
Design of 8-Point Radix-2 DIF FFT

Algorithm Using a Modified Multiplier and

Adder Unit

A PROJECT REPORT

 Submitted by

SIDHARTH PRABUKUMAR Reg. No.: 1110107092

VINEETH. J Reg. No.: 1010107118

HARIHARAN. S Reg. No.: 1110107306

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

 KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE-641049

(An Autonomous Institution Affiliated to Anna University, Chennai)

 APRIL 2015

 KUMARAGURU COLLEGE OF TECHNOLOGY

 COIMBATORE-641049
(An Autonomous Institution Affiliated to Anna University, Chennai)

BONAFIDE CERTIFICATE

Certified that this project report titled “DESIGN OF 8-POINT RADIX-2 DIF

FFT ALGORITHM USING A MODIFIED AND IMPROVED MULTIPLIER

AND ADDER UNIT” is the bonafide work of “SIDHARTH PRABUKUMAR,

VINEETH. J AND HARIHARAN. S” who carried out the project work under

my supervision.

 SIGNATURE SIGNATURE

Ms. G. Amirtha Gowri Dr. Rajeswari Mariappan
Supervisor Head Of The Department
Professor, Department of ECE Department of ECE
Kumaraguru College of Technology, Kumaraguru College of Technology,
Coimbatore 641049 Coimbatore 641049

The candidates with Register numbers 1110107092, 1010107118 and
1110107306 are examined by us in the project viva-voce examination held on
…………………….

 INTERNAL EXAMINER EXTERNAL EXAMINER

ii

ACKNOWLEDGEMENT

 First we would like to express our praise and gratitude to the Lord, who

has showered his grace and blessing enabling us to complete this project in an

excellent manner. He has made all things in beautiful in his time.

 We express our sincere thanks to our beloved Joint Correspondent,

Shri. Shankar Vanavarayar M.B.A., PGD., for his kind support and for

providing necessary facilities to carry out the project work.

 We would like to express our sincere thanks to our beloved Principal

Dr. R. S. Kumar BE (Hons), M.Tech., Ph.D., who encouraged us with his

valuable thoughts.

 We would like to express our sincere thanks and deep sense of gratitude to

our HOD, Dr. Rajeswari Mariappan M.E., B.Tech Ed., Ph.D., for her

valuable suggestions and encouragement which paved way for the successful

completion of the project.

 We are greatly privileged to express our deep sense of gratitude to the

Project Coordinator Ms. A. Kalaiselvi M.E. Assistant Professor, for her

continuous support throughout the course.

 In particular, We wish to thank and express our everlasting gratitude to the

Supervisor Dr. G. Amirtha Gowri M.E., Ph.D., Associate Professor for her

expert counseling in each and every step of our project work and we wish to

convey our deep sense of gratitude to all teaching and non-teaching staff

members of ECE Department for their help and cooperation.

 Finally, we thank our parents and our family members for giving us the

moral support in all of our activities and our dear friends who helped us to

endure our difficult times with their unfailing support and warm wishes.

iii

CHAPTER NO TITLE PAGE NO

 LIST OF FIGURES v.

 ABSTRACT vii.

1

INTRODUCTION

1.1 Fast Fourier Transform

1.2 Multiplier Design

1.3 Adder Design

1.4 Fast Fourier Transform Implementation

1

1

3

9

12

2

HARDWARE DESCRIPTION

2.1 ALTERA de0 Board

16

16

3

SOFTWARE DESCRIPTION

3.1 ALTERA Quartus II 64 Bit

3.2 ModelSim ALTERA Starter Edition 6.4a

20

20

22

4

5

6

7

SIMULATION AND RESULTS

4.1 Design Simulation

4.2 Power Analysis and Fitter Report

4.3 Result

CONCLUSION

PUBLICATION

REFERENCES

26

26

27

29

30

31

32

iv

LIST OF FIGURES

FIGURE NO TITLE PAGE NO

1 Comparison of real and complex DFT 1

2 Signal flow graph for 8 point DIT-FFT with

input scrambling

3

3 Signal flow graph for 8 point DIF-FFT with

output scrambling

4

4 RTL Schematic of Full Adder 5

5 CSA Architecture Multiplier 6

6 Shannon Based Full Adder Cell 7

7 RTL schematic of the proposed full adder cell 9

8 The Carry Select Adder Construction by

Sharing the Common Boolean Logic Term

10

9 RTL Schematic of 8-Point DIF FFT Algorithm 12

10 Butterfly Unit 12

11 Block Diagram of FFT Algorithm 15

12 The de0 Board 16

13 Block Diagram of EP3C16F484 FPGA 18

14 LCD Module on the de0 Board 19

15 Connections between the LCD module and

Cyclone III FPGA

29

16 Typical CAD Flow 20

17 Tool Structure and Flow 22

18 Test Bench Input for FFT 26

19 Test Bench Output for FFT 26

20 Fitter Report of our Proposed Design 28

v

21

22

Fitter Report of the Conventional Design

Power Report for our Proposed Design

28

29

23

Power Report of the Present Design 29

vi

ABSTRACT

 The Fast Fourier Transform (FFT) is an efficient algorithm for computing the

Discrete Fourier Transform (DFT) and requires less number of computations than

that of direct evaluation of DFT. It has several applications in signal processing.

However, there are two problems. One related to the algorithmic point of view and

the other based on ASIC architecture. The last one was pushed by VLSI

technology evolution.

In this project, we implement 4 point Radix 2 DIF-FFT algorithm using a modified

multiplier and adder unit. Multiplier and adder units are vital in digital signal

processors, microprocessors or any device which involves predominant and

continuous use of multiplication and addition schemes.

Around 70% of the operations in RISC processors make use of addition and

multiplication in its data path. This brings about the importance of the MAC unit in

processors and the need for optimization with regards to power, area and delay. In

this project, we focus on reducing the power consumption of the multiplier and

adder without compromising too much on the delay.

vii

CHAPTER-1

INTRODUCTION:

1.1 The Fast Fourier Transform

 J.W. Cooley and J.W. Tukey are given credit for bringing the FFT to the world
in their paper: "An algorithm for the machine calculation of complex Fourier
Series," Mathematics Computation. The FFT is based on the complex DFT, a more
sophisticated version of the real DFT. These transforms are named for the way
each represents data, that is, using complex numbers or using real numbers.

Figure-1. Comparison of real and complex DFT

1

1.1.1 Comparison of Real DFT and Complex DFT

 Since the FFT is an algorithm for calculating the complex DFT, it is

important to understand how to transfer real DFT data into and out of the complex

DFT format. The real DFT transforms an N point time domain signal into two

point frequency domain signals. The time domain N/ 2 + 1 signal is called just that:

the time domain signal. The two signals in the frequency domain are called the real

part and the imaginary part, holding the amplitudes of the cosine waves and sine

waves, respectively. In comparison, the complex DFT transforms two N point time

domain signals into two N point frequency domain signals. The two time domain

signals are called the real part and the imaginary part, just as are the frequency

domain signals. In spite of their names, all of the values in these arrays are just

ordinary numbers. Suppose there is an N point signal, and we need to calculate the

real DFT by using the FFT, then set all of the samples in the imaginary part to

zero. Then, move the N point signal into the real part of the complex DFT's time

domain, and compute DFT using the FFT. The result is a real and an imaginary

signal in the frequency domain, each composed of N points. Samples 0 through

N/2 of these signals correspond to the real DFT's spectrum.

1.1.2 FFT

 The FFT is a complicated algorithm, and its details are usually left to those

that specialize in such things. This section describes the general operation of the

FFT. The FFT operates by decomposing an N point time domain signal into N time

domain signals each composed of a single point. The second step is to calculate the

N frequency spectra corresponding to these N time domain signals. Lastly, the N

spectra are synthesized into a single frequency spectrum. There are basically two

2

algorithms in FFT. One is called DIT(Decimation in time) and the other

DIF(Decimation in frequency). In the DIT approach, the initial DFT is divided into

two transforms, one consisting of a transform of even samples and the other

consisting of a transform of odd samples. This process is carried out until the initial

transform is reduced to a set of two-point transforms of the initial data. An in-place

FFT implementation allows the results of each FFT butterfly to replace its inputs.

In order to use an in place algorithm it is necessary either to re-order the input data

array or re-order the output array. This re-ordering is simply arranged by reversing

the address bits. Before starting to calculate the DFT, the input data is ordered such

that its address is bit-reversed, that is if the binary address of the required sequence

of data is 110 then the bit reversed version on that becomes 011. Given below is

the signal flow graph for the DIT (figure2)

Figure-2. Signal flow graph for 8 point DIT-FFT with input

Scrambling

This signal flow graph consists of a number of butterflies. Each butterfly takes a

pair of input data values A and B and outputs A1 and B1 as shown below. The

3

input data is multiplied by the twiddle factor WN
k . The solid dots represent

addition\subtraction shown in figure3.

Figure-3. Signal flow graph for 8 point DIF-FFT with output

scrambling

4

1.2 Multiplier Design:

 The multiplier used in this project is a power optimized multiplier using

Shannon based multiplexing logic which was first introduced by P. Karunakaran et

al. Here, a novel design for a full adder is done based on Shannon’s multiplexing

logic.

Our multiplier is a Carry Save Array multiplier where the individual full adder and

half adder cells are implemented using the proposed adder design. From the results

depicted, the proposed adder has minimum area and power consumption when

compared to existing adders. The proposed full adder cell has the following

characteristic equation:

Sum= ((A xor B).C’) + ((A xor B)’.C) Carry= ((A xor B).C) + ((A xor B)’.A)

Figure-4. The RTL schematic of the proposed full adder cell is shown.

The half adder cells are also designed based on the Shannon multiplexing logic.

The ‘Sum’ bit of the cell remains the same, while the equation for the carry bit is

changed. It is given as, Carry= (A.B) + (B.B’). This model of the full adder and

5

half adder cells are used in the design of the carry save array multiplier whose

architecture is shown.

Figure-5. Multiplier design

 In this project, an 8-bit multiplier is used. The Carry save Array (CSA) multiplier

is a linear array multiplier. The linear multiplier propagates data down through the

array cell. Each row of the CSAs adds one additional partial-product to the partial

sum. As the operand size increases, linear arrays grow at a rate equal to the square

of the operand size because the number of rows in the array is equal to the length

of the multiplier, and the width of each row is equal to the width of multiplicand.

1.1.4 Shannon Based Multiplexing Logic:

 The proposed Shannon full adder circuit as shown combines the multiplexing

operation for the sum operation and the Shannon Theorem for the carry operation;

the sum and carry circuits are designed based on Standard full adder equations. An

input C and its complement are used as the control signal of the sum circuit. The

two-input X-OR gate is developed using the multiplexer method. The output node

6

of the two-input multiplexer circuit is the differential node. According to standard

full adder equation, the sum circuits need three inputs. In order to avoid increasing

the number of transistors due to the addition of a third input, the following

arrangement is made, the CPL X-OR gate multiplying with C’s complement input

and EX-NOR gate is multiplied with input C, and thereby reducing the number of

transistors in the sum circuit.

Figure-6. Shannon Based Full Adder Design

7

The carry for the half adder is given by,

Half Adder

Carry=A.B

Shannon’s Theorem

Carry= (A.B) + (B.B’)

Full Adder

Sum = A xor B xor C

Sum= ((A xor B).C’) + ((A xor B)’.C)

Carry= (A.B) + (B.C) + (C.A)

Carry= (A+B) C + (A.B)

Existing adder

Carry= (A+B) C + (A.B) + (B’.C’)

8

1.3 Adder Design:

 For the full adder design, we made use of an area efficient carry select

adder by sharing a common Boolean logic term which was first introduced by I-

Chyn Wey et al. According to them, by utilizing the multiplexer to select the

correct output according to its previous carry-out signal, we can still preserve the

original characteristics of the parallel architecture in the conventional carry select

adder. By sharing the common Boolean logic term, the duplicated adder cells can

be removed in the conventional carry select adder. In this way, the circuit area and

transistor count can be greatly reduced and power delay product of the adder

circuit can be also greatly lowered. Thus, this design will optimize power and

delay. The RTL schematic of the proposed full adder cell of the carry select adder

design is shown in figure7.

Figure-7. CSA Full Adder Cell

This implementation of the full adder cell figure 8, when extended to n-bits, will

give rise to a structure similar to the one below. In our implementation, we made

9

use of a 16-bit Carry Save adder.

Figure-8. The Carry Select Adder Construction by Sharing the Common Boolean

Logic Term

To share the common Boolean logic term, we only need to implement one XOR

gate with one INV gate to generate the summation signal pair. As the carry-in

signal is ready, we can select the correct summation output according to the logic

state of carry-in signal. As for the carry propagation path, we construct one OR

gate and one AND gate to anticipate possible carry input values in advance. Once

the carry-in signal is ready, we can select the correct carry-out output according to

the logic state of carry-in signal. In this way, we can keep both the summation

generation circuit of XOR gate and INV gate and the carry-out generation circuit

of OR gate and AND gate in parallel. Since we still retain part of parallel

architecture of conventional carry select adder, we can still maintain some

competitiveness in speed. On the other hand, we needn’t to prepare the duplicated

10

adder cells in the conventional carry select adder, which can greatly reduce the

transistor count and lower the power consumption.

In the proposed carry select adder, we trade-off transistor count with speed to

achieve a lower power-delay product. In the N-bit carry ripple adder, the delay

time can be expressed as:

TCRA = (N-1)Tcarry + Tsum (1)

In the N-bit carry select adder, the delay time is:

TCSA = Tsetup + (N/M)Tcarry + MTmux + Tsum (2)

In this carry select adder, the delay time is:

Tnew = Tsetup + (N-1)Tmux + Tsum (3)

As compared with the conventional carry select adder, our speed is a little slower

since the parallel path in our design is shorter. However, we can achieve lower

area, lower power consumption, and lower PDP. As compared with the carry ripple

adder, our speed can be faster because some of the parallel architecture in the

conventional carry select adder is retained. The delay time in our proposed adder

design is also proportional to the bit number N; however, the delay time of

multiplexer is shorter than that of full adder. Consequently, our area-efficient adder

can perform with nearly the same transistor count, nearly the same power

consumption, but with faster speed and lower PDP as compared with the carry

ripple adder.

11

1.4 Fast Fourier Transform Implementation:
 The RTL schematic of the 8 point FFT algorithm is shown below.

Figure-9. RTL Schematic of 8-Point DIF FFT Algorithm

1.4.1. Butterfly Unit:

 The basic module for implementation is butterfly module which is shown

Figure-10. Butterfly Unit

There are two inputs called a, b and two outputs c, d and twiddle factor W.Output

is as shown as follows:

12

C= a + bW

D = a – bW

With these butterfly units we can build the whole FFT structure. If N is the input

for FFT, each stage requires N/2 butterflies. As we can see from the figure that one

butterfly unit requires 1 complex multiplier and 2 adders for executing single

butterfly. For every DIF-FFT radix –2 algorithm with N input sequence, there is a

requirement of N/2 multipliers and N adders.

1.4.2. Number Representation:

 For number representation of both real as well as imaginary, fixed point

scheme is followed so that we can reduce the complexity of using floating point

arithmetic. The twiddle factors used are in complex form real and imaginary. To

represent this number we multiply these numbers by scaling factor which is 100 in

our case. So that twiddle factor is rounded off to an integer number. For complex

multiplication we require twiddle factor magnitude and sign bit so s+1 bits are

required to represent twiddle factor. As the input given to the design can also be in

in floating form then we can apply the same scheme of rounding off input. As we

scale the input and twiddle factor, we have to scale down the signals at the output

which leads to rounding off errors. Simple way for scaling down is by multiplying

or using shifting operation.

1.4.5. Complex Multiplier:

 Most tedious part in FFT is the complex multiplication. Complex numbers

are divided into two parts real and imaginary. Say ar +jb is a complex number

which is again multiplied by complex number cr +jd.

ar + jb

cr + jd

13

Multiplying these equations we will get

(ac - bd) + j (bc + ad)

Another method for complex multiplication is shift and add for non-trivial twiddle

factor multiplication. In radix-2 8 point FFT algorithm, the twiddle factor

multiplication with W8
2 =-j and factors is trivial, multiplication with easily can be

done by exchanging real to imaginary part and vice versa, by changing the sign of

real and imaginary numbers. For other twiddle factors, we require complex

multiplication. In the case of 8 point FFT non trivial twiddle factors W8
1

=0.707−j0.707, W8
3= −0.707−j0.707, both these twiddle factors have 0.707

number common in it. Because of this, we can easily reduce the multiplicative

complexity. Our implementation is done with only two complex multiplications.

 The block diagram of our FFT algorithm is shown in figure 11.

14

Figure-11. Block diagram of our FFT Algorithm

15

CHAPTER 2

HARDWARE DESCRIPTION:

2.1 Altera DE0 Board:

2.1.1. Layout and Components:

 A photograph of the DE0 board is shown in Figure12. It depicts the layout

of the board and indicates the location of the connectors and key components.

Figure-12. The DE0 board.

16

The DE0 board has many features that allow the user to implement a wide range of
designed circuits, from simple circuits to various multimedia projects. The
following hardware is provided on the DE0 board:

Altera Cyclone® III 3C16 FPGA device

Altera Serial Configuration device – EPCS4

USB Blaster (on board) for programming and user API control; both JTAG and

Active Serial(AS) programming modes are supported

8-Mbyte SDRAM

4-Mbyte Flash memory

SD Card socket

3 pushbutton switches

10 toggle switches

10 green user LEDs

50-MHz oscillator for clock sources

VGA DAC (4-bit resistor network) with VGA-out connector

RS-232 transceiver

PS/2 mouse/keyboard connector

Two 40-pin Expansion Headers

17

2.1.2 Block Diagram of the Altera Cyclone III FPGA:

 Figure13 gives the block diagram of the DE0 board. To provide maximum

flexibility for the user, all connections are made through the Cyclone IIII FPGA

device. Thus, the user can configure the FPGA to implement any system design.

Figure-13. Block Diagram of EP3C16F484 FPGA

2.1.3. Interfacing the LCD Module:

 The DE0 board provides a 2x16 LCD interface. In order to use the LCD

interface, users are required to solder a LCD module onto the DE0 board shown in

figure. The LCD module has built-in fonts and can be used to display text by

sending appropriate commands to the display controller, which is called HD44780.

A schematic diagram of the LCD module showing connections to the Cyclone III

FPGA is given in Figure14.

18

Figure-14. LCD module on DE0 board

Figure-15. Connections between the LCD module and Cyclone III FPGA

19

CHAPTER 3

SOFTWARE DESCRIPTION:

3.1. Altera Quartus-II 64-Bit:

 Computer Aided Design (CAD) software makes it easy to implement a
desired logic circuit by using a programmable logic device, such as a field-
programmable gate array (FPGA) chip. A typical FPGA CAD flow is illustrated in
Figure 16

Figure-16. Typical CAD Flow

20

It involves the following basic steps:

• Design Entry – the desired circuit is specified either by using a hardware

description language, such as Verilog or VHDL, or by means of a schematic

diagram.

• Synthesis – the CAD Synthesis tool synthesizes the circuit into a netlist that

gives the logic elements (LEs) needed to realize the circuit and the connections

between the LEs.

• Functional Simulation – the synthesized circuit is tested to verify its functional

correctness; the simulation does not take into account any timing issues.

• Fitting – the CAD Fitter tool determines the placement of the LEs defined in the

netlist into the LEs in an actual FPGA chip; it also chooses routing wires in the

chip to make the required connections between specific LEs.

• Timing Analysis – propagation delays along the various paths in the fitted circuit

are analysed to provide an indication of the expected performance of the circuit

21

3.2 ModelSim ALTERA STARTER EDITION 6.4a:
3.2.1 Tool Structure and Flow:

Figure-17. Tool Structure and Flow

22

3.2.2 Simulation Task Overview

 The following table provides a reference for the tasks required for compiling,

loading, and simulating a design in ModelSim.

Simulation Tasks-ModelSim

23

3.2.3 Basic Steps for Simulation:

 Here, a detailed description related to each step in the process of simulating

the design using ModelSim is provided.

Step-1- Collecting Files and Mapping Libraries:

Files needed to run ModelSim on your design:

Design files (VHDL and/or Verilog), including stimulus for the design

libraries, both working and resource

modelsim.ini (automatically created by the library mapping command

Providing Stimulus to the Design

You can provide stimulus to your design in several ways:

Language based testbench

Tcl-based ModelSim interactive command, force

VCD files / commands

3rd party testbench generation tools

Step-2- Compiling the Design:

Designs are compiled with one of the three language compilers.

Compiling Verilog (vlog)

ModelSim’s compiler for the Verilog modules in your design is vlog. Verilog files

may be compiled in any order, as they are not order dependent. See Compiling

Verilog Files for details.

Compiling VHDL (vcom)

ModelSim’s compiler for VHDL design units is vcom. VHDL files must be

compiled according to the design requirements of the design. Projects may assist

you in determining the compile order

Step-3- Loading the Design for Simulation

vsim top Level Module:

24

The design is ready for simulation after it has been compiled. Vsim may then be

invoked with the names of the top-level modules (many designs contain only one

top-level module). For example, if your top-level modules are "testbench" and

"globals", then invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated

modules and UDPs in the design hierarchy, linking the design together by

connecting the ports and resolving hierarchical references.

Using SDF:

You can incorporate actual delay values to the simulation by applying SDF back-

annotation files to the design.

Step-4- Simulating the Design

Once the design has been successfully loaded, the simulation time is set to zero,

and run command must be entered to begin simulation.

The basic simulator commands are:

• add wave • bp

• run • force

• step

Step-5- Debugging the Design

Numerous tools and windows useful in debugging the design are available from

the ModelSim GUI. In addition, several basic simulation commands are available

from the command line to assist in debugging the design:

• describe • show

• drivers

• examine

• force

• log

25

CHAPTER 4

SIMULATION AND RESULTS:

4.1 Design Simulation:

 The Verilog code has been successfully simulated on ModelSim

ALTERA(version 6.3) and synthesized using Quartus II(64 bit) version 13.0. There

are total 8 inputs all are in the real and imaginary part represented as xreal and

ximg i.e. real input and imaginary input as shown in figure and outputs are shown

with names yreal and yimg as real and imaginary parts of output. It is shown

below.

Figure-18. Test Bench Input for FFT

Figure-19. Test Bench Output for FFT

26

It can be observed that the output has been scaled by a factor of 100. So, in order to

obtain the original value, all values from the output have to be multiplied by a

factor of 100 to overcome the rounding off error.

4.2 Power Analysis and Fitter Report:

 The power analysis was done using PowerPlay Power Analyzer by Altera’s

Quartus II version 13.0.

The details of the device used for synthesis is provided as follows.

• Target Device: EP3C16F484C6

• Device Family: Cyclone III

• LEs: 15408

• User IOs: 347

• Memory Bits: 516096

• Embedded Multiplier 9-Bit Elements: 112

• PLLs: 4

• Global Clocks: 20

Figure-20. Fitter Report of our Proposed Design

27

Figure-21. Fitter Report of the Conventional Design

From analyzing the fitter report of our modified design and the conventional

design, it can be observed that the total logic elements have been reduced for our
design along with the combinational functions and the total pins.

Upon using the PowerPlay Power analyzer tool, our modified FFT algorithm
design yielded the following report.

Figure-22. Power Report for our Proposed Design

We also implemented the power analyzer tool for the existing design and the report
which we obtained is given below.

28

Figure-23. Power Report of the Conventional Design

4.3 Result:

It can be seen that the power consumption is 163.50mW for the present design and
82.00mW for our proposed design. Thus, power reduction of around 50% is
observed.

29

CHAPTER 5

CONCLUSION:

 In this project, we have designed and implemented the Radix-2 8-point DIF

FFT algorithm using power and area efficient adder and multiplier. The simulation

was done using Altera Cyclone III FPGA. The results of the simulation were seen

to match with the results of Matlab. Implementation of 8- point FFT algorithm

seems to be easy and simple compared with other techniques. Also it is possible to

implement another applications or algorithms using this approach in the field of

single or image processing, Communications systems, and electronic circuit

design… etc. The algorithm can be easily upgraded for a 128 point or 256 point

FFT.

30

PUBLICATION

Sidharth P., Hari Haran S., Amirtha Gowri G., “Design and Implementation

of a Highly Efficient MAC Unit in FPGA”, Proceedings International

Conference on Innovations in Electrical, Electronics, Information &

Communication Technology (ICIEEICT), October 2014.

ISBN- 978-93-84209-57-5

31

REFERENCES

[1] Koc, C.K., “RSA Hardware Implementation”,RSA Laboratories, RSA Data

Security, Inc. 1996.

[2]Ranjan Kumar Barik, Sourav Kumar Dwibedi, Shasanka Sekhar Rout, Satya

Ranjan Sahu, “An Improved and Efficient MAC Unit and its Implementation in

FPGA”,International Journal of Review in Electronics & Communication

Engineering (IJRECE) Volume 2 - Issue 2 April 2014

[3] KarthikKadir.V, C.VishnuKarthik, Sriram, Aravindh, C.B.Rajesh, “Design and

Implementation of High Speed, Area Efficient Carry Select Adders”, Proceedings

of SARCITR International Conference, 04th May-2014

[4] P.Karunakaran, S.Venkatraman, I.HameemShanavas, T.Kapilachander,” Power

Optimized Multiplier Using Shannon Based Multiplexing Logic”,International

Journal of Intelligent Systems and Applications, 2012, 6, 39-45

[5] I-Chyn Wey, Cheng-Chen Ho, Yi-Sheng Lin, Chien-Chang Peng, “An Area-

Efficient Carry Select Adder Design by Sharing the Common Boolean Logic

Term”, Proceedings of the International MultiConference of Engineers and

Computer Scientists, 2012 Vol II, 1091-1094

[6] ShuchiVerma, Sampath Kumar V., “Design & Analysis of Low Power, Area-

Efficient Carry Select Adder”, International Journal of Engineering Research and

Applications, March 2014, pp.53-55

[7] Naveen Kumar, Manu Bansal, Navnish Kumar, “VLSI Architecture of

Pipelined Booth Wallace MAC Unit”, International Journal of Computer

Applications, November 2012

[8] Anju S, M Saravanan, “HIGH PERFORMANCE DADDA MULTIPLIER

IMPLEMENTATION USING HIGH SPEED CARRY SELECT ADDER”,

International Journal of Advanced Research in Computer and Communication

Engineering, March 2013

32

33

