope.

4

CHAPTER 2

FIXED-POINT DECIMAL MULTIPLICATION

Multiplication consists of three stages: generation of partial products, fast

reduction (addition) of partial products to a two operand and a final carry propagate

addition. Decimal multiplication is more complex than binary multiplication mainly for

two reasons: the higher range of decimal digits ([0, 9]), which increments the number of

multiplicand multiples and the inefficiency of representing decimal values in systems

based on binary logic using BCD–8421 (since only 9 out of the 16 possible 4–bit

combinations represent a valid decimal digit). These issues complicate the generation and

reduction of partial products

2.1 AN OVERVIEW OF DECIMAL MULTIPLICATION

A digit Zi of a decimal integer operand Zi 10
i
is coded as a positive

weighted 4-bit vector as

Zi = zi,jrj (1)

Where, Zi � [0,9] is the i
th

 decimal digit and zi,j is the j
th

 bit of the i
th

 digit, and rj �

1 is the weight of the j
th

 bit. The previous expression represents a set of coded decimal

number systems that includes BCD (with rj= 2j), shown in Table 1. The other decimal

codes shown in Table 1 are also used for representing different decimal operands as

required by the methods used in the project. These codes are represented by their weight

bits as (r3r2r1r0). The 4-bit vector that represents the decimal digit Zi in a decimal code

(r3r2r1r0) is denoted by Zi(r3r2r1r0).

The multiplicand Xi 10
i
and multiplier Yi 10

i
are unsigned

decimal integer d-digit BCD words. Fixed-point multiplication (both binary and decimal)

consists of three stages

• generation of partial products

• reduction (addition) of partial products to two operands

• final conversion (usually a carry propagate addition) to a non-

redundant 2d-digit BCD representation Pi 10
i
.

5

Table 1: Decimal Codings

Zi Zi(BCD) Zi(5421) Zi(4221) Zi(5211) Zi(4311) Zi(3321)

0 0000 0000 0000 0000 0000 0000

1 0001 0001 0001 0001 0010 0001 0010 0001

2 0010 0001 0100 0010 0100 0011 0011 0010

3 0011 0011 0101 0011 0101 0110 0100 0100 1000 0011

4 0100 0100 0110 1000 0111 1000 0110 0101 1001 0101

5 0101 1000 0111 1001 1000 1001 0111 1010 1010 0110

6 0110 1001 1010 1100 1010 1001 1011 1100 1011 0111

7 0111 1010 1011 1101 1011 1100 1100 1101

8 1000 1011 1110 1101 1110 1101 1110 1101 1110

9 1001 1100 1111 1111 1111 1111

Extension to decimal floating-point multiplication involves exponent addition,

rounding of P = X × Y to fit the required precision, sign calculations and exception

detection and handling.

In Table 1 diverse BCD codings are represented. For BCD–8421, rj = 2j. BCD–

4221 and BCD–5211 are the coding schemes characterized by the use of redundancy in

decimal digit representation. As we have mentioned, the use of BCD–8421 to represent

decimal digits means introducing costly decimal corrections in the partial product

reduction binary CSA tree to obtain the correct decimal carry and sum. To avoid these

corrections we use the BCD–4221 coding of Table 1 to represent partial product digits

which will be later discussed in detail.

2.2 EXISITING METHODS

Proposed methods for the generation of decimal partial products follow mainly

two approaches. The first alternative performs a digit by digit multiplication of the input

operands, using digit by digit lookup table methods .In this magnitude range reduction of

the operand digits by a signed-digit radix-10 recoding (from [0, 9] to [-5,5]) is suggested.

This recoding of both operands speeds up and simplifies the generation of partial

products. Then, signed-digit partial products are generated using simplified tables and

combinational logic. This class of methods is only suited for serial implementations,

since the high hardware demands make them impractical for parallel partial product

6

generation. The second approach generates and stores all the required multiplicand

multiples. Next, multiples are distributed to the reduction stage through multiplexers

controlled by the BCD multiplier digits ([0; 9]).This approach requires several wide

decimal carry-propagate additions to generate some complex BCD multiplicand multiples

{3X,6X,7X,8X,9X}. Usually only even multiples {2X; 4X; 6X; 8X} are computed and

stored. Odd multiples {3X; 5X; 7X; 9X} are obtained on demand. A reduced set of BCD

multiples {X; 2X; 4X; 5X} is pre-computed without a carry propagation. All the

multiples can be obtained from the sum of two elements of this set. The other alternative

is that 2X and 5X multiples can be computed in few levels of combinational logic.

Negative multiples require an additional 10’s complement operation.

Decimal carry-save addition methods use two BCD words to represent sum and

carry or a BCD sum word and a carry bit per digit. The first group implements decimal

addition mixing binary CSAs with combinational logic for decimal correction. A scheme

of two levels of 3:2 binary CSAs is used to add the partial products iteratively. Since it

uses BCD to represent decimal digits, a digit addition of +6 or +12 (modulo 16) is

required to obtain the decimal carries and to correct the sum digit. In order to reduce the

contribution of the decimal corrections to the critical path, three different techniques for

multioperand decimal carry-save addition were proposed. Two of them perform BCD

corrections (+6 digit additions) using combinational logic and an array of binary carry-

save adders (speculative adders), although a final correction is also required. A sequential

decimal multiplier based on these techniques uses BCD invalid combinations (overloaded

BCD representation) to simplify the sum digit logic. The other approach basically a non-

speculative adder uses a binary CSA tree followed by a single decimal correction. Among

these proposals, the non-speculative adders present the best area-delay figures and are

suited for tree topologies. Another recent proposal uses a binary carry-free tree adder and

a subsequent binary to BCD conversion to add up to N d-digit BCD operands.

The second group of methods uses different topologies of 4-bit radix-10 carry-

propagate adders to implement decimal carry-save addition. A serial multiplier can be

implemented using an array of radix-10 carry look-ahead adders (CLAs). A CSA tree

using these radix-10 CLAs is implemented in the using combinational decimal parallel

7

multiplier and to optimize the partial product reduction, they also use an array of decimal

digit counters.

The reduction of all decimal partial products in parallel requires the use of

efficient multioperand decimal tree adders. Among the different schemes, the most

promising ones for fast parallel addition seem to be those using binary CSA trees or some

parallel network of full adders due to their faster and simpler logic cells (full adders

against SD adder cells or radix-10 CLAs). These methods assume that decimal digits are

coded in BCD. However, BCD is highly inefficient for implementing decimal carry save

addition using binary arithmetic because of the need to correct the invalid 4-bit

combinations (those not representing a decimal digit). The previous methods use different

schemes to perform these BCD corrections. Moreover, the BCD carry digit must be

multiplied by 2, which requires additional logic. We also implement multioperand

decimal tree adders using a binary CSA tree, but with operands coded in decimal codings

that are more efficient than BCD, namely (4221) or (5211). These multioperand decimal

CSA trees are detailed in later chapters.

8

CHAPTER 3

DECIMAL FIXED- POINT ARCHITECTURES

In this chapter we present a general overview of the architectures for d-digit (4d-

bit) BCD decimal fixed-point parallel multiplication. These designs are based on the

techniques for partial product generation and reduction as mentioned earlier. The main

feature of these architectures is the use of codes (4221) and (5211), instead of BCD, to

represent the partial products. This improves the reduction of decimal partial products

with respect to other proposals, in terms of both area and latency.

3.1 Signed Digit Radix-10 Architecture

The architecture of the d-digit SD radix-10 multiplier is shown in Fig. 2. The

multiplier consists of the following stages: generation of decimal partial products coded

in (4221) (generation of multiplicand multiples and SD radix-10 encoding of the

multiplier), reduction of partial products, and a final BCD carry-propagate addition.

 The generation of the d + 1 partial products is performed by an encoding of the

multiplier into d SD radix-10 digits and an additional leading bit. Each SD radix-10 digit

controls a level of 5:1 muxes, which selects a positive multiplicand multiple {0;X; 2X;

3X; 4X; 5X} coded in (4221). The generation of these multiples is detailed in Section 4.3.

To obtain each partial product, a level of XOR gates inverts the output bits of the 5:1

muxes when the sign of the corresponding SD radix-10 digit is negative.

Before being reduced, the d+ 1 partial product, coded in (4221), are aligned

according to their decimal weights. Each p-digit column of the partial product array is

reduced to two (4221) decimal digits using one of the decimal digit p:2 CSA trees

described in chapter 5. The number of digits to be reduced for each column varies from p

= d+1 to p = 2. Thus, the d+1 partial products are reduced to two 2d digit operands S

and H coded in (4221).

The final product is a 2d-digit BCD word given by P = 2H + S. Before being

added, S and H need to be processed. S is recoded from (4221) to BCD excess-6 (BCD

value plus 6, which requires practically the same logical complexity as a recoding to

9

Figure 2: Combinational SD radix-10 architecture.

BCD). The H × 2 multiplication is performed in parallel with the recoding of S. This ×2

block uses a (4221) to (5421) digit recoder and a 1-bit wired left shift to obtain the

operand 2H coded in BCD.

For the final BCD carry-propagate addition, we use a quaternary tree (Q-T) adder

based on conditional speculative decimal addition. It has low latency (about 10 percent

more than the fastest binary adders) and requires less hardware than other alternatives.

3.2 Signed Digit Radix-5 Architecture

The dataflow of the d-digit SD radix-5 architecture is shown in Fig. 3. The

multiplier consists of the following stages: generation of decimal partial products

(generation of multiplicand multiples and SD radix-5 encoding of the multiplier),

10

Figure 3: Combinational SD radix-5 architecture.

reduction of partial products, and a final BCD carry-propagate addition. SD radix-5

recoding, described in Section 4.2, generates 2d decimal partial products, half coded in

(4221) and the other half in (5211). This improved scheme only requires the generation

of simple multiplicand multiples {-2X;-X;X; 2X} coded in (4221), as shown in Section

4.2. The reduction of the aligned partial products is carried out using the mixed

(4221/5211) decimal digit p:2 CSA trees (2 � p � 2d) described in chapter 5. As in the

SD radix-10 architecture, the 2d-digit operands S and H are processed before being

assimilated in the 2d-digit BCD carry-propagate adder.

11

CHAPTER 4

DECIMAL PARTIAL PRODUCT GENERATION

For simplified multiplication we aim for parallel generation of a reduced number

of partial products coded in (4221) or (5211). This is achieved with the recoding of the

d- digit BCD multiplier and the generation of a reduced and simple set of multiplicand

multiples. We present two different schemes with good trade-offs between fast generation

of partial products and the number of partial products generated. A minimally redundant

SD radix-10 recoding of the multiplier (with digits in {-5; . . . ; 0; . . . ; 5}) produces only

d+1 partial products but requires a carry-propagate addition to generate complex

multiples 3X and -3X. A second scheme, named SD radix-5 recoding, encodes each BCD

digit Yi of the multiplier into two digits � {0; 1; 2}; �{ -2;-1; 0; 1; 2} such that

Yi = • 5+ It generates 2d partial products (2 digits per radix-10 digit), but all

multiplicand multiples are produced in a few levels of combinational logic. Furthermore,

the (4221) and (5211) codes are self-complementing. Thus, an advantage with respect to

previous schemes, which use BCD multiples, is that the 9’s complement of each digit can

be obtained by inverting its bits. This simplifies the generation of the negative

multiplicand multiples from the positive ones. In addition, the previous methods based on

the decomposition Yi = • 5+ require combinational logic to generate the 5X multiple.

We use mixed (4221/5211) decimal codings to remove this logic.

4.1 SD Radix-10 Recoding

Figure 4: Partial product generation for SD radix-10.

12

Fig. 4 shows the block diagram of the generation of one partial product using the

SD radix-10 recoding. This recoding transforms a BCD digit Yi � {0; . . . ; 9} into an SD

radix-10 Ybi � {-5; . . . ; 5}. The value of the recoded digit Ybi depends on the decimal

value of Yi and on a signal ysi-1 (sign signal) that indicates if Yi-1 is greater than or equal

to 5. Thus, the d-digit BCD multiplier Y is recoded into the d+1- digit SD radix-10

multiplier with

Table 2: SD radix-10 selection signals.

Dec

 Value

BCD

Yi

Yi-1 � 5

ysi-1

SD radix-10 digit

Ybi

Hot one code signals

ysi y5i y4i y3i y2i y1i

0 0000
0

1

0

1

000000

000001

1 0001
0

1

1

2

000001

000010

2 0010
0

1

2

3

000010

000100

3 0011
0

1

3

4

000100

001000

4 0100
0

1

4

5

001000

010000

5 0101
0

1

-5

-4

110000

101000

6 0110
0

1

-4

-3

101000

100100

7 0111
0

1

-3

-2

100100

100010

8 1000
0

1

-2

-1

100010

100001

9 1001
0

1

-1

0

100001

100000

Ybi 10
i Ybd = ysd-1 {0,1}.

13

Each digit Ybi generates a partial product PP[i] selecting the proper multiplicand

multiple coded in (4221). This is performed in a similar way to a modified Booth

recoding: Y bi is represented as five “hot one code” signals {y1i; y2i; y3i; y4i; y5i} and a

sign bit ysi. “Hot one code” refers to a group of bits among which the legal combinations

of values are only those with a single high (1) bit and all the others low (0).These signals

are obtained directly from the BCD multiplier digits Yi using the following logical

expressions:

ysi = yi,3 � yi,2 • (yi,1 � yi,0)

y5i = yi,2 • yi,1 • (yi,0 � ysi-1)

 y4i = ysi-1 • yi,0 • (yi,2 � yi,1)� ysi-1• yi,2 • yi,0

 y3i = yi,1 • (yi,0 � ysi-1)

 y2i = ysi-1 • yi,0 • (yi,3 � yi,2 • yi,1) � ysi-1 • yi,3 • yi,0 • yi,2 � yi,1

 y1i = yi,2 � yi,1 • (yi,0 � ysi-1)

Symbols �, •, and � indicate Boolean operators OR, AND, and XOR,

respectively. The five “hot one code” signals are used as selection control signals for

the 5:1 muxes to select the positive d+1- digit multiples {0;X; 2X; 3X; 4X; 5X}. The

generation of the positive multiples {X; 2X; 3X; 4X; 5X} coded in (4221) from the

BCD multiplicand is detailed in Section 4.3. To obtain the correct partial product, the

selected positive multiple is 10’s complemented if ysi is one. This is performed

simply by a bit inversion of the positive (4221) decimal-coded multiple using a row

of XOR gates controlled by ysi. The addition of one ulp (unit in the last place) is

performed enclosing a tail-encoded bit ysi (hot one) to the next significant partial

product PP[i+1], since it is shifted a decimal position to the left from PP[i]. To avoid

a sign extension, and thus, to reduce the complexity of the partial product reduction

tree, the partial product sign bits ysi are encoded at each leading position into two

digits as

(PP [i]d+2 , PP [i]d+2) = (ys0. ys0 ys0 ys0 ys0), i = 0,

 (0,111 ysi), 0 < i < d-1,

 (0, 0000), i = d -1.

Therefore, each partial product PP[i] is at most of (d+3) - digit length.

14

4.2 SD Radix-5 Recoding

Figure 5: Partial product generation for SD radix-5.

Fig. 5 shows the diagram for partial product generation using the SD radix-5

recoding scheme. Each BCD digit of the multiplier is encoded into two digits � {0; 1;

2} and � {-2,-1,0,1,2} so that Yi = • 5+ . SD radix-5 “hot one code” selection

signals are obtained from the BCD input digits using the following equations

 = yi,3;

 = yi,2 � yi,1 • yi,0;

 = yi,1 • (yi,2 • yi,0 � yi,2 • yi,0)

 = yi,3 • yi,2 • yi,1 • yi,0 � yi,2 • yi,1 • yi,0

 = yi,3 • yi,0 � yi,2 • yi,1 • yi,0

 = yi,3 • yi,0 � yi,2 • yi,1 • yi,0

Each multiplier digit Yi generates two partial products PP[i]
U
 and PP[i]

L
.

Therefore, this scheme generates 2d partial products for a d-digit multiplier. The

advantage of this recoding is that it uses a simple set of multiplicand multiples {-2X,-X,X,

2X} coded in (4221). This decimal partial product generation is comparable in latency to

binary Booth radix-4, due to a faster generation of multiples.

15

Table 3: SD radix-5 selection signals.

Dec

Value

BCD

(Yi)

Recoded Bits Hot one signals sign

0 0000 0 0 0 0 0 0 0 0 0

1 0001 0 1 0 0 0 1 0 0 0

2 0010 0 2 0 0 1 0 0 0 0

3 0011 1 -2 0 1 0 0 0 1 1

4 0100 1 -1 0 1 0 0 1 0 1

5 0101 1 0 0 1 0 0 0 0 0

6 0110 1 1 0 1 0 1 0 0 0

7 0111 1 2 0 1 1 0 0 0 0

8 1000 2 -2 1 0 0 0 0 1 1

9 1001 2 -1 1 0 0 0 1 0 1

Moreover, the generation of PP[i]U (positive) only requires multiples {X, 2X}..

To obtain the correct value of PP[i]
U
, the multiples selected by must be first

multiplied by 5. This is performed by shifting 3 bits to the left the bit vector

representation of the (4221) coded multiples {X, 2X}, producing, respectively, the

multiples {5X; 10X} but coded in (5211). We denote by Lmshift a left arithmetic binary

shift of m bits, implemented with fixed wiring. The negative multiples {-X;-2X} are

obtained by bit inverting the multiples {X; 2X}, coded in (4221), and adding an ulp as a

hot one in the corresponding partial product. The sign bits , given by

 = yi,3 � yi,2 • yi,1 • yi,0 ��yi,2 • yi,1 • yi,0;

are encoded to the left of PP[i]
L

and PP[0]
U
 as

 = (1,1,1,) if (0 � i < d – 1)

 (0,0,0,0) if (i = d-1)

 = (0,0,0,)

The hot ones produced by the 10’s complement of the partial products, (0,0,0,)are just

placed in the least significant digit of PP[i]
U

and which have a value of 0 or 5 coded

16

in (5211). The 2d partial products generated are at most of d+2- digit length, d of them

coded in (5211) (PP[i]
U
) and the other half in (4221) (PP[i]

L
).

4.3 Generation of Multiplicand Multiples

All the required decimal multiplicand multiples, except the 3X multiple, are

obtained in a few levels of combinational logic using different digit recoders and

performing different fixed m-bit left shifts (Lmshift) in the bit-vector representation of

operands. The structure of these digit recoders is discussed in Section 4.4.

Figure 6: Generation of multiplicand multiples for SD radix-10.

Fig. 6 shows the block diagram for the generation of the positive multiplicand

multiples {X, 2X, 3X, 4X, 5X} for the SD radix-10 recoding. All these multiples are

coded in (4221). The X BCD multiplicand is easily recoded to (4221) using the logical

expressions

(wi,3, wi,2, wi,1, wi,0) =(xi,3 � xi,2; xi,3; xi,3 � xi,1; xi,0);

where, xi,j and wi,j are, respectively, the bits of the BCD and (4221) representations of X.

The generation of multiples is as follows:

Multiple 2X: Each BCD digit is first recoded to the (5421) decimal coding shown in

Table 1 (the mapping is unique). An L1shift is performed to the recoded multiplicand,

obtaining the 2X multiple in BCD. Then, the 2X BCD multiple is recoded to (4221) using

Expressions (4).

17

Multiple 4X: It is obtained as 2X × 2, where the 2X multiple is coded in (4221). The

second ×2 operation is implemented as a digit recoding from (4221) to code (5211),

followed by an L1shift. The design of the (4221) to (5211) digit recoders is described in

Section 4.4. The ×2 operation, with input operands coded in (4221) or (5211), is also

implemented in the decimal CSA trees used for partial product reduction, and therefore, it

is more detailed in Section 5.1.

Multiple 5X: It is obtained by a simple L3shift of the (4221) recoded multiplicand, with

resultant digits coded in (5211). Then, a digit recoding from (5211) to (4221) is

performed (see Section 4.4). Fig. 7 shows an example of this operation.

Figure 7: Calculation of ×5 for decimal operands coded in (4221).

Multiple 3X: It is evaluated by a carry-propagate addition of BCD multiples X and 2X in

a d-digit BCD adder. The BCD sum digits are recoded to (4221) as indicated by previous

expression. The latency of the partial product generation for the SD radix-10 scheme is

constrained by the generation of 3X.The generation of (4221) decimal-coded multiples {-

2X;-X; X; 2X} for the SD radix-5 recoding is shown in Fig. 8. The BCD multiplicand is

first recoded to (4221) using Expressions (4). The 2X multiple is implemented as a digit

recoding from (4221) to (5211) followed by an L1shift. The negative multiples {-X;-2X},

coded in (4221), are obtained inverting the bits of the (4221) decimal-coded positive

multiples and encoding the sign as described in Section 4.2.

18

Figure 8: Generation of multiplicand multiples for SD radix-5.

4.4 Implementation of Digit Recoders

 The design of efficient digit recoders is a critical issue, due to their high

impact on the performance and area of the whole multiplier. Digit recoders are used to

compute the decimal multiplicand multiples and in the reduction of partial products

(Section 5) to compute ×2
n
 (n > 0) operations.

 The logical implementation of digits recoders for BCD, BCD excess-6, and

(5421) decimal codes is straightforward; since there is only a mapping of decimal digits

to these codes (each decimal digit has a single 4-bit representation). However, due to the

redundancy of (4221) and (5211) decimal codes, there are several choices for the digit

recoding to (4221) or (5211). The sixteen 4-bit vectors of a coding can be mapped

(recoded) into different subsets of 4-bit vectors of the other decimal coding representing

the same decimal digit. These subsets of the (4221) and (5211) codes are also decimal

codings.

 Among all the subsets analyzed, the non-redundant decimal codes (4221s) and

(5211s) (subsets of ten 4-bit vectors), shown in Table 2, present interesting properties. In

particular, these codes verify

2Z(4221s) = L1shift[Z(5211s)],

that is, after shifting 1 bit to the left an operand Z represented in (5211s), the resultant bit-

vector represents the decimal value of 2Z coded in (4221s). This fact simplifies the

implementation of ×2
n
 operations for n > 1. Specifically, for a decimal operand Z(4221),

Z × 2
n
 is implemented by a first level of Zi(4221) to Zi(5211s) digit recoders followed by

n - 1 levels of Zi(4221s) to Zi(5211s) digit recoders. The output of each level of digit

19

recoders is shifted 1 bit to the left such that the most significant bit of each (5211s) digit

(weight 5) is shifted out to the next decimal position (weight 10).

Table 4: Selected Decimal Codes for the Recoded Digits

Zi 0 1 2 3 4

Zi(4221s)

Zi(5211s)

0000

0000

0001

0001

0010

0100

0011

0101

1000

0111

Zi 5 6 7 8 9

Zi(4221s)

Zi(5211s)

1001

1000

1010

1001

1011

1100

1110

1101

1111

1111

 Moreover, in some cases, the ×2 may be simplified. In particular, the recoding

given by Expression (4) maps the BCD representation into the subset (4221s). Therefore,

the subsequent ×2 operations in Figs. 5 and 7 are implemented using a level of simpler

(4221s) to (5211s) digit recoders. A (4221) to (5211s) digit recoder has a hardware

complexity of about 27 NAND2 gates, and its critical path has (roughly) the delay of a

full adder. The (4221s) to (5211s) digit recoder has a simpler hardware complexity (about

19 NAND2 gates) with 25 percent less latency.

 Additionally, the inverse digit recoding (from (5211) to (4221)) is easily

implemented using a single full adder, since

Zi(5211) = zi,3 • 4 + z i,2 • 2 + • 2 + ;

with • 2 + = (zi,3 + zi,1 + zi,0) � 3.

This recoder is used to generate the ×5 multiple for the (4221) coding and in mixed

(4221/5211) multioperand CSAs to convert a (5211) decimal-coded operand into the

equivalent (4221) coded one.

20

CHAPTER 5

PARTIAL PRODUCT REDUCTION

 First, the partial product arrays are generated by the SD radix-10 and SD

radix-5 encodings. Each column of p digits is reduced to two digits by means of a

decimal digit p:2 CSA tree. Also, decimal carries are passed between adjacent digit

columns. Here, we present the set of preferred decimal codings and the method for

decimal carry-save addition. We propose the use of the (4221) and (5211) decimal

codings instead of BCD for an efficient implementation of decimal carry-save addition

with binary CSAs or full adders. The use of these codes avoids the need for decimal

corrections, so we only need to focus on the ×2 decimal multiplications. The

implementation of decimal 3:2 CSAs for the proposed codings is also described in

Section 5.2. To reduce the latency of the p:2 CSA trees, we make use of the decimal digit

adders introduced in Section 5.3.These digit adders, implemented with bit counters,

reduce up to 9 digits coded in (4221) or (5211) to 4 digits coded in (4221). Finally, we

detail the design of the proposed p:2 decimal CSA trees implemented in the SD radix-10

(in Section 5.4) and SD radix-5 architecture (in Section 5.5). We present schemes

optimized for area and for delay

5.1. Partial Product Arrays

 The SD radix-10 architecture produces d + 1 partial products coded in (4221)

of d + 3 digit length. Before being reduced, the d + 1 partial products PP[i] are aligned

according to their decimal weights by 4i-bit wired left shifts (PP[i]× 10i). The resultant

partial product array for 16-digit input operands is shown in Fig. 9. In this case, the

number of digits to be reduced varies from p = 17 to p = 2. In particular, the highest

columns can be reduced with the area-optimized or delay-optimized decimal 17:2 CSA

trees presented in Section 5.4.

21

Figure 9: Partial product arrays generated for 16-digit operands in the case of SD

Radix-10 architecture

In this figure,

S: Sign Encoding

H: Hot-One 10’s complement encoding

X: Regular 4221 digit

F: Extra digit position to support the width of multiplicand multiples

 For the SD radix-5 architecture, the number of partial products generated is

equal to 2d, d of them coded in (5221) and the other d coded in (4221) (see Section 4.2).

Both PP[i]
U

(5211) and PP[i]
L
(4221) have the same weight 10

i
.Thus, for 16-digit input

operands, the alignment of the 32 partial products results in the digit array of Fig. 10. The

p-digit columns of the SD radix-5 partial product array are reduced using the mixed

(4221/5211) decimal p:2 CSA trees presented in Section 5.5. The worst case for d = 16

corresponds to a column of p = 32 digits, reduced using a mixed (4221/5211) decimal

32:2 CSA.

22

Figure 10: Partial product arrays generated for 16-digit operands in the case of SD

radix-5 architecture

In this figure,

S: Sign Encoding

H: Hot-One 10’s complement encoding

V: Regular 4221 digit

B: Regular 5211 digit

F: Extra digit position to support the width of multiplicand multiples

5.2. Method for Decimal Carry-Save Addition

 Decimal carry-save addition methods use a two BCD word to represent sum

and carry or a BCD sum word and a carry bit per digit. The first group implements

decimal addition mixing binary CSAs with combinational logic for decimal correction.

23

 In another scheme two levels of 3:2 binary CSAs is used to add the partial

products iteratively. Since it uses BCD to represent decimal digits, a digit addition of +6

or +12 (Modulo 16) is required to obtain the decimal carries and to correct the sum digit.

In order to reduce the contribution of the decimal corrections to the critical path, three

different techniques for multioperand decimal carry-save addition were proposed. Two of

them perform BCD corrections (+6 digit additions) using combinational logic and an

array of binary carry-save adders (speculative adders), although a final correction is also

required. A sequential decimal multiplier using these techniques uses BCD invalid

combinations (overloaded BCD representation) to simplify the sum digit logic. The other

approach (non-speculative adder) uses a binary CSA tree followed by a single decimal

correction. In the non-speculative adder, preliminary BCD sum digits are obtained using

a level of 4-bit carry propagate adders after the binary CSA tree. Finally, decimal carry

and sum digit corrections are determined from the preliminary sum digit and the carries

passed to the next more significant digit position in the binary CSA tree. Decimal

correction is performed using combinational logic (its complexity depends on the number

of input operands added) and a 3-bit carry propagate adder per digit. Among these

proposals, the non-speculative adders present the best area-delay figures and are suited

for tree topologies.

 The addition of all decimal operands in parallel requires the use of efficient

multioperand decimal tree adders. Among the different schemes, the most promising ones

for fast parallel addition seem to be those using binary CSA trees or some parallel

network of full adders, due to their faster and simpler logic cells (full adders against SD

adder cells or radix- 10 CLAs). These methods assume that decimal digits are coded in

BCD. However, BCD is highly inefficient for implementing decimal carry-save addition

by by means of binary arithmetic, because the need to correct the invalid 4-bit

combinations (those not representing a decimal digit). Fig. 11 shows an example of the

addition of 3 BCD digits using a 4-bit binary 3:2 CSA directly. In this case, the 4-bit

representation (1100) of the decimal sum digit (’12’) is an invalid BCD value and must

be corrected to avoid overflows in subsequent BCD carry-save additions. The previous

methods use different schemes to perform these BCD corrections. Moreover, the BCD

carry digit must be multiplied by 2, which requires additional logic. We also implement

24

Figure 11: BCD carry-save addition using a 4-bit 3:2 CSA

multioperand decimal tree adders using a binary CSA tree, but with operands coded in

decimal codings that are more efficient than BCD..

5.3. Alternative Decimal Digit Encodings

 Among all the possible decimal codes defined by Expression (1) in Section 2 ,

there is a family of codes suitable for simple decimal carry-save addition. This family of

decimal codings verifies that the sum of their weight bits is 9, that is,

which includes the (4221), (5211), (4311), and (3321) codes, shown in Table 1. Some of

these decimal codings are already known , but we use them in a different context, to

design components for decimal carry-save arithmetic. Moreover, they are redundant

codes, since two or more different 4-bit vectors may represent the same decimal digit.

These codes have the following two properties

• All the sixteen 4-bit vectors represent a decimal digit (Zi � [0,9]). Therefore, any

Boolean function (AND, OR, XOR) operating over the 4-bit vector representation

of two or more input digits produces a 4-bit vector that represents a valid decimal

digit (input and output digits represented in the same code).

 rj= 9

25

• The 9’s complement of a digit Zi can be obtained by inverting their bits (as a 1’s

complement) since

Negative operands can be obtained by inverting the bits of the positive bit vector

representation and adding a 1 ulp, that is,

- Z (r3,r2,r1,r0) = Z (r3,r2,r1,r0) + 1

Next, we show how these codes can be used to improve multioperand decimal carry-save

addition/subtraction using these two properties

5.4. Algorithm

Using the first property of these alternative decimal codings, we perform fast

decimal carry-save addition using a conventional 4-bit binary 3:2 CSA as

with (r3r2r1r0) � {(4221); (5211); (4311); (3321)}, si,j and hi,j are the sum and carry bit of

a full adder, and Hi � [0, 9] and Si � [0, 9] are the decimal carry and sum digits at

position i. No decimal correction is required because the 4-bit vector expressions of Hi

and Si represent valid decimal digits in the selected coding.

However, a decimal multiplication by 2 is required before using the carry digit Hi

for later computations. Here, we restrict the analysis of decimal carry-save addition to

only (5211) and (4221) decimal codes, since the generation of multiples of two for

operands coded in (4311) and (3321) is more complex. Fig. 12 shows an example of ×2

multiplications for decimal operands represented in (4221) and (5211) decimal codes. To

simplify the notation, we use H for the carry vector coded in (4221) and W for the carry

vector coded in (5211). Thus, we have that

2H = 2 ×H = L1shift[W]

9-Zi = rj = zi,j rj= (1-zi,j) rj

 = zi,j rj

Ai + Bi + Ci = (ai,j + bi,j + ci,j) rj

si,jrj + 2× hi,jrj = Si + 2×Hi

26

Figure 12: Calculation of ×2 for decimal operands coded in (4221) and (5211).

The resultant bit vector after shifting 1 bit to the left W represents the double of H.

The operand 2H is coded in (4221), since the weight bits of W are multiplied by 2 after

the 1-bit left shift. The whole 2 × H multiplication is performed by a digit recoding of Hi

into Wi followed by an L1shift[W]. The bits of Wi are denoted by wi,j. The bit shifted out

(wi,3) represents a decimal carry out (weight 10) to the next digit position, while the bit

shifted in (wi-1,3) is a decimal carry input (weight 1).

To subtract a decimal operand coded in (4221) or (5211) using a carry-save adder,

we first invert the bits of the operand and add one ulp (unit in the last place). This ulp can

be placed in the free room at the least significant bit position that results from the left

shift of the carry operand H.

In the following Sections, we describe how to design decimal CSAs of any

number of input operands coded in (4221) or (5211). We first detail the implementation

of decimal 3:2 and 4:2 CSAs using the proposed method.

5.5. Decimal 3:2 and 4:2 CSAs

In this Section we detail the proposed implementations of a decimal 3:2 and 4:2

CSAs. We also describe the gate level implementation of the digit recoders required to

perform conversions between different decimal codings. These recoders are the core logic

components to compute ×2
n
 multiplications, which are also required for partial product

generation in multiplication.

27

5.5.1. 4:2 Compressors

 The 4:2 compressor structure actually compresses five partial products bits

into three [1, 2, 3]. The architecture is connected in such a way that four of the inputs are

coming from the same bit position of the weight j while one bit is fed from the

neighboring position j-1(known as carry-in). The outputs of 4:2 compressor consists of

one bit in the position j and two bits in the position j+1.This structure is called

compressor since it compresses four partial products into two(while using one bit

laterally connected between adjacent 4:2 compressors). Figure 13 shows the block

diagram of 4-2 compressor. A 4-2 compressor can also be built using 3-2 compressors. It

consists of two 3-2 compressors (full adders) in series and involves a critical path of 4

XOR delays as shown in Figure 14. An alternative implementation is shown in Figure

15. This implementation is better and involves a critical path delay of three XOR's ,

hence reducing the critical path delay by 1 XOR. The output Cout, being independent of

the input Cin accelerates the carry save summation of the partial products

Figure13: Block diagram of a 4:2 compressor

Figure14: Compressor design with full adder

28

Figure15: Alternative Implementation of 4:2 Compressor with 3 XOR Delay

5.5.2. Gate level implementation

The proposed decimal 3:2 CSAs adds three decimal operands (A,B,C) coded in

(4221) or (5211) and produce a decimal sum word (S) and a carry word (H) multiplied by

2 (2 × H) coded in (4221) or (5211), such that A + B + C = S + 2H. Depending on the

decimal coding of the operands, we have three possible implementations of a decimal

digit 3:2 CSA using a 4-bit binary 3:2 CSA, as shown in Fig. 16

(a)Operands coded in (4221)

29

(b)Operands coded in (5211)

(c)Mixed (5211/4221) coded output operands.

(d)Full adder with fast (e) Full adder with

 carry output fast input

Figure 16(a)-(e): Proposed decimal digit (4-bit) 3:2 CSAs.

• Input operands and output operands (S, H, 2H) coded in (4221) (Fig. 16(a)). The

weight bits in Fig. 16 are placed in brackets above each bit column. In this case,

the decimal digit 3:2 CSA consists of a 4-bit binary 3:2 CSA and a digit recoder

from (4221) to (5211).In this section we show two gate level implementations of a

1-bit 3:2 CSA: one with a fast carry output (Fig. 16(d)) and one with a fast input

(Fig. 16(e)). The output of the digit recoder (Hi(5211)) is then left shifted by one

30

bit position (L1shift[Hi(5211)]). The recoder is placed in the carry path, so choosing

an appropriate gate implementation of the binary 3:2 CSA, in this case the fast

carry output configuration (Fig. 16(d)), part of the recoder delay can be hidden.

• Input and output operands coded in (5211) (Fig. 16(b)). The implementation of

the (5211) decimal digit 3:2 CSA is similar to the (4221) case, except that here the

4-bit carry vector Hi(5211) is 1-bit left shifted before the digit recoding.

• Input operands coded in (5211), S, H coded in (5211) but 2H coded in (4221)

(Fig. 16(c)).The decimal digit 3:2 CSA consists only of a level of 4-bit 3:2 CSA

with the carry output shifted 1-bit to the left.

The gate level implementation of two decimal 4:2 CSAs for input and output

operands coded in (4221) is shown in Fig. 17. The first decimal 4:2 CSA (Fig. 17(a))

uses a specialized gate configuration. The carry bit-vector H is computed as in binary

from operands A, B and C coded in (4221).The intermediate decimal carry operand W is

then obtained as 2 × H. The sum operand S (coded in (4221)) is obtained by XOR-ing

the bits of A, B, C, D and W (approximately in 4 XOR gate delays). The decimal carry

operand V is obtained (approximately in 6 XOR gate delays) by selecting the appropriate

bits of D or W, depending on the xor of A, B, C and D, and multiplying the resulting bit

vector (coded in (4221)) by 2.

The second decimal 4:2 CSA (Fig. 17(b)) is designed by interconnecting two

decimal 3:2 CSAs (Fig. 17(a)). The blocks labeled as 3:2 represent a 4-bit binary 3:2

CSA. The intermediate decimal carry W is connected to a fast input of the second full

adder (indicated by a letter F in Fig. 17(b)) to reduce the delay of the critical path. Thus,

both implementations present a similar critical path delay (6 XOR gate delays in the

carry path).

31

(a) Using a specialized gate configuration

(b) Using two decimal 3:2 trees

Figure 17: Proposed decimal (1-digit slice) 4:2 CSAs.

5.5.3. Implementation of digit recoders

The design of efficient digit recoders is a critical issue, due to their high impact on

the performance and area of a decimal multiplier. Due to the redundancy of (4221) and

(5211) decimal codes, there are many choices for the digit recoding between (4221) and

(5211). The sixteen 4-bit vectors of a coding can be mapped (recoded) into different

subsets of 4-bit vectors of the other decimal coding representing the same decimal digit.

These subsets of the (4221) and (5211) codes are also decimal codings. Among all the

subsets analyzed, we have selected the non-redundant decimal codes (subsets of ten 4-

bit vectors) shown in Table 2 to represent the recoded digits. These codes lead to two

32

different configurations of digit recoders (S1 and S2) for the recoding from (4221) to

(5211):

• The first group of codes, S1 = {(4221-S1), (5211-S1)} leads to a simpler

implementation of a digit recoder when all the sixteen 4-bit input combinations are

possible. Therefore, in general, a ×2 block is implemented by digit recoding

Z(4221) into Z(5211-S1) and shifting the output one bit to the left. The gate level

implementation of a S1 digit recoder is shown in Fig. 18. This operation can be

seen as a two-step digit recoding of Zi(4221) to Zi(4221-S1) and Zi(4221-S1) into

Zi(5211-S1). This operation can be seen as a two-step digit recoding of Zi(4221) to

Zi(4221-S1) and Zi(4221-S1) into Zi(5211-S1). The digit recoding between

Zi(4221-S1) and Zi(5211-S1) is very simple, since the 4-bit vectors representing

each decimal digit value in both decimal codes are almost similar.

Zi Zi(4221-S1) Zi(5211-S1) Zi(4221-S1) Zi(5211-S1)

0 0000 0000 0000 0000

1 0001 0001 0001 0001

2 0100 0100 0010 0100

3 0101 0101 0011 0101

4 0110 0111 1000 0111

5 1001 1000 1001 1000

6 1010 1010 1010 1001

7 1011 1011 1011 1100

8 1110 1110 1110 1101

9 1111 1111 1111 1111

Table 4. Selected decimal codes for the recoded digits

• The second group of codes, S2 = {(4221-S2), (5211- S2)} verifies

2Z(4221- S2) = L1shift[Z(5211- S2)]

that is, after shifting one bit to the left an operand represented in (5211-S2), the

resultant digits are represented in (4221- S2). This fact simplifies the

implementation of ×2
n
 operations with |n| > 1. Specifically, 2

n
 × Z can be

33

implemented recoding each digit Zi(4221) to Zi(4221-S2) followed by n stages of

Zi(4221-S2) to Zi(5211-S2) digit recoders. The implementation of this S2 digit

recoder is shown in Fig. 18(b) (the Zi(4211- S2) to Zi(5211- S2) recoder is shown

inside the dashed line box). Moreover, when input digits into a 4-bit binary 3:2

CSA are coded in a S2 decimal coding then the resultant carry digit Hi is

represented in the same S2 coding. In this case, 2×H is implemented as a row of

the simpler Hi(4211-S2) to Hi(5211- S2) digit recoders with outputs or inputs 1-

bit left shifted.

Figure 18: Gate level implementation of the (4221) to (5211) digit recoders.

Additionally, the inverse digit recoding (from (5211) to (4221)) is easilyimplemented

using a single full adder as shown in Fig. 19, since

34

Zi(5211) = zi,3 (4 + 1) + zi,2 • 2 + zi,1 + zi,0 = zi,3 • 4 + zi,2 • 2 + • 2 + .

with • 2 + = (zi,3+zi,1+zi,0) � 3. This recoder is used in mixed (4221/5211)

multioperand CSAs to convert a (5211) decimal coded operand into the equivalent (4221)

coded one.

Figure 19: Implementation of a (5211) to (4221) digit recoder.

35

CHAPTER 6

PROPOSED ARCHITECTURE -

COMBINED DECIMAL/BINARY CARRY SAVE ADDER

In this implementation the whole binary carry-save adder tree is shared for both

binary and decimal operations. The latency of the binary operation is unaffected by the

incorporation of hardware support for decimal and there is reduction in the power

consumption also apart from the additional area required. This additional hardware

computes a decimal correction amount which is added to the binary sum to produce the

correct decimal result. Since the most part of this computation is overlapped with the

binary carry-save addition, the maximum overhead delay of decimal multioperand

addition is bounded approximately by 10 XOR gate delays. In this design decimal

correction is completely separated from the binary carry-save adder, so that decimal

hardware can be easily turned off to reduce power consumption in binary operation mode.

Furthermore, it has a very regular and simple structure, which facilitates the integration

of the proposed method into a CAD tool for automatic synthesis.

6.1 ALGORITHM

Figure20: Decimal 3:2 carry-save adder (1 digit)

The block diagram of a 1-digit (4-bit) decimal 3:2 carry-save adder is detailed in

Fig. 20. The blocks labeled as FA, 3:2, and ×2 are respectively full adders with a fast

36

input (of 1 XOR delay, indicated with an F), 4-bit binary 3:2 carry save adders and

decimal digit doubling units. A fixed left shift of one bit is denoted by <<1.

A binary/decimal 3:2 carry-save-adder is build in by a straightforward

modification of the digit doubling unit of Fig. 20: a 4-bit 2:1 multiplexer is placed after

each digit recoder and selects either the carry output of the 3:2 carry-save adder for

binary mode or the output of the digit recoder for decimal mode. The output of the

multiplexer is shifted one bit to the left. A combined multi-operand adder is implemented

as a tree of these modified carry-save adders. Fig. 21 shows an example for 12 operands.

The binary/decimal doubling units require an additional input signal dec to indicate the

operation mode (dec=1 for the decimal mode).

Figure 21: Combined multi-operand adder tree: (1 digit/4-bit column)

For further area savings a more interesting alternative would be to fully reuse the

binary carry-save adder for both binary and decimal multi-operand additions. In this

Section we present a method to implement decimal multi-operand addition using any

binary carry-save adder (such as a binary 4:2 compressor tree) and separate hardware for

decimal correction. The key idea is to perform the decimal doubling C × 2 of the carry

37

operand C coded in 4221 2 as a 1-bit left shift (C <<1), that is, as a binary doubling. This

would allow us to compute both binary and decimal carry-save additions in the same

fashion, just by left shifting the carry output of the binary 3:2 carry-save adder.

However, since a left shift of a 4221 decimal coded operand C does not produce

exactly its double 2C, we have to estimate a correction amount to be added to the binary

result in order to get the correct decimal sum. Thus, a left shift of a p-digit decimal

operand C coded in 4221 produces that each digit Ci is modified as

(Ci << 1) = ci,3 • 10 + ci,2 • 4 + ci,1 • 2 + ci,0 • 2

On the other hand, the double of a 4221 decimal coded digit is given by

Ci ×2 = ci,3 (10 − 2) + ci,2 • 4 + ci,1 (2 + 2) + ci,0 • 2

The operand 2C = C × 2 (represented in code 4221) and the 1-bit shifted operand

(C <<1) are then related by:

2C = (C <<1) + 2 × (Ci,1 - Ci,3) × 10
i

Therefore, we have to increment the decimal correction amount W into +2 units at

digit Wi if the carry bit ci,1 is one or decrement it by -2 if the carry bit ci,3 is one.

For multi-operand addition, each intermediate carry operand C[k] of the binary carry-

save adder contributes to the decimal correction amount, but not for the final carry

operand, which is multiplied by 2 for decimal. A functional scheme of the proposed

method for 4p-bit binary/p-digit decimal 4221 coded operands is shown in Fig. 15. For

simplicity, we consider in Fig. 15 that the m input operands X[k] are aligned to the

decimal point and that the sum does not overflow. For m operands, the number of

intermediate carry operands C[k] generated in a binary m : 2 carry-save adder is m − 3.

The decimal correction amount W is computed in parallel with the binary carry-

save addition using an array of bit counters and a decimal carry-save addition. We

separate the positive (c[k]i,1) and the negative (c[k]i,3) carry bits, as soon as they are

generated in the binary carry-save addition, in groups of 9 bits at most for each decimal

position i. These groups of bits are added as

Wi|2l-1| = c[k]i,3 , Wi|2l| = c[k]i,1

38

using 2q rows of 9-bit counters (or simpler counters) with output coded in 4221, where q

= [(m − 3)/9] and l goes from 1 to q. The 4-bit sum value of a 9-bit counter represents a

decimal digit Wi[l] � [0, 9] coded in 4221, so that the output of each row of counters is a

decimal operand W[2l-1] or W[2l] of p digits coded in 4221. The decimal correction

amount W is given by

 W = 2×

Since the representation 4221 is self-complementing the negative operands −W[2l - 1] are

obtained by a bit inversion of W[2l - 1] and a subsequent addition of a unit in the least

significant place, i.e. as if they are two’s complement operands. To obtain the final sum

Figure22: Block diagram of the combined binary/decimal multi-operand addition method.

Binary m:2 CSA

9-bit counters

(2q rows × p)

Decimal (2q+2):2 CSA

Decimal sum Binary sum

m 4p-bit operands

2(m-3) p-bit

operands

p p p p p p

4p 4p 4p 4p 4p 4p

4p 4p

4p…………………

……………….
…… 4p

…………

…………

…

…

…

…

<<1

4p 4p
4p 4p

……
..

2q

4p-bit operands

q=[(m-3)/9]

(W[2l] - W[2l - 1])

39

S[2q+m−2] and carry C[2q+m−2] × 2 operands, we add the 2q operands W[2l] × 2 and

−W[2l - 1] × 2 to the result of the binary carry-save addition S[m−2], C[m−2] × 2. Since

all operands are in 4221 code, we use binary 3:2 carry-save adders and decimal doubling

units to perform a decimal (2q + 2) : 2 carry-save addition.

6.2 Implementation of combined decimal/binary carry save adder

 Here we consider some pre-existing binary carry-save adder such a optimized

tree of 3:2 or 4:2 compressors and reuse it to also support decimal multi-operand addition.

In Fig. 23 we show a block diagram of 1-digit column (4-bit slice) of the proposed

implementation for m = 12 input operands. The binary adder tree consists of two levels of

4:2 compressors and one level of 3:2 compressors (binary 3:2 carry-save adder). The 4:2

compressors are build of two levels of 3:2 compressors optimally interconnected so that

the critical path only goes through 3 XOR gates. A total of 9 intermediate carry operands

are generated by the compressor tree. The carry bits c[k]i,3 and c[k]i,1 are summed

separately by two 9-bit counters, resulting 4221 coded digits Wi[1] and Wi[2]. The

internal structure of the 9-bit counter is detailed in the upper left corner of Fig. 19. It is

build of 5 full adders arranged in two levels which calculates the sum of the input bits in

code 4221. The fastest input goes through 2 XOR levels, while the slowest signal goes

through 4 XOR levels. To obtain the negative sum in 4221 code, the counter outputs are

inverted. Since carries arrive to the counters with different delays, those produced in the

last levels of the binary adder tree are connected to faster inputs of the counter in order to

balance the different path delays.

40

 Figure 23: Multi-operand adder tree

 The decimal digits Wi[1] and Wi[2], and the sum Si[10] and carry Ci[10]

ouputs of the compressor tree are dispatched to a decimal 4:2 carry-save adder. To

reduce the number of doubling units needed, the calculation

(Wi[1] +Wi[2] + Ci[10]) ×2 = Si[11] × 2 + Ci[11] × 2 × 2

is performed first using a binary 3:2 carry-save adder and three doubling units. The two

cascaded doubling units can be merged into a ×4 unit to obtain a small reduction in area

and delay. The critical path of the decimal operation is indicated in Fig. 4 by a thick

dotted line. It goes through 15 levels of XOR gates, eight of them corresponding to the

binary adder tree.

41

CHAPTER 7

HIGH-PERFORMANCE RADIX-4 MULTIPLIER USING THE PASS

TRANSISTOR LOGIC

A high-performance adder has been designed with modified complementary pass

transistor logic technique. The adder has been implemented on a radix-4 multiplier.

7.1 Adder Architecture Using The CPL Technique

The CPL technique eliminates the occurrence of P-type Metal Oxide

Semiconductor (PMOS) latch, and techniques capable of overcoming the pass transistor

logic threshold voltage loss problem do so by adding an inverter at the output. The logic

style of CPL results in a smaller number of transistors and smaller input loads, especially

when N-type Metal Oxide Semiconductor (NMOS) networks are used. However, the

CPL circuit has some drawbacks due to body effects, source follower action, and high

power leakage. When it is not cross-coupled, it will cause low performance at large stage

counts and limited fan-out capability. According to Markovic et al.,the duality principle

of the proposed CPL adder circuit topology, with inverted gate signals, gives the dual

logic function. Dual logic functions include AND-OR, NAND-NOR and XOR-XNOR.

Referring to the basic structure of pass transistor logic style, by simply modifying the

input nodes, AND, OR, NAND and NOR logic gates can be constructed. By changing the

input nodes at the source terminal, XOR and NXOR logic gates can be constructed.

 The full adder cell is designed with the CPL technique and the multiplexing

control input technique (MCIT) for both sum and carry operations. The sum and carry

operation is designed based on the given equation, where two XOR logic gates are used,

since pass-transistor logic is advantageous in constructing XOR logic gates. By

combining the sum and carry circuits, the XOR gate in the carry operation can be omitted,

and both circuits can share the common term, A�B, in the sum operation.

 Sum = A�B�C

 Cout = (A�B) Cin + AB

42

The inputs A, A's complement (A'), B, and B's complement (B') are fed as inputs

to the pass transistors and form an XOR logic gate. These four inputs construct an XOR

logic operation at the transistor level, which is designed using two transistors. In order to

reduce the number of transistors, the output of the XOR gate (A�B) is fed through an

NOT gate from the differential node to the pass transistors as a control input. On the

other hand, Cin is treated as variable input, which is fed through the pass transistor source

terminal. At this stage, the functionality of the circuit is equivalent to the sum operation,

sum A�B�C, and six transistors have been used. As mentioned before, the number of

transistors in the carry operation can be reduced by taking A�B as the input from the

sum operation circuit AND with Cin in order to produce the operation equivalent to

(A�B)Cin , which only uses another two transistors. Meanwhile, the inputs A, A', B, and

B' are fed into pass transistors in order to produce an AND logic gate, which represents

the AB operation. The outputs of both (A�B) Cin and AB are used as multiplexing

inputs in order to sum both terms with the OR gate operation. The transistor count can be

reduced by modifying the OR gate at the last stage of the carry equation. This is done by

removing the inverter and the transistor fed by the inverter. Markovic's full adder circuit

has 22 transistors. At an earlier point, 3 transistors were omitted in this design and the

number of transistors of the full adder cell was reduced to 17 transistors, which is lower

than the number of transistors in the circuit described by Markovic , which is 22.

Figure 24: Full adder circuit

43

Fig.24 shows the proposed full adder circuit using 17 transistors after applying the

redundant transistor reduction technique. The basic architectures of the 16 × 16 bit basic

CSA multiplier were constructed based on the architectures given by Yeo et al. The full

adder blocks presented were placed with our proposed full adder cell, and all the logic

gates in both multiplier architectures were designed based on the CPL technique in order

to compare their performance under identical conditions.

7.2 Architecture of Radix-4 Multiplier

Figure 25: 4 × 4 bit radix-4 multiplier circuit

PPS : Partial Product Selector

HA : Half Adder

FA : Full Adder

OR : OR Logic gate

The architecture of our proposed radix-4 multiplier circuits comprises partial

product selectors, partial product pre-computation blocks, and half adder and full adder

block, which is shown in Fig.25. In the radix-4 circuits, 2 bits per cycle will be

considered. Therefore, 4 multiples, 0a, 1a, 2a and 3a, are pre-computed, where "a" is the

44

multiplicand. This is done by the partial product pre-computed blocks, where 2a is

simply the shifted version of "a", and 3a = 2a + 1a . The pre-computation circuit for 3a

consists of half adder and full adder blocks configured using the ripple carry adder (RCA)

architecture. The half adder circuit is designed based on the CPL technique, and the full

adder blocks are used with our proposed full adder circuit. Partial product selectors are

formed by OR and AND gates, which are used to determine the partial products. By

connecting all the pre-computation blocks and partial product selectors, a 4-to-1

multiplexer can be realized, as shown in Fig.26. The multiplexer is functioned such that

the first 2 bits of the multiplier, x, will be grabbed to determine the first partial product

and shifted to the next 2 bits of the multiplier to determine the successive partial products

by repeating the same process. For a 4-bit radix-4 multiplier, two partial products will be

generated. As a result, half of the number of partial products has been reduced compared

to the normal 1-bit shift-add algorithm.

Figure 26: Generation of multiples in a radix-4 multiplier

Before adding the partial product, all pre-computed partial products are OR-ed with each

other, since

Partial Product = 0a+1a+2a+3a

At the end, all partial products with proper shifts are connected to RCAs to compute the

final output product of the radix-4 multiplier. The multiplicand, "a", and multiplier, "x",

are two inputs that are calculated in parallel by the multiplier circuit. A 4-bit binary

45

number can be interpreted as a 2-digit radix-4 number, and radix-4 multiplication can be

represented as

where p = product, a = multiplicand and x = multiplier. Based on the

multiplication recurrences above, a more practical example of radix multiplication is

shown below. Without considering whether the 3a multiple will be needed during the

multiplication, the 3a multiple is always computed at the outset and stored in a register

for future use.

46

CHAPTER 8

EVALUATION RESULTS

The simulation of this project has been done using MODELSIM XE111 6.2g and

XILINX ISE 9.1i.

Modelsim is a simulation tool for programming {VLSI} {ASIC}s, {FPGA}s,

{CPLD}s, and {SoC}s. Modelsim provides a comprehensive simulation and debug

environment for complex ASIC and FPGA designs. Support is provided for multiple

languages including Verilog, SystemVerilog, VHDL and SystemC. The Modelsim

conceptual overview is shown below.

 Figure 27: Conceptual Overview of Modelsim

In ModelSim, all designs, be they VHDL, Verilog, or some combination thereof,

are compiled into a library. We can stat a new simulation in ModelSim by creating a

working library called "work". "Work" is the library name used by the compiler as the

default destination for compiled design units. After creating the working library, we

compile our design units into it. The ModelSim library format is compatible across all

supported platforms. We can simulate our design on any platform without having to

recompile your design. With the design compiled, invoke the simulator on a top-level

module (Verilog) or a configuration or entity/architecture pair (VHDL). Assuming the

design loads successfully, the simulation time is set to zero, and enter a run command to

begin simulation. If the results are not as expected, use ModelSim’s robust debugging

environment to track down the cause of the problem.

Xilinx, Inc. is an American technology company, which designs, develops and

markets programmable logic products including integrated circuits (ICs), software design

Create a working library

Compile design files

Run Simulation

Debug results

47

tools, predefined system functions delivered as intellectual property (IP) cores, design

services, customer training, field engineering and technical support. Xilinx sells both

FPGAs and CPLDs programmable logic devices for electronic equipment manufacturers

in end markets such as communications, industrial, consumer, automotive and data

processing The Virtex-II Pro, Virtex-4, Virtex-5, and Virtex-6 FPGA families are

particularly focused on system-on-chip (SOC) designers because they include up to two

embedded IBM PowerPC cores. Xilinx has offered two main FPGA families: the high-

performance Virtex series and the high-volume Spartan series, with a cheaper EasyPath

option for ramping to volume production. With the introduction of its 28 nm FPGAs in

June 2010, Xilinx replaced the high-volume Spartan family with a Kintex family and the

low-cost Artix family. The Spartan series targets applications with a low-power footprint,

extreme cost sensitivity and high-volume; e.g. displays, set-top boxes, wireless routers

and other applications

The ISE Design Suite is the central electronic design automation (EDA) product

family sold by Xilinx. The ISE Design Suite features include design entry and synthesis

supporting Verilog or VHDL, place-and-route (PAR), completed verification and debug

using Chip Scope Pro tools, and creation of the bit files that are used to configure the chip.

Xilinx is a synthesis tool which converts Schematic/HDL design entry into

functionally equivalent logic gates on Xilinx FPGA, with optimized speed & area. So,

after specifying behavioral description for HDL, the designer merely has to select the

library and specify optimization criteria; and Xilinx synthesis tool determines the net list

to meet the specification; which is then converted into bit-file to be loaded onto FPGA-

PROM. Also, Xilinx tool generates post-process simulation model after every

implementation step, which is used to functionally verify generated net list after

processes, like map, place & route

The synthesis and the simulation results of the proposed and the existing

architecture are shown below.

48

8.1. SIMULATION RESULTS

8.1.1.SD Radix-10 Architecture

Figure 28: Simulation result of SD radix-10 architecture

In the above figure x and y are the multiplicand and the multiplier respectively (in

BCD). The final product in BCD is p.pp0,pp1,pp2,pp3 shows the partial products. All

the other variables are intermediate results.

Here x in decimal = 1234

 x in BCD = 0001001000110100

 y in decimal = 2211

 y in BCD = 0010001000010001

 p in decimal = 2728374

 p in BCD = 0010011100101000001101110100

49

8.1.2. SD Radix-5 Architecture

Figure 29: Simulation result of SD radix-5 architecture

In the above figure x and y are the multiplicand and the multiplier respectively (in

BCD). The final product in BCD is p. ppu and ppl shows the partial products

corresponding to 4221 and 5211 recoding. All the other variables are intermediate

results.

Here x in decimal = 1234

 x in BCD = 0001001000110100

 y in decimal = 2211

 y in BCD = 0010001000010001

 p in decimal = 2728374

 p in BCD = 0010011100101000001101110100

.

50

8.1.3. SD Radix-10 Architecture using Combined Decimal/Binary

CSA

Figure 30: Simulation result of SD radix-10 architecture using combined

decimal/binary CSA

In the above figure x and y are the multiplicand and the multiplier respectively (in

BCD). The final product in BCD is p. pp0,pp1,pp2,pp3 shows the partial products as

per the SD radix-10 recoding scheme and b1,b2,b3,b4 corresponds to binary partial

products. All the other variables are intermediate results. ’sel’ corresponds to

selection signal for mux (decimal/binary)

Here x in decimal = 1234

 x in BCD = 0001001000110100

 y in decimal = 2211

 y in BCD = 0010001000010001

 p in decimal = 2728374

 p in 4221 = 0100110101001110010111011000

 p in binary = 1010011010000110110110

51

8.1.4. SD Radix-5 Architecture using Combined Binary-Decimal

CSA

Figure 31: Simulation result of SD radix-5 architecture using combined

decimal/binary CSA

In the above figure x and y are the multiplicand and the multiplier respectively (in

BCD). The final product in BCD is p. ppu and ppl shows the partial products as per

the SD radix-5 recoding scheme in 4221 and 5211 respectively and b1, b2, b3, b4, b5,

b6, b7 corresponds to binary partial products. All the other variables are intermediate

results. ’sel’ corresponds to selection signal for mux (decimal/binary)

Here x in decimal = 1234

 x in BCD = 0001001000110100

 y in decimal = 2211

 y in BCD = 0010001000010001

 p in decimal = 2728374

 p in 4221 = 0100110101001110010111011000

 p in binary = 1010011010000110110110

52

8.1.5. Radix-4 Binary Multiplier

Figure 32: Simulation result of radix-4 binary multiplier

In the above figure x and y are the inputs and z is the final product.p1,p2,p3,p4

represents the partial products. In the first cycle,

 x in decimal = 1234

x in binary = 101101

y in decimal = 2211

z in binary = 1010011010000110110110

z in decimal = 2728374

z in BCD = 0010011100101000001101110100

53

8.2. SYNTHESIS RESULTS

8.2.1. Power Report

8.2.1.1. SD Radix-10 architecture

Figure 33: Power report of SD radix-10 architecture

8.2.1.2. SD Radix-5 architecture

Figure 34: Power report of SD radix-5 architecture

54

8.2.1.3. SD Radix-10 Architecture using Combined Decimal/Binary

CSA

Figure 35: Power report of SD radix-10 architecture using combined decimal/binary

CSA

8.2.1.4. SD Radix-5 architecture using combined binary-decimal CSA

Figure 36: Power report of SD radix-5 architecture using combined decimal/binary

CSA

55

8.2.1.5. Radix-4 Binary Multiplier

Figure 37: Power report of radix-4 binary multiplier

8.2.2. MAP REPORT

8.2.2.1. SD Radix-10 architecture

Area report:

Design Summary

Number of errors: 0

Number of warnings: 16

Logic Utilization:

 Number of Slice Latches: 123 out of 13,824 1%

 Number of 4 input LUTs: 1,016 out of 13,824 7%

Logic Distribution:

 Number of occupied Slices: 530 out of 6,912 7%

 Number of Slices containing only related logic: 530 out of 530 100%

 Number of Slices containing unrelated logic: 0 out of 530 0%

56

Total Number 4 input LUTs: 1,032 out of 13,824 7%

 Number used as logic: 1,016

 Number used as a route-thru: 16

 Number of bonded IOBs: 68 out of 510 13%

 Number of GCLKs: 3 out of 4 75%

Total equivalent gate count for design: 7,056

Additional JTAG gate count for IOBs: 3,264

Delay Report:

Timing Summary:

 Minimum input arrival time before clock: 29.986ns

 Maximum output required time after clock: 66.863ns

Therefore the total delay = 36.877ns

8.2.2.2. SD Radix-5 architecture

Area report:

Design Summary

Number of errors: 0

Number of warnings: 12

Logic Utilization:

 Number of Slice Latches: 437 out of 13,824 3%

 Number of 4 input LUTs: 492 out of 13,824 3%

Logic Distribution:

 Number of occupied Slices: 244 out of 6,912 3%

 Number of Slices containing only related logic: 244 out of 244 100%

 Number of Slices containing unrelated logic: 0 out of 244 0%

57

Total Number of 4 input LUTs: 469 out of 13,824 3%

 Number of bonded IOBs: 68 out of 510 13%

Total equivalent gate count for design: 8,670

Additional JTAG gate count for IOBs: 8,356

Delay Report:

Timing Summary:

 Minimum input arrival time before clock: 31.623ns

 Maximum output required time after clock: 64.419ns

Therefore the total delay = 32.796ns

8.2.2.3. SD Radix-10 architecture using combined decimal/binary CSA

Area report:

Design Summary

Number of errors: 0

Number of warnings: 8

Logic Utilization:

 Number of Slice Latches: 88 out of 13,824 1%

 Number of 4 input LUTs: 1,045 out of 13,824 7%

Logic Distribution:

 Number of occupied Slices: 547 out of 6,912 7%

 Number of Slices containing only related logic: 547 out of 547 100%

 Number of Slices containing unrelated logic: 0 out of 547 0%

Total Number 4 input LUTs: 1,069 out of 13,824 7%

 Number used as logic: 1,045

 Number used as a route-thru: 24

58

Number of bonded IOBs: 229 out of 510 44%

Total equivalent gate count for design: 7,978

Additional JTAG gate count for IOBs: 11,115

Delay Report:

Timing Summary:

Speed Grade: -7

 Minimum input arrival time before clock: 9.929ns

 Maximum output required time after clock: 77.816ns

Therefore the total delay = 67.887 ns

8.2.2.4. SD Radix-5 architecture using combined decimal/binary CSA

Area report:

Design Summary

Number of errors: 0

Number of warnings: 11

Logic Utilization:

 Number of Slice Latches: 139 out of 13,824 1%

 Number of 4 input LUTs: 1,489 out of 13,824 10%

Logic Distribution:

 Number of occupied Slices: 791 out of 6,912 11%

 Number of Slices containing only related logic: 791 out of 791 100%

 Number of Slices containing unrelated logic: 0 out of 791 0%

Total Number 4 input LUTs: 1,527 out of 13,824 11%

 Number used as logic: 1,489

 Number used as a route-thru: 38

 Number of bonded IOBs: 149 out of 510 29%

59

 Number of GCLKs: 4 out of 4 100%

Total equivalent gate count for design: 10,831

Additional JTAG gate count for IOBs: 7,697

Delay Report:

Timing Summary:

Speed Grade: -7

 Minimum input arrival time before clock: 28.279ns

 Maximum output required time after clock: 79.862ns

Therefore the total delay = 51.583 ns

8.2.2.5. Radix-4 Binary Multiplier

Design Summary

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of Slice Flip Flops: 143 out of 13,824 1%

 Number of 4 input LUTs: 387 out of 13,824 2%

Logic Distribution:

 Number of occupied Slices: 290 out of 6,912 4%

 Number of Slices containing only related logic: 290 out of 290 100%

 Number of Slices containing unrelated logic: 0 out of 290 0%

Total Number 4 input LUTs: 573 out of 13,824 4%

 Number used as logic: 387

 Number used as a route-thru: 42

 Number used as Shift registers: 144

 Number of bonded IOBs: 68 out of 510 13%

60

 IOB Flip Flops: 1

 Number of GCLKs: 1 out of 4 25%

 Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 22,941

Additional JTAG gate count for IOBs: 3,312

Delay Report

Timing Summary:

Speed Grade: -6

 Minimum period: 3.792ns (Maximum Frequency: 263.713MHz)

 Minimum input arrival time before clock: 10.571ns

 Maximum output required time after clock: 16.507ns

Therefore the total delay = 5.936 ns

8.3. COMPARISON

To obtain the area, delay and power estimate’s, the designs have been modeled in

modelsim and synthesized in Xilinx. We have also compared and evaluated the area and

delay figures obtained from synthesis of representative proposals of decimal with a

binary radix-4 multiplier. Table 6 shows the comparison results of the various

architectures. From the table given below it is clear that the SD radix-10 and the SD

radix-5 multiplier with the combined decimal/binary CSA is an interesting option when

compared to the representative proposals for decimal multiplication namely SD radix-10

and SD radix-5. SD radix-10 multiplier is an interesting option for high performance with

moderate area but when comparing the power delay product the SD radix-5 architecture

has about 3.5% improvement. The graphs have been plotted for the area and power for

the different architectures.

61

Table 6: Comparison of various multiplier architectures

Architecture Gate count Delay(nS) Power(mW)

Power-

Delay

Product(nW)

SD Radix-10 7,056 36.877 105
3.872

SD Radix-5 8,670 32.796 137 4.493

SD Radix-10

using combined

decimal/binary

CSA

7,978 67.887 111 7.535

SD Radix-5 using

combined

decimal/binary

CSA

10,831 51.583 125 6.447

Radix-4 binary

multiplier
22,941 5.936 56 3.3241

SD Radix-10

+

Radix-4 binary

multiplier

29997 42.813 161 6.892

SD Radix-5

+

Radix-4 binary

multiplier

31611 38.732 193 7.475

62

 Figure 38: Area graph obtained from synthesis

 Figure 39: Power graph obtained from synthesis

63

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this project, we have discussed the different techniques to implement decimal

parallel multiplication in hardware. The two architectures for decimal multiplication

employing two different Signed Digit encodings for the multiplier that lead to fast

parallel and simple generation of partial products have been implemented Also a decimal

carry-save algorithm based on unconventional (4221) and (5211) decimal encodings for

partial product reduction has been discussed. It makes possible the construction of p:2

decimal CSA trees that outperform the area and delay figures of binary multipliers. The

area and delay figures of these decimal multiplier architectures from a comparative study

including conventional binary parallel multipliers show that our decimal SD radix-10

multiplier is an interesting option for high performance with moderate area. A new

method for the combined computation of binary/decimal multi-operand additions is

presented. It relies on a fully reuse of a binary carry-save adder to reduce area, power

consumption and design time. There is drastic reduction in are and power consumption of

the combined binary/decimal architecture when compared to using both binary and

decimal multipliers. Decimal operands are represented in a 4221 coding different than

BCD that allows to perform decimal addition via binary carry-save addition and small

decimal corrections. As the decimal corrections are computed separately from the carry-

save adder tree, there is no impact on the latency of the binary operation.

FUTURE WORK

Future scope of this project is to optimize the decimal fixed-point parallel

multipliers to provide pipelined implementations that fit adequately in the dataflow and

cycle time of current commercial decimal floating point units.

64

REFERENCES

[1] Alvaro Vazquez, Elisardo Antelo and PaoloMontuschi. “Improved Design of

High Performance Parallel Decimal Multipliers,” IEEE Transactions on

Computers, vol. 59, May 2010.

 [2] A. Va´zquez, E. Antelo, and P. Montuschi, “A New Family of High-Performance

Parallel Decimal Multipliers,” Proc. 18th IEEE Symp. Computer Arithmetic, pp.

195-204, June 2007

[3] I.D. Castellanos and J.E. Stine, “Compressor Trees for Decimal Partial Product

Reduction,” Proc. 18th ACM Great Lakes Symp. VLSI, pp. 107-110, Mar. 2008.

[4] M. Cornea, C. Anderson, J. Harrison, P.T.P. Tang, E. Schneider, and C. Tsen, “A

Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic

Using the Binary Encoding Format,” Proc. 18th IEEE Symp. Computer

Arithmetic, pp. 29-37, June 2007.

[5] M.F. Cowlishaw, The decNumber ANSI C Library, IBM Corp., 2003.

[6] A.Y. Duale, M.H.Decker, H.-G. Zipperer, M. Aharoni, and T.J.Bohizic, “Decimal

Floating-Point in Z9: An Implementation and Testing Perspective,” IBM J.

Research and Development, vol. 51, nos. 1/2, pp. 217-227, Jan. 2007.

[7] L. Eisen et al., “IBM POWER6 Accelerators: VMX and DFU,” IBM J. Research

and Development, vol. 51, no. 6, pp. 663-684, Nov. 2007.

[8] M.A. Erle and M.J. Schulte, “Decimal Multiplication via Carry-Save Addition,”

Proc. IEEE Int’l Conf. Application-Specific Systems, Architectures, and

Processors, pp. 348-358, June 2003.

[9] IEEE Std 754(TM)-2008, IEEE Standard for Floating-Point Arithmetic,

IEEE CS, Aug. 2008.

[10] Himanshu Thapliyal, Pallavi Gopineedi and M.B Srinivas, "Novel and efficient

4:2 and 5:2 compressors with minimum number of transistors designed for low-

power operations", SPIE Microelectronics, MEMS, and Nanotechnology

Symposium, Brisbane, Australia, 11-14 December 2005.(Accepted)

65

[11] P. H. Abbott., Architecture and Software Support in IBM S/390 Parallel

Enterprise Servers for IEEE Floating-Point Arithmetic, IBM Journal of Research

and Development, 43 (1999), pp. 723–760.

[12] G. M. Amdahl, G. A. Blaauw AND F. P. Brooks, Architecture of the IBM

System/360, IBM Journal of Research and Development, 8 (1964), pp. 87–53.

[13] S. F. Anderson, J. G. Earle, R. E. Goldschmidt AND D. M. Powers, The IBM

System/ 360 Model 91: Floating-point Execution Unit, IBM Journal of Research

and Development, 11 (1967), pp. 34–53

[14] Mi Lu, Arithmetic and logic in computer systems, John Wiley and Sons, Edition

2004.

[15] Thomas C. Bartee, Digital Computer Fundamentals, Tata McGraw-Hill, Edition

2005

[16] C Senthilpari, A Low-power and High-performance Radix-4 Multiplier Design

Using a Modified Pass-transistor Logic Technique, IETE Journal of Research, pp

149-55, vol.57, 2011.

