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ABSTRACT 

The Multiplier and Accumulator (MAC) unit is used as a basic element in most of 

the digital signal processing application in order to perform repeated multiplication and 

addition. The conventional MAC architectures uses more shift and add operation at 

multiplier unit which increases delay in the arithmetic operations. 

 

The main objective is to design a new multiplier and accumulator architecture to 

perform high speed arithmetic operation. The three cycle MAC (MAC-3C) architecture 

increase the performance by reducing the critical path delay by inserting an extra pipeline 

register either inside the partial product (PP) unit or between PP unit and final adder. The 

two cycle MAC (MAC-2C) architecture performs the carry propagation only in the 

second stage leads to the similar delay in multiplication and accumulation. The proposed 

MAC architecture (MAC-NEW) has two stages with the pipeline register inserted after 

the partial product unit. This unit uses carry-save adder which leads to the reduction of 

power. Due to the carry propagation in the second stage, multiplier’s final adder is 

eliminated, leading to higher speed and lower energy. The Double Throughput MAC unit 

(DTMAC) switches between N-bit operations and 2×N/2-bit operations which reduces 

power and critical path delay on the removal of final adder. 

 

Through the “ COMPARATIVE ANALYSIS OF DIFFERENT MULTIPLY 

ACCUMULATE ARCHITECTURE”  is planned to obtain an efficient performance 

parameter such as gate count, delay and power for the different MAC architectures. The                                

MAC architecture is designed using MODEL SIM and simulated using Xilinx ISE 9.2i 

and the parameters is compared to obtain an efficient architecture. 

 

  
 

 

 

  

 

 

 



 

v 
 

CHAPTER 

NO 

TITLE  PAGE 

NO 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

2 

 

 

 

 

 

3 

 

 

 

 

         4 

 

 

 

ABSTRACT 

LIST OF FIGURES 

LIST OF TABLES 

LIST OF ABBREVIATIONS 

 

INTRODUCTION  

1.1 Objective of The Work 

1.2 Introduction to VHDL 

1.2.1 Structural Descriptions 

      1.2.2 Dataflow Descriptions 

      1.2.3 Behavioral Descriptions 

1.3 Software  Used 

1.4 Organization of the Report 

 

OVERVIEW OF MAC  

2.1 General Architecture of MAC 

2.2 Block Diagram of the Project 

2.3 Process Flow in MAC 

2.4 Baugh-Wooley Algorithm 

 

EXISTING ARCHITECTURES OF MAC 

3.1 Three-cycle Multiply Accumulate Architecture 

3.2 Stages of Three–cycle MAC unit 

3.3 Two-cycle Multiply Accumulate Architecture 

 

PROPOSED ARCHITECTURE OF MAC 

4.1 Proposed Multiply Accumulate Architecture 

 

 

iv 

vii 

ix 

x 

 

1 

2 

3 

3 

4 

5 

7 

7 

 

 

8 

9 

10 

11 

 

11 

14 

15 

16 

 

18 

18 

 

 

 

vi 
 

5 

 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

 

 

 

7 

 

 

 

 

 

 

 

 

 

APPLICATION OF PROPOSED ARCHITECTURE 

OF MAC  

5.1 Double Throughput Multiply Accumulate unit 

5.2 Components of DTMAC unit 

5.3 DTMAC operating modes 

5.4 Multiplication through Twin Precision  

      5.4.1 HPM Implementation 

5.5 Floating Point Multiplier in Multiply Accumulate unit 

      5.5.1 Functional Description 

 

SIMULATION RESULTS AND DISCUSSION 

6.1 Simulation Waveform of  Three-Cycle MAC Unit 

6.2 Simulation Waveform of  Two-Cycle MAC Unit 

6.3 Simulation Waveform of   MAC-NEW Unit 

6.4 Simulation Waveform of   DTMAC Unit 

6.5 Simulation Waveform of  Floating point Multiplier 

6.6 Synthesis Report of the MAC architectures 

6.7 Comparaison of various MAC architectures 

 

CONCLUSION AND FUTURE SCOPE 

REFERENCES 

 

 

 

 

21 

21 

23 

24 

26 

28 

29 

29 

 

31 

31 

33 

35 

37 

41 

41 

45 

 

49 

50 

 

 

 

 
 
 

 

  

 

 

vii 
 

LIST OF FIGURES 
 

FIGURE 

NO 

                             CAPTION 
 
 
 
 

PAGE 

NO 

1 

2 

3 

4 

5 

6 

7 

8 

 

9 

10 

 

11 

12 

13 

14 

 

15 

 

16 

 

17 

 
 

18 

 

 

Schematic SR Latch 

Dataflow approach of  Schematic SR Latch 

General MAC architecture 

Block Diagram of the project 

Basic Arithmetic steps of multiplication and accumulation 

Unsigned  multiplication for Baugh-Wooley algorithm    

Illustration of an 8-bit Baugh-Wooley multiplication 

Illustration of an 8-bit Baugh-Wooley multiplication using 

an HPM reduction tree 

Block diagram of the  Three-cycle MAC architecture 

Block diagram of the three stage of the Three-cycle MAC 

architecture 

Block diagram of the  Two-cycle MAC architecture  

Block diagram of the MAC-NEW unit 

Block diagram of the DTMAC unit  

Block diagram of the TP-PP unit based on the Baugh–

Wooley multiplication algorithm  

Block diagram of the  gates of the combination unit in the 

DTMAC unit 

Block diagram of the accumulate adder  based on the 

conditional-sum adder architecture 

Illustration of a unsigned 8-bit multiplication, using the  

Baugh–Wooley Algorithm 
 
Block diagram of an unsigned 8-bit twin-precision multiplier 

based on the regular HPM reduction tree 

 

4 

5 

8 

9 

10 

11 

12 

 

13 

14 

 

     15 

16 

19 

21 

 

22 

 

23 

 

     24 

      

     27 

 
 

28 

 

 

viii 
 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

 

44 

      

         
                 

Block diagram of the Floating Point Multiplier 

Waveform for the Three-cycle  MAC of operand size 16 –bit 

Waveform for the Three-cycle  MAC of operand size 32 –bit 

Waveform for the Three-cycle  MAC of operand size 48-bit 

Waveform for the Three-cycle  MAC of operand size 64 –bit 

Waveform for the Two-cycle  MAC of operand size 16 –bit 

Waveform for the Two-cycle  MAC of operand size 32 –bit 

Waveform for the Two-cycle  MAC of operand size 48 –bit 

Waveform for the Two-cycle  MAC of operand size 64 –bit 

Waveform for the Full Precision DTMAC unit  

Waveform for the Half  Precision DTMAC unit 

Waveform for the DTMAC unit 

Waveform for the Full Precision Multiplication unit 

Waveform for the Half Precision Multiplication unit 

Waveform for the Double Throughput Multiplication unit 

Waveform for the Floating Point Multiplier MAC unit  

Power calculation for 3-C MAC unit of 16-bit  

Power calculation for 3-C MAC unit of 32-bit 

Power calculation for 2-C MAC unit of 48-bit                          

Power calculation for 2-C MAC unit of 64-bit 

Power calculation for MAC-NEW unit of 16-bit 

Power calculation for MAC-NEW unit of 64-bit 

Power calculation for Full Precision DTMAC unit 

Power calculation for  Half  Precision DTMAC unit 

Power Analysis of MAC-3C and MAC-NEW of the operand 

size 32 bit 

Delay Analysis of MAC-3C and MAC-NEW of the operand 

size 32 bit 

 

 

      

29 

31 

32 

32 

33 

33 

     34 

     34 

35 

37 

38  

38 

39 

39 

40 

     41 

41 

42 
 

     45 

     43 

43 

44 

44 

45 

 

48 

 

48 



 

ix 
 

   

LIST OF TABLES  
 
 

 
 

 
 

 
 
 
 
 

TABLE 

NO 

CAPTION  PAGE  

NO 

 

1 

 

2 

  

3 

 

4 

 

5 

 

6 

 

Performance Analysis of conventional MAC 

architectures of the operand size 16 and 32 bit 

Performance Analysis of conventional  MAC 

architectures of the operand size 48 and 64 bit 

Performance Analysis of 3-C and  MAC-NEW 

architectures of the operand size 16 and 32 bit 

Performance Analysis of 3-C and MAC-NEW  
 
architectures of the operand size 48 and 64 bit 
 
Comparison of the operating modes in DTMAC  
 
Architecture 
 
Parameters of the Floating point multiplier in  
 
MAC unit 

 

 

45 

 

46 

 

46 

 

47 

 

47 

 

47 

 

 

x 
 

LIST OF ABBREVIATIONS 

         MAC 
------- Multiply- Accumulate 

Architecture 

         3-C  MAC 
------- Three-Cycle  Multiply 

Accumulate Architecture 

         2-C   MAC ------- Two-Cycle  Multiply 

Accumulate Architecture 

         MAC-NEW 
------- Proposed Multiply 

Accumulate Architecture 

         DTMAC 

------- Double Throughput 

Multiply Accumulate 

Architecture 

         PP ------- Partial Product 

         TP ------- Twin Precision 

         TP-PPRT ------- Twin-Precision Partial-

Product 

         CPA ------- Carry Propagation Adder 

         CSA ------- Carry Save Adder 

         BW 

                               

------- 

 

Baugh-Wooley Algorithm 

   

 



1 
 

CHAPTER 1 
 
 

INTRODUCTION 
 

 

With the recent rapid advances in multimedia and communication system,real-time 

signal processings like audio signal processing, video/image processing or large-capacity 

data processing are intrestingly being demanded.The multiplier and multiplier and 

accumulator(MAC) are the essentials elements of the digital signal processing such as 

filtering,convolution and inner products.Most digital signal processing methods use 

nonlinear functions such as discrete cosine transform(DCT) or discrete wavelet transform 

Because they are basically accomplished by repetitive application of mulitiplication and 

addition,the speed of the multiplication and addition arithmetic’s determines the execution 

speed and performance of the entire calculation.As the multiplier requires longest delay 

among the basic operational blocks in digital system,the critical path is determined by the 

multiplier. 

 

The multiplier consists of three parts: partial product generation, partial product 

summation and accumulation. The multiplier is much more complex than the accumulate 

adder, many design techniques have focused on reducing multiplier delay. In the 

architecture, the critical path is reduced by inserting an extra pipeline register, either inside 

the partial product unit or between the partial product unit and final adder. It has a better 

performance because of the reduction in critical path delay. The most effective way to 

increase the speed of a multiplier is to reduce the number of partial products using high 

speed compressors or speed optimized structures because multiplication precedes a series 

of additions for the partial products. The guard bits are important for avoiding overflow 

when computing long sequences of multiply accumulate operation.  
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In order to improve the speed of the MAC unit, there are two major bottlenecks. 

The first is the partial product reduction network that is used in the multiplication block 

and the second is the accumulator. Both of these stages require addition of large operands 

that involve long paths for carry propagation. As the multiplier is more complex than the 

accumulator, design techniques are proposed on reducing the delay in the multiplier either 

inside the Partial Product (PP) unit or in the final adder. Inside the PP unit, the partial-

product circuitry might be implemented using the modified-Booth algorithm or one of its 

successors. The partial-product reduction tree of the PP unit can be implemented using 

high-speed compressors or speed-optimized structures. Mathew et al. propose a sparse-

tree carry look-ahead adder for fast addition of the PP unit outputs and Liu et al. introduce 

a hybrid adder o reduce delay compared to a design that assumes equal arrival time on all 

adder inputs. 

 

Here a MAC-NEW architecture is proposed in which the first stage is significantly 

faster compared to the second stage, leading to a better delay balance between the two 

stages. The key feature to this architecture is the implementation of product sign extension 

in the second stage, together with the accumulate adder such as carry save adder and the 

saturation unit. Guard bits are used for avoiding the overflow on computation of long 

sequences of multiply-accumulate operation. This MAC-NEW unit is efficient in terms of 

delay, power and gate count. 

 

1.1  OBJECTIVE OF THE WORK 

The performance of the multiply and accumulate unit is improved by either using 

high speed multipliers or improved fast adder architectures. To obtain a high speed 

operation, the multiplication unit is combined with accumulation and carry save adder 

(CSA).The partial product is generated using Baugh Wooley algorithm. The result is sign 

extended to have the same size as the accumulate adder. The MAC unit is designed using 

VHDL code and simulated using MODELSIM. The performance parameters such as 
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power, gate count, and delay are synthesized using XILINX and compared with the 

conventional MAC architecture. 

 

1.2 INTRODUCTION TO VHDL 

VHDL is an acronym which stands for VHSIC Hardware Description 

Language.VHSIC means Very High Speed Integrated Circuits. It is being used for 

documentation, verificatoin and synthesis of large digital designs.VHDL is a standard 

developed by IEEE.The different approaches in VHDL are structural, data flow and 

behavioral methods of hardware description. 

 

1.2.1 STRUCTURAL DESCRIPTIONS 

 

Building Blocks 

 Every portion of a VHDL design is considered a block. A VHDL design may be 

completely described in a single block, or it may be decomposed in several blocks. Each 

block in VHDL is analogous to an off-the-shelf part and is called an entity. 

The entity describes the interface to that block and a separate part associated with the 

entity describes how that block operates. The interface description is like a pin description 

in a data book, specifying the inputs and outputs to the block. The description of the 

operation of the part is like a schematic for the block.  

The following is an example of an entity declaration in VHDL 

Entity latch is 

  Port (sir: in bit; 

        q,nq: out bit); 

end latch; 

The first line indicates a definition of a new entity called latch. The last line is the 

end of the definition. The lines in between, are called the port clause, which describe the 

interface to the design. The port clause contains a list of interface declarations. 

Each interface declaration defines one or more signals that are inputs or outputs to the 

design. Each interface declaration contains a list of names, mode and type. 
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The following is an example of an architecture declaration for the latch entity. 

architecture dataflow of latch is 

  signal q0 : bit := '0'; 

  signal nq0 : bit := '1'; 

begin 

  q0<=r nor nq0; 

  nq0<=s nor q0; 

  nq<=nq0; 

  q<=q0; 

end dataflow; 

The first line of the declaration indicates the definition of a new architecture 

called dataflow and it belongs to the entity named latch. So this architecture describes the 

operation of the latch entity. The schematic for the SR latch 

 

 
Figure 1.1 Schematic SR Latch 

1.2.2 DATA FLOW DESCRIPTIONS 
 

In the data flow approach, circuits are described by indicating how the inputs and 

outputs of built-in primitive components are connected together.The following SR latch 

using VHDL is described as in the following schematic. 

entity latch is 

  port (s,r : in bit; 

        q,nq : out bit); 



5 
 

end latch; 

architecture dataflow of latch is 

begin 

  q<=r nor nq; 

  nq<=s nor q; 

end dataflow; 

 
Figure 1.2 Dataflow approach of Schematic SR Latch 

The signal assignment operator in VHDL specifies a relationship between signals. The 

architecture part describes the internal operation of the design. The scheme used to model 

a VHDL design is called discrete event time simulation. In this the values of signals are 

only updates when certain events occur and event occurs at discrete instances of time. 

 

The Delay Model 

 The two models of delay that are used in VHDL. The first is called the inertial 

delay model. The inertial delay model is specified by adding an after clause to the signal 

assignment statement. The next is the transport delay model, just delays the change in the 

output by the time specified. 

 

1.2.3 BEHAVIORAL DESCRIPTIONS 

The behavioral approach to modeling hardware components is different from the 

other two methods in that it does not necessarily in any way reflect how the design is 

implemented. 
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The Process Statement 

 It is basically the black box approach to modeling. It accurately models what 

happens on the inputs and outputs of the black box, but what is inside the box (how it 

works) is irrelevant. The behavioral description is usually used in two ways in VHDL. 

First, it can be used to model complex components. 

Behavioral descriptions are supported with the process statement. The process 

statement can appear in the body of an architecture declaration just as the signal 

assignment statement does. The process statement can also contain signal assignments in 

order to specify the outputs of the process. 

Using Variables 
 

A variable is kinds of objects used to hold data and also behaves like you would 

expect in a software programming language, which is much different than the behavior of 

a signal. Although variables represent data like the signal, they do not have or cause 

events and are modified differently. Variables are modified with the variable assignment.  

Sequential Statements 
 

There are several statements that may only be used in the body of a process. These 

statements are called sequential statements because they are executed sequentially. The 

types of statements used here are if, if else, for and loop. 

Signals and Processes 
 

This section is short, but contains important information about the use of signals in 

the process statement. The issue of concern is to avoid confusion about the difference 

between how a signal assignment and variable assignment behave in the process statement. 

Remember a signal assignment, if anything, merely schedules an event to occur on a 

signal and does not have an immediate effect. When a process is resumed, it executes from 

top to bottom and no events are processed until after the process is complete.  
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Program Output 

In most programming languages there is a mechanism for printing text on the 

monitor and getting input from the user through the keyboard. Even though the simulator 

monitors the value of signals and variables in the design, it is able to output certain 

information during simulation. It is not provided as a language feature in VHDL, but 

rather as a standard library that comes with every VHDL language system. In VHDL, 

common code can be put in a separate file to be used by many designs. This common code 

is called a library. The write statement can also be used to append constant values and the 

value of variables and signals of the types bit, bit_vector, time, integer, and real. 

 

1.3 SOFTWARE USED 

� Modelsim PE5.4E 

� Xilinx ISE 9.2i 

 

1.4 ORGANIZATION OF THE REPORT 

� Chapter 2 discusses about the overview of MAC. 

� Chapter 3 discusses the existing architecture of MAC. 

� Chapter 4 discusses the proposed architecture of MAC. 

� Chapter 5 discusses the application of proposed architecture of MAC. 

� Chapter 6 presents the simulation results and discussions. 

�  Chapter 7 presents the conclusion and future scope. 
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CHAPTER 2 

OVERVIEW OF MAC 

 

2.1 GENERAL ARCHITECTURE OF MAC 

           

 The general construction of the MAC operation is given by the equation              

                   Z=A×B+X  

Where the multiplier A and multiplicand B are assumed to have n bits each and the 

addend X has (2n+1) bits. The basic MAC unit is made up of a multiplier and an 

accumulator as shown in Fig 2.1. The multiplier can also be divided into partial product 

generator, summation tree and final adder. It executes the multiplication operation by 

multiplying the input multiplier and multiplicand. This is added to the previous 

multiplication result as the accumulation step. 

 

                                                        

Figure 2.1: General MAC architecture 

 

The summation network represents the core of the MAC unit and occupies most of 

the area, power and delay. Several algorithms and architectures are developed to optimize 

the implementation of this block. The addition network reduces the number of partial 

products into two operands representing a sum and a carry. The final adder is then used to 

generate the multiplication result out of these two operands. The last block is the 

accumulator, which is required to perform a double precision addition operation between 

the multiplication result and the accumulated operand. It involves a very large adder due 
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to the large operand size. This stage represents a bottleneck in the multiplication process 

in terms of speed since it involves horizontal carry propagation. The MAC unit is 

classified into various types such as 2-Cycle MAC unit,3-Cycle MAC unit, MAC-NEW 

unit and DTMAC unit. 

 

2.2 BLOCK DIAGRAM OF PROJECT 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Block Diagram of the project 

 

The  overall block diagram of the project is shown in Fig2.2.The multiply 

accumulate unit is broadly classified into three types such as Three-cycle MAC 

unit(MAC-3C),Two-cycle MAC unit(MAC-2C) and MAC-NEW unit. The three 

architectures are implemented using BAUGH-WOOLEY algorithm. The proposed MAC 

unit has the better performance in comparison with the conventional architectures. The 

MAC-NEW is used to create a versatile MAC unit is called DOUBLE THROUGHPUT 

MULTIPLIER AND ACCUMULATE UNIT (DTMAC). 

 

 

Multiply Accumulate unit 
(MAC) 

MAC-3C MAC-2C MAC-NEW 

DTMAC 

10 
 

2.3 PROCESS FLOW IN MAC 

 

 

 

Figure 2.3: Basic Arithmetic steps of multiplication and accumulation 

 

A multiplier can be divided into four operational steps as shown in Fig 2.3. The 

first step is the multiplication operation with the input multiplier and the multiplicand. The 

second step is the partial product summation which is used to add all the partial products 

and convert them into the form of sum and carry. The third step is the final addition in 

which the final multiplication result is produced by adding the sum and carry. The last 

step is the accumulation which takes place with the multiplication and the accumulated 

result. 
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2.4 BAUGH-WOOLEY ALGORITHM 

 

An algorithm for direct 2’s complement array multiplication has been proposed by 

BAUGH-WOOLEY and this algorithm is used in the design of multiplier and accumulator 

structures. The primary advantage of this algorithm is that the signs of all the partial 

products are positive and thus allowing the array to be entirely the same as conventional 

standard array structures. 

The following  

� Algorithm for two’s-complement multiplication. 

� Adjust partial products to maximize regularity of array multiplication. 

� Moves partial products with negative signs to the last step also add negation of 

partial products rather than subtracts. 

 

 

Figure 2.4: Unsigned multiplication for Baugh-Wooley algorithm 

 

The Baugh-Wooley algorithm for the unsigned binary multiplication is based on 

the concept shown in Fig2.4.The algorithm specifies that all possible AND terms are 

created first and then sent through an array of half-adders and full-adders with the carry-

outs chained to the next most significant bit at each level of addition. 

 

For signed multiplication the Baugh-Wooley algorithm can implement signed 

multiplication in almost the same way as the unsigned multiplication. 
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The Baugh-Wooley algorithmic is used to multiply 2’s complement numbers using 

a regular iterative adder structure. For example, for two n-bit numbers and y their product 

can be defined as: 

 

  P=22n-2 Xn-1 Yn-1 +  2i+j X i Y j  

    + 2
n-1(   2i Yn-1 X i +  2j Xn-1 Y j ) 

    +2 n  + 2 2n-1 

 

Where x and y are in 2’s complement format. This algorithm performs the 

multiplication using only addition of positive bit products. This simplifies the hardware 

needed to implement the algorithm. 

 

 

Figure 2.5: Illustration of an 8-bit Baugh-Wooley multiplication 

 

The Baugh-Wooley (BW) algorithm is a relatively straightforward way of doing 

signed multiplications Fig. 2.5 illustrates the algorithm for an 8-bit case, where the partial-
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product bits have been reorganized according to Hatamian’s scheme. The creation of the 

reorganized partial-product array comprises three steps: 

 i) The most significant bit (MSB) of the first N-1 partial-product rows and all bits 

of the last partial-product row, except its MSB, are inverted. 

 ii) A ’1’ is added to the Nth column. 

 iii) The MSB of the final result is inverted. 

 

Implementing the BW multiplier based on the HPM tree is as straightforward as 

the basic algorithm itself. The partial-product bits can be generated by using a 2-input 

AND gate for each pair of operand bits. In the case a partial-product bit should be 

inverted, we employ a 2-input NAND gate instead. The insertion of ’1’ in column N is 

easily accommodated by changing the half adder at top of row N to a full adder with one 

of the input signals connected to ’1’1. Finally, the inversion of the MSB of the result is 

done by adding an inverter. The final result of the implementation of the BW algorithm is 

depicted in Fig. 2.6. 

 

 

Figure 2.6: Illustration of an 8-bit Baugh-Wooley multiplication using an HPM 

reduction tree 
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CHAPTER 3 

EXISTING ARCHITECTURE OF MAC 

 

3.1 THREE-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE  

 

The Three-cycle Multiply Accumulate architecture consists of  three stages in 

which the partial product generation is done in the first stage, the partial product addition 

with carry propagation adder  in the second stage and accumulation in the final stage as 

shown in the Fig 3.1.Multipliers are typically comprised of a partial-product unit (the PP 

unit) and the final adder. In this unit carry propagation adder is used as the final adder. To 

increase the to increase MAC performance, we can reduce the critical path delay by 

inserting an extra pipeline register, either inside the PP unit or between the PP unit and the 

final adder. This creates three-cycle MAC architecture but increases overhead in terms of 

delay, power and gate count. 

 

 

 Figure 3.1: Block diagram of the Three-cycle MAC architecture. 
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3.2 STAGES OF THREE-CYCLE MAC UNIT: 

The pipeline register inserted between the PP unit and the final adder forms the 

first stage as shown in Fig 3.2.Due to the insertion of the pipeline register after the PP unit, 

the partial products are computed and fed to the next stage through pipeline register. The 

second stage performs the partial product addition with the carry propagation 

adder(CPA).The adder  adds two n-bit operands and an optional carry-in by performing 

carry propagation. It performs carry propagation from each bit to higher bit positions and 

does not occupy a significant area of the chip and less power consumption. The third stage 

is the accumulation for which each clock cycle the accumulated result is added with the 

previous result and stored in the register.  

 

Figure 3.2: Block diagram of the three stages of the Three-cycle MAC 

architecture. 

 

A multiply -accumulate operation using inputs X and Y, is shown in Fig. 3.2. The 

multiply-accumulate operation starts with the generation and reduction of partial products. 

The final adder performs carry propagation of the sums and carries produced by the PP 

unit. Finally, the accumulate adder sums the pipelined products (M) to the accumulated 

result (F), producing the new result (G). First we compute the product of the two inputs. 

Then this result is sign extended to have the same size as the accumulate adder. The 

accumulate adder is bits wider than the multiplier to allow (2Ng ) multiple multiply-

accumulate iterations without overflow. Finally, the sign extended product is added to the 
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stored accumulated value. The disadvantage is that P [2N-1] must be computed and used 

for sign extension in the accumulating addition. A saturation unit removes the guard bits 

(Ng) such that the final result is 2N bits wide. The saturation unit takes G [2N+Ng-1:0] as 

input, where G is the output of the accumulate adder. The three-cycle MAC architecture is 

used as reference architecture and is compared with the proposed MAC architecture. This 

unit has increase in power, delay and gate count due to the three stages. 

 

3.3 TWO-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE 

The Two-cycle MAC architecture is shown in Fig 3.3. This architecture consists of 

two stages in which the partial product generation is done in the first stage and the partial 

product summation and accumulation is done in the second stage. The pipeline register the 

register between the PP unit and the final adder is removed to obtain a Two-cycle MAC 

architecture. Our architecture is based on two’s complement representation, it uses 

guarding bits to efficiently support longer MAC loops, and it includes output saturation. 

 
Figure 3.3: Block diagram of the Two-cycle MAC architecture. 

In Two-cycle MAC architectures have a first stage that is significantly slower than 

the second stage. By performing carry propagation only in the second stage of the MAC 
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pipeline, multiplication and accumulation have similar delays. The partial products are 

generated in the first stage and stored in the pipeline register. In the second stage partial 

product addition is performed by the carry propagation adder and provides the result in 

sum and carry. This result is accumulated with the previous result for each consecutive 

clock cycle in the second stage. 

 

Due to the removal of the pipeline register between the PP unit and the final adder 

the partial products computed are not fed to the second stage within the stipulated time. 

The critical path of this unit goes through the PP unit and the final adder. The evaluation 

results shows that this architecture has better power and gate count when compared with 

reference architecture. The delay of this unit remains high with the 3-Cycle MAC unit due 

to the removal of the pipeline register after the PP unit.   
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CHAPTER 4 

PROPOSED ARCHITECTURE OF MAC 

 

4.1 PROPOSED MULTIPLY ACCUMULATE ARCHITECTURE 

 

The MAC–NEW architecture is based on two’s complement representation, it uses 

guarding bits to efficiently support longer MAC loops, and it includes output saturation. 

By performing carry propagation in the second stage of the MAC pipeline, multiplication 

and accumulation have similar delays. The carry-save adder is used which leads to the 

reduction of power. With reference to the two cycle MAC architecture, this unit inserts the 

pipeline register after the partial product unit. 

 

This architecture is based on two conditions such as  

� The accumulation should take place in the second stage of a 2-cycle MAC unit. 

� The carry should be propagated only once in a MAC pipeline, thus, in the second 

stage. 

 

The MAC-NEW unit shown in Fig 4.1 consists of two stages: partial product unit in the 

first stage and the accumulate adder in the second stage. The final adder has been 

removed, and a carry-save adder has been inserted after the pipeline registers. The 

maximum delay of the carry-save adder is only that of a single full adder, which means 

that the MAC’s critical path delay still depends on the PP unit. In the carry-save adder 

there is no need to sign extend the multiplier output instead use a row of ’1’ to perform the 

sign extension. 

 

This MAC unit do not require any extra cycles at the end of the loops as the 

interconnects are localized which simplifies routing, decreases delay and reduces energy 

dissipation. As the carry propagation and the accumulation takes place in the second stage 

this architecture uses several guard bits without any overflow problems. The critical path 

delay of this unit is within the partial product unit. 
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Figure 4.1: Block diagram of the MAC-NEW unit 

 

Carry propagation only takes place in the second stage, which means that the 

multiplier’s final adder is eliminated, leading to higher speed and lower energy. Since 

accumulation takes place inside the second stage a pipeline register located before the 

accumulation stage has no impact on functionality. Regardless of pipelining, our MAC 

unit will produce the correct result in each cycle, and no extra cycles need to be added at 

the end of the loops– interconnects are localized, which simplifies routing, decreases 

delay, and reduces energy dissipation. 

 

Because of the above advantages, it supports several guarding bits, making longer 

loops feasible without any overflow problems. The use of guarding bits in an approach 

where the accumulated value is fed back to the PPRT’s input would most certainly have a 

negative impact on hardware complexity. The MAC-NEW exploits the fact that the delay 

of the accumulate adder is shorter than the delay of the PP unit, by at least an amount 

corresponding to the delay of a full-adder cell. 
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The critical path is through the PP unit as this architecture uses pipeline registers at 

the bottom of the PP unit, MAC-NEW obviously can operate at the same speed as MAC-

3C, while its performance on average for various operand size such as 16, 32, 48 and 64 is 

faster than MAC-2C. As far as power dissipation is concerned, the final adder is replaced 

by the simple carry-save adder,MAC-3C on average dissipates more power than MAC-

NEW for the same operating frequency and timing constraint. It requires two cycles for 

completing the MAC computation, still performs the MAC operation at the same 

operating frequency as a 3-cycle MAC unit, at lower energy dissipation. 

 

The Evaluation methodology shows that the MAC-NEW unit is efficient in 

performance parameters such as power, delay and gate count in comparison with the 

conventional architecture. Due to the efficiency, this architecture is used to create an 

application architecture called Double Throughput Multiply Accumulate unit [DTMAC]. 
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CHAPTER 5 

APPLICATION OF PROPOSED ARCHITECTURE OF MAC 

 

5.1 DOUBLE THROUGHPUT MULTIPLY ACCUMULATE UNIT 

A MAC unit that can optionally switch between N-bit operation and 2xN/2-bit 

operation is referred as a Double Throughput MAC (DTMAC) is shown in Fig 5.1. This 

feature would be useful in many DSP-oriented applications, when the dynamic range is 

lower or when there is a need to simultaneously calculate real and imaginary values. A 

double throughput 32-bit MAC can be logically implemented by tying together two 

separate, single 16-bit MACs that support two parallel MAC operations. 

 

 

Figure 5.1: Block diagram of the DTMAC unit 

 

Our DTMAC unit in Fig 5.2 is designed to support the efficient execution of 

several operating modes in a 32-bit data path. The unit employs the Twin-Precision (TP) 

technique, in terms of a modified 32-bit TP multiplier1 that contains a Twin-Precision 

Partial-Product Reduction Tree (TP-PPRT) to generate the partial product outputs, which 
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in conventional schemes are fed to a final adder2. Instead we insert a level of adder cells 

that combine the outputs of the TPPPRT with the result of the twin-precision accumulate 

adder; is called”combination unit”. In the guarding bit positions of the combination unit, 

the half adder cells add’1’s with the accumulated result, to obtain the correct logical 

function. The combination unit can be placed after or before the pipeline registers 

depending on whether the TP-PPRT or the twin-precision accumulate adder represents the 

dominant delay of the DTMAC unit. 
 

The use of the combination unit makes it possible to build a high-speed, but still 

flexible DTMAC unit using only two pipeline stages, which limits the clock load and 

makes for a power-efficient design. The twin-precision accumulate adder is based on the 

Ladner-Fisher parallel-prefix structure  and contains 80 bits, divided in two sections (high 

and low) each containing 32 data and eight (8) extra guarding bits, as shown in the 

detailed schematic of Fig. 2(c). Because each of the two sections has eight guarding bits, 

this DTMAC unit supports loops with 256 iterations without requiring any right shifting of 

the output to avoid overflow. To control the operating mode, an AND gate is inserted; one 

control bit (CTRL2[0]) sets the XOR’s input at position 40 to either zero or to the carry 

signal of the 32-bit data part of the low section of the twin-precision accumulate 

adder. 

 

Figure 5.2: Block diagram of the TP-PP unit based on the Baugh–Wooley 

multiplication algorithm. 
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5.2 Components of DTMAC unit: 

1) TP-PP Unit: To support double-throughput operations, the partial-product generation 

and reduction are based on the twin-precision (TP) technique [24]. Here, the partial 

products that are not needed during narrow-width operations are forced 

to zero while some lower-significance partial products are negated4 to provide the correct 

function for theM -bit multiplication in the lower-significance section. Depending 

on the operating mode, “1” bits can be set in position N+M, N and M.M=N/2 is assumed 

as the  lower-significance section the “low half.”  

 

2) Carry-Save Adder: The carry-save adder (CSA) shown in Fig 5.3 is used for the Partial 

product addition for the DTMAC unit .In this carry save adder, guard bits and sign 

extension for the N/2-bit operation in the low half must be accommodated .This is 

achieved by inserting a row of Ng+1 bits “1” that is summed together with the 

accumulated value and the most significant bit of the result from the TP-PP unit for the 

N/2-bit operation in the low half bit position. During N/2-bit operations in the low half, 

S[N-3] will always be zero, due to the TP technique in which partial products are forced to 

zero. Since S [N-3] will not carry any useful information during N/2-bit operations in the 

low half, this signal can be used to add the required “1” at bit positionN-1 . This is easily 

done by feeding S [N-3] and a control signal through an extra OR gate, whose output may 

optionally be forced to “1,” 

 

Figure 5.3: Block diagram of the  gates of the combination unit in the DTMAC unit. 

 

3) Accumulate Adder: The accumulate adder shown in Fig 5.4 of the DTMAC unit is 

based on the conditional-sum adder structure, enabling efficient separation into high and 

low halves, each with Ng  guard bits to avoid overflow. To control the operating mode, an 

AND gate is inserted; one control bit (CTRL1[0]) sets the AND’s input at position N+Ng 
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either to zero or to the carry signal of the N-1 -bit data part of the low half of the 

accumulate adder. For full precision operations, this effectively by passes the Ng guard 

bits used for N/2 -bit operations in the low half. Similarly, the accumulator output bits that 

correspond to unused guard bits (F [N+Ng-1: N]) are discarded during N-bit operation. 

4) Saturation Circuit: The saturation unit for the DTMAC not only needs to consider full 

precision (N) operations but also the N/2 operations in the high and low halves. 

• In full-precision mode, 2N+Ng bits in the output of the accumulate adder are 

processed. 

• In half-precision mode, bits N+Ng are processed. 

• In double-throughput mode, not only N+Ng bits of the low half are processed, but 

also N+Ng bits of the high half are processed. 

 

 

Figure 5.4: Block diagram of the accumulate adder based on the conditional-sum 

adder architecture 

 

5.3 DTMAC OPERATING MODES  

The DTMAC unit operates on two’s complement data and supports six operating 

modes—three for MAC operations and three for multiplications—as determined by the 

value of the 3-bit control signal (CTRL): 

� 000: Full-Precision 32-bit MAC (FP DTMAC). 

� 001: Half-Precision 1x16-bit MAC (HP DTMAC). 

� 010: Double-Throughput 2x16-bit MAC (DT DTMAC). 
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� 100: Half-Precision 1x16-bit multiplication (HP MULT). 

� 101: Double-Throughput 2x16-bit multiplication (DT MULT). 

� 110: Full-Precision 32-bit multiplication (FP MULT). 

 

 In the proposed DTMAC unit, there exists no final adder. This makes the critical 

path delay of the 2-cycle DTMAC dominated by the delay of the TP-PPRT part. The 

DTMAC actually has the same critical delay as that of a conventional 3-cycle single 32-bit 

MAC, in which a pipeline register is inserted between the PPRT block and the final adder 

to several the critical path of the multiplication. The result is that the DTMAC unit, 

despite the operating mode flexibility, has small area, low power dissipation and short 

critical path delays. When the DTMAC unit operates in HP DTMAC mode, half of the 

respective registers are de-activated to isolate the inputs of half of the twin-precision 

accumulate adder and the MSB input bits of the multiplier are set to zero, to reduce 

switching activity and dynamic power dissipation. 

 

 When the DTMAC unit operates in 1×16-bit MAC mode it dissipates a negligible 

amount of energy more than the basic, fixed-function, 16-bit MAC unit. The DTMAC unit 

has a large footprint than MAC32-2C due to extra circuitry to support the multiple 

operation modes. These comparisons reveal that the implementation of operating-mode 

flexibility in the DTMAC unit comes at a limited overhead. 

The important point is that we can save energy by adjusting the operating mode to the 

precision of the data: 

• When the DTMAC unit operates in the default 32-bitMAC mode (FP_MAC), its 

energy dissipation is lower than MAC32-2C when performing 32-bit 

computations. 

• When the DTMAC unit operates in 1 16-bit MAC mode (HP_MAC), the 32-bit 

DTMAC unit performs 16-bit multiply-accumulate operations more energy 

efficiently than MAC32-2C performs computations on 16-bit operands. This 

reduction largely stems from avoiding unnecessary switching caused by the 16-bit 

sign extension of two’s complement 32-bit data that carry only 16 bits of 

information. 
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• When the DTMAC unit operates in the 2 16-bit MAC mode (DT_MAC), its 

energy dissipation per 16-bit multiply-accumulate operation is similar to that of 

MAC16-2C. However, the DTMAC unit uses only half the cycles of MAC16-2C 

to compute all operations, so the surrounding data path circuits are engaged for a 

significantly shorter time. This leads to significant energy savings for a system in 

which the DTMAC unit is integrated. 

 

5.4 MULTIPLICATION THROUGH TWIN PRECISION 

The twin-precision technique shown in Fig 5.5 is an efficient way of achieving 

Double Throughput in a multiplier with low area overhead and delay. The twin- precision 

technique on signed multipliers based on the regular High Performance Multiplier (HPM) 

reduction tree. The twin-precision technique can reduce the power dissipation by adapting 

a multiplier to the bit width of the operands being computed. The technique also enables 

an increased computational throughput, by allowing several narrow-width operations to be 

computed in parallel. 

 

Achieving double throughput for a multiplier is not as straightforward as, for 

example, in an adder, where the carry chain can be cut at the appropriate place to achieve 

narrow-width additions. It is possible to use several multipliers, where at least two have 

narrow bit width, and allow them share the same routing, but has several drawbacks: i) 

The total area of the multipliers would increase, since several multiplier units are used. ii) 

The use of several multipliers increases the fan out of the signals that drive the inputs of 

the multipliers. Higher fan out means longer delays and/or higher power dissipation. iii) 

There would be a need for multiplexers that connect the active multiplier(s) to the result. It 

is not as easy to deploy the twin-precision technique onto a BW multiplication as it is for 

the unsigned multiplication, where only parts of the partial products need to be set to zero. 

To be able to compute two signed multiplications, it is necessary to make a more 

sophisticated modification of the partial-product array. 

 

For the 4-bit multiplication in the LSP of the array, there is a need for some more 

modifications. In the active partial-product array of the 4-bit LSP multiplication (shown in 
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white), the most significant partial product of all rows, except the last, needs to be 

negated. For the last row it is the opposite, here all partial products, except the most 

significant, are negated. Also for this multiplication a sign bit ‘1’ is needed, but this time 

in column. Finally the MSB of the results needs to be negated to get the correct result of 

the two 4-bit multiplications. 

 

 
Figure 5.5: Illustration of a unsigned 8-bit multiplication, using the Baugh–Wooley 

Algorithm 
 

To allow the full-precision multiplication of size to coexist with two 

multiplications of size in the same multiplier, it is necessary to modify the partial-product 

generation and the reduction tree. For the -bit multiplication in the MSP of the array all 

that is needed is to add a control signal that can be set to high, when the N/2-bit 

multiplication is to be computed and to low, when the full precision multiplication is to be 

computed. To compute the N/2-bit multiplication in the LSP of the array, certain partial 

products need to be negated. This can easily be accomplished by changing the two-input 

AND gate that generates the partial product to a two-input NAND gate followed by an 

XOR gate. The second input of the XOR gate can then be used to invert the output of the 

NAND gate. When computing the N/2-bit LSP multiplication, the control input to the 

XOR gate is set to low making it work as a buffer. When computing a full-precision 

multiplication the same signal is set to high making the XOR work as an inverter. Finally 
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the MSB of the result needs to be negated and this can again be achieved by using an 

XOR gate together with an inverted version of the control signal for the XOR gates used 

in the partial-product generation. The unwanted partial products to zero can be done by 

three-input AND gates as for the unsigned multiplication. 

5.4.1 HPM IMPLEMENTATION 
 

A twin-precision implementation based on the regular HPM reduction tree is 

shown in Fig.5.6. For high speed and/or low-power implementations, a reduction tree with 

logarithmic logic depth, such as TDM [9], Dadda [10], Wallace [11] or HPM [12] is 

preferred for summation of the partial products. Such a log-depth reduction tree has the 

benefit of shorter logic depth. Further, a log-depth tree suffers from fewer glitches making 

it less power dissipating. In fig 5.3, the unsigned multiplication is implemented in Baugh-

Wooley algorithm in which 4-bit multiplication, shown in white, can be computed in 

parallel with a second 4-bit multiplication, shown in black. For simplicity the AND gates 

for partial-product generation is not shown and a ripple carry is used as final adder. 

 

 
Figure 5.6: Block diagram of an unsigned 8-bit twin-precision multiplier 

based on the regular HPM reduction tree 
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5.5 FLOATING POINT MULTIPLIER IN MULTIPLY 

ACCUMULATE UNIT 

Floating Point numbers represented in IEEE 754 format are used in most of the 

DSP Processors. Floating point arithmetic is useful in applications where a large dynamic 

range is required or in rapid prototyping applications where the required number range has 

not been thoroughly investigated. The Floating Point Multiplier IP helps designers to 

perform floating point Multiplication on FPGA represented in IEEE 754 single precision 

floating point format. 

 

5.5.1 FUNCTIONAL DESCRIPTION 

 

A Floating point multiplier is the most common element in most digital 

applications such as digital filters, digital signal processors, data processors and control 

units. The present Floating Point Multiplier IP has three blocks sign calculator, exponent 

calculator, mantissa calculator, which works parallel and a normalization unit. The 

Multiplier is pipelined, so the first result appears after the latency period and then the 

result can be obtained after every clock cycle. 

 

 

Figure 5.7: Block diagram of the Floating Point Multiplier 

 

The Schematic symbol of Floating Point Multiplier is shown in Fig 5.7. It takes two 

IEEE 754 format single precision floating point numbers and produces the multiplied 

output. It also supports the features like underflow, overflow and invalid operations. This 
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unit consists of two stages, multiplication calculation and normalization. The first stage 

consists of the following three blocks which work in parallel.  

• Sign Calculator: The Output Sign is the exor of two sign bit inputs. 

• Exponent Calculator: The input exponents are added and the bias is removed to 

produce the exponent of Output. 

• Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa's 

of two inputs. Second stage performs Normalization of the Output obtained from the first 

stage. 

• Normalization Block: The normalization is the last and most complicated part. This 

block is implemented in three pipelined stages. 

 

This block first calculates how much amount the mantissa needs to be left shifted. 

The mantissa is processed in parallel in a number of modules, each looking at four bits of 

the mantissa. The first module looks at first four bits of the mantissa and outputs the 

amount to be shifted assuming a one was found on these four bits. The second module 

operates on the next four bits of the mantissa treating first four bits are zero and outputs 

the amount to be shifted left. 

 

This process is repeated for the remaining bits of mantissa. Signals are generated if 

the four bits of the mantissa are zero. Depending on the signal values the amount of shift 

is selected. This selection is implemented in three multiplexer stages. Depending on the 

two leading bits of final mantissa, the final mantissa is shifted left by previously calculated 

shift amount or shifted right. The final exponent is also corrected accordingly. 
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CHAPTER 6 

SIMULATION RESULTS AND DISCUSSION 

 

All PP units of the MAC architectures are based on the power-efficient Baugh–

Wooley algorithm for partial-product generation and the HPM partial-product reduction 

tree. The accumulate adder is of conditional-sum type and has an extension of eight guard 

bits (Ng=8). This allows the MAC unit to support loops of up to 256 iterations without 

requiring the output to be right-shifted to avoid overflow. A final adder based on parallel 

algorithm of recurrence equation supports fast addition of the PP unit outputs. The 

Multiply Accumulate architecture is designed using VHDL and simulated using MODEL 

SIM. The performance parameters are synthesized using Xilinx. 

 

6.1 SIMULATION WAVEFORM OF THREE-CYCLE MAC UNIT 

 

 

Figure 6.1: Waveform for the three-cycle MAC of operand size 16 -bit  

The inputs of MAC-3C unit x and y are of 16 bits. The multiplier output is 16-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 32-bit (acc_reg). 
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Figure 6.2: Waveform for the three-cycle MAC of operand size 32-bit  

The inputs of MAC-3C unit x and y are of 32 bits. The multiplier output is 32-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 64-bit (acc_reg) . 

 

 
Figure 6.3: Waveform for the three-cycle MAC of operand size 48-bit 

The inputs of MAC-3C unit x and y are of 48 bits. The multiplier output is 48-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 96-bit (acc_reg). 
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        Figure 6.4: Waveform for the three-cycle MAC of operand size 64-bit 

The inputs of MAC-3C unit x and y are of 64 bits.The multiplier output is 64 -bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 128 -bit (acc_reg). 

 

6.2 SIMULATION WAVEFORM OF TWO-CYCLE MAC UNIT 

 
Figure 6.5: Waveform for the two-cycle MAC of operand size 16-bit 
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The inputs of MAC-2C unit x and y are of 16 bits. The multiplier output is 16 -bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 32 -bit (acc_reg). 

 

 
Figure 6.6: Waveform for the two-cycle MAC of operand size 32-bit 

The inputs of MAC-2C unit x and y are of 32 bits. The multiplier output is 32-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 64-bit (acc_reg). 

 

 
Figure 6.7: Waveform for the two-cycle MAC of operand size 48-bit 

 

35 
 

The inputs of MAC-2C unit x and y are of 48 bits. The multiplier output is 48-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 96-bit (acc_reg). 

 

 
Figure 6.8: Waveform for the two-cycle MAC of operand size 64-bit 

The inputs of MAC-2C unit x and y are of 64 bits. The multiplier output is 64-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 128-bit (acc_reg). 

 

6.3 SIMULATION WAVEFORM OF  MAC-NEW UNIT 

 
Figure 6.9: Waveform for the MAC-NEW of operand size 16-bit 

 

36 
 

The inputs of MAC-NEW unit x and y are of 16 bits. The multiplier output is 16-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 32-bit (acc_reg). 

 

 
Figure 6.10: Waveform for the MAC-NEW of operand size 32-bit 

The inputs of MAC-NEW unit x and y are of 32 bits. The multiplier output is 32-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 64-bit (acc_reg) . 

 

 
Figure 6.11: Waveform for the MAC-NEW of operand size 48-bit 
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The inputs of MAC-NEW unit x and y are of 48 bits. The multiplier output is 48-

bit stored in the register (r) and the partial product  generated is added with the final adder 

and the result stored in the accumulate register is 96-bit (acc_reg) . 

 

 

Figure 6.12: Waveform for the MAC-NEW of operand size 64-bit 

The inputs of MAC-NEW unit x and y are of 64 bits. The multiplier output is 64-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 128-bit (acc_reg). 

 

6.4 SIMULATION WAVEFORM OF DTMAC UNIT 

 

Figure 6.13: Waveform for the Full Precision DTMAC unit 
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The inputs of the FP_MAC mode is 32 bit in which LSB of the a-bit and b-bit are 

taken as two 16-bits.The selection mode is given 000 and for each consecutive clock cycle 

the accumulated result is stored in the FP_MAC. 

 

 
Figure 6.14: Waveform for the Half Precision DTMAC unit  

The inputs of the HP_MAC mode is 16 bit in which LSB of the a-bit and b-bit are 

taken as two 8-bits.The selection mode is given 001 and for each consecutive clock cycle 

the accumulated result is stored in the HP_MAC. 

 

 
Figure 6.15: Waveform for the DTMAC unit 
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The inputs of the DT_MAC mode is 2×16 bit in which LSB of the a and b-bit is 

taken as 1×16 bit and MSB of the a and b-bit are taken as 1×16 bit. The selection mode is 

given 011 and for each consecutive clock cycle the accumulated result is stored in the 

DT_MAC. 

 

 
Figure 6.16: Waveform for the Full Precision Multiplication unit 

The inputs of the FP_MULT mode is 32- bit in which MSB of the and b-bit is 

taken as two 1×16 bit. The selection mode is given 100 and for each consecutive clock 

cycle the multiplication result is stored in the FP_M. 

 
Figure 6.17: Waveform for the Half-Precision Multiplication unit 
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The inputs of the HP_MULT  mode is 1×16  bit in which MSB of the a and b-bit is 

taken as two 8-bit.The selection mode is given 101  and for each consecutive clock cycle 

the multiplication result is stored in the HP_M. 

 

 
Figure 6.18: Waveform for the Double Throughput Multiplication unit 

 

The inputs of the DT_MULT  mode is 2×16  bit in which MSB of the a and b-bit is 

taken as two 16-bit.The selection mode is given 111  and for each consecutive clock cycle 

the multiplication result is stored in the DT_M. 
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6.5 SIMULATION WAVEFORM OF FLOATING POINT MULTIPLIE R  

 

 
Figure 6.19: Waveform for the Floating Point Multiplier MAC unit  

The input of the Floating Point Multiplier is 32- bit in which each of exponents (e1 and 

e2) is 8 bit. The mantissa bit (m1 and m2) are 23 bit and the sign bit (s1 and s2) is 1-

bit.The accumulation is done by the MAC-NEW 32-bit. 

 

6.6 SYNTHESIS REPORT OF THE MAC ARCHITECTURE 

 
Figure 6.20: Power calculation for 3-C MAC unit of 16-bit 
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Figure 6.21: Power calculation for 3-C MAC unit of 32-bit 

 

 

 
Figure 6.22: Power calculation for 2-C MAC unit of 48-bit 
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Figure 6.23: Power calculation for 2-C MAC unit of 64-bit 

 

 

 
Figure 6.24: Power calculation for MAC-NEW unit of 16-bit 
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Figure 6.25: Power calculation for MAC-NEW unit of 64-bit 

 

 

 
Figure 6.26: Power calculation for Full Precision DTMAC unit 
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Figure 6.27: Power calculation for Half  Precision DTMAC unit 

 

 

6.7 COMPARISON OF VARIOUS MAC ARCHITECTURES 

 

Table 6.1: Performance Analysis of conventional MAC architectures of the operand 

size 16 and 32 bit 

OPERAND SIZE 16 32 Performance 
Evaluation (%) 

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 16-bit 32-bit 

POWER(mW) 77 70 155 154 9.09 0.65 

DELAY(ns) 79.97 79.24 158.94 162.59 0.92 2.29 

GATE COUNT 14,885 13,930 52,439 51,320 6.42 2.13 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 16 and 32-bit of the Three-cycle and Two-cycle MAC architecture. 

The parameters such as power and gate count for the 3-C MAC unit is high in comparison 

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high. The 

performance is evaluated for the 16 and 32-bit. 
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Table 6.2: Performance Analysis of conventional MAC architectures of the operand 

size 48 and 64 bit 

OPERAND SIZE 48 64 Performance 
Evaluation (%) 

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 48-bit 64-bit 

POWER(mW) 176 170 224 221 3.41 1.34 

DELAY(ns) 161.47 163.02 171.75 173.20 0.96 0.84 

GATE COUNT 58,974 59.091 88,336 89,132 0.20 0.90 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 48 and 64 bit of the Three-cycle and Two-cycle MAC architecture. 

The parameters such as power and gate count for the 3-C MAC unit is high in comparison 

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high .The 

performance is evaluated for the 48  and 64-bit. 

 

 

Table 6.3: Performance Analysis of 3-C and MAC-NEW architectures of the 

operand size 16 and 32 bit 

OPERAND 

SIZE 
16 32 Performance 

Evaluation (%) 

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 16-bit 32-bit 

POWER(mW) 77 72 155 148 6.50 4.52 

DELAY(ns) 79.97 74.21 158.94 153.27 7.20 3.57 

GATE COUNT 14,885 13,356 52,439 42,880 10.27 16.44 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 16 and 32 bit of the Three-cycle and MAC-NEW architecture. The 

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The 

performance is evaluated for the 16 and 32 bit. 
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Table 6.4: Performance Analysis of 3-C and MAC-NEW architectures of the 

operand size 48 and 64  bit 

OPERAND 

SIZE 
48 64 Performance 

Evaluation (%) 

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 48-bit 64-bit 

POWER(mW) 176 164 224 218 6.82 2.68 

DELAY(ns) 161.47 157.22 171.75 168.96 2.64 1.62 

GATE COUNT 58,974 49,180 88,336 77,903 16.61 11.81 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 48 and 64 bit of the Three-cycle and MAC-NEW architecture. The 

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The 

performance is evaluated for the 48 and 64 bit. 

 

Table 6.5: Comparison of Operating Modes in DTMAC Architecture 
 

Architecture  FP_MAC HP_MAC DT_MAC  
Power 148 72 144 

Delay 153.27 74.21 148.42 

Gate Count 42,880 13,356 26,712 

 

The DTMAC operating modes parameters are tabulated in Table 6.5. The 

parameters of the FP_MAC are same as 32-bit MAC-NEW architecture. The HP_MAC is 

same as 16-bit MAC-NEW architecture. The DT_MAC is 2×16-bit MAC-NEW 

architecture. 

 

Table 6.6 :Parameters of the Floating Point multiplier in MAC unit 
 

Parameters  

Power (mW) 106 

Delay(ns) 73.964 

Gate Count 3579 
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6.8 POWER ANALYSIS 
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Figure 6.28: Power Analysis of MAC-3C and MAC-NEW of the operand size 32 bit 

The Power analysis is performed for the MAC-3C and MAC-NEW architecture. 

The MAC-3C unit has more power when compared with the MAC-NEW architecture due 

to the three-pipeline stages. 

6.9 DELAY ANALYSIS 
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Figure 6.29 :DelayAnalysis of MAC-3C and MAC-NEW of the operand size 32 bit 

The Delay analysis is performed  for the MAC-3C and MAC-NEW architecture. 

The MAC-3C unit has more delay when compared with the MAC-NEW architecture due 

to the three-pipeline stages. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

 

 This project presents the estimation of the efficient performance parameters such as 

power, gate count, and delay for the different Multiply Accumulate architectures. The 

architectures are designed using Baugh-Wooley algorithm. The Three-cycle, Two-cycle 

and MAC-NEW architecture is simulated through MODEL SIM and synthesized using 

XILINX. The performance parameter of the conventional MAC architecture is compared 

with the proposed MAC architecture and the results are tabulated. 

 

 The comparison is made between the MAC-3C and MAC-2C architecture in which the 

power and gate count remains high for the MAC-3C but  the delay is large for the MAC-

2C  due to the removal of the pipeline register after the Partial Product (PP) unit. The 

MAC-NEW is compared with the reference architecture (MAC-3C) and the results are 

tabulated in which the parameters are efficient for the MAC-NEW architecture. As it is an 

efficient architecture it is used to create a versatile MAC unit called Double Throughput 

MAC unit(DTMAC).As a modification to this project, the Floating point multiplier is used 

in the MAC unit and the parameter are tabulated. 

 

FUTURE SCOPE 

  

 The MAC-NEW architecture can be used in the efficient design of digital signal 

processing circuits such as FIR and IIR filter. As this architecture is efficient in 

performance parameters it increases the computation of the filter. 
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ABSTRACT 

The Multiplier and Accumulator (MAC) unit is used as a basic element in most of 

the digital signal processing application in order to perform repeated multiplication and 

addition. The conventional MAC architectures uses more shift and add operation at 

multiplier unit which increases delay in the arithmetic operations. 

 

The main objective is to design a new multiplier and accumulator architecture to 

perform high speed arithmetic operation. The three cycle MAC (MAC-3C) architecture 

increase the performance by reducing the critical path delay by inserting an extra pipeline 

register either inside the partial product (PP) unit or between PP unit and final adder. The 

two cycle MAC (MAC-2C) architecture performs the carry propagation only in the 

second stage leads to the similar delay in multiplication and accumulation. The proposed 

MAC architecture (MAC-NEW) has two stages with the pipeline register inserted after 

the partial product unit. This unit uses carry-save adder which leads to the reduction of 

power. Due to the carry propagation in the second stage, multiplier’s final adder is 

eliminated, leading to higher speed and lower energy. The Double Throughput MAC unit 

(DTMAC) switches between N-bit operations and 2×N/2-bit operations which reduces 

power and critical path delay on the removal of final adder. 

 

Through the “ COMPARATIVE ANALYSIS OF DIFFERENT MULTIPLY 

ACCUMULATE ARCHITECTURE”  is planned to obtain an efficient performance 

parameter such as gate count, delay and power for the different MAC architectures. The                                

MAC architecture is designed using MODEL SIM and simulated using Xilinx ISE 9.2i 

and the parameters is compared to obtain an efficient architecture. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

With the recent rapid advances in multimedia and communication system,real-time 

signal processings like audio signal processing, video/image processing or large-capacity 

data processing are intrestingly being demanded.The multiplier and multiplier and 

accumulator(MAC) are the essentials elements of the digital signal processing such as 

filtering,convolution and inner products.Most digital signal processing methods use 

nonlinear functions such as discrete cosine transform(DCT) or discrete wavelet transform 

Because they are basically accomplished by repetitive application of mulitiplication and 

addition,the speed of the multiplication and addition arithmetic’s determines the execution 

speed and performance of the entire calculation.As the multiplier requires longest delay 

among the basic operational blocks in digital system,the critical path is determined by the 

multiplier. 

 

The multiplier consists of three parts: partial product generation, partial product 

summation and accumulation. The multiplier is much more complex than the accumulate 

adder, many design techniques have focused on reducing multiplier delay. In the 

architecture, the critical path is reduced by inserting an extra pipeline register, either inside 

the partial product unit or between the partial product unit and final adder. It has a better 

performance because of the reduction in critical path delay. The most effective way to 

increase the speed of a multiplier is to reduce the number of partial products using high 

speed compressors or speed optimized structures because multiplication precedes a series 

of additions for the partial products. The guard bits are important for avoiding overflow 

when computing long sequences of multiply accumulate operation.  
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In order to improve the speed of the MAC unit, there are two major bottlenecks. 

The first is the partial product reduction network that is used in the multiplication block 

and the second is the accumulator. Both of these stages require addition of large operands 

that involve long paths for carry propagation. As the multiplier is more complex than the 

accumulator, design techniques are proposed on reducing the delay in the multiplier either 

inside the Partial Product (PP) unit or in the final adder. Inside the PP unit, the partial-

product circuitry might be implemented using the modified-Booth algorithm or one of its 

successors. The partial-product reduction tree of the PP unit can be implemented using 

high-speed compressors or speed-optimized structures. Mathew et al. propose a sparse-

tree carry look-ahead adder for fast addition of the PP unit outputs and Liu et al. introduce 

a hybrid adder o reduce delay compared to a design that assumes equal arrival time on all 

adder inputs. 

 

Here a MAC-NEW architecture is proposed in which the first stage is significantly 

faster compared to the second stage, leading to a better delay balance between the two 

stages. The key feature to this architecture is the implementation of product sign extension 

in the second stage, together with the accumulate adder such as carry save adder and the 

saturation unit. Guard bits are used for avoiding the overflow on computation of long 

sequences of multiply-accumulate operation. This MAC-NEW unit is efficient in terms of 

delay, power and gate count. 

 

1.1  OBJECTIVE OF THE WORK 

The performance of the multiply and accumulate unit is improved by either using 

high speed multipliers or improved fast adder architectures. To obtain a high speed 

operation, the multiplication unit is combined with accumulation and carry save adder 

(CSA).The partial product is generated using Baugh Wooley algorithm. The result is sign 

extended to have the same size as the accumulate adder. The MAC unit is designed using 

VHDL code and simulated using MODELSIM. The performance parameters such as 
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power, gate count, and delay are synthesized using XILINX and compared with the 

conventional MAC architecture. 

 

1.2 INTRODUCTION TO VHDL 

VHDL is an acronym which stands for VHSIC Hardware Description 

Language.VHSIC means Very High Speed Integrated Circuits. It is being used for 

documentation, verificatoin and synthesis of large digital designs.VHDL is a standard 

developed by IEEE.The different approaches in VHDL are structural, data flow and 

behavioral methods of hardware description. 

 

1.2.1 STRUCTURAL DESCRIPTIONS 

 

Building Blocks 

 Every portion of a VHDL design is considered a block. A VHDL design may be 

completely described in a single block, or it may be decomposed in several blocks. Each 

block in VHDL is analogous to an off-the-shelf part and is called an entity. 

The entity describes the interface to that block and a separate part associated with the 

entity describes how that block operates. The interface description is like a pin description 

in a data book, specifying the inputs and outputs to the block. The description of the 

operation of the part is like a schematic for the block.  

The following is an example of an entity declaration in VHDL 

Entity latch is 

  Port (sir: in bit; 

        q,nq: out bit); 

end latch; 

The first line indicates a definition of a new entity called latch. The last line is the 

end of the definition. The lines in between, are called the port clause, which describe the 

interface to the design. The port clause contains a list of interface declarations. 

Each interface declaration defines one or more signals that are inputs or outputs to the 

design. Each interface declaration contains a list of names, mode and type. 
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The following is an example of an architecture declaration for the latch entity. 

architecture dataflow of latch is 

  signal q0 : bit := '0'; 

  signal nq0 : bit := '1'; 

begin 

  q0<=r nor nq0; 

  nq0<=s nor q0; 

  nq<=nq0; 

  q<=q0; 

end dataflow; 

The first line of the declaration indicates the definition of a new architecture 

called dataflow and it belongs to the entity named latch. So this architecture describes the 

operation of the latch entity. The schematic for the SR latch 

 

 
Figure 1.1 Schematic SR Latch 

1.2.2 DATA FLOW DESCRIPTIONS 
 

In the data flow approach, circuits are described by indicating how the inputs and 

outputs of built-in primitive components are connected together.The following SR latch 

using VHDL is described as in the following schematic. 

entity latch is 

  port (s,r : in bit; 

        q,nq : out bit); 
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end latch; 

architecture dataflow of latch is 

begin 

  q<=r nor nq; 

  nq<=s nor q; 

end dataflow; 

 
Figure 1.2 Dataflow approach of Schematic SR Latch 

The signal assignment operator in VHDL specifies a relationship between signals. The 

architecture part describes the internal operation of the design. The scheme used to model 

a VHDL design is called discrete event time simulation. In this the values of signals are 

only updates when certain events occur and event occurs at discrete instances of time. 

 

The Delay Model 

 The two models of delay that are used in VHDL. The first is called the inertial 

delay model. The inertial delay model is specified by adding an after clause to the signal 

assignment statement. The next is the transport delay model, just delays the change in the 

output by the time specified. 

 

1.2.3 BEHAVIORAL DESCRIPTIONS 

The behavioral approach to modeling hardware components is different from the 

other two methods in that it does not necessarily in any way reflect how the design is 

implemented. 
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The Process Statement 

 It is basically the black box approach to modeling. It accurately models what 

happens on the inputs and outputs of the black box, but what is inside the box (how it 

works) is irrelevant. The behavioral description is usually used in two ways in VHDL. 

First, it can be used to model complex components. 

Behavioral descriptions are supported with the process statement. The process 

statement can appear in the body of an architecture declaration just as the signal 

assignment statement does. The process statement can also contain signal assignments in 

order to specify the outputs of the process. 

Using Variables 
 

A variable is kinds of objects used to hold data and also behaves like you would 

expect in a software programming language, which is much different than the behavior of 

a signal. Although variables represent data like the signal, they do not have or cause 

events and are modified differently. Variables are modified with the variable assignment.  

Sequential Statements 
 

There are several statements that may only be used in the body of a process. These 

statements are called sequential statements because they are executed sequentially. The 

types of statements used here are if, if else, for and loop. 

Signals and Processes 
 

This section is short, but contains important information about the use of signals in 

the process statement. The issue of concern is to avoid confusion about the difference 

between how a signal assignment and variable assignment behave in the process statement. 

Remember a signal assignment, if anything, merely schedules an event to occur on a 

signal and does not have an immediate effect. When a process is resumed, it executes from 

top to bottom and no events are processed until after the process is complete.  
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Program Output 

In most programming languages there is a mechanism for printing text on the 

monitor and getting input from the user through the keyboard. Even though the simulator 

monitors the value of signals and variables in the design, it is able to output certain 

information during simulation. It is not provided as a language feature in VHDL, but 

rather as a standard library that comes with every VHDL language system. In VHDL, 

common code can be put in a separate file to be used by many designs. This common code 

is called a library. The write statement can also be used to append constant values and the 

value of variables and signals of the types bit, bit_vector, time, integer, and real. 

 

1.3 SOFTWARE USED 

� Modelsim PE5.4E 

� Xilinx ISE 9.2i 

 

1.4 ORGANIZATION OF THE REPORT 

� Chapter 2 discusses about the overview of MAC. 

� Chapter 3 discusses the existing architecture of MAC. 

� Chapter 4 discusses the proposed architecture of MAC. 

� Chapter 5 discusses the application of proposed architecture of MAC. 

� Chapter 6 presents the simulation results and discussions. 

�  Chapter 7 presents the conclusion and future scope. 
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CHAPTER 2 

OVERVIEW OF MAC 

 

2.1 GENERAL ARCHITECTURE OF MAC 

           

 The general construction of the MAC operation is given by the equation              

                   Z=A×B+X  

Where the multiplier A and multiplicand B are assumed to have n bits each and the 

addend X has (2n+1) bits. The basic MAC unit is made up of a multiplier and an 

accumulator as shown in Fig 2.1. The multiplier can also be divided into partial product 

generator, summation tree and final adder. It executes the multiplication operation by 

multiplying the input multiplier and multiplicand. This is added to the previous 

multiplication result as the accumulation step. 

 

                                                        

Figure 2.1: General MAC architecture 

 

The summation network represents the core of the MAC unit and occupies most of 

the area, power and delay. Several algorithms and architectures are developed to optimize 

the implementation of this block. The addition network reduces the number of partial 

products into two operands representing a sum and a carry. The final adder is then used to 

generate the multiplication result out of these two operands. The last block is the 

accumulator, which is required to perform a double precision addition operation between 

the multiplication result and the accumulated operand. It involves a very large adder due 
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to the large operand size. This stage represents a bottleneck in the multiplication process 

in terms of speed since it involves horizontal carry propagation. The MAC unit is 

classified into various types such as 2-Cycle MAC unit,3-Cycle MAC unit, MAC-NEW 

unit and DTMAC unit. 

 

2.2 BLOCK DIAGRAM OF PROJECT 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Block Diagram of the project 

 

The  overall block diagram of the project is shown in Fig2.2.The multiply 

accumulate unit is broadly classified into three types such as Three-cycle MAC 

unit(MAC-3C),Two-cycle MAC unit(MAC-2C) and MAC-NEW unit. The three 

architectures are implemented using BAUGH-WOOLEY algorithm. The proposed MAC 

unit has the better performance in comparison with the conventional architectures. The 

MAC-NEW is used to create a versatile MAC unit is called DOUBLE THROUGHPUT 

MULTIPLIER AND ACCUMULATE UNIT (DTMAC). 

 

 

Multiply Accumulate unit 
(MAC) 

MAC-3C MAC-2C MAC-NEW 

DTMAC 
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2.3 PROCESS FLOW IN MAC 

 

 

 

Figure 2.3: Basic Arithmetic steps of multiplication and accumulation 

 

A multiplier can be divided into four operational steps as shown in Fig 2.3. The 

first step is the multiplication operation with the input multiplier and the multiplicand. The 

second step is the partial product summation which is used to add all the partial products 

and convert them into the form of sum and carry. The third step is the final addition in 

which the final multiplication result is produced by adding the sum and carry. The last 

step is the accumulation which takes place with the multiplication and the accumulated 

result. 
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2.4 BAUGH-WOOLEY ALGORITHM 

 

An algorithm for direct 2’s complement array multiplication has been proposed by 

BAUGH-WOOLEY and this algorithm is used in the design of multiplier and accumulator 

structures. The primary advantage of this algorithm is that the signs of all the partial 

products are positive and thus allowing the array to be entirely the same as conventional 

standard array structures. 

The following  

� Algorithm for two’s-complement multiplication. 

� Adjust partial products to maximize regularity of array multiplication. 

� Moves partial products with negative signs to the last step also add negation of 

partial products rather than subtracts. 

 

 

Figure 2.4: Unsigned multiplication for Baugh-Wooley algorithm 

 

The Baugh-Wooley algorithm for the unsigned binary multiplication is based on 

the concept shown in Fig2.4.The algorithm specifies that all possible AND terms are 

created first and then sent through an array of half-adders and full-adders with the carry-

outs chained to the next most significant bit at each level of addition. 

 

For signed multiplication the Baugh-Wooley algorithm can implement signed 

multiplication in almost the same way as the unsigned multiplication. 
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The Baugh-Wooley algorithmic is used to multiply 2’s complement numbers using 

a regular iterative adder structure. For example, for two n-bit numbers and y their product 

can be defined as: 

 

  P=22n-2 Xn-1 Yn-1 +  2i+j X i Y j  

    + 2
n-1(   2i Yn-1 X i +  2j Xn-1 Y j ) 

    +2 n  + 2 2n-1 

 

Where x and y are in 2’s complement format. This algorithm performs the 

multiplication using only addition of positive bit products. This simplifies the hardware 

needed to implement the algorithm. 

 

 

Figure 2.5: Illustration of an 8-bit Baugh-Wooley multiplication 

 

The Baugh-Wooley (BW) algorithm is a relatively straightforward way of doing 

signed multiplications Fig. 2.5 illustrates the algorithm for an 8-bit case, where the partial-
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product bits have been reorganized according to Hatamian’s scheme. The creation of the 

reorganized partial-product array comprises three steps: 

 i) The most significant bit (MSB) of the first N-1 partial-product rows and all bits 

of the last partial-product row, except its MSB, are inverted. 

 ii) A ’1’ is added to the Nth column. 

 iii) The MSB of the final result is inverted. 

 

Implementing the BW multiplier based on the HPM tree is as straightforward as 

the basic algorithm itself. The partial-product bits can be generated by using a 2-input 

AND gate for each pair of operand bits. In the case a partial-product bit should be 

inverted, we employ a 2-input NAND gate instead. The insertion of ’1’ in column N is 

easily accommodated by changing the half adder at top of row N to a full adder with one 

of the input signals connected to ’1’1. Finally, the inversion of the MSB of the result is 

done by adding an inverter. The final result of the implementation of the BW algorithm is 

depicted in Fig. 2.6. 

 

 

Figure 2.6: Illustration of an 8-bit Baugh-Wooley multiplication using an HPM 

reduction tree 
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CHAPTER 3 

EXISTING ARCHITECTURE OF MAC 

 

3.1 THREE-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE  

 

The Three-cycle Multiply Accumulate architecture consists of  three stages in 

which the partial product generation is done in the first stage, the partial product addition 

with carry propagation adder  in the second stage and accumulation in the final stage as 

shown in the Fig 3.1.Multipliers are typically comprised of a partial-product unit (the PP 

unit) and the final adder. In this unit carry propagation adder is used as the final adder. To 

increase the to increase MAC performance, we can reduce the critical path delay by 

inserting an extra pipeline register, either inside the PP unit or between the PP unit and the 

final adder. This creates three-cycle MAC architecture but increases overhead in terms of 

delay, power and gate count. 

 

 

 Figure 3.1: Block diagram of the Three-cycle MAC architecture. 
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3.2 STAGES OF THREE-CYCLE MAC UNIT: 

The pipeline register inserted between the PP unit and the final adder forms the 

first stage as shown in Fig 3.2.Due to the insertion of the pipeline register after the PP unit, 

the partial products are computed and fed to the next stage through pipeline register. The 

second stage performs the partial product addition with the carry propagation 

adder(CPA).The adder  adds two n-bit operands and an optional carry-in by performing 

carry propagation. It performs carry propagation from each bit to higher bit positions and 

does not occupy a significant area of the chip and less power consumption. The third stage 

is the accumulation for which each clock cycle the accumulated result is added with the 

previous result and stored in the register.  

 

Figure 3.2: Block diagram of the three stages of the Three-cycle MAC 

architecture. 

 

A multiply -accumulate operation using inputs X and Y, is shown in Fig. 3.2. The 

multiply-accumulate operation starts with the generation and reduction of partial products. 

The final adder performs carry propagation of the sums and carries produced by the PP 

unit. Finally, the accumulate adder sums the pipelined products (M) to the accumulated 

result (F), producing the new result (G). First we compute the product of the two inputs. 

Then this result is sign extended to have the same size as the accumulate adder. The 

accumulate adder is bits wider than the multiplier to allow (2Ng ) multiple multiply-

accumulate iterations without overflow. Finally, the sign extended product is added to the 
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stored accumulated value. The disadvantage is that P [2N-1] must be computed and used 

for sign extension in the accumulating addition. A saturation unit removes the guard bits 

(Ng) such that the final result is 2N bits wide. The saturation unit takes G [2N+Ng-1:0] as 

input, where G is the output of the accumulate adder. The three-cycle MAC architecture is 

used as reference architecture and is compared with the proposed MAC architecture. This 

unit has increase in power, delay and gate count due to the three stages. 

 

3.3 TWO-CYCLE MULTIPLY ACCUMULATE ARCHITECTURE 

The Two-cycle MAC architecture is shown in Fig 3.3. This architecture consists of 

two stages in which the partial product generation is done in the first stage and the partial 

product summation and accumulation is done in the second stage. The pipeline register the 

register between the PP unit and the final adder is removed to obtain a Two-cycle MAC 

architecture. Our architecture is based on two’s complement representation, it uses 

guarding bits to efficiently support longer MAC loops, and it includes output saturation. 

 
Figure 3.3: Block diagram of the Two-cycle MAC architecture. 

In Two-cycle MAC architectures have a first stage that is significantly slower than 

the second stage. By performing carry propagation only in the second stage of the MAC 
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pipeline, multiplication and accumulation have similar delays. The partial products are 

generated in the first stage and stored in the pipeline register. In the second stage partial 

product addition is performed by the carry propagation adder and provides the result in 

sum and carry. This result is accumulated with the previous result for each consecutive 

clock cycle in the second stage. 

 

Due to the removal of the pipeline register between the PP unit and the final adder 

the partial products computed are not fed to the second stage within the stipulated time. 

The critical path of this unit goes through the PP unit and the final adder. The evaluation 

results shows that this architecture has better power and gate count when compared with 

reference architecture. The delay of this unit remains high with the 3-Cycle MAC unit due 

to the removal of the pipeline register after the PP unit.   
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CHAPTER 4 

PROPOSED ARCHITECTURE OF MAC 

 

4.1 PROPOSED MULTIPLY ACCUMULATE ARCHITECTURE 

 

The MAC–NEW architecture is based on two’s complement representation, it uses 

guarding bits to efficiently support longer MAC loops, and it includes output saturation. 

By performing carry propagation in the second stage of the MAC pipeline, multiplication 

and accumulation have similar delays. The carry-save adder is used which leads to the 

reduction of power. With reference to the two cycle MAC architecture, this unit inserts the 

pipeline register after the partial product unit. 

 

This architecture is based on two conditions such as  

� The accumulation should take place in the second stage of a 2-cycle MAC unit. 

� The carry should be propagated only once in a MAC pipeline, thus, in the second 

stage. 

 

The MAC-NEW unit shown in Fig 4.1 consists of two stages: partial product unit in the 

first stage and the accumulate adder in the second stage. The final adder has been 

removed, and a carry-save adder has been inserted after the pipeline registers. The 

maximum delay of the carry-save adder is only that of a single full adder, which means 

that the MAC’s critical path delay still depends on the PP unit. In the carry-save adder 

there is no need to sign extend the multiplier output instead use a row of ’1’ to perform the 

sign extension. 

 

This MAC unit do not require any extra cycles at the end of the loops as the 

interconnects are localized which simplifies routing, decreases delay and reduces energy 

dissipation. As the carry propagation and the accumulation takes place in the second stage 

this architecture uses several guard bits without any overflow problems. The critical path 

delay of this unit is within the partial product unit. 
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Figure 4.1: Block diagram of the MAC-NEW unit 

 

Carry propagation only takes place in the second stage, which means that the 

multiplier’s final adder is eliminated, leading to higher speed and lower energy. Since 

accumulation takes place inside the second stage a pipeline register located before the 

accumulation stage has no impact on functionality. Regardless of pipelining, our MAC 

unit will produce the correct result in each cycle, and no extra cycles need to be added at 

the end of the loops– interconnects are localized, which simplifies routing, decreases 

delay, and reduces energy dissipation. 

 

Because of the above advantages, it supports several guarding bits, making longer 

loops feasible without any overflow problems. The use of guarding bits in an approach 

where the accumulated value is fed back to the PPRT’s input would most certainly have a 

negative impact on hardware complexity. The MAC-NEW exploits the fact that the delay 

of the accumulate adder is shorter than the delay of the PP unit, by at least an amount 

corresponding to the delay of a full-adder cell. 
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The critical path is through the PP unit as this architecture uses pipeline registers at 

the bottom of the PP unit, MAC-NEW obviously can operate at the same speed as MAC-

3C, while its performance on average for various operand size such as 16, 32, 48 and 64 is 

faster than MAC-2C. As far as power dissipation is concerned, the final adder is replaced 

by the simple carry-save adder,MAC-3C on average dissipates more power than MAC-

NEW for the same operating frequency and timing constraint. It requires two cycles for 

completing the MAC computation, still performs the MAC operation at the same 

operating frequency as a 3-cycle MAC unit, at lower energy dissipation. 

 

The Evaluation methodology shows that the MAC-NEW unit is efficient in 

performance parameters such as power, delay and gate count in comparison with the 

conventional architecture. Due to the efficiency, this architecture is used to create an 

application architecture called Double Throughput Multiply Accumulate unit [DTMAC]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

CHAPTER 5 

APPLICATION OF PROPOSED ARCHITECTURE OF MAC 

 

5.1 DOUBLE THROUGHPUT MULTIPLY ACCUMULATE UNIT 

A MAC unit that can optionally switch between N-bit operation and 2xN/2-bit 

operation is referred as a Double Throughput MAC (DTMAC) is shown in Fig 5.1. This 

feature would be useful in many DSP-oriented applications, when the dynamic range is 

lower or when there is a need to simultaneously calculate real and imaginary values. A 

double throughput 32-bit MAC can be logically implemented by tying together two 

separate, single 16-bit MACs that support two parallel MAC operations. 

 

 

Figure 5.1: Block diagram of the DTMAC unit 

 

Our DTMAC unit in Fig 5.2 is designed to support the efficient execution of 

several operating modes in a 32-bit data path. The unit employs the Twin-Precision (TP) 

technique, in terms of a modified 32-bit TP multiplier1 that contains a Twin-Precision 

Partial-Product Reduction Tree (TP-PPRT) to generate the partial product outputs, which 
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in conventional schemes are fed to a final adder2. Instead we insert a level of adder cells 

that combine the outputs of the TPPPRT with the result of the twin-precision accumulate 

adder; is called”combination unit”. In the guarding bit positions of the combination unit, 

the half adder cells add’1’s with the accumulated result, to obtain the correct logical 

function. The combination unit can be placed after or before the pipeline registers 

depending on whether the TP-PPRT or the twin-precision accumulate adder represents the 

dominant delay of the DTMAC unit. 
 

The use of the combination unit makes it possible to build a high-speed, but still 

flexible DTMAC unit using only two pipeline stages, which limits the clock load and 

makes for a power-efficient design. The twin-precision accumulate adder is based on the 

Ladner-Fisher parallel-prefix structure  and contains 80 bits, divided in two sections (high 

and low) each containing 32 data and eight (8) extra guarding bits, as shown in the 

detailed schematic of Fig. 2(c). Because each of the two sections has eight guarding bits, 

this DTMAC unit supports loops with 256 iterations without requiring any right shifting of 

the output to avoid overflow. To control the operating mode, an AND gate is inserted; one 

control bit (CTRL2[0]) sets the XOR’s input at position 40 to either zero or to the carry 

signal of the 32-bit data part of the low section of the twin-precision accumulate 

adder. 

 

Figure 5.2: Block diagram of the TP-PP unit based on the Baugh–Wooley 

multiplication algorithm. 
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5.2 Components of DTMAC unit: 

1) TP-PP Unit: To support double-throughput operations, the partial-product generation 

and reduction are based on the twin-precision (TP) technique [24]. Here, the partial 

products that are not needed during narrow-width operations are forced 

to zero while some lower-significance partial products are negated4 to provide the correct 

function for theM -bit multiplication in the lower-significance section. Depending 

on the operating mode, “1” bits can be set in position N+M, N and M.M=N/2 is assumed 

as the  lower-significance section the “low half.”  

 

2) Carry-Save Adder: The carry-save adder (CSA) shown in Fig 5.3 is used for the Partial 

product addition for the DTMAC unit .In this carry save adder, guard bits and sign 

extension for the N/2-bit operation in the low half must be accommodated .This is 

achieved by inserting a row of Ng+1 bits “1” that is summed together with the 

accumulated value and the most significant bit of the result from the TP-PP unit for the 

N/2-bit operation in the low half bit position. During N/2-bit operations in the low half, 

S[N-3] will always be zero, due to the TP technique in which partial products are forced to 

zero. Since S [N-3] will not carry any useful information during N/2-bit operations in the 

low half, this signal can be used to add the required “1” at bit positionN-1 . This is easily 

done by feeding S [N-3] and a control signal through an extra OR gate, whose output may 

optionally be forced to “1,” 

 

Figure 5.3: Block diagram of the  gates of the combination unit in the DTMAC unit. 

 

3) Accumulate Adder: The accumulate adder shown in Fig 5.4 of the DTMAC unit is 

based on the conditional-sum adder structure, enabling efficient separation into high and 

low halves, each with Ng  guard bits to avoid overflow. To control the operating mode, an 

AND gate is inserted; one control bit (CTRL1[0]) sets the AND’s input at position N+Ng 
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either to zero or to the carry signal of the N-1 -bit data part of the low half of the 

accumulate adder. For full precision operations, this effectively by passes the Ng guard 

bits used for N/2 -bit operations in the low half. Similarly, the accumulator output bits that 

correspond to unused guard bits (F [N+Ng-1: N]) are discarded during N-bit operation. 

4) Saturation Circuit: The saturation unit for the DTMAC not only needs to consider full 

precision (N) operations but also the N/2 operations in the high and low halves. 

• In full-precision mode, 2N+Ng bits in the output of the accumulate adder are 

processed. 

• In half-precision mode, bits N+Ng are processed. 

• In double-throughput mode, not only N+Ng bits of the low half are processed, but 

also N+Ng bits of the high half are processed. 

 

 

Figure 5.4: Block diagram of the accumulate adder based on the conditional-sum 

adder architecture 

 

5.3 DTMAC OPERATING MODES  

The DTMAC unit operates on two’s complement data and supports six operating 

modes—three for MAC operations and three for multiplications—as determined by the 

value of the 3-bit control signal (CTRL): 

� 000: Full-Precision 32-bit MAC (FP DTMAC). 

� 001: Half-Precision 1x16-bit MAC (HP DTMAC). 

� 010: Double-Throughput 2x16-bit MAC (DT DTMAC). 
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� 100: Half-Precision 1x16-bit multiplication (HP MULT). 

� 101: Double-Throughput 2x16-bit multiplication (DT MULT). 

� 110: Full-Precision 32-bit multiplication (FP MULT). 

 

 In the proposed DTMAC unit, there exists no final adder. This makes the critical 

path delay of the 2-cycle DTMAC dominated by the delay of the TP-PPRT part. The 

DTMAC actually has the same critical delay as that of a conventional 3-cycle single 32-bit 

MAC, in which a pipeline register is inserted between the PPRT block and the final adder 

to several the critical path of the multiplication. The result is that the DTMAC unit, 

despite the operating mode flexibility, has small area, low power dissipation and short 

critical path delays. When the DTMAC unit operates in HP DTMAC mode, half of the 

respective registers are de-activated to isolate the inputs of half of the twin-precision 

accumulate adder and the MSB input bits of the multiplier are set to zero, to reduce 

switching activity and dynamic power dissipation. 

 

 When the DTMAC unit operates in 1×16-bit MAC mode it dissipates a negligible 

amount of energy more than the basic, fixed-function, 16-bit MAC unit. The DTMAC unit 

has a large footprint than MAC32-2C due to extra circuitry to support the multiple 

operation modes. These comparisons reveal that the implementation of operating-mode 

flexibility in the DTMAC unit comes at a limited overhead. 

The important point is that we can save energy by adjusting the operating mode to the 

precision of the data: 

• When the DTMAC unit operates in the default 32-bitMAC mode (FP_MAC), its 

energy dissipation is lower than MAC32-2C when performing 32-bit 

computations. 

• When the DTMAC unit operates in 1 16-bit MAC mode (HP_MAC), the 32-bit 

DTMAC unit performs 16-bit multiply-accumulate operations more energy 

efficiently than MAC32-2C performs computations on 16-bit operands. This 

reduction largely stems from avoiding unnecessary switching caused by the 16-bit 

sign extension of two’s complement 32-bit data that carry only 16 bits of 

information. 
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• When the DTMAC unit operates in the 2 16-bit MAC mode (DT_MAC), its 

energy dissipation per 16-bit multiply-accumulate operation is similar to that of 

MAC16-2C. However, the DTMAC unit uses only half the cycles of MAC16-2C 

to compute all operations, so the surrounding data path circuits are engaged for a 

significantly shorter time. This leads to significant energy savings for a system in 

which the DTMAC unit is integrated. 

 

5.4 MULTIPLICATION THROUGH TWIN PRECISION 

The twin-precision technique shown in Fig 5.5 is an efficient way of achieving 

Double Throughput in a multiplier with low area overhead and delay. The twin- precision 

technique on signed multipliers based on the regular High Performance Multiplier (HPM) 

reduction tree. The twin-precision technique can reduce the power dissipation by adapting 

a multiplier to the bit width of the operands being computed. The technique also enables 

an increased computational throughput, by allowing several narrow-width operations to be 

computed in parallel. 

 

Achieving double throughput for a multiplier is not as straightforward as, for 

example, in an adder, where the carry chain can be cut at the appropriate place to achieve 

narrow-width additions. It is possible to use several multipliers, where at least two have 

narrow bit width, and allow them share the same routing, but has several drawbacks: i) 

The total area of the multipliers would increase, since several multiplier units are used. ii) 

The use of several multipliers increases the fan out of the signals that drive the inputs of 

the multipliers. Higher fan out means longer delays and/or higher power dissipation. iii) 

There would be a need for multiplexers that connect the active multiplier(s) to the result. It 

is not as easy to deploy the twin-precision technique onto a BW multiplication as it is for 

the unsigned multiplication, where only parts of the partial products need to be set to zero. 

To be able to compute two signed multiplications, it is necessary to make a more 

sophisticated modification of the partial-product array. 

 

For the 4-bit multiplication in the LSP of the array, there is a need for some more 

modifications. In the active partial-product array of the 4-bit LSP multiplication (shown in 
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white), the most significant partial product of all rows, except the last, needs to be 

negated. For the last row it is the opposite, here all partial products, except the most 

significant, are negated. Also for this multiplication a sign bit ‘1’ is needed, but this time 

in column. Finally the MSB of the results needs to be negated to get the correct result of 

the two 4-bit multiplications. 

 

 
Figure 5.5: Illustration of a unsigned 8-bit multiplication, using the Baugh–Wooley 

Algorithm 
 

To allow the full-precision multiplication of size to coexist with two 

multiplications of size in the same multiplier, it is necessary to modify the partial-product 

generation and the reduction tree. For the -bit multiplication in the MSP of the array all 

that is needed is to add a control signal that can be set to high, when the N/2-bit 

multiplication is to be computed and to low, when the full precision multiplication is to be 

computed. To compute the N/2-bit multiplication in the LSP of the array, certain partial 

products need to be negated. This can easily be accomplished by changing the two-input 

AND gate that generates the partial product to a two-input NAND gate followed by an 

XOR gate. The second input of the XOR gate can then be used to invert the output of the 

NAND gate. When computing the N/2-bit LSP multiplication, the control input to the 

XOR gate is set to low making it work as a buffer. When computing a full-precision 

multiplication the same signal is set to high making the XOR work as an inverter. Finally 
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the MSB of the result needs to be negated and this can again be achieved by using an 

XOR gate together with an inverted version of the control signal for the XOR gates used 

in the partial-product generation. The unwanted partial products to zero can be done by 

three-input AND gates as for the unsigned multiplication. 

5.4.1 HPM IMPLEMENTATION 
 

A twin-precision implementation based on the regular HPM reduction tree is 

shown in Fig.5.6. For high speed and/or low-power implementations, a reduction tree with 

logarithmic logic depth, such as TDM [9], Dadda [10], Wallace [11] or HPM [12] is 

preferred for summation of the partial products. Such a log-depth reduction tree has the 

benefit of shorter logic depth. Further, a log-depth tree suffers from fewer glitches making 

it less power dissipating. In fig 5.3, the unsigned multiplication is implemented in Baugh-

Wooley algorithm in which 4-bit multiplication, shown in white, can be computed in 

parallel with a second 4-bit multiplication, shown in black. For simplicity the AND gates 

for partial-product generation is not shown and a ripple carry is used as final adder. 

 

 
Figure 5.6: Block diagram of an unsigned 8-bit twin-precision multiplier 

based on the regular HPM reduction tree 
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5.5 FLOATING POINT MULTIPLIER IN MULTIPLY 

ACCUMULATE UNIT 

Floating Point numbers represented in IEEE 754 format are used in most of the 

DSP Processors. Floating point arithmetic is useful in applications where a large dynamic 

range is required or in rapid prototyping applications where the required number range has 

not been thoroughly investigated. The Floating Point Multiplier IP helps designers to 

perform floating point Multiplication on FPGA represented in IEEE 754 single precision 

floating point format. 

 

5.5.1 FUNCTIONAL DESCRIPTION 

 

A Floating point multiplier is the most common element in most digital 

applications such as digital filters, digital signal processors, data processors and control 

units. The present Floating Point Multiplier IP has three blocks sign calculator, exponent 

calculator, mantissa calculator, which works parallel and a normalization unit. The 

Multiplier is pipelined, so the first result appears after the latency period and then the 

result can be obtained after every clock cycle. 

 

 

Figure 5.7: Block diagram of the Floating Point Multiplier 

 

The Schematic symbol of Floating Point Multiplier is shown in Fig 5.7. It takes two 

IEEE 754 format single precision floating point numbers and produces the multiplied 

output. It also supports the features like underflow, overflow and invalid operations. This 
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unit consists of two stages, multiplication calculation and normalization. The first stage 

consists of the following three blocks which work in parallel.  

• Sign Calculator: The Output Sign is the exor of two sign bit inputs. 

• Exponent Calculator: The input exponents are added and the bias is removed to 

produce the exponent of Output. 

• Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa's 

of two inputs. Second stage performs Normalization of the Output obtained from the first 

stage. 

• Normalization Block: The normalization is the last and most complicated part. This 

block is implemented in three pipelined stages. 

 

This block first calculates how much amount the mantissa needs to be left shifted. 

The mantissa is processed in parallel in a number of modules, each looking at four bits of 

the mantissa. The first module looks at first four bits of the mantissa and outputs the 

amount to be shifted assuming a one was found on these four bits. The second module 

operates on the next four bits of the mantissa treating first four bits are zero and outputs 

the amount to be shifted left. 

 

This process is repeated for the remaining bits of mantissa. Signals are generated if 

the four bits of the mantissa are zero. Depending on the signal values the amount of shift 

is selected. This selection is implemented in three multiplexer stages. Depending on the 

two leading bits of final mantissa, the final mantissa is shifted left by previously calculated 

shift amount or shifted right. The final exponent is also corrected accordingly. 
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CHAPTER 6 

SIMULATION RESULTS AND DISCUSSION 

 

All PP units of the MAC architectures are based on the power-efficient Baugh–

Wooley algorithm for partial-product generation and the HPM partial-product reduction 

tree. The accumulate adder is of conditional-sum type and has an extension of eight guard 

bits (Ng=8). This allows the MAC unit to support loops of up to 256 iterations without 

requiring the output to be right-shifted to avoid overflow. A final adder based on parallel 

algorithm of recurrence equation supports fast addition of the PP unit outputs. The 

Multiply Accumulate architecture is designed using VHDL and simulated using MODEL 

SIM. The performance parameters are synthesized using Xilinx. 

 

6.1 SIMULATION WAVEFORM OF THREE-CYCLE MAC UNIT 

 

 

Figure 6.1: Waveform for the three-cycle MAC of operand size 16 -bit  

The inputs of MAC-3C unit x and y are of 16 bits. The multiplier output is 16-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 32-bit (acc_reg). 
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Figure 6.2: Waveform for the three-cycle MAC of operand size 32-bit  

The inputs of MAC-3C unit x and y are of 32 bits. The multiplier output is 32-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 64-bit (acc_reg) . 

 

 
Figure 6.3: Waveform for the three-cycle MAC of operand size 48-bit 

The inputs of MAC-3C unit x and y are of 48 bits. The multiplier output is 48-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 96-bit (acc_reg). 
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        Figure 6.4: Waveform for the three-cycle MAC of operand size 64-bit 

The inputs of MAC-3C unit x and y are of 64 bits.The multiplier output is 64 -bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 128 -bit (acc_reg). 

 

6.2 SIMULATION WAVEFORM OF TWO-CYCLE MAC UNIT 

 
Figure 6.5: Waveform for the two-cycle MAC of operand size 16-bit 
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The inputs of MAC-2C unit x and y are of 16 bits. The multiplier output is 16 -bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 32 -bit (acc_reg). 

 

 
Figure 6.6: Waveform for the two-cycle MAC of operand size 32-bit 

The inputs of MAC-2C unit x and y are of 32 bits. The multiplier output is 32-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 64-bit (acc_reg). 

 

 
Figure 6.7: Waveform for the two-cycle MAC of operand size 48-bit 
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The inputs of MAC-2C unit x and y are of 48 bits. The multiplier output is 48-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 96-bit (acc_reg). 

 

 
Figure 6.8: Waveform for the two-cycle MAC of operand size 64-bit 

The inputs of MAC-2C unit x and y are of 64 bits. The multiplier output is 64-bit 

stored in the register (r) and the partial product generated is added with the final adder and 

the result stored in the accumulate register is 128-bit (acc_reg). 

 

6.3 SIMULATION WAVEFORM OF  MAC-NEW UNIT 

 
Figure 6.9: Waveform for the MAC-NEW of operand size 16-bit 
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The inputs of MAC-NEW unit x and y are of 16 bits. The multiplier output is 16-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 32-bit (acc_reg). 

 

 
Figure 6.10: Waveform for the MAC-NEW of operand size 32-bit 

The inputs of MAC-NEW unit x and y are of 32 bits. The multiplier output is 32-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 64-bit (acc_reg) . 

 

 
Figure 6.11: Waveform for the MAC-NEW of operand size 48-bit 
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The inputs of MAC-NEW unit x and y are of 48 bits. The multiplier output is 48-

bit stored in the register (r) and the partial product  generated is added with the final adder 

and the result stored in the accumulate register is 96-bit (acc_reg) . 

 

 

Figure 6.12: Waveform for the MAC-NEW of operand size 64-bit 

The inputs of MAC-NEW unit x and y are of 64 bits. The multiplier output is 64-

bit stored in the register (r) and the partial product generated is added with the final adder 

and the result stored in the accumulate register is 128-bit (acc_reg). 

 

6.4 SIMULATION WAVEFORM OF DTMAC UNIT 

 

Figure 6.13: Waveform for the Full Precision DTMAC unit 
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The inputs of the FP_MAC mode is 32 bit in which LSB of the a-bit and b-bit are 

taken as two 16-bits.The selection mode is given 000 and for each consecutive clock cycle 

the accumulated result is stored in the FP_MAC. 

 

 
Figure 6.14: Waveform for the Half Precision DTMAC unit  

The inputs of the HP_MAC mode is 16 bit in which LSB of the a-bit and b-bit are 

taken as two 8-bits.The selection mode is given 001 and for each consecutive clock cycle 

the accumulated result is stored in the HP_MAC. 

 

 
Figure 6.15: Waveform for the DTMAC unit 
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The inputs of the DT_MAC mode is 2×16 bit in which LSB of the a and b-bit is 

taken as 1×16 bit and MSB of the a and b-bit are taken as 1×16 bit. The selection mode is 

given 011 and for each consecutive clock cycle the accumulated result is stored in the 

DT_MAC. 

 

 
Figure 6.16: Waveform for the Full Precision Multiplication unit 

The inputs of the FP_MULT mode is 32- bit in which MSB of the and b-bit is 

taken as two 1×16 bit. The selection mode is given 100 and for each consecutive clock 

cycle the multiplication result is stored in the FP_M. 

 
Figure 6.17: Waveform for the Half-Precision Multiplication unit 
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The inputs of the HP_MULT  mode is 1×16  bit in which MSB of the a and b-bit is 

taken as two 8-bit.The selection mode is given 101  and for each consecutive clock cycle 

the multiplication result is stored in the HP_M. 

 

 
Figure 6.18: Waveform for the Double Throughput Multiplication unit 

 

The inputs of the DT_MULT  mode is 2×16  bit in which MSB of the a and b-bit is 

taken as two 16-bit.The selection mode is given 111  and for each consecutive clock cycle 

the multiplication result is stored in the DT_M. 
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6.5 SIMULATION WAVEFORM OF FLOATING POINT MULTIPLIE R  

 

 
Figure 6.19: Waveform for the Floating Point Multiplier MAC unit  

The input of the Floating Point Multiplier is 32- bit in which each of exponents (e1 and 

e2) is 8 bit. The mantissa bit (m1 and m2) are 23 bit and the sign bit (s1 and s2) is 1-

bit.The accumulation is done by the MAC-NEW 32-bit. 

 

6.6 SYNTHESIS REPORT OF THE MAC ARCHITECTURE 

 
Figure 6.20: Power calculation for 3-C MAC unit of 16-bit 
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Figure 6.21: Power calculation for 3-C MAC unit of 32-bit 

 

 

 
Figure 6.22: Power calculation for 2-C MAC unit of 48-bit 
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Figure 6.23: Power calculation for 2-C MAC unit of 64-bit 

 

 

 
Figure 6.24: Power calculation for MAC-NEW unit of 16-bit 
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Figure 6.25: Power calculation for MAC-NEW unit of 64-bit 

 

 

 
Figure 6.26: Power calculation for Full Precision DTMAC unit 
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Figure 6.27: Power calculation for Half  Precision DTMAC unit 

 

 

6.7 COMPARISON OF VARIOUS MAC ARCHITECTURES 

 

Table 6.1: Performance Analysis of conventional MAC architectures of the operand 

size 16 and 32 bit 

OPERAND SIZE 16 32 Performance 
Evaluation (%) 

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 16-bit 32-bit 

POWER(mW) 77 70 155 154 9.09 0.65 

DELAY(ns) 79.97 79.24 158.94 162.59 0.92 2.29 

GATE COUNT 14,885 13,930 52,439 51,320 6.42 2.13 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 16 and 32-bit of the Three-cycle and Two-cycle MAC architecture. 

The parameters such as power and gate count for the 3-C MAC unit is high in comparison 

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high. The 

performance is evaluated for the 16 and 32-bit. 
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Table 6.2: Performance Analysis of conventional MAC architectures of the operand 

size 48 and 64 bit 

OPERAND SIZE 48 64 Performance 
Evaluation (%) 

Architecture MAC-3C MAC-2C MAC-3C MAC-2C 48-bit 64-bit 

POWER(mW) 176 170 224 221 3.41 1.34 

DELAY(ns) 161.47 163.02 171.75 173.20 0.96 0.84 

GATE COUNT 58,974 59.091 88,336 89,132 0.20 0.90 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 48 and 64 bit of the Three-cycle and Two-cycle MAC architecture. 

The parameters such as power and gate count for the 3-C MAC unit is high in comparison 

with the 2-C MAC unit but the delay for the 2-C MAC unit remains high .The 

performance is evaluated for the 48  and 64-bit. 

 

 

Table 6.3: Performance Analysis of 3-C and MAC-NEW architectures of the 

operand size 16 and 32 bit 

OPERAND 

SIZE 
16 32 Performance 

Evaluation (%) 

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 16-bit 32-bit 

POWER(mW) 77 72 155 148 6.50 4.52 

DELAY(ns) 79.97 74.21 158.94 153.27 7.20 3.57 

GATE COUNT 14,885 13,356 52,439 42,880 10.27 16.44 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 16 and 32 bit of the Three-cycle and MAC-NEW architecture. The 

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The 

performance is evaluated for the 16 and 32 bit. 
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Table 6.4: Performance Analysis of 3-C and MAC-NEW architectures of the 

operand size 48 and 64  bit 

OPERAND 

SIZE 
48 64 Performance 

Evaluation (%) 

Architecture MAC-3C MAC-NEW MAC-3C MAC-NEW 48-bit 64-bit 

POWER(mW) 176 164 224 218 6.82 2.68 

DELAY(ns) 161.47 157.22 171.75 168.96 2.64 1.62 

GATE COUNT 58,974 49,180 88,336 77,903 16.61 11.81 

 

The performance parameters such as power, delay and gate count are tabulated for 

the operand size of 48 and 64 bit of the Three-cycle and MAC-NEW architecture. The 

parameter for the 3-C MAC unit is high in comparison with the MAC-NEW unit. The 

performance is evaluated for the 48 and 64 bit. 

 

Table 6.5: Comparison of Operating Modes in DTMAC Architecture 
 

Architecture  FP_MAC HP_MAC DT_MAC  
Power 148 72 144 

Delay 153.27 74.21 148.42 

Gate Count 42,880 13,356 26,712 

 

The DTMAC operating modes parameters are tabulated in Table 6.5. The 

parameters of the FP_MAC are same as 32-bit MAC-NEW architecture. The HP_MAC is 

same as 16-bit MAC-NEW architecture. The DT_MAC is 2×16-bit MAC-NEW 

architecture. 

 

Table 6.6 :Parameters of the Floating Point multiplier in MAC unit 
 

Parameters  

Power (mW) 106 

Delay(ns) 73.964 

Gate Count 3579 
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6.8 POWER ANALYSIS 
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Figure 6.28: Power Analysis of MAC-3C and MAC-NEW of the operand size 32 bit 

The Power analysis is performed for the MAC-3C and MAC-NEW architecture. 

The MAC-3C unit has more power when compared with the MAC-NEW architecture due 

to the three-pipeline stages. 

6.9 DELAY ANALYSIS 
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Figure 6.29 :DelayAnalysis of MAC-3C and MAC-NEW of the operand size 32 bit 

The Delay analysis is performed  for the MAC-3C and MAC-NEW architecture. 

The MAC-3C unit has more delay when compared with the MAC-NEW architecture due 

to the three-pipeline stages. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

 

 This project presents the estimation of the efficient performance parameters such as 

power, gate count, and delay for the different Multiply Accumulate architectures. The 

architectures are designed using Baugh-Wooley algorithm. The Three-cycle, Two-cycle 

and MAC-NEW architecture is simulated through MODEL SIM and synthesized using 

XILINX. The performance parameter of the conventional MAC architecture is compared 

with the proposed MAC architecture and the results are tabulated. 

 

 The comparison is made between the MAC-3C and MAC-2C architecture in which the 

power and gate count remains high for the MAC-3C but  the delay is large for the MAC-

2C  due to the removal of the pipeline register after the Partial Product (PP) unit. The 

MAC-NEW is compared with the reference architecture (MAC-3C) and the results are 

tabulated in which the parameters are efficient for the MAC-NEW architecture. As it is an 

efficient architecture it is used to create a versatile MAC unit called Double Throughput 

MAC unit(DTMAC).As a modification to this project, the Floating point multiplier is used 

in the MAC unit and the parameter are tabulated. 

 

FUTURE SCOPE 

  

 The MAC-NEW architecture can be used in the efficient design of digital signal 

processing circuits such as FIR and IIR filter. As this architecture is efficient in 

performance parameters it increases the computation of the filter. 
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