
i

 COMPARATIVE ANALYSIS OF DIFFERENT

MULTIPLY ACCUMULATE ARCHITECTURE

By

P.M. SNEHA ANGELINE

Reg. No. 1020106017

of

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University, Coimbatore)

COIMBATORE - 641049

A PROJECT REPORT

Submitted to the

FACULTY OF ELECTRONICS AND COMMUNICATION

 ENGINEERING

In partial fulfillment of the requirements

for the award of the degree

of

MASTER OF ENGINEERING

IN

APPLIED ELECTRONICS

APRIL 2012

ii

BONAFIDE CERTIFICATE

 Certified that, this project report entitled “COMPARATIVE ANALYSIS OF

DIFFERENT MULTIPLY ACCUMULATE ARCHITECTURE ” is the bonafide

work of Ms.P.M.SNEHA ANGELINE [Reg.No:1020106017] who carried out the

project under my supervision. Certified further, that to the best of my knowledge the

work reported herein does not form part of any other project or dissertation on the basis

of which a degree or award was conferred on an earlier occasion on this or any other

candidate.

(Ms.M.SHANTHI) (Dr. RAJESWARI MARIAPPAN)

 Project Guide Head of the Department

 The candidate with university Register no. 1020106017 is examined by us in the

project viva-voce examination held on …………………….

Internal Examiner External Examiner

iii

ACKNOWLEDGEMENT

I express my profound gratitude to our director Dr.J.Shanmugham, for giving

this opportunity to pursue this course

At this pleasing moment of having successfully completed the project work, I

wish to acknowledge my sincere gratitude and heartfelt thanks to our beloved Principal

Dr.S.Ramachandran, for having given me the adequate support and opportunity for

completing this project work successfully.

I express my sincere thanks to Dr.Rajeswari Mariappan Ph.D., the ever active,

Head of the Department of Electronics and Communication Engineering, who rendering

us all the time by helps throughout this project.

I extend my heartfelt thanks to my internal guide Mrs.M.Shanthi M.S, Asso.

Professor, for her ideas and suggestion, which have been very helpful for the completion

of this project work. Her careful supervision has ensured me in attaining perfection of

work.

In particular, I wish to thank and everlasting gratitude to the project coordinator

Mrs.R.Hemlatha M.E., Asst.Professor, Department of Electronics and Communication

Engineering for her expert counseling and guidance to make this project to a great deal of

success.

Last, but not the least, I would like to express my gratitude to my family

members, friends and to all my staff members of Electronics and Communication

Engineering department for their encouragement and support throughout the course of

this project.

iv

ABSTRACT

The Multiplier and Accumulator (MAC) unit is used as a basic element in most of

the digital signal processing application in order to perform repeated multiplication and

addition. The conventional MAC architectures uses more shift and add operation at

multiplier unit which increases delay in the arithmetic operations.

The main objective is to design a new multiplier and accumulator architecture to

perform high speed arithmetic operation. The three cycle MAC (MAC-3C) architecture

increase the performance by reducing the critical path delay by inserting an extra pipeline

register either inside the partial product (PP) unit or between PP unit and final adder. The

two cycle MAC (MAC-2C) architecture performs the carry propagation only in the

second stage leads to the similar delay in multiplication and accumulation. The proposed

MAC architecture (MAC-NEW) has two stages with the pipeline register inserted after

the partial product unit. This unit uses carry-save adder which leads to the reduction of

power. Due to the carry propagation in the second stage, multiplier’s final adder is

eliminated, leading to higher speed and lower energy. The Double Throughput MAC unit

(DTMAC) switches between N-bit operations and 2×N/2-bit operations which reduces

power and critical path delay on the removal of final adder.

Through the “ COMPARATIVE ANALYSIS OF DIFFERENT MULTIPLY

ACCUMULATE ARCHITECTURE” is planned to obtain an efficient performance

parameter such as gate count, delay and power for the different MAC architectures. The

MAC architecture is designed using MODEL SIM and simulated using Xilinx ISE 9.2i

and the parameters is compared to obtain an efficient architecture.

v

CHAPTER

NO

TITLE PAGE

NO

1

2

3

 4

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 Objective of The Work

1.2 Introduction to VHDL

1.2.1 Structural Descriptions

 1.2.2 Dataflow Descriptions

 1.2.3 Behavioral Descriptions

1.3 Software Used

1.4 Organization of the Report

OVERVIEW OF MAC

2.1 General Architecture of MAC

2.2 Block Diagram of the Project

2.3 Process Flow in MAC

2.4 Baugh-Wooley Algorithm

EXISTING ARCHITECTURES OF MAC

3.1 Three-cycle Multiply Accumulate Architecture

3.2 Stages of Three–cycle MAC unit

3.3 Two-cycle Multiply Accumulate Architecture

PROPOSED ARCHITECTURE OF MAC

4.1 Proposed Multiply Accumulate Architecture

iv

vii

ix

x

1

2

3

3

4

5

7

7

8

9

10

11

11

14

15

16

18

18

vi

5

6

7

APPLICATION OF PROPOSED ARCHITECTURE

OF MAC

5.1 Double Throughput Multiply Accumulate unit

5.2 Components of DTMAC unit

5.3 DTMAC operating modes

5.4 Multiplication through Twin Precision

 5.4.1 HPM Implementation

5.5 Floating Point Multiplier in Multiply Accumulate unit

 5.5.1 Functional Description

SIMULATION RESULTS AND DISCUSSION

6.1 Simulation Waveform of Three-Cycle MAC Unit

6.2 Simulation Waveform of Two-Cycle MAC Unit

6.3 Simulation Waveform of MAC-NEW Unit

6.4 Simulation Waveform of DTMAC Unit

6.5 Simulation Waveform of Floating point Multiplier

6.6 Synthesis Report of the MAC architectures

6.7 Comparaison of various MAC architectures

CONCLUSION AND FUTURE SCOPE

REFERENCES

21

21

23

24

26

28

29

29

31

31

33

35

37

41

41

45

49

50

vii

LIST OF FIGURES

FIGURE

NO

 CAPTION

PAGE

NO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Schematic SR Latch

Dataflow approach of Schematic SR Latch

General MAC architecture

Block Diagram of the project

Basic Arithmetic steps of multiplication and accumulation

Unsigned multiplication for Baugh-Wooley algorithm

Illustration of an 8-bit Baugh-Wooley multiplication

Illustration of an 8-bit Baugh-Wooley multiplication using

an HPM reduction tree

Block diagram of the Three-cycle MAC architecture

Block diagram of the three stage of the Three-cycle MAC

architecture

Block diagram of the Two-cycle MAC architecture

Block diagram of the MAC-NEW unit

Block diagram of the DTMAC unit

Block diagram of the TP-PP unit based on the Baugh–

Wooley multiplication algorithm

Block diagram of the gates of the combination unit in the

DTMAC unit

Block diagram of the accumulate adder based on the

conditional-sum adder architecture

Illustration of a unsigned 8-bit multiplication, using the

Baugh–Wooley Algorithm

Block diagram of an unsigned 8-bit twin-precision multiplier

based on the regular HPM reduction tree

4

5

8

9

10

11

12

13

14

 15

16

19

21

22

23

 24

 27

28

viii

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Block diagram of the Floating Point Multiplier

Waveform for the Three-cycle MAC of operand size 16 –bit

Waveform for the Three-cycle MAC of operand size 32 –bit

Waveform for the Three-cycle MAC of operand size 48-bit

Waveform for the Three-cycle MAC of operand size 64 –bit

Waveform for the Two-cycle MAC of operand size 16 –bit

Waveform for the Two-cycle MAC of operand size 32 –bit

Waveform for the Two-cycle MAC of operand size 48 –bit

Waveform for the Two-cycle MAC of operand size 64 –bit

Waveform for the Full Precision DTMAC unit

Waveform for the Half Precision DTMAC unit

Waveform for the DTMAC unit

Waveform for the Full Precision Multiplication unit

Waveform for the Half Precision Multiplication unit

Waveform for the Double Throughput Multiplication unit

Waveform for the Floating Point Multiplier MAC unit

Power calculation for 3-C MAC unit of 16-bit

Power calculation for 3-C MAC unit of 32-bit

Power calculation for 2-C MAC unit of 48-bit

Power calculation for 2-C MAC unit of 64-bit

Power calculation for MAC-NEW unit of 16-bit

Power calculation for MAC-NEW unit of 64-bit

Power calculation for Full Precision DTMAC unit

Power calculation for Half Precision DTMAC unit

Power Analysis of MAC-3C and MAC-NEW of the operand

size 32 bit

Delay Analysis of MAC-3C and MAC-NEW of the operand

size 32 bit

29

31

32

32

33

33

 34

 34

35

37

38

38

39

39

40

 41

41

42

 45

 43

43

44

44

45

48

48

ix

LIST OF TABLES

TABLE

NO

CAPTION PAGE

NO

1

2

3

4

5

6

Performance Analysis of conventional MAC

architectures of the operand size 16 and 32 bit

Performance Analysis of conventional MAC

architectures of the operand size 48 and 64 bit

Performance Analysis of 3-C and MAC-NEW

architectures of the operand size 16 and 32 bit

Performance Analysis of 3-C and MAC-NEW

architectures of the operand size 48 and 64 bit

Comparison of the operating modes in DTMAC

Architecture

Parameters of the Floating point multiplier in

MAC unit

45

46

46

47

47

47

x

LIST OF ABBREVIATIONS

 MAC
------- Multiply- Accumulate

Architecture

 3-C MAC
------- Three-Cycle Multiply

Accumulate Architecture

 2-C MAC ------- Two-Cycle Multiply

Accumulate Architecture

 MAC-NEW
------- Proposed Multiply

Accumulate Architecture

 DTMAC

------- Double Throughput

Multiply Accumulate

Architecture

 PP ------- Partial Product

 TP ------- Twin Precision

 TP-PPRT ------- Twin-Precision Partial-

Product

 CPA ------- Carry Propagation Adder

 CSA ------- Carry Save Adder

 BW

Baugh-Wooley Algorithm

1

CHAPTER 1

INTRODUCTION

With the recent rapid advances in multimedia and communication system,real-time

signal processings like audio signal processing, video/image processing or large-capacity

data processing are intrestingly being demanded.The multiplier and multiplier and

accumulator(MAC) are the essentials elements of the digital signal processing such as

filtering,convolution and inner products.Most digital signal processing methods use

nonlinear functions such as discrete cosine transform(DCT) or discrete wavelet transform

Because they are basically accomplished by repetitive application of mulitiplication and

addition,the speed of the multiplication and addition arithmetic’s determines the execution

speed and performance of the entire calculation.As the multiplier requires longest delay

among the basic operational blocks in digital system,the critical path is determined by the

multiplier.

The multiplier consists of three parts: partial product generation, partial product

summation and accumulation. The multiplier is much more complex than the accumulate

adder, many design techniques have focused on reducing multiplier delay. In the

architecture, the critical path is reduced by inserting an extra pipeline register, either inside

the partial product unit or between the partial product unit and final adder. It has a better

performance because of the reduction in critical path delay. The most effective way to

increase the speed of a multiplier is to reduce the number of partial products using high

speed compressors or speed optimized structures because multiplication precedes a series

of additions for the partial products. The guard bits are important for avoiding overflow

when computing long sequences of multiply accumulate operation.

2

In order to improve the speed of the MAC unit, there are two major bottlenecks.

The first is the partial product reduction network that is used in the multiplication block

and the second is the accumulator. Both of these stages require addition of large operands

that involve long paths for carry propagation. As the multiplier is more complex than the

accumulator, design techniques are proposed on reducing the delay in the multiplier either

inside the Partial Product (PP) unit or in the final adder. Inside the PP unit, the partial-

product circuitry might be implemented using the modified-Booth algorithm or one of its

successors. The partial-product reduction tree of the PP unit can be implemented using

high-speed compressors or speed-optimized structures. Mathew et al. propose a sparse-

tree carry look-ahead adder for fast addition of the PP unit outputs and Liu et al. introduce

a hybrid adder o reduce delay compared to a design that assumes equal arrival time on all

adder inputs.

Here a MAC-NEW architecture is proposed in which the first stage is significantly

faster compared to the second stage, leading to a better delay balance between the two

stages. The key feature to this architecture is the implementation of product sign extension

in the second stage, together with the accumulate adder such as carry save adder and the

saturation unit. Guard bits are used for avoiding the overflow on computation of long

sequences of multiply-accumulate operation. This MAC-NEW unit is efficient in terms of

delay, power and gate count.

1.1 OBJECTIVE OF THE WORK

The performance of the multiply and accumulate unit is improved by either using

high speed multipliers or improved fast adder architectures. To obtain a high speed

operation, the multiplication unit is combined with accumulation and carry save adder

(CSA).The partial product is generated using Baugh Wooley algorithm. The result is sign

extended to have the same size as the accumulate adder. The MAC unit is designed using

VHDL code and simulated using MODELSIM. The performance parameters such as

3

power, gate count, and delay are synthesized using XILINX and compared with the

conventional MAC architecture.

1.2 INTRODUCTION TO VHDL

VHDL is an acronym which stands for VHSIC Hardware Description

Language.VHSIC means Very High Speed Integrated Circuits. It is being used for

documentation, verificatoin and synthesis of large digital designs.VHDL is a standard

developed by IEEE.The different approaches in VHDL are structural, data flow and

behavioral methods of hardware description.

1.2.1 STRUCTURAL DESCRIPTIONS

Building Blocks

 Every portion of a VHDL design is considered a block. A VHDL design may be

completely described in a single block, or it may be decomposed in several blocks. Each

block in VHDL is analogous to an off-the-shelf part and is called an entity.

The entity describes the interface to that block and a separate part associated with the

entity describes how that block operates. The interface description is like a pin description

in a data book, specifying the inputs and outputs to the block. The description of the

operation of the part is like a schematic for the block.

The following is an example of an entity declaration in VHDL

Entity latch is

 Port (sir: in bit;

 q,nq: out bit);

end latch;

The first line indicates a definition of a new entity called latch. The last line is the

end of the definition. The lines in between, are called the port clause, which describe the

interface to the design. The port clause contains a list of interface declarations.

Each interface declaration defines one or more signals that are inputs or outputs to the

design. Each interface declaration contains a list of names, mode and type.

4

The following is an example of an architecture declaration for the latch entity.

architecture dataflow of latch is

 signal q0 : bit := '0';

 signal nq0 : bit := '1';

begin

 q0<=r nor nq0;

 nq0<=s nor q0;

 nq<=nq0;

 q<=q0;

end dataflow;

The first line of the declaration indicates the definition of a new architecture

called dataflow and it belongs to the entity named latch. So this architecture describes the

operation of the latch entity. The schematic for the SR latch

Figure 1.1 Schematic SR Latch

1.2.2 DATA FLOW DESCRIPTIONS

In the data flow approach, circuits are described by indicating how the inputs and

outputs of built-in primitive components are connected together.The following SR latch

using VHDL is described as in the following schematic.

entity latch is

 port (s,r : in bit;

 q,nq : out bit);

5

end latch;

architecture dataflow of latch is

begin

 q<=r nor nq;

 nq<=s nor q;

end dataflow;

Figure 1.2 Dataflow approach of Schematic SR Latch

The signal assignment operator in VHDL specifies a relationship between signals. The

architecture part describes the internal operation of the design. The scheme used to model

a VHDL design is called discrete event time simulation. In this the values of signals are

only updates when certain events occur and event occurs at discrete instances of time.

The Delay Model

 The two models of delay that are used in VHDL. The first is called the inertial

delay model. The inertial delay model is specified by adding an after clause to the signal

assignment statement. The next is the transport delay model, just delays the change in the

output by the time specified.

1.2.3 BEHAVIORAL DESCRIPTIONS

The behavioral approach to modeling hardware components is different from the

other two methods in that it does not necessarily in any way reflect how the design is

implemented.

6

The Process Statement

 It is basically the black box approach to modeling. It accurately models what

happens on the inputs and outputs of the black box, but what is inside the box (how it

works) is irrelevant. The behavioral description is usually used in two ways in VHDL.

First, it can be used to model complex components.

Behavioral descriptions are supported with the process statement. The process

statement can appear in the body of an architecture declaration just as the signal

assignment statement does. The process statement can also contain signal assignments in

order to specify the outputs of the process.

Using Variables

A variable is kinds of objects used to hold data and also behaves like you would

expect in a software programming language, which is much different than the behavior of

a signal. Although variables represent data like the signal, they do not have or cause

events and are modified differently. Variables are modified with the variable assignment.

Sequential Statements

There are several statements that may only be used in the body of a process. These

statements are called sequential statements because they are executed sequentially. The

types of statements used here are if, if else, for and loop.

Signals and Processes

This section is short, but contains important information about the use of signals in

the process statement. The issue of concern is to avoid confusion about the difference

between how a signal assignment and variable assignment behave in the process statement.

Remember a signal assignment, if anything, merely schedules an event to occur on a

signal and does not have an immediate effect. When a process is resumed, it executes from

top to bottom and no events are processed until after the process is complete.

7

Program Output

In most programming languages there is a mechanism for printing text on the

monitor and getting input from the user through the keyboard. Even though the simulator

monitors the value of signals and variables in the design, it is able to output certain

information during simulation. It is not provided as a language feature in VHDL, but

rather as a standard library that comes with every VHDL language system. In VHDL,

common code can be put in a separate file to be used by many designs. This common code

is called a library. The write statement can also be used to append constant values and the

value of variables and signals of the types bit, bit_vector, time, integer, and real.

1.3 SOFTWARE USED

� Modelsim PE5.4E

� Xilinx ISE 9.2i

1.4 ORGANIZATION OF THE REPORT

� Chapter 2 discusses about the overview of MAC.

� Chapter 3 discusses the existing architecture of MAC.

� Chapter 4 discusses the proposed architecture of MAC.

� Chapter 5 discusses the application of proposed architecture of MAC.

� Chapter 6 presents the simulation results and discussions.

� Chapter 7 presents the conclusion and future scope.

8

CHAPTER 2

OVERVIEW OF MAC

2.1 GENERAL ARCHITECTURE OF MAC

 The general construction of the MAC operation is given by the equation

 Z=A×B+X

Where the multiplier A and multiplicand B are assumed to have n bits each and the

addend X has (2n+1) bits. The basic MAC unit is made up of a multiplier and an

accumulator as shown in Fig 2.1. The multiplier can also be divided into partial product

generator, summation tree and final adder. It executes the multiplication operation by

multiplying the input multiplier and multiplicand. This is added to the previous

multiplication result as the accumulation step.

Figure 2.1: General MAC architecture

The summation network represents the core of the MAC unit and occupies most of

the area, power and delay. Several algorithms and architectures are developed to optimize

the implementation of this block. The addition network reduces the number of partial

products into two operands representing a sum and a carry. The final adder is then used to

generate the multiplication result out of these two operands. The last block is the

accumulator, which is required to perform a double precision addition operation between

the multiplication result and the accumulated operand. It involves a very large adder due

9

to the large operand size. This stage represents a bottleneck in the multiplication process

in terms of speed since it involves horizontal carry propagation. The MAC unit is

classified into various types such as 2-Cycle MAC unit,3-Cycle MAC unit, MAC-NEW

unit and DTMAC unit.

2.2 BLOCK DIAGRAM OF PROJECT

Figure 2.2: Block Diagram of the project

The overall block diagram of the project is shown in Fig2.2.The multiply

accumulate unit is broadly classified into three types such as Three-cycle MAC

unit(MAC-3C),Two-cycle MAC unit(MAC-2C) and MAC-NEW unit. The three

architectures are implemented using BAUGH-WOOLEY algorithm. The proposed MAC

unit has the better performance in comparison with the conventional architectures. The

MAC-NEW is used to create a versatile MAC unit is called DOUBLE THROUGHPUT

MULTIPLIER AND ACCUMULATE UNIT (DTMAC).

Multiply Accumulate unit
(MAC)

MAC-3C MAC-2C MAC-NEW

DTMAC

10

2.3 PROCESS FLOW IN MAC

Figure 2.3: Basic Arithmetic steps of multiplication and accumulation

A multiplier can be divided into four operational steps as shown in Fig 2.3. The

first step is the multiplication operation with the input multiplier and the multiplicand. The

second step is the partial product summation which is used to add all the partial products

and convert them into the form of sum and carry. The third step is the final addition in

which the final multiplication result is produced by adding the sum and carry. The last

step is the accumulation which takes place with the multiplication and the accumulated

result.

11

2.4 BAUGH-WOOLEY ALGORITHM

An algorithm for direct 2’s complement array multiplication has been proposed by

BAUGH-WOOLEY and this algorithm is used in the design of multiplier and accumulator

structures. The primary advantage of this algorithm is that the signs of all the partial

products are positive and thus allowing the array to be entirely the same as conventional

standard array structures.

The following

� Algorithm for two’s-complement multiplication.

� Adjust partial products to maximize regularity of array multiplication.

� Moves partial products with negative signs to the last step also add negation of

partial products rather than subtracts.

Figure 2.4: Unsigned multiplication for Baugh-Wooley algorithm

The Baugh-Wooley algorithm for the unsigned binary multiplication is based on

the concept shown in Fig2.4.The algorithm specifies that all possible AND terms are

created first and then sent through an array of half-adders and full-adders with the carry-

outs chained to the next most significant bit at each level of addition.

For signed multiplication the Baugh-Wooley algorithm can implement signed

multiplication in almost the same way as the unsigned multiplication.

12

The Baugh-Wooley algorithmic is used to multiply 2’s complement numbers using

a regular iterative adder structure. For example, for two n-bit numbers and y their product

can be defined as:

 P=22n-2 Xn-1 Yn-1 + 2i+j X i Y j

 + 2
n-1(2i Yn-1 X i + 2j Xn-1 Y j)

 +2 n + 2 2n-1

Where x and y are in 2’s complement format. This algorithm performs the

multiplication using only addition of positive bit products. This simplifies the hardware

needed to implement the algorithm.

Figure 2.5: Illustration of an 8-bit Baugh-Wooley multiplication

The Baugh-Wooley (BW) algorithm is a relatively straightforward way of doing

signed multiplications Fig. 2.5 illustrates the algorithm for an 8-bit case, where the partial-

13

product bits have been reorganized according to Hatamian’s scheme. The creation of the

reorganized partial-product array comprises three steps:

 i) The most significant bit (MSB) of the first N-1 partial-product rows and all bits

of the last partial-product row, except its MSB, are inverted.

 ii) A ’1’ is added to the Nth column.

 iii) The MSB of the final result is inverted.

Implementing the BW multiplier based on the HPM tree is as straightforward as

the basic algorithm itself. The partial-product bits can be generated by using a 2-input

AND gate for each pair of operand bits. In the case a partial-product bit should be

inverted, we employ a 2-input NAND gate instead. The insertion of ’1’ in column N is

easily accommodated by changing the half adder at top of row N to a full adder with one

of the input signals connected to ’1’1. Finally, the inversion of the MSB of the result is

done by adding an inverter. The final result of the implementation of the BW algorithm is

depicted in Fig. 2.6.

Figure 2.6: Illustration of an 8-bit Baugh-Wooley multiplication using an HPM

reduction tree

14

CHAPTER 3

EXISTING ARCHITECTURE OF MAC

3.1 THREE-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE

The Three-cycle Multiply Accumulate architecture consists of three stages in

which the partial product generation is done in the first stage, the partial product addition

with carry propagation adder in the second stage and accumulation in the final stage as

shown in the Fig 3.1.Multipliers are typically comprised of a partial-product unit (the PP

unit) and the final adder. In this unit carry propagation adder is used as the final adder. To

increase the to increase MAC performance, we can reduce the critical path delay by

inserting an extra pipeline register, either inside the PP unit or between the PP unit and the

final adder. This creates three-cycle MAC architecture but increases overhead in terms of

delay, power and gate count.

 Figure 3.1: Block diagram of the Three-cycle MAC architecture.

15

3.2 STAGES OF THREE-CYCLE MAC UNIT:

The pipeline register inserted between the PP unit and the final adder forms the

first stage as shown in Fig 3.2.Due to the insertion of the pipeline register after the PP unit,

the partial products are computed and fed to the next stage through pipeline register. The

second stage performs the partial product addition with the carry propagation

adder(CPA).The adder adds two n-bit operands and an optional carry-in by performing

carry propagation. It performs carry propagation from each bit to higher bit positions and

does not occupy a significant area of the chip and less power consumption. The third stage

is the accumulation for which each clock cycle the accumulated result is added with the

previous result and stored in the register.

Figure 3.2: Block diagram of the three stages of the Three-cycle MAC

architecture.

A multiply -accumulate operation using inputs X and Y, is shown in Fig. 3.2. The

multiply-accumulate operation starts with the generation and reduction of partial products.

The final adder performs carry propagation of the sums and carries produced by the PP

unit. Finally, the accumulate adder sums the pipelined products (M) to the accumulated

result (F), producing the new result (G). First we compute the product of the two inputs.

Then this result is sign extended to have the same size as the accumulate adder. The

accumulate adder is bits wider than the multiplier to allow (2Ng) multiple multiply-

accumulate iterations without overflow. Finally, the sign extended product is added to the

16

stored accumulated value. The disadvantage is that P [2N-1] must be computed and used

for sign extension in the accumulating addition. A saturation unit removes the guard bits

(Ng) such that the final result is 2N bits wide. The saturation unit takes G [2N+Ng-1:0] as

input, where G is the output of the accumulate adder. The three-cycle MAC architecture is

used as reference architecture and is compared with the proposed MAC architecture. This

unit has increase in power, delay and gate count due to the three stages.

3.3 TWO-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE

The Two-cycle MAC architecture is shown in Fig 3.3. This architecture consists of

two stages in which the partial product generation is done in the first stage and the partial

product summation and accumulation is done in the second stage. The pipeline register the

register between the PP unit and the final adder is removed to obtain a Two-cycle MAC

architecture. Our architecture is based on two’s complement representation, it uses

guarding bits to efficiently support longer MAC loops, and it includes output saturation.

Figure 3.3: Block diagram of the Two-cycle MAC architecture.

In Two-cycle MAC architectures have a first stage that is significantly slower than

the second stage. By performing carry propagation only in the second stage of the MAC

17

pipeline, multiplication and accumulation have similar delays. The partial products are

generated in the first stage and stored in the pipeline register. In the second stage partial

product addition is performed by the carry propagation adder and provides the result in

sum and carry. This result is accumulated with the previous result for each consecutive

clock cycle in the second stage.

Due to the removal of the pipeline register between the PP unit and the final adder

the partial products computed are not fed to the second stage within the stipulated time.

The critical path of this unit goes through the PP unit and the final adder. The evaluation

results shows that this architecture has better power and gate count when compared with

reference architecture. The delay of this unit remains high with the 3-Cycle MAC unit due

to the removal of the pipeline register after the PP unit.

18

CHAPTER 4

PROPOSED ARCHITECTURE OF MAC

4.1 PROPOSED MULTIPLY ACCUMULATE ARCHITECTURE

The MAC–NEW architecture is based on two’s complement representation, it uses

guarding bits to efficiently support longer MAC loops, and it includes output saturation.

By performing carry propagation in the second stage of the MAC pipeline, multiplication

and accumulation have similar delays. The carry-save adder is used which leads to the

reduction of power. With reference to the two cycle MAC architecture, this unit inserts the

pipeline register after the partial product unit.

This architecture is based on two conditions such as

� The accumulation should take place in the second stage of a 2-cycle MAC unit.

� The carry should be propagated only once in a MAC pipeline, thus, in the second

stage.

The MAC-NEW unit shown in Fig 4.1 consists of two stages: partial product unit in the

first stage and the accumulate adder in the second stage. The final adder has been

removed, and a carry-save adder has been inserted after the pipeline registers. The

maximum delay of the carry-save adder is only that of a single full adder, which means

that the MAC’s critical path delay still depends on the PP unit. In the carry-save adder

there is no need to sign extend the multiplier output instead use a row of ’1’ to perform the

sign extension.

This MAC unit do not require any extra cycles at the end of the loops as the

interconnects are localized which simplifies routing, decreases delay and reduces energy

dissipation. As the carry propagation and the accumulation takes place in the second stage

this architecture uses several guard bits without any overflow problems. The critical path

delay of this unit is within the partial product unit.

19

Figure 4.1: Block diagram of the MAC-NEW unit

Carry propagation only takes place in the second stage, which means that the

multiplier’s final adder is eliminated, leading to higher speed and lower energy. Since

accumulation takes place inside the second stage a pipeline register located before the

accumulation stage has no impact on functionality. Regardless of pipelining, our MAC

unit will produce the correct result in each cycle, and no extra cycles need to be added at

the end of the loops– interconnects are localized, which simplifies routing, decreases

delay, and reduces energy dissipation.

Because of the above advantages, it supports several guarding bits, making longer

loops feasible without any overflow problems. The use of guarding bits in an approach

where the accumulated value is fed back to the PPRT’s input would most certainly have a

negative impact on hardware complexity. The MAC-NEW exploits the fact that the delay

of the accumulate adder is shorter than the delay of the PP unit, by at least an amount

corresponding to the delay of a full-adder cell.

20

The critical path is through the PP unit as this architecture uses pipeline registers at

the bottom of the PP unit, MAC-NEW obviously can operate at the same speed as MAC-

3C, while its performance on average for various operand size such as 16, 32, 48 and 64 is

faster than MAC-2C. As far as power dissipation is concerned, the final adder is replaced

by the simple carry-save adder,MAC-3C on average dissipates more power than MAC-

NEW for the same operating frequency and timing constraint. It requires two cycles for

completing the MAC computation, still performs the MAC operation at the same

operating frequency as a 3-cycle MAC unit, at lower energy dissipation.

The Evaluation methodology shows that the MAC-NEW unit is efficient in

performance parameters such as power, delay and gate count in comparison with the

conventional architecture. Due to the efficiency, this architecture is used to create an

application architecture called Double Throughput Multiply Accumulate unit [DTMAC].

21

CHAPTER 5

APPLICATION OF PROPOSED ARCHITECTURE OF MAC

5.1 DOUBLE THROUGHPUT MULTIPLY ACCUMULATE UNIT

A MAC unit that can optionally switch between N-bit operation and 2xN/2-bit

operation is referred as a Double Throughput MAC (DTMAC) is shown in Fig 5.1. This

feature would be useful in many DSP-oriented applications, when the dynamic range is

lower or when there is a need to simultaneously calculate real and imaginary values. A

double throughput 32-bit MAC can be logically implemented by tying together two

separate, single 16-bit MACs that support two parallel MAC operations.

Figure 5.1: Block diagram of the DTMAC unit

Our DTMAC unit in Fig 5.2 is designed to support the efficient execution of

several operating modes in a 32-bit data path. The unit employs the Twin-Precision (TP)

technique, in terms of a modified 32-bit TP multiplier1 that contains a Twin-Precision

Partial-Product Reduction Tree (TP-PPRT) to generate the partial product outputs, which

22

in conventional schemes are fed to a final adder2. Instead we insert a level of adder cells

that combine the outputs of the TPPPRT with the result of the twin-precision accumulate

adder; is called”combination unit”. In the guarding bit positions of the combination unit,

the half adder cells add’1’s with the accumulated result, to obtain the correct logical

function. The combination unit can be placed after or before the pipeline registers

depending on whether the TP-PPRT or the twin-precision accumulate adder represents the

dominant delay of the DTMAC unit.

The use of the combination unit makes it possible to build a high-speed, but still

flexible DTMAC unit using only two pipeline stages, which limits the clock load and

makes for a power-efficient design. The twin-precision accumulate adder is based on the

Ladner-Fisher parallel-prefix structure and contains 80 bits, divided in two sections (high

and low) each containing 32 data and eight (8) extra guarding bits, as shown in the

detailed schematic of Fig. 2(c). Because each of the two sections has eight guarding bits,

this DTMAC unit supports loops with 256 iterations without requiring any right shifting of

the output to avoid overflow. To control the operating mode, an AND gate is inserted; one

control bit (CTRL2[0]) sets the XOR’s input at position 40 to either zero or to the carry

signal of the 32-bit data part of the low section of the twin-precision accumulate

adder.

Figure 5.2: Block diagram of the TP-PP unit based on the Baugh–Wooley

multiplication algorithm.

23

5.2 Components of DTMAC unit:

1) TP-PP Unit: To support double-throughput operations, the partial-product generation

and reduction are based on the twin-precision (TP) technique [24]. Here, the partial

products that are not needed during narrow-width operations are forced

to zero while some lower-significance partial products are negated4 to provide the correct

function for theM -bit multiplication in the lower-significance section. Depending

on the operating mode, “1” bits can be set in position N+M, N and M.M=N/2 is assumed

as the lower-significance section the “low half.”

2) Carry-Save Adder: The carry-save adder (CSA) shown in Fig 5.3 is used for the Partial

product addition for the DTMAC unit .In this carry save adder, guard bits and sign

extension for the N/2-bit operation in the low half must be accommodated .This is

achieved by inserting a row of Ng+1 bits “1” that is summed together with the

accumulated value and the most significant bit of the result from the TP-PP unit for the

N/2-bit operation in the low half bit position. During N/2-bit operations in the low half,

S[N-3] will always be zero, due to the TP technique in which partial products are forced to

zero. Since S [N-3] will not carry any useful information during N/2-bit operations in the

low half, this signal can be used to add the required “1” at bit positionN-1 . This is easily

done by feeding S [N-3] and a control signal through an extra OR gate, whose output may

optionally be forced to “1,”

Figure 5.3: Block diagram of the gates of the combination unit in the DTMAC unit.

3) Accumulate Adder: The accumulate adder shown in Fig 5.4 of the DTMAC unit is

based on the conditional-sum adder structure, enabling efficient separation into high and

low halves, each with Ng guard bits to avoid overflow. To control the operating mode, an

AND gate is inserted; one control bit (CTRL1[0]) sets the AND’s input at position N+Ng

24

either to zero or to the carry signal of the N-1 -bit data part of the low half of the

accumulate adder. For full precision operations, this effectively by passes the Ng guard

bits used for N/2 -bit operations in the low half. Similarly, the accumulator output bits that

correspond to unused guard bits (F [N+Ng-1: N]) are discarded during N-bit operation.

4) Saturation Circuit: The saturation unit for the DTMAC not only needs to consider full

precision (N) operations but also the N/2 operations in the high and low halves.

• In full-precision mode, 2N+Ng bits in the output of the accumulate adder are

processed.

• In half-precision mode, bits N+Ng are processed.

• In double-throughput mode, not only N+Ng bits of the low half are processed, but

also N+Ng bits of the high half are processed.

Figure 5.4: Block diagram of the accumulate adder based on the conditional-sum

adder architecture

5.3 DTMAC OPERATING MODES

The DTMAC unit operates on two’s complement data and supports six operating

modes—three for MAC operations and three for multiplications—as determined by the

value of the 3-bit control signal (CTRL):

� 000: Full-Precision 32-bit MAC (FP DTMAC).

� 001: Half-Precision 1x16-bit MAC (HP DTMAC).

� 010: Double-Throughput 2x16-bit MAC (DT DTMAC).

25

� 100: Half-Precision 1x16-bit multiplication (HP MULT).

� 101: Double-Throughput 2x16-bit multiplication (DT MULT).

� 110: Full-Precision 32-bit multiplication (FP MULT).

 In the proposed DTMAC unit, there exists no final adder. This makes the critical

path delay of the 2-cycle DTMAC dominated by the delay of the TP-PPRT part. The

DTMAC actually has the same critical delay as that of a conventional 3-cycle single 32-bit

MAC, in which a pipeline register is inserted between the PPRT block and the final adder

to several the critical path of the multiplication. The result is that the DTMAC unit,

despite the operating mode flexibility, has small area, low power dissipation and short

critical path delays. When the DTMAC unit operates in HP DTMAC mode, half of the

respective registers are de-activated to isolate the inputs of half of the twin-precision

accumulate adder and the MSB input bits of the multiplier are set to zero, to reduce

switching activity and dynamic power dissipation.

 When the DTMAC unit operates in 1×16-bit MAC mode it dissipates a negligible

amount of energy more than the basic, fixed-function, 16-bit MAC unit. The DTMAC unit

has a large footprint than MAC32-2C due to extra circuitry to support the multiple

operation modes. These comparisons reveal that the implementation of operating-mode

flexibility in the DTMAC unit comes at a limited overhead.

The important point is that we can save energy by adjusting the operating mode to the

precision of the data:

• When the DTMAC unit operates in the default 32-bitMAC mode (FP_MAC), its

energy dissipation is lower than MAC32-2C when performing 32-bit

computations.

• When the DTMAC unit operates in 1 16-bit MAC mode (HP_MAC), the 32-bit

DTMAC unit performs 16-bit multiply-accumulate operations more energy

efficiently than MAC32-2C performs computations on 16-bit operands. This

reduction largely stems from avoiding unnecessary switching caused by the 16-bit

sign extension of two’s complement 32-bit data that carry only 16 bits of

information.

26

• When the DTMAC unit operates in the 2 16-bit MAC mode (DT_MAC), its

energy dissipation per 16-bit multiply-accumulate operation is similar to that of

MAC16-2C. However, the DTMAC unit uses only half the cycles of MAC16-2C

to compute all operations, so the surrounding data path circuits are engaged for a

significantly shorter time. This leads to significant energy savings for a system in

which the DTMAC unit is integrated.

5.4 MULTIPLICATION THROUGH TWIN PRECISION

The twin-precision technique shown in Fig 5.5 is an efficient way of achieving

Double Throughput in a multiplier with low area overhead and delay. The twin- precision

technique on signed multipliers based on the regular High Performance Multiplier (HPM)

reduction tree. The twin-precision technique can reduce the power dissipation by adapting

a multiplier to the bit width of the operands being computed. The technique also enables

an increased computational throughput, by allowing several narrow-width operations to be

computed in parallel.

Achieving double throughput for a multiplier is not as straightforward as, for

example, in an adder, where the carry chain can be cut at the appropriate place to achieve

narrow-width additions. It is possible to use several multipliers, where at least two have

narrow bit width, and allow them share the same routing, but has several drawbacks: i)

The total area of the multipliers would increase, since several multiplier units are used. ii)

The use of several multipliers increases the fan out of the signals that drive the inputs of

the multipliers. Higher fan out means longer delays and/or higher power dissipation. iii)

There would be a need for multiplexers that connect the active multiplier(s) to the result. It

is not as easy to deploy the twin-precision technique onto a BW multiplication as it is for

the unsigned multiplication, where only parts of the partial products need to be set to zero.

To be able to compute two signed multiplications, it is necessary to make a more

sophisticated modification of the partial-product array.

For the 4-bit multiplication in the LSP of the array, there is a need for some more

modifications. In the active partial-product array of the 4-bit LSP multiplication (shown in

27

white), the most significant partial product of all rows, except the last, needs to be

negated. For the last row it is the opposite, here all partial products, except the most

significant, are negated. Also for this multiplication a sign bit ‘1’ is needed, but this time

in column. Finally the MSB of the results needs to be negated to get the correct result of

the two 4-bit multiplications.

Figure 5.5: Illustration of a unsigned 8-bit multiplication, using the Baugh–Wooley

Algorithm

To allow the full-precision multiplication of size to coexist with two

multiplications of size in the same multiplier, it is necessary to modify the partial-product

generation and the reduction tree. For the -bit multiplication in the MSP of the array all

that is needed is to add a control signal that can be set to high, when the N/2-bit

multiplication is to be computed and to low, when the full precision multiplication is to be

computed. To compute the N/2-bit multiplication in the LSP of the array, certain partial

products need to be negated. This can easily be accomplished by changing the two-input

AND gate that generates the partial product to a two-input NAND gate followed by an

XOR gate. The second input of the XOR gate can then be used to invert the output of the

NAND gate. When computing the N/2-bit LSP multiplication, the control input to the

XOR gate is set to low making it work as a buffer. When computing a full-precision

multiplication the same signal is set to high making the XOR work as an inverter. Finally

28

the MSB of the result needs to be negated and this can again be achieved by using an

XOR gate together with an inverted version of the control signal for the XOR gates used

in the partial-product generation. The unwanted partial products to zero can be done by

three-input AND gates as for the unsigned multiplication.

5.4.1 HPM IMPLEMENTATION

A twin-precision implementation based on the regular HPM reduction tree is

shown in Fig.5.6. For high speed and/or low-power implementations, a reduction tree with

logarithmic logic depth, such as TDM [9], Dadda [10], Wallace [11] or HPM [12] is

preferred for summation of the partial products. Such a log-depth reduction tree has the

benefit of shorter logic depth. Further, a log-depth tree suffers from fewer glitches making

it less power dissipating. In fig 5.3, the unsigned multiplication is implemented in Baugh-

Wooley algorithm in which 4-bit multiplication, shown in white, can be computed in

parallel with a second 4-bit multiplication, shown in black. For simplicity the AND gates

for partial-product generation is not shown and a ripple carry is used as final adder.

Figure 5.6: Block diagram of an unsigned 8-bit twin-precision multiplier

based on the regular HPM reduction tree

29

5.5 FLOATING POINT MULTIPLIER IN MULTIPLY

ACCUMULATE UNIT

Floating Point numbers represented in IEEE 754 format are used in most of the

DSP Processors. Floating point arithmetic is useful in applications where a large dynamic

range is required or in rapid prototyping applications where the required number range has

not been thoroughly investigated. The Floating Point Multiplier IP helps designers to

perform floating point Multiplication on FPGA represented in IEEE 754 single precision

floating point format.

5.5.1 FUNCTIONAL DESCRIPTION

A Floating point multiplier is the most common element in most digital

applications such as digital filters, digital signal processors, data processors and control

units. The present Floating Point Multiplier IP has three blocks sign calculator, exponent

calculator, mantissa calculator, which works parallel and a normalization unit. The

Multiplier is pipelined, so the first result appears after the latency period and then the

result can be obtained after every clock cycle.

Figure 5.7: Block diagram of the Floating Point Multiplier

The Schematic symbol of Floating Point Multiplier is shown in Fig 5.7. It takes two

IEEE 754 format single precision floating point numbers and produces the multiplied

output. It also supports the features like underflow, overflow and invalid operations. This

30

unit consists of two stages, multiplication calculation and normalization. The first stage

consists of the following three blocks which work in parallel.

• Sign Calculator: The Output Sign is the exor of two sign bit inputs.

• Exponent Calculator: The input exponents are added and the bias is removed to

produce the exponent of Output.

• Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa's

of two inputs. Second stage performs Normalization of the Output obtained from the first

stage.

• Normalization Block: The normalization is the last and most complicated part. This

block is implemented in three pipelined stages.

This block first calculates how much amount the mantissa needs to be left shifted.

The mantissa is processed in parallel in a number of modules, each looking at four bits of

the mantissa. The first module looks at first four bits of the mantissa and outputs the

amount to be shifted assuming a one was found on these four bits. The second module

operates on the next four bits of the mantissa treating first four bits are zero and outputs

the amount to be shifted left.

This process is repeated for the remaining bits of mantissa. Signals are generated if

the four bits of the mantissa are zero. Depending on the signal values the amount of shift

is selected. This selection is implemented in three multiplexer stages. Depending on the

two leading bits of final mantissa, the final mantissa is shifted left by previously calculated

shift amount or shifted right. The final exponent is also corrected accordingly.

31

CHAPTER 6

SIMULATION RESULTS AND DISCUSSION

All PP units of the MAC architectures are based on the power-efficient Baugh–

Wooley algorithm for partial-product generation and the HPM partial-product reduction

tree. The accumulate adder is of conditional-sum type and has an extension of eight guard

bits (Ng=8). This allows the MAC unit to support loops of up to 256 iterations without

requiring the output to be right-shifted to avoid overflow. A final adder based on parallel

algorithm of recurrence equation supports fast addition of the PP unit outputs. The

Multiply Accumulate architecture is designed using VHDL and simulated using MODEL

SIM. The performance parameters are synthesized using Xilinx.

6.1 SIMULATION WAVEFORM OF THREE-CYCLE MAC UNIT

Figure 6.1: Waveform for the three-cycle MAC of operand size 16 -bit

The inputs of MAC-3C unit x and y are of 16 bits. The multiplier output is 16-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 32-bit (acc_reg).

32

Figure 6.2: Waveform for the three-cycle MAC of operand size 32-bit

The inputs of MAC-3C unit x and y are of 32 bits. The multiplier output is 32-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 64-bit (acc_reg) .

Figure 6.3: Waveform for the three-cycle MAC of operand size 48-bit

The inputs of MAC-3C unit x and y are of 48 bits. The multiplier output is 48-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 96-bit (acc_reg).

33

 Figure 6.4: Waveform for the three-cycle MAC of operand size 64-bit

The inputs of MAC-3C unit x and y are of 64 bits.The multiplier output is 64 -bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 128 -bit (acc_reg).

6.2 SIMULATION WAVEFORM OF TWO-CYCLE MAC UNIT

Figure 6.5: Waveform for the two-cycle MAC of operand size 16-bit

34

The inputs of MAC-2C unit x and y are of 16 bits. The multiplier output is 16 -bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 32 -bit (acc_reg).

Figure 6.6: Waveform for the two-cycle MAC of operand size 32-bit

The inputs of MAC-2C unit x and y are of 32 bits. The multiplier output is 32-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 64-bit (acc_reg).

Figure 6.7: Waveform for the two-cycle MAC of operand size 48-bit

35

The inputs of MAC-2C unit x and y are of 48 bits. The multiplier output is 48-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 96-bit (acc_reg).

Figure 6.8: Waveform for the two-cycle MAC of operand size 64-bit

The inputs of MAC-2C unit x and y are of 64 bits. The multiplier output is 64-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 128-bit (acc_reg).

6.3 SIMULATION WAVEFORM OF MAC-NEW UNIT

Figure 6.9: Waveform for the MAC-NEW of operand size 16-bit

36

The inputs of MAC-NEW unit x and y are of 16 bits. The multiplier output is 16-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 32-bit (acc_reg).

Figure 6.10: Waveform for the MAC-NEW of operand size 32-bit

The inputs of MAC-NEW unit x and y are of 32 bits. The multiplier output is 32-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 64-bit (acc_reg) .

Figure 6.11: Waveform for the MAC-NEW of operand size 48-bit

37

The inputs of MAC-NEW unit x and y are of 48 bits. The multiplier output is 48-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 96-bit (acc_reg) .

Figure 6.12: Waveform for the MAC-NEW of operand size 64-bit

The inputs of MAC-NEW unit x and y are of 64 bits. The multiplier output is 64-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 128-bit (acc_reg).

6.4 SIMULATION WAVEFORM OF DTMAC UNIT

Figure 6.13: Waveform for the Full Precision DTMAC unit

38

The inputs of the FP_MAC mode is 32 bit in which LSB of the a-bit and b-bit are

taken as two 16-bits.The selection mode is given 000 and for each consecutive clock cycle

the accumulated result is stored in the FP_MAC.

Figure 6.14: Waveform for the Half Precision DTMAC unit

The inputs of the HP_MAC mode is 16 bit in which LSB of the a-bit and b-bit are

taken as two 8-bits.The selection mode is given 001 and for each consecutive clock cycle

the accumulated result is stored in the HP_MAC.

Figure 6.15: Waveform for the DTMAC unit

39

The inputs of the DT_MAC mode is 2×16 bit in which LSB of the a and b-bit is

taken as 1×16 bit and MSB of the a and b-bit are taken as 1×16 bit. The selection mode is

given 011 and for each consecutive clock cycle the accumulated result is stored in the

DT_MAC.

Figure 6.16: Waveform for the Full Precision Multiplication unit

The inputs of the FP_MULT mode is 32- bit in which MSB of the and b-bit is

taken as two 1×16 bit. The selection mode is given 100 and for each consecutive clock

cycle the multiplication result is stored in the FP_M.

Figure 6.17: Waveform for the Half-Precision Multiplication unit

40

The inputs of the HP_MULT mode is 1×16 bit in which MSB of the a and b-bit is

taken as two 8-bit.The selection mode is given 101 and for each consecutive clock cycle

the multiplication result is stored in the HP_M.

Figure 6.18: Waveform for the Double Throughput Multiplication unit

The inputs of the DT_MULT mode is 2×16 bit in which MSB of the a and b-bit is

taken as two 16-bit.The selection mode is given 111 and for each consecutive clock cycle

the multiplication result is stored in the DT_M.

41

6.5 SIMULATION WAVEFORM OF FLOATING POINT MULTIPLIE R

Figure 6.19: Waveform for the Floating Point Multiplier MAC unit

The input of the Floating Point Multiplier is 32- bit in which each of exponents (e1 and

e2) is 8 bit. The mantissa bit (m1 and m2) are 23 bit and the sign bit (s1 and s2) is 1-

bit.The accumulation is done by the MAC-NEW 32-bit.

6.6 SYNTHESIS REPORT OF THE MAC ARCHITECTURE

Figure 6.20: Power calculation for 3-C MAC unit of 16-bit

42

Figure 6.21: Power calculation for 3-C MAC unit of 32-bit

Figure 6.22: Power calculation for 2-C MAC unit of 48-bit

43

Figure 6.23: Power calculation for 2-C MAC unit of 64-bit

Figure 6.24: Power calculation for MAC-NEW unit of 16-bit

44

Figure 6.25: Power calculation for MAC-NEW unit of 64-bit

Figure 6.26: Power calculation for Full Precision DTMAC unit

45

Figure 6.27: Power calculation for Half Precision DTMAC unit

6.7 COMPARISON OF VARIOUS MAC ARCHITECTURES

Table 6.1: Performance Analysis of conventional MAC architectures of the operand

size 16 and 32 bit

OPERAND SIZE 16 32 Performance
Evaluation (%)

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 16-bit 32-bit

POWER(mW) 77 70 155 154 9.09 0.65

DELAY(ns) 79.97 79.24 158.94 162.59 0.92 2.29

GATE COUNT 14,885 13,930 52,439 51,320 6.42 2.13

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 16 and 32-bit of the Three-cycle and Two-cycle MAC architecture.

The parameters such as power and gate count for the 3-C MAC unit is high in comparison

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high. The

performance is evaluated for the 16 and 32-bit.

46

Table 6.2: Performance Analysis of conventional MAC architectures of the operand

size 48 and 64 bit

OPERAND SIZE 48 64 Performance
Evaluation (%)

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 48-bit 64-bit

POWER(mW) 176 170 224 221 3.41 1.34

DELAY(ns) 161.47 163.02 171.75 173.20 0.96 0.84

GATE COUNT 58,974 59.091 88,336 89,132 0.20 0.90

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 48 and 64 bit of the Three-cycle and Two-cycle MAC architecture.

The parameters such as power and gate count for the 3-C MAC unit is high in comparison

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high .The

performance is evaluated for the 48 and 64-bit.

Table 6.3: Performance Analysis of 3-C and MAC-NEW architectures of the

operand size 16 and 32 bit

OPERAND

SIZE
16 32 Performance

Evaluation (%)

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 16-bit 32-bit

POWER(mW) 77 72 155 148 6.50 4.52

DELAY(ns) 79.97 74.21 158.94 153.27 7.20 3.57

GATE COUNT 14,885 13,356 52,439 42,880 10.27 16.44

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 16 and 32 bit of the Three-cycle and MAC-NEW architecture. The

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The

performance is evaluated for the 16 and 32 bit.

47

Table 6.4: Performance Analysis of 3-C and MAC-NEW architectures of the

operand size 48 and 64 bit

OPERAND

SIZE
48 64 Performance

Evaluation (%)

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 48-bit 64-bit

POWER(mW) 176 164 224 218 6.82 2.68

DELAY(ns) 161.47 157.22 171.75 168.96 2.64 1.62

GATE COUNT 58,974 49,180 88,336 77,903 16.61 11.81

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 48 and 64 bit of the Three-cycle and MAC-NEW architecture. The

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The

performance is evaluated for the 48 and 64 bit.

Table 6.5: Comparison of Operating Modes in DTMAC Architecture

Architecture FP_MAC HP_MAC DT_MAC
Power 148 72 144

Delay 153.27 74.21 148.42

Gate Count 42,880 13,356 26,712

The DTMAC operating modes parameters are tabulated in Table 6.5. The

parameters of the FP_MAC are same as 32-bit MAC-NEW architecture. The HP_MAC is

same as 16-bit MAC-NEW architecture. The DT_MAC is 2×16-bit MAC-NEW

architecture.

Table 6.6 :Parameters of the Floating Point multiplier in MAC unit

Parameters

Power (mW) 106

Delay(ns) 73.964

Gate Count 3579

48

6.8 POWER ANALYSIS

158

160

162

164

166

168

170

172

174

176

178

MAC-3C MAC-NEW

MAC-3C

MAC-NEW

Figure 6.28: Power Analysis of MAC-3C and MAC-NEW of the operand size 32 bit

The Power analysis is performed for the MAC-3C and MAC-NEW architecture.

The MAC-3C unit has more power when compared with the MAC-NEW architecture due

to the three-pipeline stages.

6.9 DELAY ANALYSIS

155

156

157

158

159

160

161

162

MAC-3C MAC-NEW

MAC-3C

MAC-NEW

Figure 6.29 :DelayAnalysis of MAC-3C and MAC-NEW of the operand size 32 bit

The Delay analysis is performed for the MAC-3C and MAC-NEW architecture.

The MAC-3C unit has more delay when compared with the MAC-NEW architecture due

to the three-pipeline stages.

49

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

 This project presents the estimation of the efficient performance parameters such as

power, gate count, and delay for the different Multiply Accumulate architectures. The

architectures are designed using Baugh-Wooley algorithm. The Three-cycle, Two-cycle

and MAC-NEW architecture is simulated through MODEL SIM and synthesized using

XILINX. The performance parameter of the conventional MAC architecture is compared

with the proposed MAC architecture and the results are tabulated.

 The comparison is made between the MAC-3C and MAC-2C architecture in which the

power and gate count remains high for the MAC-3C but the delay is large for the MAC-

2C due to the removal of the pipeline register after the Partial Product (PP) unit. The

MAC-NEW is compared with the reference architecture (MAC-3C) and the results are

tabulated in which the parameters are efficient for the MAC-NEW architecture. As it is an

efficient architecture it is used to create a versatile MAC unit called Double Throughput

MAC unit(DTMAC).As a modification to this project, the Floating point multiplier is used

in the MAC unit and the parameter are tabulated.

FUTURE SCOPE

 The MAC-NEW architecture can be used in the efficient design of digital signal

processing circuits such as FIR and IIR filter. As this architecture is efficient in

performance parameters it increases the computation of the filter.

50

BIBLIOGRAPHY

[1] A High-Speed, Energy-Efficient Two-Cycle Multiply-Accumulate (MAC)

Architecture and Its Application to a Double-Throughput MAC Unit IEEE

Transaction, volume 57, NO. 12, Dec 2010.

[2] T. T. Hoang, M. Själander, and P. Larsson-Edefors, “High-speed, energy- efficient

2-cycle multiply-accumulate architecture,” in Proceedings. IEEE International.

SOC Conference. (SOC), Sep. 2009, pp. 119–122.

[3] M. Själander and P. Larsson-Edefors, “Multiplication acceleration through twin

precision,” IEEE Transaction Very Large Scale Integrated. (VLSI)., volume 17, pp.

1233–1246, Sep. 2009.

[4] A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multiply

accumulate (MAC) unit for digital signal processing applications, “in Proceedings.

IEEE International Symposium Circuits System (ISCAS), May 2007, pp. 3199–

3202.

[5] T.T. Hoang, M. Själander, and P. Larsson-Edefors, “Double throughput multiply-

accumulate unit for Flex Core processor enhancements,” presented at the IEEE

International Symposium, Parallel Distributed Processing Symposium (IPDPS),

Reconfigurable Architecture Workshop (RAW), Rome, Italy, and May 2009.

[6] A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multiply

accumulate (MAC) unit for digital signal processing applications, “in Proceedings

IEEE International Symposium Circuits System (ISCAS), May 2007 ,pp. 3199–3202.

[7] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Själander, D. Johansson, and M.

Schölin, “Multiplier reduction tree with logarithmic logic depth and regular

connectivity,” in Proceedings IEEE International Symposium Circuits System

(ISCAS), May 2006, pp. 4–8.

51

[8] M. Själander, H. Eriksson, and P. Larsson-Edefors, “An efficient twin precision

multiplier,” in Proceedings IEEE International Conference Computer Design

(ICCD), Oct. 2004, pp. 30–33.

[9] R. K. Kolagotla, J. Fridman, B. C. Aldrich, M. M. Hoffman, W. C. Anderson, M. S.

Allen, D. B. Witt, R. R. Dunton, and L.A. Booth, “High performance dual-MAC

DSP architecture,” IEEE Signal Processing Magazine., volume 19, no. 4, pp. 42–53,

July. 2002.

[10] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to

improve processor power and performance,” in Proceedings International

Symposium High-Performance Computer Architecture, 1999, pp. 13–22.

[11] P. F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate operation

in multiplication time,” in Proceedings International Symposium Computer

Arithmetic (ARITH), July 1997, pp. 99–106.

[12] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array multiplication

algorithm,” IEEE Transaction Computer, volume. C-22, pp.1045–1047, Dec. 1973.

[13] J. Sklansky, “Conditional-sum addition logic,” IRE Transaction Electronic

Computer, volume. EC-9, pp. 226–231, 1960.

i

 COMPARATIVE ANALYSIS OF DIFFERENT

MULTIPLY ACCUMULATE ARCHITECTURE

By

P.M. SNEHA ANGELINE

Reg. No. 1020106017

of

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University, Coimbatore)

COIMBATORE - 641049

A PROJECT REPORT

Submitted to the

FACULTY OF ELECTRONICS AND COMMUNICATION

 ENGINEERING

In partial fulfillment of the requirements

for the award of the degree

of

MASTER OF ENGINEERING

IN

APPLIED ELECTRONICS

APRIL 2012

ii

BONAFIDE CERTIFICATE

 Certified that, this project report entitled “COMPARATIVE ANALYSIS OF

DIFFERENT MULTIPLY ACCUMULATE ARCHITECTURE ” is the bonafide

work of Ms.P.M.SNEHA ANGELINE [Reg.No:1020106017] who carried out the

project under my supervision. Certified further, that to the best of my knowledge the

work reported herein does not form part of any other project or dissertation on the basis

of which a degree or award was conferred on an earlier occasion on this or any other

candidate.

(Ms.M.SHANTHI) (Dr. RAJESWARI MARIAPPAN)

 Project Guide Head of the Department

 The candidate with university Register no. 1020106017 is examined by us in the

project viva-voce examination held on …………………….

Internal Examiner External Examiner

iii

ACKNOWLEDGEMENT

I express my profound gratitude to our director Dr.J.Shanmugham, for giving

this opportunity to pursue this course

At this pleasing moment of having successfully completed the project work, I

wish to acknowledge my sincere gratitude and heartfelt thanks to our beloved Principal

Dr.S.Ramachandran, for having given me the adequate support and opportunity for

completing this project work successfully.

I express my sincere thanks to Dr.Rajeswari Mariappan Ph.D., the ever active,

Head of the Department of Electronics and Communication Engineering, who rendering

us all the time by helps throughout this project.

I extend my heartfelt thanks to my internal guide Mrs.M.Shanthi M.S, Asso.

Professor, for her ideas and suggestion, which have been very helpful for the completion

of this project work. Her careful supervision has ensured me in attaining perfection of

work.

In particular, I wish to thank and everlasting gratitude to the project coordinator

Mrs.R.Hemlatha M.E., Asst.Professor, Department of Electronics and Communication

Engineering for her expert counseling and guidance to make this project to a great deal of

success.

Last, but not the least, I would like to express my gratitude to my family

members, friends and to all my staff members of Electronics and Communication

Engineering department for their encouragement and support throughout the course of

this project.

iv

ABSTRACT

The Multiplier and Accumulator (MAC) unit is used as a basic element in most of

the digital signal processing application in order to perform repeated multiplication and

addition. The conventional MAC architectures uses more shift and add operation at

multiplier unit which increases delay in the arithmetic operations.

The main objective is to design a new multiplier and accumulator architecture to

perform high speed arithmetic operation. The three cycle MAC (MAC-3C) architecture

increase the performance by reducing the critical path delay by inserting an extra pipeline

register either inside the partial product (PP) unit or between PP unit and final adder. The

two cycle MAC (MAC-2C) architecture performs the carry propagation only in the

second stage leads to the similar delay in multiplication and accumulation. The proposed

MAC architecture (MAC-NEW) has two stages with the pipeline register inserted after

the partial product unit. This unit uses carry-save adder which leads to the reduction of

power. Due to the carry propagation in the second stage, multiplier’s final adder is

eliminated, leading to higher speed and lower energy. The Double Throughput MAC unit

(DTMAC) switches between N-bit operations and 2×N/2-bit operations which reduces

power and critical path delay on the removal of final adder.

Through the “ COMPARATIVE ANALYSIS OF DIFFERENT MULTIPLY

ACCUMULATE ARCHITECTURE” is planned to obtain an efficient performance

parameter such as gate count, delay and power for the different MAC architectures. The

MAC architecture is designed using MODEL SIM and simulated using Xilinx ISE 9.2i

and the parameters is compared to obtain an efficient architecture.

v

CHAPTER

NO

TITLE PAGE

NO

1

2

3

 4

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 Objective of The Work

1.2 Introduction to VHDL

1.2.1 Structural Descriptions

 1.2.2 Dataflow Descriptions

 1.2.3 Behavioral Descriptions

1.3 Software Used

1.4 Organization of the Report

OVERVIEW OF MAC

2.1 General Architecture of MAC

2.2 Block Diagram of the Project

2.3 Process Flow in MAC

2.4 Baugh-Wooley Algorithm

EXISTING ARCHITECTURES OF MAC

3.1 Three-cycle Multiply Accumulate Architecture

3.2 Stages of Three–cycle MAC unit

3.3 Two-cycle Multiply Accumulate Architecture

PROPOSED ARCHITECTURE OF MAC

4.1 Proposed Multiply Accumulate Architecture

iv

vii

ix

x

1

2

3

3

4

5

7

7

8

9

10

11

11

14

15

16

18

18

vi

5

6

7

APPLICATION OF PROPOSED ARCHITECTURE

OF MAC

5.1 Double Throughput Multiply Accumulate unit

5.2 Components of DTMAC unit

5.3 DTMAC operating modes

5.4 Multiplication through Twin Precision

 5.4.1 HPM Implementation

5.5 Floating Point Multiplier in Multiply Accumulate unit

 5.5.1 Functional Description

SIMULATION RESULTS AND DISCUSSION

6.1 Simulation Waveform of Three-Cycle MAC Unit

6.2 Simulation Waveform of Two-Cycle MAC Unit

6.3 Simulation Waveform of MAC-NEW Unit

6.4 Simulation Waveform of DTMAC Unit

6.5 Simulation Waveform of Floating point Multiplier

6.6 Synthesis Report of the MAC architectures

6.7 Comparaison of various MAC architectures

CONCLUSION AND FUTURE SCOPE

REFERENCES

21

21

23

24

26

28

29

29

31

31

33

35

37

41

41

45

49

50

vii

LIST OF FIGURES

FIGURE

NO

 CAPTION

PAGE

NO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Schematic SR Latch

Dataflow approach of Schematic SR Latch

General MAC architecture

Block Diagram of the project

Basic Arithmetic steps of multiplication and accumulation

Unsigned multiplication for Baugh-Wooley algorithm

Illustration of an 8-bit Baugh-Wooley multiplication

Illustration of an 8-bit Baugh-Wooley multiplication using

an HPM reduction tree

Block diagram of the Three-cycle MAC architecture

Block diagram of the three stage of the Three-cycle MAC

architecture

Block diagram of the Two-cycle MAC architecture

Block diagram of the MAC-NEW unit

Block diagram of the DTMAC unit

Block diagram of the TP-PP unit based on the Baugh–

Wooley multiplication algorithm

Block diagram of the gates of the combination unit in the

DTMAC unit

Block diagram of the accumulate adder based on the

conditional-sum adder architecture

Illustration of a unsigned 8-bit multiplication, using the

Baugh–Wooley Algorithm

Block diagram of an unsigned 8-bit twin-precision multiplier

based on the regular HPM reduction tree

4

5

8

9

10

11

12

13

14

 15

16

19

21

22

23

 24

 27

28

viii

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Block diagram of the Floating Point Multiplier

Waveform for the Three-cycle MAC of operand size 16 –bit

Waveform for the Three-cycle MAC of operand size 32 –bit

Waveform for the Three-cycle MAC of operand size 48-bit

Waveform for the Three-cycle MAC of operand size 64 –bit

Waveform for the Two-cycle MAC of operand size 16 –bit

Waveform for the Two-cycle MAC of operand size 32 –bit

Waveform for the Two-cycle MAC of operand size 48 –bit

Waveform for the Two-cycle MAC of operand size 64 –bit

Waveform for the Full Precision DTMAC unit

Waveform for the Half Precision DTMAC unit

Waveform for the DTMAC unit

Waveform for the Full Precision Multiplication unit

Waveform for the Half Precision Multiplication unit

Waveform for the Double Throughput Multiplication unit

Waveform for the Floating Point Multiplier MAC unit

Power calculation for 3-C MAC unit of 16-bit

Power calculation for 3-C MAC unit of 32-bit

Power calculation for 2-C MAC unit of 48-bit

Power calculation for 2-C MAC unit of 64-bit

Power calculation for MAC-NEW unit of 16-bit

Power calculation for MAC-NEW unit of 64-bit

Power calculation for Full Precision DTMAC unit

Power calculation for Half Precision DTMAC unit

Power Analysis of MAC-3C and MAC-NEW of the operand

size 32 bit

Delay Analysis of MAC-3C and MAC-NEW of the operand

size 32 bit

29

31

32

32

33

33

 34

 34

35

37

38

38

39

39

40

 41

41

42

 45

 43

43

44

44

45

48

48

ix

LIST OF TABLES

TABLE

NO

CAPTION PAGE

NO

1

2

3

4

5

6

Performance Analysis of conventional MAC

architectures of the operand size 16 and 32 bit

Performance Analysis of conventional MAC

architectures of the operand size 48 and 64 bit

Performance Analysis of 3-C and MAC-NEW

architectures of the operand size 16 and 32 bit

Performance Analysis of 3-C and MAC-NEW

architectures of the operand size 48 and 64 bit

Comparison of the operating modes in DTMAC

Architecture

Parameters of the Floating point multiplier in

MAC unit

45

46

46

47

47

47

x

LIST OF ABBREVIATIONS

 MAC
------- Multiply- Accumulate

Architecture

 3-C MAC
------- Three-Cycle Multiply

Accumulate Architecture

 2-C MAC ------- Two-Cycle Multiply

Accumulate Architecture

 MAC-NEW
------- Proposed Multiply

Accumulate Architecture

 DTMAC

------- Double Throughput

Multiply Accumulate

Architecture

 PP ------- Partial Product

 TP ------- Twin Precision

 TP-PPRT ------- Twin-Precision Partial-

Product

 CPA ------- Carry Propagation Adder

 CSA ------- Carry Save Adder

 BW

Baugh-Wooley Algorithm

1

CHAPTER 1

INTRODUCTION

With the recent rapid advances in multimedia and communication system,real-time

signal processings like audio signal processing, video/image processing or large-capacity

data processing are intrestingly being demanded.The multiplier and multiplier and

accumulator(MAC) are the essentials elements of the digital signal processing such as

filtering,convolution and inner products.Most digital signal processing methods use

nonlinear functions such as discrete cosine transform(DCT) or discrete wavelet transform

Because they are basically accomplished by repetitive application of mulitiplication and

addition,the speed of the multiplication and addition arithmetic’s determines the execution

speed and performance of the entire calculation.As the multiplier requires longest delay

among the basic operational blocks in digital system,the critical path is determined by the

multiplier.

The multiplier consists of three parts: partial product generation, partial product

summation and accumulation. The multiplier is much more complex than the accumulate

adder, many design techniques have focused on reducing multiplier delay. In the

architecture, the critical path is reduced by inserting an extra pipeline register, either inside

the partial product unit or between the partial product unit and final adder. It has a better

performance because of the reduction in critical path delay. The most effective way to

increase the speed of a multiplier is to reduce the number of partial products using high

speed compressors or speed optimized structures because multiplication precedes a series

of additions for the partial products. The guard bits are important for avoiding overflow

when computing long sequences of multiply accumulate operation.

2

In order to improve the speed of the MAC unit, there are two major bottlenecks.

The first is the partial product reduction network that is used in the multiplication block

and the second is the accumulator. Both of these stages require addition of large operands

that involve long paths for carry propagation. As the multiplier is more complex than the

accumulator, design techniques are proposed on reducing the delay in the multiplier either

inside the Partial Product (PP) unit or in the final adder. Inside the PP unit, the partial-

product circuitry might be implemented using the modified-Booth algorithm or one of its

successors. The partial-product reduction tree of the PP unit can be implemented using

high-speed compressors or speed-optimized structures. Mathew et al. propose a sparse-

tree carry look-ahead adder for fast addition of the PP unit outputs and Liu et al. introduce

a hybrid adder o reduce delay compared to a design that assumes equal arrival time on all

adder inputs.

Here a MAC-NEW architecture is proposed in which the first stage is significantly

faster compared to the second stage, leading to a better delay balance between the two

stages. The key feature to this architecture is the implementation of product sign extension

in the second stage, together with the accumulate adder such as carry save adder and the

saturation unit. Guard bits are used for avoiding the overflow on computation of long

sequences of multiply-accumulate operation. This MAC-NEW unit is efficient in terms of

delay, power and gate count.

1.1 OBJECTIVE OF THE WORK

The performance of the multiply and accumulate unit is improved by either using

high speed multipliers or improved fast adder architectures. To obtain a high speed

operation, the multiplication unit is combined with accumulation and carry save adder

(CSA).The partial product is generated using Baugh Wooley algorithm. The result is sign

extended to have the same size as the accumulate adder. The MAC unit is designed using

VHDL code and simulated using MODELSIM. The performance parameters such as

3

power, gate count, and delay are synthesized using XILINX and compared with the

conventional MAC architecture.

1.2 INTRODUCTION TO VHDL

VHDL is an acronym which stands for VHSIC Hardware Description

Language.VHSIC means Very High Speed Integrated Circuits. It is being used for

documentation, verificatoin and synthesis of large digital designs.VHDL is a standard

developed by IEEE.The different approaches in VHDL are structural, data flow and

behavioral methods of hardware description.

1.2.1 STRUCTURAL DESCRIPTIONS

Building Blocks

 Every portion of a VHDL design is considered a block. A VHDL design may be

completely described in a single block, or it may be decomposed in several blocks. Each

block in VHDL is analogous to an off-the-shelf part and is called an entity.

The entity describes the interface to that block and a separate part associated with the

entity describes how that block operates. The interface description is like a pin description

in a data book, specifying the inputs and outputs to the block. The description of the

operation of the part is like a schematic for the block.

The following is an example of an entity declaration in VHDL

Entity latch is

 Port (sir: in bit;

 q,nq: out bit);

end latch;

The first line indicates a definition of a new entity called latch. The last line is the

end of the definition. The lines in between, are called the port clause, which describe the

interface to the design. The port clause contains a list of interface declarations.

Each interface declaration defines one or more signals that are inputs or outputs to the

design. Each interface declaration contains a list of names, mode and type.

4

The following is an example of an architecture declaration for the latch entity.

architecture dataflow of latch is

 signal q0 : bit := '0';

 signal nq0 : bit := '1';

begin

 q0<=r nor nq0;

 nq0<=s nor q0;

 nq<=nq0;

 q<=q0;

end dataflow;

The first line of the declaration indicates the definition of a new architecture

called dataflow and it belongs to the entity named latch. So this architecture describes the

operation of the latch entity. The schematic for the SR latch

Figure 1.1 Schematic SR Latch

1.2.2 DATA FLOW DESCRIPTIONS

In the data flow approach, circuits are described by indicating how the inputs and

outputs of built-in primitive components are connected together.The following SR latch

using VHDL is described as in the following schematic.

entity latch is

 port (s,r : in bit;

 q,nq : out bit);

5

end latch;

architecture dataflow of latch is

begin

 q<=r nor nq;

 nq<=s nor q;

end dataflow;

Figure 1.2 Dataflow approach of Schematic SR Latch

The signal assignment operator in VHDL specifies a relationship between signals. The

architecture part describes the internal operation of the design. The scheme used to model

a VHDL design is called discrete event time simulation. In this the values of signals are

only updates when certain events occur and event occurs at discrete instances of time.

The Delay Model

 The two models of delay that are used in VHDL. The first is called the inertial

delay model. The inertial delay model is specified by adding an after clause to the signal

assignment statement. The next is the transport delay model, just delays the change in the

output by the time specified.

1.2.3 BEHAVIORAL DESCRIPTIONS

The behavioral approach to modeling hardware components is different from the

other two methods in that it does not necessarily in any way reflect how the design is

implemented.

6

The Process Statement

 It is basically the black box approach to modeling. It accurately models what

happens on the inputs and outputs of the black box, but what is inside the box (how it

works) is irrelevant. The behavioral description is usually used in two ways in VHDL.

First, it can be used to model complex components.

Behavioral descriptions are supported with the process statement. The process

statement can appear in the body of an architecture declaration just as the signal

assignment statement does. The process statement can also contain signal assignments in

order to specify the outputs of the process.

Using Variables

A variable is kinds of objects used to hold data and also behaves like you would

expect in a software programming language, which is much different than the behavior of

a signal. Although variables represent data like the signal, they do not have or cause

events and are modified differently. Variables are modified with the variable assignment.

Sequential Statements

There are several statements that may only be used in the body of a process. These

statements are called sequential statements because they are executed sequentially. The

types of statements used here are if, if else, for and loop.

Signals and Processes

This section is short, but contains important information about the use of signals in

the process statement. The issue of concern is to avoid confusion about the difference

between how a signal assignment and variable assignment behave in the process statement.

Remember a signal assignment, if anything, merely schedules an event to occur on a

signal and does not have an immediate effect. When a process is resumed, it executes from

top to bottom and no events are processed until after the process is complete.

7

Program Output

In most programming languages there is a mechanism for printing text on the

monitor and getting input from the user through the keyboard. Even though the simulator

monitors the value of signals and variables in the design, it is able to output certain

information during simulation. It is not provided as a language feature in VHDL, but

rather as a standard library that comes with every VHDL language system. In VHDL,

common code can be put in a separate file to be used by many designs. This common code

is called a library. The write statement can also be used to append constant values and the

value of variables and signals of the types bit, bit_vector, time, integer, and real.

1.3 SOFTWARE USED

� Modelsim PE5.4E

� Xilinx ISE 9.2i

1.4 ORGANIZATION OF THE REPORT

� Chapter 2 discusses about the overview of MAC.

� Chapter 3 discusses the existing architecture of MAC.

� Chapter 4 discusses the proposed architecture of MAC.

� Chapter 5 discusses the application of proposed architecture of MAC.

� Chapter 6 presents the simulation results and discussions.

� Chapter 7 presents the conclusion and future scope.

8

CHAPTER 2

OVERVIEW OF MAC

2.1 GENERAL ARCHITECTURE OF MAC

 The general construction of the MAC operation is given by the equation

 Z=A×B+X

Where the multiplier A and multiplicand B are assumed to have n bits each and the

addend X has (2n+1) bits. The basic MAC unit is made up of a multiplier and an

accumulator as shown in Fig 2.1. The multiplier can also be divided into partial product

generator, summation tree and final adder. It executes the multiplication operation by

multiplying the input multiplier and multiplicand. This is added to the previous

multiplication result as the accumulation step.

Figure 2.1: General MAC architecture

The summation network represents the core of the MAC unit and occupies most of

the area, power and delay. Several algorithms and architectures are developed to optimize

the implementation of this block. The addition network reduces the number of partial

products into two operands representing a sum and a carry. The final adder is then used to

generate the multiplication result out of these two operands. The last block is the

accumulator, which is required to perform a double precision addition operation between

the multiplication result and the accumulated operand. It involves a very large adder due

9

to the large operand size. This stage represents a bottleneck in the multiplication process

in terms of speed since it involves horizontal carry propagation. The MAC unit is

classified into various types such as 2-Cycle MAC unit,3-Cycle MAC unit, MAC-NEW

unit and DTMAC unit.

2.2 BLOCK DIAGRAM OF PROJECT

Figure 2.2: Block Diagram of the project

The overall block diagram of the project is shown in Fig2.2.The multiply

accumulate unit is broadly classified into three types such as Three-cycle MAC

unit(MAC-3C),Two-cycle MAC unit(MAC-2C) and MAC-NEW unit. The three

architectures are implemented using BAUGH-WOOLEY algorithm. The proposed MAC

unit has the better performance in comparison with the conventional architectures. The

MAC-NEW is used to create a versatile MAC unit is called DOUBLE THROUGHPUT

MULTIPLIER AND ACCUMULATE UNIT (DTMAC).

Multiply Accumulate unit
(MAC)

MAC-3C MAC-2C MAC-NEW

DTMAC

10

2.3 PROCESS FLOW IN MAC

Figure 2.3: Basic Arithmetic steps of multiplication and accumulation

A multiplier can be divided into four operational steps as shown in Fig 2.3. The

first step is the multiplication operation with the input multiplier and the multiplicand. The

second step is the partial product summation which is used to add all the partial products

and convert them into the form of sum and carry. The third step is the final addition in

which the final multiplication result is produced by adding the sum and carry. The last

step is the accumulation which takes place with the multiplication and the accumulated

result.

11

2.4 BAUGH-WOOLEY ALGORITHM

An algorithm for direct 2’s complement array multiplication has been proposed by

BAUGH-WOOLEY and this algorithm is used in the design of multiplier and accumulator

structures. The primary advantage of this algorithm is that the signs of all the partial

products are positive and thus allowing the array to be entirely the same as conventional

standard array structures.

The following

� Algorithm for two’s-complement multiplication.

� Adjust partial products to maximize regularity of array multiplication.

� Moves partial products with negative signs to the last step also add negation of

partial products rather than subtracts.

Figure 2.4: Unsigned multiplication for Baugh-Wooley algorithm

The Baugh-Wooley algorithm for the unsigned binary multiplication is based on

the concept shown in Fig2.4.The algorithm specifies that all possible AND terms are

created first and then sent through an array of half-adders and full-adders with the carry-

outs chained to the next most significant bit at each level of addition.

For signed multiplication the Baugh-Wooley algorithm can implement signed

multiplication in almost the same way as the unsigned multiplication.

12

The Baugh-Wooley algorithmic is used to multiply 2’s complement numbers using

a regular iterative adder structure. For example, for two n-bit numbers and y their product

can be defined as:

 P=22n-2 Xn-1 Yn-1 + 2i+j X i Y j

 + 2
n-1(2i Yn-1 X i + 2j Xn-1 Y j)

 +2 n + 2 2n-1

Where x and y are in 2’s complement format. This algorithm performs the

multiplication using only addition of positive bit products. This simplifies the hardware

needed to implement the algorithm.

Figure 2.5: Illustration of an 8-bit Baugh-Wooley multiplication

The Baugh-Wooley (BW) algorithm is a relatively straightforward way of doing

signed multiplications Fig. 2.5 illustrates the algorithm for an 8-bit case, where the partial-

13

product bits have been reorganized according to Hatamian’s scheme. The creation of the

reorganized partial-product array comprises three steps:

 i) The most significant bit (MSB) of the first N-1 partial-product rows and all bits

of the last partial-product row, except its MSB, are inverted.

 ii) A ’1’ is added to the Nth column.

 iii) The MSB of the final result is inverted.

Implementing the BW multiplier based on the HPM tree is as straightforward as

the basic algorithm itself. The partial-product bits can be generated by using a 2-input

AND gate for each pair of operand bits. In the case a partial-product bit should be

inverted, we employ a 2-input NAND gate instead. The insertion of ’1’ in column N is

easily accommodated by changing the half adder at top of row N to a full adder with one

of the input signals connected to ’1’1. Finally, the inversion of the MSB of the result is

done by adding an inverter. The final result of the implementation of the BW algorithm is

depicted in Fig. 2.6.

Figure 2.6: Illustration of an 8-bit Baugh-Wooley multiplication using an HPM

reduction tree

14

CHAPTER 3

EXISTING ARCHITECTURE OF MAC

3.1 THREE-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE

The Three-cycle Multiply Accumulate architecture consists of three stages in

which the partial product generation is done in the first stage, the partial product addition

with carry propagation adder in the second stage and accumulation in the final stage as

shown in the Fig 3.1.Multipliers are typically comprised of a partial-product unit (the PP

unit) and the final adder. In this unit carry propagation adder is used as the final adder. To

increase the to increase MAC performance, we can reduce the critical path delay by

inserting an extra pipeline register, either inside the PP unit or between the PP unit and the

final adder. This creates three-cycle MAC architecture but increases overhead in terms of

delay, power and gate count.

 Figure 3.1: Block diagram of the Three-cycle MAC architecture.

15

3.2 STAGES OF THREE-CYCLE MAC UNIT:

The pipeline register inserted between the PP unit and the final adder forms the

first stage as shown in Fig 3.2.Due to the insertion of the pipeline register after the PP unit,

the partial products are computed and fed to the next stage through pipeline register. The

second stage performs the partial product addition with the carry propagation

adder(CPA).The adder adds two n-bit operands and an optional carry-in by performing

carry propagation. It performs carry propagation from each bit to higher bit positions and

does not occupy a significant area of the chip and less power consumption. The third stage

is the accumulation for which each clock cycle the accumulated result is added with the

previous result and stored in the register.

Figure 3.2: Block diagram of the three stages of the Three-cycle MAC

architecture.

A multiply -accumulate operation using inputs X and Y, is shown in Fig. 3.2. The

multiply-accumulate operation starts with the generation and reduction of partial products.

The final adder performs carry propagation of the sums and carries produced by the PP

unit. Finally, the accumulate adder sums the pipelined products (M) to the accumulated

result (F), producing the new result (G). First we compute the product of the two inputs.

Then this result is sign extended to have the same size as the accumulate adder. The

accumulate adder is bits wider than the multiplier to allow (2Ng) multiple multiply-

accumulate iterations without overflow. Finally, the sign extended product is added to the

16

stored accumulated value. The disadvantage is that P [2N-1] must be computed and used

for sign extension in the accumulating addition. A saturation unit removes the guard bits

(Ng) such that the final result is 2N bits wide. The saturation unit takes G [2N+Ng-1:0] as

input, where G is the output of the accumulate adder. The three-cycle MAC architecture is

used as reference architecture and is compared with the proposed MAC architecture. This

unit has increase in power, delay and gate count due to the three stages.

3.3 TWO-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE

The Two-cycle MAC architecture is shown in Fig 3.3. This architecture consists of

two stages in which the partial product generation is done in the first stage and the partial

product summation and accumulation is done in the second stage. The pipeline register the

register between the PP unit and the final adder is removed to obtain a Two-cycle MAC

architecture. Our architecture is based on two’s complement representation, it uses

guarding bits to efficiently support longer MAC loops, and it includes output saturation.

Figure 3.3: Block diagram of the Two-cycle MAC architecture.

In Two-cycle MAC architectures have a first stage that is significantly slower than

the second stage. By performing carry propagation only in the second stage of the MAC

17

pipeline, multiplication and accumulation have similar delays. The partial products are

generated in the first stage and stored in the pipeline register. In the second stage partial

product addition is performed by the carry propagation adder and provides the result in

sum and carry. This result is accumulated with the previous result for each consecutive

clock cycle in the second stage.

Due to the removal of the pipeline register between the PP unit and the final adder

the partial products computed are not fed to the second stage within the stipulated time.

The critical path of this unit goes through the PP unit and the final adder. The evaluation

results shows that this architecture has better power and gate count when compared with

reference architecture. The delay of this unit remains high with the 3-Cycle MAC unit due

to the removal of the pipeline register after the PP unit.

18

CHAPTER 4

PROPOSED ARCHITECTURE OF MAC

4.1 PROPOSED MULTIPLY ACCUMULATE ARCHITECTURE

The MAC–NEW architecture is based on two’s complement representation, it uses

guarding bits to efficiently support longer MAC loops, and it includes output saturation.

By performing carry propagation in the second stage of the MAC pipeline, multiplication

and accumulation have similar delays. The carry-save adder is used which leads to the

reduction of power. With reference to the two cycle MAC architecture, this unit inserts the

pipeline register after the partial product unit.

This architecture is based on two conditions such as

� The accumulation should take place in the second stage of a 2-cycle MAC unit.

� The carry should be propagated only once in a MAC pipeline, thus, in the second

stage.

The MAC-NEW unit shown in Fig 4.1 consists of two stages: partial product unit in the

first stage and the accumulate adder in the second stage. The final adder has been

removed, and a carry-save adder has been inserted after the pipeline registers. The

maximum delay of the carry-save adder is only that of a single full adder, which means

that the MAC’s critical path delay still depends on the PP unit. In the carry-save adder

there is no need to sign extend the multiplier output instead use a row of ’1’ to perform the

sign extension.

This MAC unit do not require any extra cycles at the end of the loops as the

interconnects are localized which simplifies routing, decreases delay and reduces energy

dissipation. As the carry propagation and the accumulation takes place in the second stage

this architecture uses several guard bits without any overflow problems. The critical path

delay of this unit is within the partial product unit.

19

Figure 4.1: Block diagram of the MAC-NEW unit

Carry propagation only takes place in the second stage, which means that the

multiplier’s final adder is eliminated, leading to higher speed and lower energy. Since

accumulation takes place inside the second stage a pipeline register located before the

accumulation stage has no impact on functionality. Regardless of pipelining, our MAC

unit will produce the correct result in each cycle, and no extra cycles need to be added at

the end of the loops– interconnects are localized, which simplifies routing, decreases

delay, and reduces energy dissipation.

Because of the above advantages, it supports several guarding bits, making longer

loops feasible without any overflow problems. The use of guarding bits in an approach

where the accumulated value is fed back to the PPRT’s input would most certainly have a

negative impact on hardware complexity. The MAC-NEW exploits the fact that the delay

of the accumulate adder is shorter than the delay of the PP unit, by at least an amount

corresponding to the delay of a full-adder cell.

20

The critical path is through the PP unit as this architecture uses pipeline registers at

the bottom of the PP unit, MAC-NEW obviously can operate at the same speed as MAC-

3C, while its performance on average for various operand size such as 16, 32, 48 and 64 is

faster than MAC-2C. As far as power dissipation is concerned, the final adder is replaced

by the simple carry-save adder,MAC-3C on average dissipates more power than MAC-

NEW for the same operating frequency and timing constraint. It requires two cycles for

completing the MAC computation, still performs the MAC operation at the same

operating frequency as a 3-cycle MAC unit, at lower energy dissipation.

The Evaluation methodology shows that the MAC-NEW unit is efficient in

performance parameters such as power, delay and gate count in comparison with the

conventional architecture. Due to the efficiency, this architecture is used to create an

application architecture called Double Throughput Multiply Accumulate unit [DTMAC].

21

CHAPTER 5

APPLICATION OF PROPOSED ARCHITECTURE OF MAC

5.1 DOUBLE THROUGHPUT MULTIPLY ACCUMULATE UNIT

A MAC unit that can optionally switch between N-bit operation and 2xN/2-bit

operation is referred as a Double Throughput MAC (DTMAC) is shown in Fig 5.1. This

feature would be useful in many DSP-oriented applications, when the dynamic range is

lower or when there is a need to simultaneously calculate real and imaginary values. A

double throughput 32-bit MAC can be logically implemented by tying together two

separate, single 16-bit MACs that support two parallel MAC operations.

Figure 5.1: Block diagram of the DTMAC unit

Our DTMAC unit in Fig 5.2 is designed to support the efficient execution of

several operating modes in a 32-bit data path. The unit employs the Twin-Precision (TP)

technique, in terms of a modified 32-bit TP multiplier1 that contains a Twin-Precision

Partial-Product Reduction Tree (TP-PPRT) to generate the partial product outputs, which

22

in conventional schemes are fed to a final adder2. Instead we insert a level of adder cells

that combine the outputs of the TPPPRT with the result of the twin-precision accumulate

adder; is called”combination unit”. In the guarding bit positions of the combination unit,

the half adder cells add’1’s with the accumulated result, to obtain the correct logical

function. The combination unit can be placed after or before the pipeline registers

depending on whether the TP-PPRT or the twin-precision accumulate adder represents the

dominant delay of the DTMAC unit.

The use of the combination unit makes it possible to build a high-speed, but still

flexible DTMAC unit using only two pipeline stages, which limits the clock load and

makes for a power-efficient design. The twin-precision accumulate adder is based on the

Ladner-Fisher parallel-prefix structure and contains 80 bits, divided in two sections (high

and low) each containing 32 data and eight (8) extra guarding bits, as shown in the

detailed schematic of Fig. 2(c). Because each of the two sections has eight guarding bits,

this DTMAC unit supports loops with 256 iterations without requiring any right shifting of

the output to avoid overflow. To control the operating mode, an AND gate is inserted; one

control bit (CTRL2[0]) sets the XOR’s input at position 40 to either zero or to the carry

signal of the 32-bit data part of the low section of the twin-precision accumulate

adder.

Figure 5.2: Block diagram of the TP-PP unit based on the Baugh–Wooley

multiplication algorithm.

23

5.2 Components of DTMAC unit:

1) TP-PP Unit: To support double-throughput operations, the partial-product generation

and reduction are based on the twin-precision (TP) technique [24]. Here, the partial

products that are not needed during narrow-width operations are forced

to zero while some lower-significance partial products are negated4 to provide the correct

function for theM -bit multiplication in the lower-significance section. Depending

on the operating mode, “1” bits can be set in position N+M, N and M.M=N/2 is assumed

as the lower-significance section the “low half.”

2) Carry-Save Adder: The carry-save adder (CSA) shown in Fig 5.3 is used for the Partial

product addition for the DTMAC unit .In this carry save adder, guard bits and sign

extension for the N/2-bit operation in the low half must be accommodated .This is

achieved by inserting a row of Ng+1 bits “1” that is summed together with the

accumulated value and the most significant bit of the result from the TP-PP unit for the

N/2-bit operation in the low half bit position. During N/2-bit operations in the low half,

S[N-3] will always be zero, due to the TP technique in which partial products are forced to

zero. Since S [N-3] will not carry any useful information during N/2-bit operations in the

low half, this signal can be used to add the required “1” at bit positionN-1 . This is easily

done by feeding S [N-3] and a control signal through an extra OR gate, whose output may

optionally be forced to “1,”

Figure 5.3: Block diagram of the gates of the combination unit in the DTMAC unit.

3) Accumulate Adder: The accumulate adder shown in Fig 5.4 of the DTMAC unit is

based on the conditional-sum adder structure, enabling efficient separation into high and

low halves, each with Ng guard bits to avoid overflow. To control the operating mode, an

AND gate is inserted; one control bit (CTRL1[0]) sets the AND’s input at position N+Ng

24

either to zero or to the carry signal of the N-1 -bit data part of the low half of the

accumulate adder. For full precision operations, this effectively by passes the Ng guard

bits used for N/2 -bit operations in the low half. Similarly, the accumulator output bits that

correspond to unused guard bits (F [N+Ng-1: N]) are discarded during N-bit operation.

4) Saturation Circuit: The saturation unit for the DTMAC not only needs to consider full

precision (N) operations but also the N/2 operations in the high and low halves.

• In full-precision mode, 2N+Ng bits in the output of the accumulate adder are

processed.

• In half-precision mode, bits N+Ng are processed.

• In double-throughput mode, not only N+Ng bits of the low half are processed, but

also N+Ng bits of the high half are processed.

Figure 5.4: Block diagram of the accumulate adder based on the conditional-sum

adder architecture

5.3 DTMAC OPERATING MODES

The DTMAC unit operates on two’s complement data and supports six operating

modes—three for MAC operations and three for multiplications—as determined by the

value of the 3-bit control signal (CTRL):

� 000: Full-Precision 32-bit MAC (FP DTMAC).

� 001: Half-Precision 1x16-bit MAC (HP DTMAC).

� 010: Double-Throughput 2x16-bit MAC (DT DTMAC).

25

� 100: Half-Precision 1x16-bit multiplication (HP MULT).

� 101: Double-Throughput 2x16-bit multiplication (DT MULT).

� 110: Full-Precision 32-bit multiplication (FP MULT).

 In the proposed DTMAC unit, there exists no final adder. This makes the critical

path delay of the 2-cycle DTMAC dominated by the delay of the TP-PPRT part. The

DTMAC actually has the same critical delay as that of a conventional 3-cycle single 32-bit

MAC, in which a pipeline register is inserted between the PPRT block and the final adder

to several the critical path of the multiplication. The result is that the DTMAC unit,

despite the operating mode flexibility, has small area, low power dissipation and short

critical path delays. When the DTMAC unit operates in HP DTMAC mode, half of the

respective registers are de-activated to isolate the inputs of half of the twin-precision

accumulate adder and the MSB input bits of the multiplier are set to zero, to reduce

switching activity and dynamic power dissipation.

 When the DTMAC unit operates in 1×16-bit MAC mode it dissipates a negligible

amount of energy more than the basic, fixed-function, 16-bit MAC unit. The DTMAC unit

has a large footprint than MAC32-2C due to extra circuitry to support the multiple

operation modes. These comparisons reveal that the implementation of operating-mode

flexibility in the DTMAC unit comes at a limited overhead.

The important point is that we can save energy by adjusting the operating mode to the

precision of the data:

• When the DTMAC unit operates in the default 32-bitMAC mode (FP_MAC), its

energy dissipation is lower than MAC32-2C when performing 32-bit

computations.

• When the DTMAC unit operates in 1 16-bit MAC mode (HP_MAC), the 32-bit

DTMAC unit performs 16-bit multiply-accumulate operations more energy

efficiently than MAC32-2C performs computations on 16-bit operands. This

reduction largely stems from avoiding unnecessary switching caused by the 16-bit

sign extension of two’s complement 32-bit data that carry only 16 bits of

information.

26

• When the DTMAC unit operates in the 2 16-bit MAC mode (DT_MAC), its

energy dissipation per 16-bit multiply-accumulate operation is similar to that of

MAC16-2C. However, the DTMAC unit uses only half the cycles of MAC16-2C

to compute all operations, so the surrounding data path circuits are engaged for a

significantly shorter time. This leads to significant energy savings for a system in

which the DTMAC unit is integrated.

5.4 MULTIPLICATION THROUGH TWIN PRECISION

The twin-precision technique shown in Fig 5.5 is an efficient way of achieving

Double Throughput in a multiplier with low area overhead and delay. The twin- precision

technique on signed multipliers based on the regular High Performance Multiplier (HPM)

reduction tree. The twin-precision technique can reduce the power dissipation by adapting

a multiplier to the bit width of the operands being computed. The technique also enables

an increased computational throughput, by allowing several narrow-width operations to be

computed in parallel.

Achieving double throughput for a multiplier is not as straightforward as, for

example, in an adder, where the carry chain can be cut at the appropriate place to achieve

narrow-width additions. It is possible to use several multipliers, where at least two have

narrow bit width, and allow them share the same routing, but has several drawbacks: i)

The total area of the multipliers would increase, since several multiplier units are used. ii)

The use of several multipliers increases the fan out of the signals that drive the inputs of

the multipliers. Higher fan out means longer delays and/or higher power dissipation. iii)

There would be a need for multiplexers that connect the active multiplier(s) to the result. It

is not as easy to deploy the twin-precision technique onto a BW multiplication as it is for

the unsigned multiplication, where only parts of the partial products need to be set to zero.

To be able to compute two signed multiplications, it is necessary to make a more

sophisticated modification of the partial-product array.

For the 4-bit multiplication in the LSP of the array, there is a need for some more

modifications. In the active partial-product array of the 4-bit LSP multiplication (shown in

27

white), the most significant partial product of all rows, except the last, needs to be

negated. For the last row it is the opposite, here all partial products, except the most

significant, are negated. Also for this multiplication a sign bit ‘1’ is needed, but this time

in column. Finally the MSB of the results needs to be negated to get the correct result of

the two 4-bit multiplications.

Figure 5.5: Illustration of a unsigned 8-bit multiplication, using the Baugh–Wooley

Algorithm

To allow the full-precision multiplication of size to coexist with two

multiplications of size in the same multiplier, it is necessary to modify the partial-product

generation and the reduction tree. For the -bit multiplication in the MSP of the array all

that is needed is to add a control signal that can be set to high, when the N/2-bit

multiplication is to be computed and to low, when the full precision multiplication is to be

computed. To compute the N/2-bit multiplication in the LSP of the array, certain partial

products need to be negated. This can easily be accomplished by changing the two-input

AND gate that generates the partial product to a two-input NAND gate followed by an

XOR gate. The second input of the XOR gate can then be used to invert the output of the

NAND gate. When computing the N/2-bit LSP multiplication, the control input to the

XOR gate is set to low making it work as a buffer. When computing a full-precision

multiplication the same signal is set to high making the XOR work as an inverter. Finally

28

the MSB of the result needs to be negated and this can again be achieved by using an

XOR gate together with an inverted version of the control signal for the XOR gates used

in the partial-product generation. The unwanted partial products to zero can be done by

three-input AND gates as for the unsigned multiplication.

5.4.1 HPM IMPLEMENTATION

A twin-precision implementation based on the regular HPM reduction tree is

shown in Fig.5.6. For high speed and/or low-power implementations, a reduction tree with

logarithmic logic depth, such as TDM [9], Dadda [10], Wallace [11] or HPM [12] is

preferred for summation of the partial products. Such a log-depth reduction tree has the

benefit of shorter logic depth. Further, a log-depth tree suffers from fewer glitches making

it less power dissipating. In fig 5.3, the unsigned multiplication is implemented in Baugh-

Wooley algorithm in which 4-bit multiplication, shown in white, can be computed in

parallel with a second 4-bit multiplication, shown in black. For simplicity the AND gates

for partial-product generation is not shown and a ripple carry is used as final adder.

Figure 5.6: Block diagram of an unsigned 8-bit twin-precision multiplier

based on the regular HPM reduction tree

29

5.5 FLOATING POINT MULTIPLIER IN MULTIPLY

ACCUMULATE UNIT

Floating Point numbers represented in IEEE 754 format are used in most of the

DSP Processors. Floating point arithmetic is useful in applications where a large dynamic

range is required or in rapid prototyping applications where the required number range has

not been thoroughly investigated. The Floating Point Multiplier IP helps designers to

perform floating point Multiplication on FPGA represented in IEEE 754 single precision

floating point format.

5.5.1 FUNCTIONAL DESCRIPTION

A Floating point multiplier is the most common element in most digital

applications such as digital filters, digital signal processors, data processors and control

units. The present Floating Point Multiplier IP has three blocks sign calculator, exponent

calculator, mantissa calculator, which works parallel and a normalization unit. The

Multiplier is pipelined, so the first result appears after the latency period and then the

result can be obtained after every clock cycle.

Figure 5.7: Block diagram of the Floating Point Multiplier

The Schematic symbol of Floating Point Multiplier is shown in Fig 5.7. It takes two

IEEE 754 format single precision floating point numbers and produces the multiplied

output. It also supports the features like underflow, overflow and invalid operations. This

30

unit consists of two stages, multiplication calculation and normalization. The first stage

consists of the following three blocks which work in parallel.

• Sign Calculator: The Output Sign is the exor of two sign bit inputs.

• Exponent Calculator: The input exponents are added and the bias is removed to

produce the exponent of Output.

• Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa's

of two inputs. Second stage performs Normalization of the Output obtained from the first

stage.

• Normalization Block: The normalization is the last and most complicated part. This

block is implemented in three pipelined stages.

This block first calculates how much amount the mantissa needs to be left shifted.

The mantissa is processed in parallel in a number of modules, each looking at four bits of

the mantissa. The first module looks at first four bits of the mantissa and outputs the

amount to be shifted assuming a one was found on these four bits. The second module

operates on the next four bits of the mantissa treating first four bits are zero and outputs

the amount to be shifted left.

This process is repeated for the remaining bits of mantissa. Signals are generated if

the four bits of the mantissa are zero. Depending on the signal values the amount of shift

is selected. This selection is implemented in three multiplexer stages. Depending on the

two leading bits of final mantissa, the final mantissa is shifted left by previously calculated

shift amount or shifted right. The final exponent is also corrected accordingly.

31

CHAPTER 6

SIMULATION RESULTS AND DISCUSSION

All PP units of the MAC architectures are based on the power-efficient Baugh–

Wooley algorithm for partial-product generation and the HPM partial-product reduction

tree. The accumulate adder is of conditional-sum type and has an extension of eight guard

bits (Ng=8). This allows the MAC unit to support loops of up to 256 iterations without

requiring the output to be right-shifted to avoid overflow. A final adder based on parallel

algorithm of recurrence equation supports fast addition of the PP unit outputs. The

Multiply Accumulate architecture is designed using VHDL and simulated using MODEL

SIM. The performance parameters are synthesized using Xilinx.

6.1 SIMULATION WAVEFORM OF THREE-CYCLE MAC UNIT

Figure 6.1: Waveform for the three-cycle MAC of operand size 16 -bit

The inputs of MAC-3C unit x and y are of 16 bits. The multiplier output is 16-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 32-bit (acc_reg).

32

Figure 6.2: Waveform for the three-cycle MAC of operand size 32-bit

The inputs of MAC-3C unit x and y are of 32 bits. The multiplier output is 32-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 64-bit (acc_reg) .

Figure 6.3: Waveform for the three-cycle MAC of operand size 48-bit

The inputs of MAC-3C unit x and y are of 48 bits. The multiplier output is 48-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 96-bit (acc_reg).

33

 Figure 6.4: Waveform for the three-cycle MAC of operand size 64-bit

The inputs of MAC-3C unit x and y are of 64 bits.The multiplier output is 64 -bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 128 -bit (acc_reg).

6.2 SIMULATION WAVEFORM OF TWO-CYCLE MAC UNIT

Figure 6.5: Waveform for the two-cycle MAC of operand size 16-bit

34

The inputs of MAC-2C unit x and y are of 16 bits. The multiplier output is 16 -bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 32 -bit (acc_reg).

Figure 6.6: Waveform for the two-cycle MAC of operand size 32-bit

The inputs of MAC-2C unit x and y are of 32 bits. The multiplier output is 32-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 64-bit (acc_reg).

Figure 6.7: Waveform for the two-cycle MAC of operand size 48-bit

35

The inputs of MAC-2C unit x and y are of 48 bits. The multiplier output is 48-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 96-bit (acc_reg).

Figure 6.8: Waveform for the two-cycle MAC of operand size 64-bit

The inputs of MAC-2C unit x and y are of 64 bits. The multiplier output is 64-bit

stored in the register (r) and the partial product generated is added with the final adder and

the result stored in the accumulate register is 128-bit (acc_reg).

6.3 SIMULATION WAVEFORM OF MAC-NEW UNIT

Figure 6.9: Waveform for the MAC-NEW of operand size 16-bit

36

The inputs of MAC-NEW unit x and y are of 16 bits. The multiplier output is 16-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 32-bit (acc_reg).

Figure 6.10: Waveform for the MAC-NEW of operand size 32-bit

The inputs of MAC-NEW unit x and y are of 32 bits. The multiplier output is 32-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 64-bit (acc_reg) .

Figure 6.11: Waveform for the MAC-NEW of operand size 48-bit

37

The inputs of MAC-NEW unit x and y are of 48 bits. The multiplier output is 48-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 96-bit (acc_reg) .

Figure 6.12: Waveform for the MAC-NEW of operand size 64-bit

The inputs of MAC-NEW unit x and y are of 64 bits. The multiplier output is 64-

bit stored in the register (r) and the partial product generated is added with the final adder

and the result stored in the accumulate register is 128-bit (acc_reg).

6.4 SIMULATION WAVEFORM OF DTMAC UNIT

Figure 6.13: Waveform for the Full Precision DTMAC unit

38

The inputs of the FP_MAC mode is 32 bit in which LSB of the a-bit and b-bit are

taken as two 16-bits.The selection mode is given 000 and for each consecutive clock cycle

the accumulated result is stored in the FP_MAC.

Figure 6.14: Waveform for the Half Precision DTMAC unit

The inputs of the HP_MAC mode is 16 bit in which LSB of the a-bit and b-bit are

taken as two 8-bits.The selection mode is given 001 and for each consecutive clock cycle

the accumulated result is stored in the HP_MAC.

Figure 6.15: Waveform for the DTMAC unit

39

The inputs of the DT_MAC mode is 2×16 bit in which LSB of the a and b-bit is

taken as 1×16 bit and MSB of the a and b-bit are taken as 1×16 bit. The selection mode is

given 011 and for each consecutive clock cycle the accumulated result is stored in the

DT_MAC.

Figure 6.16: Waveform for the Full Precision Multiplication unit

The inputs of the FP_MULT mode is 32- bit in which MSB of the and b-bit is

taken as two 1×16 bit. The selection mode is given 100 and for each consecutive clock

cycle the multiplication result is stored in the FP_M.

Figure 6.17: Waveform for the Half-Precision Multiplication unit

40

The inputs of the HP_MULT mode is 1×16 bit in which MSB of the a and b-bit is

taken as two 8-bit.The selection mode is given 101 and for each consecutive clock cycle

the multiplication result is stored in the HP_M.

Figure 6.18: Waveform for the Double Throughput Multiplication unit

The inputs of the DT_MULT mode is 2×16 bit in which MSB of the a and b-bit is

taken as two 16-bit.The selection mode is given 111 and for each consecutive clock cycle

the multiplication result is stored in the DT_M.

41

6.5 SIMULATION WAVEFORM OF FLOATING POINT MULTIPLIE R

Figure 6.19: Waveform for the Floating Point Multiplier MAC unit

The input of the Floating Point Multiplier is 32- bit in which each of exponents (e1 and

e2) is 8 bit. The mantissa bit (m1 and m2) are 23 bit and the sign bit (s1 and s2) is 1-

bit.The accumulation is done by the MAC-NEW 32-bit.

6.6 SYNTHESIS REPORT OF THE MAC ARCHITECTURE

Figure 6.20: Power calculation for 3-C MAC unit of 16-bit

42

Figure 6.21: Power calculation for 3-C MAC unit of 32-bit

Figure 6.22: Power calculation for 2-C MAC unit of 48-bit

43

Figure 6.23: Power calculation for 2-C MAC unit of 64-bit

Figure 6.24: Power calculation for MAC-NEW unit of 16-bit

44

Figure 6.25: Power calculation for MAC-NEW unit of 64-bit

Figure 6.26: Power calculation for Full Precision DTMAC unit

45

Figure 6.27: Power calculation for Half Precision DTMAC unit

6.7 COMPARISON OF VARIOUS MAC ARCHITECTURES

Table 6.1: Performance Analysis of conventional MAC architectures of the operand

size 16 and 32 bit

OPERAND SIZE 16 32 Performance
Evaluation (%)

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 16-bit 32-bit

POWER(mW) 77 70 155 154 9.09 0.65

DELAY(ns) 79.97 79.24 158.94 162.59 0.92 2.29

GATE COUNT 14,885 13,930 52,439 51,320 6.42 2.13

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 16 and 32-bit of the Three-cycle and Two-cycle MAC architecture.

The parameters such as power and gate count for the 3-C MAC unit is high in comparison

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high. The

performance is evaluated for the 16 and 32-bit.

46

Table 6.2: Performance Analysis of conventional MAC architectures of the operand

size 48 and 64 bit

OPERAND SIZE 48 64 Performance
Evaluation (%)

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 48-bit 64-bit

POWER(mW) 176 170 224 221 3.41 1.34

DELAY(ns) 161.47 163.02 171.75 173.20 0.96 0.84

GATE COUNT 58,974 59.091 88,336 89,132 0.20 0.90

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 48 and 64 bit of the Three-cycle and Two-cycle MAC architecture.

The parameters such as power and gate count for the 3-C MAC unit is high in comparison

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high .The

performance is evaluated for the 48 and 64-bit.

Table 6.3: Performance Analysis of 3-C and MAC-NEW architectures of the

operand size 16 and 32 bit

OPERAND

SIZE
16 32 Performance

Evaluation (%)

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 16-bit 32-bit

POWER(mW) 77 72 155 148 6.50 4.52

DELAY(ns) 79.97 74.21 158.94 153.27 7.20 3.57

GATE COUNT 14,885 13,356 52,439 42,880 10.27 16.44

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 16 and 32 bit of the Three-cycle and MAC-NEW architecture. The

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The

performance is evaluated for the 16 and 32 bit.

47

Table 6.4: Performance Analysis of 3-C and MAC-NEW architectures of the

operand size 48 and 64 bit

OPERAND

SIZE
48 64 Performance

Evaluation (%)

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 48-bit 64-bit

POWER(mW) 176 164 224 218 6.82 2.68

DELAY(ns) 161.47 157.22 171.75 168.96 2.64 1.62

GATE COUNT 58,974 49,180 88,336 77,903 16.61 11.81

The performance parameters such as power, delay and gate count are tabulated for

the operand size of 48 and 64 bit of the Three-cycle and MAC-NEW architecture. The

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The

performance is evaluated for the 48 and 64 bit.

Table 6.5: Comparison of Operating Modes in DTMAC Architecture

Architecture FP_MAC HP_MAC DT_MAC
Power 148 72 144

Delay 153.27 74.21 148.42

Gate Count 42,880 13,356 26,712

The DTMAC operating modes parameters are tabulated in Table 6.5. The

parameters of the FP_MAC are same as 32-bit MAC-NEW architecture. The HP_MAC is

same as 16-bit MAC-NEW architecture. The DT_MAC is 2×16-bit MAC-NEW

architecture.

Table 6.6 :Parameters of the Floating Point multiplier in MAC unit

Parameters

Power (mW) 106

Delay(ns) 73.964

Gate Count 3579

48

6.8 POWER ANALYSIS

158

160

162

164

166

168

170

172

174

176

178

MAC-3C MAC-NEW

MAC-3C

MAC-NEW

Figure 6.28: Power Analysis of MAC-3C and MAC-NEW of the operand size 32 bit

The Power analysis is performed for the MAC-3C and MAC-NEW architecture.

The MAC-3C unit has more power when compared with the MAC-NEW architecture due

to the three-pipeline stages.

6.9 DELAY ANALYSIS

155

156

157

158

159

160

161

162

MAC-3C MAC-NEW

MAC-3C

MAC-NEW

Figure 6.29 :DelayAnalysis of MAC-3C and MAC-NEW of the operand size 32 bit

The Delay analysis is performed for the MAC-3C and MAC-NEW architecture.

The MAC-3C unit has more delay when compared with the MAC-NEW architecture due

to the three-pipeline stages.

49

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

 This project presents the estimation of the efficient performance parameters such as

power, gate count, and delay for the different Multiply Accumulate architectures. The

architectures are designed using Baugh-Wooley algorithm. The Three-cycle, Two-cycle

and MAC-NEW architecture is simulated through MODEL SIM and synthesized using

XILINX. The performance parameter of the conventional MAC architecture is compared

with the proposed MAC architecture and the results are tabulated.

 The comparison is made between the MAC-3C and MAC-2C architecture in which the

power and gate count remains high for the MAC-3C but the delay is large for the MAC-

2C due to the removal of the pipeline register after the Partial Product (PP) unit. The

MAC-NEW is compared with the reference architecture (MAC-3C) and the results are

tabulated in which the parameters are efficient for the MAC-NEW architecture. As it is an

efficient architecture it is used to create a versatile MAC unit called Double Throughput

MAC unit(DTMAC).As a modification to this project, the Floating point multiplier is used

in the MAC unit and the parameter are tabulated.

FUTURE SCOPE

 The MAC-NEW architecture can be used in the efficient design of digital signal

processing circuits such as FIR and IIR filter. As this architecture is efficient in

performance parameters it increases the computation of the filter.

50

BIBLIOGRAPHY

[1] A High-Speed, Energy-Efficient Two-Cycle Multiply-Accumulate (MAC)

Architecture and Its Application to a Double-Throughput MAC Unit IEEE

Transaction, volume 57, NO. 12, Dec 2010.

[2] T. T. Hoang, M. Själander, and P. Larsson-Edefors, “High-speed, energy- efficient

2-cycle multiply-accumulate architecture,” in Proceedings. IEEE International.

SOC Conference. (SOC), Sep. 2009, pp. 119–122.

[3] M. Själander and P. Larsson-Edefors, “Multiplication acceleration through twin

precision,” IEEE Transaction Very Large Scale Integrated. (VLSI)., volume 17, pp.

1233–1246, Sep. 2009.

[4] A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multiply

accumulate (MAC) unit for digital signal processing applications, “in Proceedings.

IEEE International Symposium Circuits System (ISCAS), May 2007, pp. 3199–

3202.

[5] T.T. Hoang, M. Själander, and P. Larsson-Edefors, “Double throughput multiply-

accumulate unit for Flex Core processor enhancements,” presented at the IEEE

International Symposium, Parallel Distributed Processing Symposium (IPDPS),

Reconfigurable Architecture Workshop (RAW), Rome, Italy, and May 2009.

[6] A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multiply

accumulate (MAC) unit for digital signal processing applications, “in Proceedings

IEEE International Symposium Circuits System (ISCAS), May 2007 ,pp. 3199–3202.

[7] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Själander, D. Johansson, and M.

Schölin, “Multiplier reduction tree with logarithmic logic depth and regular

connectivity,” in Proceedings IEEE International Symposium Circuits System

(ISCAS), May 2006, pp. 4–8.

51

[8] M. Själander, H. Eriksson, and P. Larsson-Edefors, “An efficient twin precision

multiplier,” in Proceedings IEEE International Conference Computer Design

(ICCD), Oct. 2004, pp. 30–33.

[9] R. K. Kolagotla, J. Fridman, B. C. Aldrich, M. M. Hoffman, W. C. Anderson, M. S.

Allen, D. B. Witt, R. R. Dunton, and L.A. Booth, “High performance dual-MAC

DSP architecture,” IEEE Signal Processing Magazine., volume 19, no. 4, pp. 42–53,

July. 2002.

[10] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to

improve processor power and performance,” in Proceedings International

Symposium High-Performance Computer Architecture, 1999, pp. 13–22.

[11] P. F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate operation

in multiplication time,” in Proceedings International Symposium Computer

Arithmetic (ARITH), July 1997, pp. 99–106.

[12] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array multiplication

algorithm,” IEEE Transaction Computer, volume. C-22, pp.1045–1047, Dec. 1973.

[13] J. Sklansky, “Conditional-sum addition logic,” IRE Transaction Electronic

Computer, volume. EC-9, pp. 226–231, 1960.

