
i

POWER EFFICIENT MULTIPLIER

ARCHITECTURE USING SPST TECHNIQUE

A PROJECT REPORT

 Submitted by

RADHA.P Reg. No.:1110107069

SINDHUJA.N Reg. No.:1110107095

SOUNDARYA.M Reg. No.:1110107099

AARTHI.P Reg. No.:1110107301

In partial fulfilment for the award of the degree

Of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

 KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE-641049

(An Autonomous Institution Affiliated to Anna University, Chennai)

 APRIL 2015

ii

 KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE-641049

(An Autonomous Institution Affiliated to Anna University, Chennai)

 BONAFIDE CERTIFICATE

 Certified that this project report titled “POWER EFFICIENT MULTIPLIER

ARCHITECTURE USING SPST TECHNIQUE” is the bonafide work of ―RADHA P,

SINDHUJA N, SOUNDARYA M, AARTHI P” who carried out the project work under my

supervision.

SIGNATURE SIGNATURE

Ms.A.Kalaiselvi, Dr.Rajeswari Mariappan M.E., Ph.D.,

Assistant Professor/ECE HEAD OF THE DEPARTMENT

Kumaraguru College of Technology Electronics & Communication Engineering

Coimbatore. Kumaraguru College of Technology

 Coimbatore.

The candidates with Register numbers 1110107069, 1110107095,

1110107099, 1110107301 are examined by us in the project viva-voce

examination held on …………………….

 INTERNAL EXAMINER EXTERNAL EXAMINER

iii

 ACKNOWLEDGEMENT

 First we would like to express our praise and gratitude to the Lord,

who has showered his grace and blessing enabling us to complete this

project in an excellent manner. He has made all things in beautiful in his

time.

 We express our sincere thanks to our beloved Joint Correspondent,

Shri. Shankar Vanavarayar for his kind support and for providing

necessary facilities to carry out the project work.

 We would like to express our sincere thanks to our beloved Principal

Dr. R. S. Kumar M.E.,Ph.D., who encouraged us with his valuable

thoughts.

 We would like to express our sincere thanks and deep sense of

gratitude to our HOD, Dr. Rajeswari Mariappan M.E., Ph. D., for her

valuable suggestions and encouragement which paved way for the

successful completion of the project.

 We wish to thank and express our everlasting gratitude to the

Supervisor and project coordinator Ms. A. Kalaiselvi M. E. , (Ph. D),

for her expert counselling in each and every steps of project work and we

wish to convey our deep sense of gratitude to all teaching and non-

teaching staff members of ECE Department for their help and cooperation.

 Finally, we thank our parents and our family members for giving us

the moral support in all of our activities and our dear friends who helped

us to endure our difficult times with their unfailing support and warm

wishes.

iv

ABSTRACT

Today every circuit has to face the power consumption issue for both

portable device aiming at large battery life and high end circuits avoiding

cooling packages and reliability issues that are too complex. It is generally

accepted that larger design will generally consume more power. In this

project, we proposed a new architecture of multiplier which consumes low

power. Multiplication occurs frequently in signal processing applications

such as Finite Impulse Response Filters, Fast Fourier Transforms, Discrete

Cosine Transforms, convolution, etc., Micro Processor and multimedia

kernels. The objective of a good multiplier is to provide a physically

compact, good speed and low power consuming chip. To save significant

power consumption of a VLSI design, it is a good direction to reduce its

dynamic power that is the major part of total power dissipation. For getting

the low power the modifications made to the conventional architecture

consist of the reduction in switching activities of the major blocks of the

multiplier, which includes the reduction in switching activity of the adder.

Here, we proposed a low power multiplier by implementing the new

SPST technique. To filter out the unwanted switching power, there are two

approaches, i.e using registers and using AND gates, to assert the data signals

of multipliers after data transition. This multiplier is designed by equipping

the Spurious Power Suppression Technique (SPST) on a modified Booth

encoder which is controlled by a detection unit using an AND gate. The

simulation result shows that the SPST implementation with AND gates owns

an extremely high flexibility on adjusting the data asserting time which not

only facilitates the robustness of SPST but also leads to power reduction.

v

TABLE OF CONTENTS

CHAPTER

NO

 TITLE PAGE NO

 ABSTRACT iv

 LIST OF FIGURES Xi

 LIST OF TABLES Viii

 LIST OF ABBREVATIONS Ix

1 INTRODUCTION 1

 1.1 Project Overview 1

 1.2 Flow Diagram 3

2 MULTIPLIER 4

 2.1 Introduction 5

 2.2 Multiplier 6

 2.3 Multiplication Algorithm 8

 2.3.1 Examples 8

 2.4 Common features of multipliers 9

 2.5 Analysis of different Multipliers 9

 2.6 Multiplication Techniques 10

 2.6.1 Shift and Add multiplier 10

 2.6.2 Array Multiplier 12

3 BOOTH MULTIPLIER 15

 3.1 Booth Multiplier 15

 3.2 Booth recoding table for radix-2 16

 3.3 Booth multiplication algorithm 16

 3.4 Steps for booth algorithm 16

 3.5 Example 19

4 MODIFIED BOOTH MULTIPLIER 20

 4.1 Modified booth multiplier 20

vi

 4.2 Modified Booth Multiplication

Algorithm for radix-4

20

 4.2.1 Algorithm 21

 4.2.2 Grouping of bits for multiplier 22

 4.2.3 Encoding for Radix-4 Booth

Multiplier Encoding Table

22

 4.3 Unsigned Numbers 23

 4.3.1 Algorithm 23

 4.3.2 Example 24

 4.3.3 Grouping Concept 24

 4.4 Signed Numbers 25

 4.4.1 Algorithm 25

 4.4.2 Example 25

5 SPURIOUS POWER SUPPRESSION

TECHNIQUE

26

 5.1 SPST 26

 5.1.1 SPST as pre computational logic 26

 5.1.2 Cases for pre computational logic 27

 5.2 Basic block diagram 28

 5.3 Detection logic 29

6 MODIFIED BOOTH WITH SPST

TECHNIQUE

30

 6.1 Applying SPST on Modified Booth

Encoder

30

 6.1.1 Proposed SPST 30

7 SIMULATION RESULTS 33

 7.1 Booth Multiplier 33

 7.1.1 Output 33

vii

 7.1.2 RTL Schematic 33

 7.1.3TechnologySchematic 33

 7.2 Modified Booth Multiplier 34

 7.2.1 Output 34

 7.2.2 RTL Schematic 34

 7.2.3TechnologySchematic 34

 7.3 SPST Adder 35

 7.4 Modified Booth Multiplier with SPST 35

 7.4.1 Output 35

 7.4.2 RTL Schematic 35

 7.4.3TechnologySchematic 36

8 COMPARISON OF ALL

MULTIPLIERS

37

 8.1 Device Utilisation 37

 8.1.1 Device Utilisation for Booth

Multiplier

37

 8.1.2 Device Utilisation for Modified

Booth Multiplier

37

 8.1.3 Device Utilisation for Modified

Booth Multiplier with SPST

37

 8.2 Bar Charts 38

 8.2.1 Booth Multiplier 38

 8.2.2 Modified Booth Multiplier 39

9 CONCLUSION 40

10 REFERENCE 41

 APPENDIX 42

viii

LIST OF TABLES

 TABLE NO

 TITLE PAGE NO

3.2 Booth recoding table for radix-2 16

3.4 Booth Shifting tables 16

3.5 Example 19

4.2.3 Encoding table for radix-4 Booth

Multiplier

22

8.1.1 Device utilisation for booth multiplier 37

8.1.2 Device utilisation for Modifiedbooth

multiplier

37

8.1.3 Device utilisation for Modifiedbooth

multiplier with SPST

38

8.3 Comparison of Multipliers 39

ix

 LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuits

CLA Configurable Logic Array

CLB Configurable Logic Block

CPLD Configure Programmable Logic Device

DCT Discrete Cosine Transform

DSP Digital Signal Processing

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

IOB Input Output Block

Ios Input Output

LSP Least Significant Bit

LUT Look up Table

MAC Multiplier and Accumulator

MR Multiplicand Register

MSP Most Significant Bit

PCL Programmable Control Logic

PPG Partial Product Generator

PR Product Register

RTL Register Transfer Level

SPST Spurious Power Suppressed Technique

TBW Test Bench waveform

VHDL Verilog Hardware Discription Language

VLSI Very Large Scale Integration

x

LIST OF FIGURES

Table no. TITLE PAGE NO

1.1 General Flow Of Program 3

2.1 Flow chart for Shift and Add 11

2.2 Figure for array multiplier 12

2.3 Block diagram 13

3.1 Architecture of Booth Multiplier 15

5.1 Block diagram for SPST adder 28

6.1 Figure for PP candidate generator 31

7.1 Booth Multiplier Output 33

7.2 RTL Schematic for Booth Multiplier 33

7.3 Technology Schematic for booth

multiplier

33

7.3 Modified Booth Multiplier Output 34

7.4 RTL Schematic for Modified Booth

Multiplier

34

7.5 Technology Schematic for modified

booth multiplier

34

7.5 SPST Adder 34

7.6 Modified Booth Multiplier with SPST

Output

36

7.7 RTL Schematic for Modified Booth

Multiplier with SPST

36

7.8 Technology Schematic for modified

booth with SPST

37

8.1 Bar chart for Booth Multiplier 39

8.2 Bar chart for Modified Booth Multiplier 39

1

CHAPTER 1

INTRODUCTION

1.1 PROJECT OVERVIEW

 Multiplication can be considered as a series of repeated additions.

The number to be added is the multiplicand; the number of times that it is

added is the multiplier; and the result is the product. i.e The basic

multiplication principle is two fold:

 1. Evaluation of partial products and

 2. Accumulation of the shifted partial products

 In most computers, the operand usually contains the same

number of bits. When the operands are interpreted as integers, the product is

generally twice the length of operands in order to preserve the information

content.

 For generating partial products, the booth algorithm is often used

because it is less complex but for ‗n‘ bit multiplier it produces ‗n‘ partial

products. Whereas by using the Radix_4 modified Booth algorithm number

of partial products will be reduced by a factor of 2. I.e. For n bit multiplier

we have only n/2 partial products. Thus dynamic power will be reduced. In

order to avoid spurious addition, SPST adder is designed and used. The SPST

uses a detection logic circuit to detect the effective data range of arithmetic

units, namely adders or multipliers. When a portion of data does not affect

the final computing results, the data controlling circuits of the SPST latch

this portion to avoid useless data transitions occurring inside the arithmetic

units.

 The data are separated into the Most Significant Part (MSP) and

the Least Significant Part (LSP). To know whether the MSP affects the

computation results or not, the detection logic unit is used to detect the

2

effective ranges of the inputs. I.e. When the MSP is either zeros or ones then

SPST adder is implemented to avoid switching power consumption otherwise

normal adder is used. And for LSP, normal full adder is used for all cases.

And the final product will be the combined output of MSP‘s and LSP‘s.

 The dynamic power consumption for this Radix-4 modified booth

multiplier using SPST is generated by X power analyzer in Xilinx 10.1 ISE

(integrated software environment).The general flow of the project is

expressed by the schematic below.

3

1.2 FLOW DIAGRAM

 Fig.1.1 general flow of program

 A, B

 Modified Booth Algorithm

 Partial Product(PP0......PPn/2)

 Separation of MSP & LSP in PP

 MSP

 LSP

 SPST

 Detection Unit

 Full Adder

 Result

Appending MSP & LSP

 Product

 Normal

 Full Adder

4

 CHAPTER 2

 MULTIPLIER

2.1 INTRODUCTION

 Multiplication is an important part of real-time digital signal

processing (DSP) applications ranging from digital filtering to image

processing. Lowering down the power consumption and enhancing the

processing performance of the circuit designs are undoubtedly the two

important design challenges of wireless multimedia and DSP applications, in

which multiplications are frequently used for key computations, such as FFT,

DCT, quantization, and filtering. All multiplication methods share the same

basic procedure - addition of a number of partial products. A number of

different methods can be used to add the partial products. The simple

methods are easy to implement, but the more complex methods are needed to

obtain the fastest possible speed. The simplest method of adding a series of

partial product is based upon an adder-accumulator, along with a partial

product generator and a hard wired shifter. This is relatively slow, because

adding N partial products requires N clock cycles. The easiest clocking

scheme is to make use of the system clock, if the multiplier is embedded in a

larger system. The system clock is normally much slower than the maximum

speed at which the simple iterative multiplier can be clocked, so if the delay

is to be minimized an expensive and tricky clock multiplier is needed, or the

hardware must be self-clocking.

5

2.2 MULTIPLIER

 Multiplication can be considered as a series of repeated additions.

The number to be added is the multiplicand; the number of times that it is

added is the multiplier; and the result is the product. Each step of addition

generates a partial product. In most computers, the operand usually contains

the same number of bits. When the operands are interpreted as integers, the

product is generally twice the length of operands in order to preserve the

information content. This repeated addition method that is suggested by the

arithmetic definition is slow that it is almost always replaced by an algorithm

that makes use of positional representation. It is possible to decompose

multipliers into two parts. The first part is dedicated to the generation of

partial products, and the second one collects and adds them. As for adders, it

is possible to enhance the intrinsic performance of multipliers. Acting in the

generation part, the booth algorithm is often used because it reduces the

number of partial products.

 Multipliers play an important role in today‘s digital signal

processing and various other applications. With advances in technology,

many researchers have tried and are trying to design multipliers which offer

either of the following design targets – high speed, low power consumption,

regularity of layout and hence less area or even combination of them in one

multiplier thus making them suitable for various high speed, low power and

compact VLSI implementation. The objective of a good multiplier is to

provide a physically compact, good speed and low power consuming chip.

The basic multiplication principle is two fold:

1. Evaluation of partial products and

 2. Accumulation of the shifted partial products

It is performed by the successive additions of the columns of the shifted

partial product matrix. The ‗multiplier‘ is successfully shifted and gates the

6

appropriate bit of the ‗multiplicand‘. The delayed, gated instance of the

multiplicand must all be in the same column of the shifted partial product

matrix. They are then added to form the product bit for the particular form.

Multiplication is therefore a multi operand operation. To extend the

multiplication to both signed and unsigned numbers, a convenient number

system would be the representation of numbers in two‘s complement format.

Some of the advantages of using two‘s complement number system include:

1. Representation of negative numbers in two‘s complement allowing for an

easy subtraction function, since – M = M+ 1

2. Sufficient redundancy allowing for the annihilation of carry or borrows

chains and also, in fact, propagation free addition and subtraction.

3. Booth‘s recoding technique, used for signed binary numbers enabling

faster multiplications.

 The common multiplication method is ―add and shift‖ algorithm. In

parallel multipliers number of partial products to be added is the main

parameter that determines the performance of the multiplier. To reduce the

number of partial products to be added, Modified Booth algorithm is one of

the most popular algorithms. To achieve speed improvements Wallace Tree

algorithm can be used to reduce the number of sequential adding stages.

Further by combining both Modified Booth algorithm and Wallace Tree

technique we can see advantage of both algorithms in one multiplier.

However with increasing parallelism, the amount of shifts between the partial

products and intermediate sums to be added will increase which may result in

reduced speed, increase in silicon area due to irregularity of structure and

also increased power consumption due to increase in interconnect resulting

from complex routing. On the other hand ―serial-parallel‖ multipliers

compromise speed to achieve better performance for area and power

consumption. The selection of a parallel or serial multiplier actually depends

on the nature of application. In this lecture we introduce the multiplication

7

algorithms and architecture and compare them in terms of speed, area, power

and combination of these metrics.

 The multiplier plays a major role in DSP application. The present

development in processor design aim at low power multiplier architecture

using in their processor circuit. So the need for low power multiplier has

increased, hence the designer concentrate more on low power efficient circuit

design. Generally the computational performance of DSP processor is

affected by its multiplier performance. The low power and high speed VLSI

can be implemented with different logic style. The three important

considerations for VLSI design are power, area and delay .there are many

proposed logic low power consideration and high speed and each logic style

has its own advantage in terms of speed and power. The objective of good

multiplier is to provide a physically compact, high speed and low power

consumption unit. Being a core part of arithmetic processing unit multipliers

are in extremely high demand on its speed and low power consumption. To

reduce significant power consumption of multiplier designs it in good

direction to reduce the no. of operation thereby reducing a dynamic power

which is a major part of total power dissipation. There are no. of techniques

that to perform binary multiplication, low power multiplier using MAC unit

,modified booth multiplier, and low power multiplier using SPST are some of

approaches to have hardware implementation of binary multiplier which are

suitable for VLSI implementation at CMOS level.

8

2.3 MULTIPLICATION ALGORITHM

 The multiplication algorithm for an N bit multiplicand by N bit

multiplier is shown below:

Y= Yn-1 Yn-2Y2 Y1 Y0 Multiplicand

 X= Xn-1 Xn-2....................... X2 X1 X0 Multiplier

 Y= Yn-1 Yn-2Y2 Y1 Y0

 X= Xn-1 Xn-2....................... X2 X1 X0

 Yn-1X0 Yn-2X0 Yn-3X0 …… Y1X0 Y0X0

 Yn-1X1 Yn-2X1 Yn-3X1 …… Y1X1 Y0X1

 Yn-1X2 Yn-2X2 Yn-3X2 …… Y1X2 Y0X2

 … … … … …. …. …. ….

 Yn-1Xn-2 Yn-2X0 n-2 Yn-3X n-2 …… Y1Xn-2 Y0Xn-2

Yn-1Xn-1 Yn-2X0n-1 Yn-3Xn-1 …… Y1Xn-1 Y0Xn-1

 P2n-1 P2n-2 P2n-3 P2 P1 P0

 2.3.1 EXAMPLE

 1101 4-bits

 1101 4-bits

 1101

 0000

 1101

 1101

 10101001

9

2.4 COMMON FEATURES OF MULTIPLIERS

 (i) Counter flow Organization: A novel multiplier

organization is introduced, in which the data bits flow in one direction, and

the Booth commands are piggybacked on the acknowledgments flowing in

the opposite direction.

 (ii) Merged Arithmetic/Shifter Unit: An architectural

optimization is introduced that merges the arithmetic operations and the shift

operation into the same function unit, thereby obtaining significant

improvement in area, energy and speed.

 (iii) Overlapped Execution: The entire design is pipelined at the

bit-level, which allows overlapped execution of Proceedings of multiple

iterations of the Booth algorithm, including across successive multiplications.

As a result, both the cycle time per Booth iteration, as well as the overall

cycle time per multiplication is significantly improved.

 (iv) Modular Design: The design is quite modular, which

allows the implementation to be scaled to arbitrary operand widths without

the need for gate resizing, and without incurring any overhead on iteration

time.

2.5 ANALYSIS OF DIFFERENT MULTIPLIERS

 Generally multiplication consists of three steps: generation of partial

products or PPs (PPG), reduction of partial products (PPR), and final carry-

propagate addition (CPA). Different multiplication algorithms vary in the

approaches of PPG, PPR, and CA. Multiplication is basically a shift add

operation. There are, however, many variations on how to do it. Some are

more suitable for FPGA use than others; some of them may be efficient for a

system like CPU. This section explores various varieties and attracting

10

features of multiplication hardware. The multiplier area is quadratically

related to the operand precision. Second, parallel multipliers have many logic

levels that introduce spurious transitions or glitches. Third, the structure of

parallel multipliers could be very complex in order to achieve high speed,

which deteriorates the efficiency of layout and circuit level optimization. As

a fundamental arithmetic operation, multiplication has many algorithm-level

and bit-level computation features in which it differs from random logic.

These features have not been considered well in low-level power

optimization. It is also difficult to consider input data characteristics at low

levels. Therefore, it is desirable to develop algorithm and architecture level

power optimization techniques.

2.6 MULTIPLICATION TECHNIQUES

 There are different algorithms used for multiplication. The design of

those multipliers is discussed below.

2.6.1 SHIFT AND ADD MULTIPLIER

 Shift-and-add multiplication is similar to the multiplication performed

by paper and pencil. This method adds the multiplicand X to itself Y times,

where Y denotes the multiplier. To multiply two numbers by paper and

pencil, the algorithms is to take the digits of the multiplier one at a time from

right to left, multiplying the multiplicand by a single digit of the multiplier

and placing the intermediate product in the appropriate positions to the left of

the earlier results.

11

 Fig.2.1 Flowchart for Shift & Add

 START

 X->B O->A

 Y->Q n->N

Qo=1

 A=A+B

SHIFT A_Q RIGHT

 N->N-1

 N=0

 STOP

NO

NO

YES

YES

12

2.6.2 Array Multiplier

 Array multiplier is well known due to its regular structure.

Multiplier circuit is based on add and shift algorithm. Each partial product is

generated by the multiplication of the multiplicand with one multiplier bit.

The partial product are shifted according to their bit orders and then added.

The addition can be performed with normal carry propagate adder. N-1

adders are required where N is the multiplier length.

 2.2 Figure for array multiplier

13

 Fig 2.3 Block Diagram

 The array consists of three rows of adder cells . Each row is

responsible for adding a shifted form of the multiplicand to the partial

product and passing the partial product to the row below. Each adder cell

contains a 1-bit full adder with three inputs of equal binary value, labelled a,

b, and c. Each cell has two outputs representing the sum (s) and carry (cry)

that result from adding together the three inputs. The sum output represents

the same binary weight as each of the three inputs. The carry output

represents twice the binary weight of the sum output. As you can see from

the figure, each cell combines a sum and a carry input from cells earlier in

the array with a product bit, labelled Pij.

 The product bits Pij are generated by combining multiplicand and

multiplier bits using an and gate, Pij D Qi ^ Rj, where Qi are bits of the

14

multiplier and Rj are bits of the multiplicand, again using the notation that bit

j has weight 2j. The effect is that a row of cells adds 0 to the partial product if

the corresponding bit of the multiplier is 0 and adds the multiplicand if it is 1.

The structure of the array causes the multiplicand to shift to the left,

corresponding to the weight of the multiplier bit. The multiplier Q and

multiplicand R are both stored in registers operated at the same time as the

partial-product register T. Of course, at the end of the first cycle, the

multiplier must be shifted three bits to the right so that in the second cycle

the high-order three bits of the multiplier are used to control the array.

Neither the registers Q and R nor the shifting logic appears in the figure.

Also not shown are registers to save the low-order three bits of the result of

the first cycle (T−1, T−2, and T−3).

 The design task is to make the long paths through the arrays of AND

gates and adders operate quickly. In order to obtain results that are

somewhat more general than the example, we‘ll represent the number of bits

in the multiplicand by the symbol‘ m‘ and the number of rows in the

multiplier array by ‗n‘. So the longest path through the array has an AND

gate and n adder cells speed-space trade-off.

Advantages: First advantage of the array multiplier is that it has a regular

structure. Since it is regular, it is easy to layout and has a small size. A

second advantage of the array multiplier is its ease of design for a pipelined

architecture.

Limitations: Major limitation of array multiplier is its size. As operand sizes

increase, arrays grow in size at a rate equal to the square of the operand size.

15

CHAPTER 3

3.1 BOOTH MULTIPLIER

 The Booth algorithm was invented by A. D. Booth forms the

base of Signed number multiplication algorithms that are simple to

implement at the hardware level, and that have the potential to speed up

signed multiplication considerably. It is a powerful algorithm for signed-

number multiplication, which treats both positive and negative numbers

uniformly. For the standard add-shift operation, each multiplier bit generates

one multiple of the multiplicand to be added to the partial product. If the

multiplier is very large, then a large number of multiplicands have to be

added.

 Fig 3.1 Architecture of Booth Multiplier

 Two’s complement

generator

 Partial product

generator

Carry look ahead

adder

 Booth

Encoder

 Multiplier (MR)

 Multiplicand

(MD)

Z

PP

0

PP7

16

3.2 BOOTH RECODING TABLE FOR RADIX-2

Yi Yi-1 Zi-1 Multiplier Value Situation

0 0 0 0 String of 0s

0 1 1 +1 End of string of l s

1 0 1 -1 Begin string of 1s

1 1 0 0 String of 1s

3.3 BOOTH MULTIPLICATION ALGORITHM

Booth Multiplication Algorithm for radix 2

 Booth algorithm gives a procedure for multiplying binary integers in

signed –2‘s complement representation. Illustration of the booth algorithm is

explained with the following example:

3.4 Step 1: Making the Booth table:

 E.g.: 2x (- 4)

 In 2‘s complement notation, 0010 * 1100

I. From the two numbers, pick the number with the smallest difference

between series of consecutive numbers, and make it a multiplier.

 i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to 0 another

change, and so there are two changes on this one

 1100—from 1 to 1 no change, 1 to 0 one change , 0 to 0 no change, so

there is only one change on this one.

Therefore, multiplication of 2 x (– 4), where 2(0010) is the multiplicand

and (– 4) (1100) is the multiplier.

II. Let X = 1100 (multiplier)

 Let Y = 0010 (multiplicand)

17

 Take the 2‘s complement of Y and call it –Y

 –Y = 1110

 III. Load the X value in the table.

 IV. Load 0 for X-1 value it should be the previous first least significant bit

of X

 V. Load 0 in U and V rows which will have the product of X and Y at the

end of operation.

VI. Make four rows for each cycle; this is because we are multiplying four

bits numbers.

Step 2: Booth Algorithm:

 Booth algorithm requires examination of the multiplier bits, and

shifting of the partial product. Prior to the shifting, the multiplicand may be

added to partial product, subtracted from the partial product, or left

unchanged according to the following rules: Look at the first least significant

bits of the multiplier ―X‖, and the previous least

Significant bits of the multiplier ―X - 1‖.

 I. 0 0 Shift only

 1 1 Shift only.

 0 1 Add Y to U, and shift

 1 0 Subtract Y from U, and shift or add (-Y) to U and shift

 II. Take U & V together and shift arithmetic right shift which preserves the

sign bit of 2‘s complement number. Thus a positive number remains

positive, and a negative number remains negative.

 U V X (X-1)

 0000 0000 1100 0

18

III. Shift X circular right shifts because this will prevent us from using two

registers for the X value.

Shift only

 U V X (X-1)

 0000 0000 1100 0

 0000

 0000

 0110

 0

Repeat the same step until the four cycles are completed

 U V X (X-1)

 0000 0000 1100 0

 0000 0000 0110 0

 0000 0000 0011 0

In 4
th

 row: Add-Y(0000+1110=1110)

 Shift only

 U V X (X-1)

 0000 0000 1100 0

 0000 0000 0110 0

 0000 0000 0011 0

 1110

 1111

 0000

 0000

 0011

 1001

 0

 1

19

In 5
th

 row: shift only

 U V X (X-1)

 0000 0000 1100 0

 0000 0000 0110 0

 0000 0000 0011 0

 1110

 1111

 0000

 0000

 0011

 1001

 0

 1

 1111 1000 1100 1

3.5 EXAMPLE

 BR= 10111

 QR= 10011

Qn Qn+1 BR=10111

BR+1=01001

AC

QR

Qn+1

 Initial 00000 10011 0

1 0 Subtract BR 01001

 01001

 Shift Right 00100 11001 1

1 1 Shift Right 00010 01100 1

0 1 Add BR 10111

 11001

 Shift Right 11100 10110 0

0 0 Shift Right 11110 01011 0

1 0 Subtract BR 01001

 00111

 Shift Right 00011 10101 1

20

 CHAPTER 4

4.1 MODIFIED BOOTH MULTIPLIER

 In order to achieve high-speed multiplication, multiplication

algorithms using parallel counters, such as the modified Booth algorithm has

been proposed (Booth 1951) and some multipliers based on the algorithms

have been implemented for practical use. This type of multiplier operates

much faster than an array multiplier for longer operands because its

computation time is proportional to the logarithm of the word length of

operands. The modified Booth multiplier on the processor is a major source

of energy consumption for Digital Signal Processing programs. Given a pair

of values to be multiplied, power should be reduced if the value is put in with

the lower recoding weight into the second input of the modified Booth

multiplier. Booth multiplication is a technique that allows for smaller, faster

multiplication circuits, by recoding the numbers that are multiplied. It is the

standard technique used in chip design, and it provides significant

improvements over the "long multiplication" technique. First, the "shift and

add", or normal "long multiplication‖ multiplier design is briefly reviewed.

4.2 MODIFIED BOOTH MULTIPLICATION ALGORITHM FOR

RADIX4

 It is possible to reduce the number of partial products by half, by

using the technique of radix 4 Booth recoding. The basic idea is that, instead

of shifting and adding for every column of the multiplier term and

multiplying by 1 or 0 for second column, multiply by ±1, ±2 or 0 to obtain

the same results. One of the solutions of realizing high speed multipliers is to

enhance parallelism which helps to decrease the number of subsequent

calculation stages. The original version of the Booth algorithm (Radix-2) had

two drawbacks. They are:

21

(i) The number of add/subtract operations and the number of shift

operations becomes variable and becomes inconvenient in

designing parallel multipliers.

(ii) The algorithm becomes inefficient when there are isolated 1‘s. These

problems are overcome by using modified Radix4 Booth algorithm

which scan strings of three bits with the algorithm given below:

 1) Extend the sign bit 1 position if necessary to ensure that n is even.

 2) Append a 0 to the right of the LSB of the multiplier.

 3) According to the value of each vector , each Partial Product will he

0, +y , -y, +2y or -2y.

 The negative values of y are made by taking the 2‘s complement and in

this paper Carry-look-ahead (CLA) fast adders are used. The multiplication

of y is done by shifting y by one bit to the left. Thus, in any case, in

designing a n-bit parallel multipliers, only n/2 partial products are generated.

4.2.1 ALGORITHM

 Radix-4 Booth algorithm which scan strings of three bits with the

algorithm given below:

(1) Extend the sign bit 1 position if necessary to ensure that n is even.

(2) Append a 0 to the right of the LSB of the multiplier.

(3) According to the value of each vector, each Partial Product will be 0, +y,

–y, +2y or –2y.

 The negative values of y are made by taking the 2‘s complement

and Carry-look-ahead (CLA) fast adders are used. The multiplication of y is

done by shifting y by one bit to the left. Thus, in any case, in designing n-bit

parallel Multipliers, only n/2 partial products are generated [10, 11, and 12].

22

 To Booth recode the multiplier term, we consider the bits in blocks

of three, such that each block overlaps the previous block by one bit.

Grouping starts from the LSB, and the first block only uses two bits of the

multiplier.

Let us consider an example:

Multiplicand - (001011)2

Multiplier - (010011)2

First of all we will make group of three bits for Multiplier

4.2.2 Grouping of bits for multiplier

4.2.3 ENCODING FOR RADIX-4 BOOTH MULTIPLIER

X(i) X(i-1) X(i-2) Y

0 0 0 +0

0 0 1 +Y

0 1 0 +Y

0 1 1 +2Y

1 0 0 -2Y

1 0 1 -Y

1 1 0 -Y

1 1 1 +0

 0 1 0 1 1 0 1 0 1 0

23

From the table 1:

(010)2 - 1

(001)2 - 1

(110)2 - (-1)

Therefore Multiplicand is multiplied with the three

Encoded digit which is 1, 1 and (–1).

(i) –1 * (001011)2 = (001011)2 And 1111 added with the result because of

negative

Sign . Thus final answer of multiplication of (-1) is

(1111001011)2 {Negative term Sign Extended}

(ii) 1 * (001011)2 = (001011)2

(iii) 1 * (001011)2 = (001011)2

(iv) (00001)2 are added with these three resultants as

 An error correction for negation.

4.3 UNSIGNED NUMBERS

4.3.1 Algorithm

1. Pad the LSB with one zero

2. Pad the MSB with 2 zeros if n is even (n/2+1 PP‘S) and 1 zero if n

is odd (n/2+1 PP‘S)

3. Divide the multiplier into overlapping groups of 3 bits

4. Determine the partial product scale factor

5. Compute the multiplicand multiples

6. Sum partial products

24

4.3.2 EXAMPLE

 8*20

 8=00001000 20=00010100

 By algorithm, Multiplier 20= 00000101000

 00001000 8

 00000101000 20

 0000000000000000 0*Y

 00000000001000 1*Y

 000000001000 1*Y

 0000000000 0*Y

 00000000 0*Y

 0000000010100000

4.3.3 Grouping concept

 Multiplier bits after padding

 0 0 0 0 0 1 0 1 0 0 0  0*Y

 0 0 0 0 0 1 0 1 0 0 0  1*Y

 0 0 0 0 0 1 0 1 0 0 0  1*Y

 0 0 0 0 0 1 0 1 0 0 0  0*Y

 0 0 0 0 0 1 0 1 0 0 0  0*Y

25

4.4 SIGNED NUMBERS

4.4.1 ALGORITHM

 1. Pad the LSB with one zero

 2. If n is even don‘t pad the MSB (n/2 PP‘S) and if n is odd sign extend

the MSB by 1 bit(n+1/2 PP‘S)

 3. Divide the multiplier into overlapping groups of 3 bits

 4. Determine the partial product scale factor

 5. Compute the multiplicand multiples

 6. Sum partial products

4.4.2 EXAMPLE

-107*105 -107=10010101 105=01101001

 By algorithm, Multiplier 105= 011010010

 10010101 -107

 011010010 105

 1111111110010101 1*Y

 00000011010110 -2*Y

 000001101011 -1*Y

 0100101010 2*Y

 1101010000011101 -11235

26

CHAPTER 5

5.1 SPST (SPURIOUS POWER SUPPRESSION TECHNIQUE)

 The spurious-power suppression technique (SPST) can

dramatically reduce the power dissipation of combinational VLSI designs for

multimedia/DSP purposes. The proposed SPST separates the target designs

into two parts, i.e., the most significant part and least significant part (MSP

and LSP), and turns off the MSP when it does not affect the computation

results to save power. Furthermore, glitch-diminishing technique is used to

filter out useless switching power by asserting the data signals after the data

transient period.

 This is the technique which is used to suppress the spurious

power dissipation existed in the data-paths for multimedia VLSI designs. The

proposed technique adopts the design concept of separating the arithmetic

units into Most Significant Part (MSP) and Least Significant Part (LSP), and

then freezing the MSP whenever this part of circuits does not affect the

computation result.

5.1.1 SPST AS PRECOMPUTATION LOGIC

 Pre Computation logic is one of the efficient Low power VLSI

techniques to reduce the useless power dissipation in the circuits. The

influence of the spurious signal transitions illustrated as five cases of a 16-bit

addition is explored as shown in Fig. The case1 illustrates a transient state in

which the Spurious transitions of carry signals occur in the MSP though the

fina1 result of the MSP are unchanged. The 2nd and 3rd cases describe the

situations of one negative operand adding another positive operand without

and with carry from LSP, respectively. Moreover, the 4th 5th cases

respectively demonstrate the conditions of two negative operands addition

27

without and with carry-in from LSP. In those cases, the results of the MSP

are predictable, therefore the computations in the MSP are useless and can be

neglected. Eliminating those spurious computations will not only save the

power consumed inside the SPST adder/ subtractor but also decrease the

glitching noises which will affect the next arithmetic circuits.

5.1.2 CASES FOR PRECOMPUTATIONAL LOGIC

Case 1:

 0000 0001 LSP Carry=0

 0000 1110

 0000 1111

Case 2:

 0000 1001 LSP Carry=1

 0000 1110

 0001 0111

Case 3:

 1111 0001 LSP Carry=0

 1111 1110

 1110 1111

Case 4:

 1111 1001 LSP Carry=1

 1111 1110

 1111 0111

28

5.2 BASIC BLOCK DIAGRAM

 Oth Other wise

 Fig 5.1 Block diagram of SPST Adder

 Amsp Bmsp

 EX-OR GATE AND GATE

 DETECTION LOGIC

 FULL ADDER

 MSP

 PRODUCT

 FINAL

 PRODUCT

 ALSP BLSP

 FULL ADDER

 LSP

 PRODUCT

 0000 or

1111

Cin

29

5.3 DETECTION LOGIC

 The Boolean logical equations from 3.1 to 3.6 given below

express the behavioural principles of the detection logic unit in the MSP

circuits of the SPST-based adder/subtract or:

 AMSP = A [7:4]; B MSP = B [7:4]; (3.1)

 X [3:0] = A [7:4] xor B[7:4]; (3.2)

 i.e X [0] = A [4] xor B [4] ;

 X [1] = A [3] xor B [3];

 X [2] = A [2] xor B [2];

 X [3] = A [1] xor B [1];

 Y [3:0] = A [7:4] xor B [7:4]; (3.3)

 I.e Y [0] = A [4] xor B [4];

 Y [1] = A [3] xor B [3];

 Y [2] = A [2] xor B [2];

 Y [3] = A [1] xor B [1];

 X [3:0] = A [7:4] and B [7:4]; (3.4)

 Y [3:0] = A [7:4] and B [7:4]; (3.5)

 Where ‗A[m]‘ and ‗B[n]‘ respectively denote the mth bit of the

operands, A and the nth bit of the operand ‗B‘ and ‗AMSP‘ and ‗BMSP‘

respectively denote the MSP parts, i.e. the 9th bit to the 16th bit, of the

operands ‗A‘ and ‗B‘.

 When the bits in ‗AMSP, and those in ‗BMSP‘ are all same, the value

of ‗Axor‘ and that of ‗Bxor‘ respectively become zero and ‗Aand‘ , ‗Band‘

will be either zeros or ones. If this and LSP carry is 0, then final result of

MSP will be ‗0000‘.

 If LSP carry is 1 then ‗0001‘.If ‗Aand‘ , ‗Band‘ bits in AMSP and/or

those in BMSP are all zeros, the value of ‗Anor‘ and/or that of ‗Bnor‘

respectively turn into one.

30

CHAPTER 6

6.1 APPLYING SPST ON MODIFIED BOOTH ENCODER

 While multiplying two 16 bit numbers through booth algorithm

eight partial products produced, but some of the partial product may contain

all the bits as zero, so saving those computations can significantly reduce the

power consumption caused by the transient signals. We propose the SPST-

equipped modified-Booth encoder, which is controlled by a detection unit.

The detection unit has one of the two operands as its input to decide whether

the Booth encoder calculates redundant computations. As shown in Fig. 5,

the latches can respectively, freeze the inputs of MUX-4 to MUX- 7 or only

those of MUX-6 to MUX-7 when the PP4 to PP7 or the PP6 to PP7 are zero,

to reduce the transition power dissipation. Such cases occur frequently in

e.g., FFT/IFFT, DCT/IDCT, and Q/IQ which are adopted in encoding or

decoding multimedia data.

6.1.1 Proposed Spurious Power Suppression Technique

 It is a 16-bit adder/ subtractor design based on the proposed

SPST. This example, the 16-bit adder/ subtractor, is divided into MSP and

LSP at the place between the 8th bit and the 9th bit. Latches implemented by

simple AND gates are used to control the input data of the MSP. When the

MSP is required to produce the result, the input data of MSP remain the same

as usual. When the MSP is not required to produce the result, the input data

of the MSP become zeros to avoid switching power consumption. From the

derived Boolean equations (3.1) to (3.5), the detection logic unit of the SPST

which can determine whether the input data of MSP should be latched or not.

31

 6.1 Fig: Diagram for pp candidates generator

 Partial product generator is the combination circuit of the product

generator. Product generator is designed to produce the product by

multiplying the multiplicand X by 0, 1, -1, 2 or -2. For product generator,

multiply by zero means the multiplicand is multiplied by ―0‖. Multiply by

―1‖ means the product still remains the same as the multiplicand value.

Multiply by ―-1‖ means that the product is the two‟s complement form of the

number. Multiply by ―-2‖ is to shift left one bit the two‟s complement of the

multiplicand value and multiply by ―2‖ means just shift left the multiplicand

by one place.

 The PP generator generates five candidates of the partial products,

i.e., {-2A,-A, 0, A, 2A}. These are then selected according to the Booth

32

encoding results of the operand B. When the operand besides the Booth

encoded one has a small absolute value, there are opportunities to reduce the

spurious power dissipated in the compression tree.

 For the partial product generation, we adopt Radix-4 Modified

Booth algorithm to reduce the number of partial products for roughly one

half. For multiplication of 2‘s complement numbers, the two-bit encoding

using this algorithm scans a triplet of bits. When the multiplier B is divided

into groups of two bits, the algorithm is applied to this group of divided bits.

33

CHAPTER 7

 7.1 BOOTH MULTIPLIER

7.1.1 OUTPUT

Fig 7.1 Booth Multipier output

7.1.2 RTL SCHEMATIC

Fig 7.2 RTL schematic for Booth Multipier

 7.1.3 TECHNOLOGY SCHEMATIC

34

7.2 MODIFIED BOOTH

7.2.1 OUTPUT

 Fig 7.3 Modified Booth Multipier output

7.2.2 RTL SCHEMATIC

Fig 7.4 RTL Schematic for Modified Booth Multipier

7.2.3 TECHNOLOGY SCHEMATIC

35

7.3 SPST ADDER

Fig 7.5 SPST Adder Output

7.4 MODIFIED BOOTH WITH SPST

7.4.1 OUTPUT

Fig 7.6 Modified Booth Multiplier Output

36

7.4.2 RTL SCHEMATIC

Fig 7.7 RTL Schematic for Modified Booth Multiplier with SPST

7.4.3 TECHNOLOGY SCHEMATIC

37

CHAPTER 8

 8.1 DEVICE UTILISATION

8.1.1 DEVICE UTILISATION FOR BOOTH MULTIPLIER

PARAMETERs USED AVAILABLE %

Number of Slices 42

4656

1

Number of 4 input LUT

80 9312 1

Number of IOs

864

864

-

Number of bonded IOB

18 190

9

8.1.2 DEVICE UTILISATION FOR MODIFIED BOOTH

MULTIPLIER

PARAMETERs USED AVAILABLE %

Number of Slices 0

4656

0

Number of

MULT18X18SIOs

1 20 5

Number of IOs

1536

1536

-

Number of bonded IOB

32 190

16

38

8.1.3DEVICE UTILISATION FOR MODIFIED BOOTH

MULTIPLIER WITH SPST

8.2 BAR CHARTS

8.2.1 BOOTH MULTIPLIER

42 80

864

18

4656

9312

190

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Slices 4 Input LUTs Ios Bonded IOBs

Used

Available

PARAMETERs USED AVAILABLE %

Number of Slices 0

4656 0

Number of

MULT18X18SIOs

1 20 5

Number of IOs

1536

1536

-

Number of bonded IOB

32

190

16

39

8.2.2 MODIFIED BOOTH MULTIPLIER

8.3 COMPARISON OF MULTIPLIERS

S.No Multiplier Type Vendor Device

Estimated

Delay

(ns)

Power

Dissipation

(mW)

1. Booth Multiplier Xilinx
Automotive

Spartan 3E
14.610ns

92.07

2.
Modified Booth

Multiplier
Xilinx

Automotive

Spartan 3E

9.286ns

90.48

3.

Modified Booth

Multiplier with

SPST

Xilinx
Automotive

Spartan 3E

9.286ns

90.47

0 1

1536

32

4656

20
190

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Slices MULT18X18SIOs Ios Bonded IOBs

Used

Available

40

 CHAPTER 9

 CONCLUSION

 Today every circuit has to face power consumption issue to have long

battery life. Multiplication occurs frequently in finite impulse response

filters, fast Fourier transforms, discrete cosine transforms, convolution, and

other important DSP, Micro processor applications. Many algorithms are

used for multiplication. But power consumption is different for different

algorithms. To have low power efficient Multiplier architecture, Radix-4

Modified Booth Algorithm adopting the SPST technique is designed.

 The Multiplier is designed by equipping SPST on a modified

Booth encoder which is controlled by a detection unit using AND gate and

XOR gate. The modified Booth encoder will reduce the number of partial

products generated by a factor two. The SPST adder will avoid the unwanted

addition and thus minimize the switching power dissipation. This can attain

significant speed improvement and power reduction when compared with

other multipliers. While comparing all algorithms, power consumption and

delay is very low for radix-4 modified booth algorithm with SPST technique.

Modified Booth Multiplier has 5.32ns less delay and 1.59mW low power

when comapared to booth multiplier. Thus based on the experimental values

we conclude that Radix-4 modified booth algorithm with SPST is efficient

and consumes low power for VLSI multiplier architecture.

41

REFERENCE

1. Sukhmeet Kaur, Suman and Manpreet Signh Manna(2013),

―Implementation of Modified Booth Algorithm (Radix 4) and its

Comparison with Booth Algorithm (Radix-2)", Research India

Publications, ISSN 2231-1297, Volume 3, Number 6 , pp. 683-690.

2. G.Sasi, ―Design of Low power /High speed multiplier using Spurious

power suppression Technique(SPST)‖,International Journal of Computer

Science and Mobile Computing, ISSN 2320-088X,vol-3,2014.

3. Sneha Manohar Ramteke, Alok Dubey, Yogeshwar Khandagare, ―VLSI

Designing of Low Power Radix 4 Booths Multiplier‖, International

journal of Electrical,Electronics and Computer Systems(IJEECS)

4. Iffat Fatima, ―Analysis of Multipliers in VLSI”, Journal of Global

Research in Computer science (2012),ISSN 2229-371X ,vol 3,No.11.

5. S. JAGADEESH , S.VENKATA CHARY,‖ Design of Parallel

Multiplier–Accumulator Based on Radix-4 Modified Booth Algorithm

with SPST”, International Journal Of Engineering Research And

Applications (IJERA) 2012,ISSN: 2248-9622 Vol. 2, pp.425-431

6. Ken Chapman, “Initial Design for Spartan-3E Starter Kit (LCD Display

Control)”, Xilinx Ltd 16th February 2006.

7. SPST based power optimized multiplier

8. www.google.com

9. www.ieee.org

10. www.multiplier.org

http://www.google.com/
http://www.ieee.org/
http://www.multiplier.org/

42

APPENDIX

 XILINX (VHDL LANGUAGE)

 The Xilinx ISE is a design environment for FPGA products from

Xilinx, and is tightly-coupled to the architecture of such chips, and

cannot be used with FPGA products from other vendors. The Xilinx ISE

is primarily used for circuit synthesis and design, while the Model Sim

logic simulator is used for system-level testing .Other components

shipped with the Xilinx ISE include the Embedded Development Kit

(EDK), a Software Development Kit (SDK) and Chip Scope.

 The primary user interface of the ISE is the Project Navigator,

which includes the design hierarchy (Sources), a source code editor

(Workplace), an output console (Transcript), and a processes tree

(Processes). The Design hierarchy consists of design files (modules),

whose dependencies are interpreted by the ISE and displayed as a tree

structure. For single-chip designs there may be one main module, with

other modules included by the main module, similar to the main()

subroutine in C++ programs. Design constraints are specified in modules,

which include pin configuration and mapping. The Processes hierarchy

describes the operations that the ISE will perform on the currently active

module. The hierarchy includes compilation functions, their dependency

functions, and other utilities. The window also denotes issues or errors

that arise with each function. The Transcript window provides status of

currently running operations, and informs engineers on design issues.

Such issues may be filtered to show Warnings, Errors, or both.

Simulation System-level testing may be performed with the Model Sim

logic simulator, and such test programs must also be written in HDL

languages. Test bench programs may include simulated input signal

waveforms, or monitors which observe and verify the outputs of the

device under test.

43

Model Sim may be used to perform the following types of simulations:

 • Logical verification, to ensure the module produces expected results

• Behavioural verification, to verify logical and timing issues

• Post-place & route simulation, to verify behaviour 1 2 4 EXTERNAL

 LINKS after placement of the module within the reconfigurable logic

 of the FPGA.

 Xilinx‘s patented algorithms for synthesis allow designs to run

upto 30% faster than competing programs, and allow greater logic

density which reduces project costs. Also, due to the increasing

complexity of FPGA fabric, including memory blocks as and I/O blocks,

more complex synthesis algorithms were developed that separate

unrelated modules into slices, reducing post-placement errors. IP Cores

are offered by Xilinx and other third-party vendors, to implement system-

level functions such as digital signal processing (DSP), bus interfaces,

networking protocols, image processing, embedded processors, and

peripherals. Xilinx has been instrumental in shifting designs from ASIC-

based implementation to FPGA based implementation.

VHDL

 VHDL (VHSIC Hardware Description Language) is a hardware

description language used in electronic design automation to describe

digital and mixed-signal systems such as field-programmable gate arrays

and integrated circuits. VHDL can also be used as a general

purpose parallel programming language.

 VHDL is commonly used to write text models that describe a

logic circuit. Such a model is processed by a synthesis program, only if it

is part of the logic design. A simulation program is used to test the logic

design using simulation models to represent the logic circuits that

44

interface to the design. This collection of simulation models is commonly

called a testbench.

 One can design hardware in a VHDL IDE (for FPGA

implementation such as Xilinx ISE, Altera Quartus, Synopsys Synplify

or Mentor Graphics HDL Designer) to produce the RTL schematic of the

desired circuit. After that, the generated schematic can be verified using

simulation software which shows the waveforms of inputs and outputs of

the circuit after generating the appropriate test bench. To generate an

appropriate test bench for a particular circuit or VHDL code, the inputs

have to be defined correctly. For example, for clock input, a loop process

or an iterative statement is required.

 In VHDL, a design consists at a minimum of an entity which

describes the interface and an architecture which contains the actual

implementation. In addition, most designs import library modules. Some

designs also contain multiple architectures and configurations.

A simple AND gate program in VHDL,

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity ANDGATE is

Port(

 I1: in std_logic;

 I2: in std_logic;

 O: out std_logic);

end entity ANDGATE;

Architecture RTL of ANDGATE is

45

begin

 O<=I1 and I2;

end architecture RTL;

FPGA IMPLIMENTATION

 FPGAs are programmable semiconductor devices that are based

around a matrix of Configurable Logic Blocks (CLBs) connected through

programmable interconnects. As opposed to Application Specific Integrated

Circuits (ASICs), where the device is custom built for the particular design,

FPGAs can be programmed to the desired application or functionality

requirements. Although One-Time Programmable (OTP) FPGAs are

available, the dominant type is SRAM-based which can be reprogrammed as

the design evolves. FPGAs allow designers to change their designs very late

in the design cycle– even after the end product has been manufactured and

deployed in the field. In addition, Xilinx FPGAs allow for field upgrades to

be completed remotely, eliminating the costs associated with re-designing or

manually updating electronic systems

 FPGAs contain an array of Programmable Logic Block, and a

hierarchy of reconfigurable interconnects that allow the blocks to be "wired

together", like many logic gates that can be inter-wired in different

configurations. Logic Block can be configured to perform

complex combinational functions, or merely simple logic gates like AND and

XOR. In most FPGAs, logic blocks also include memory elements, which

may be simple flip flops or more complete blocks of memory.

46

