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Abstract 

 Analog circuit fault diagnosis problem can be modeled as a pattern recognition problem and is 

solved by machine learning algorithm. Support Vector Machine (SVM) is often chosen as the 

learning machine because of its good generalization ability in small sample decision problem. 

This paper provides a fault detection model for analog filter circuit based on Polynomial 

Coefficients and V-Transform Coefficients and using Support Vector Machines Classifier. V-

Transform is a non-linear transform that increases the sensitivity of Polynomial Coefficients with 

respect to circuit component’s variation by three to five times. It makes the original Polynomial 

Coefficients monotonic. SVM is used for fault classification in the two feature sets. The fault 

classifier is a multi-class classifier based on the traditional “one against rest” SVC (Support 

Vector Machine Classifier) which is used to train the feature samples. To increase the 

classification accuracy and to reduce the execution time, feature subset selection is performed for 

the two feature sets using Binary Bat Algorithm (BBA). The method using BBA provides better 

performance in dealing with fault diagnosis problems. The classification accuracy for both the 

Polynomial Coefficients and the V-Transform Coefficients can also be improved by varying the 

kernel parameters c and epsilon combined with the SVM algorithm for the three kernel functions 

such as Polynomial kernel (POLYkernel), Radial Basis Function (RBF) kernel, and the Pearson  

VII kernel (PUK) function. PUK kernel function provides better classification accuracy 

compared to the other two kernel functions.  Furthermore to increase the classification accuracy, 

HSVM (Hierarchical SVM) is used which is an extension of the Support Vector Machines to 

handle multi-class problems. HSVM for multi-class classification is a decision tree with an SVM 

at each node. The performance of the two circuit schemes based on the variations of the SVM 

classification are analyzed and their results are compared on the different metrics applied on the 

two coefficients. 
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CHAPTER 1 

INTRODUCTION 

1.1  OVERVIEW 

 Fault diagnosis is an important problem of analog circuit testing. With the rapid development 

of modern electronic circuits and systems, fault diagnosis of analog circuits has become an 

increasingly important task in the world today. Fault diagnosis of analog filter circuits has been 

an active research area for decades, but it is still complicated due to poor fault models, 

component tolerances and non-linearity effects of analog circuits. Given the circuit topology and 

nominal circuit parameter values, fault diagnosis is to obtain the exact information about the 

faulty circuit based on the analysis of the limited measured circuit responses. Fault diagnosis of 

analog circuits is essential for analog and mixed-signal systems testing and maintenance both 

during the design process and the manufacturing process of VLSI ASICs. In the past several 

years, analog circuit fault diagnosis based on back propagation technique was used which 

resulted in excess raining time and the performance was poor. A new method of fault diagnosis 

of analog filter circuits using Support Vector Machines Classifier were employed which resulted 

in increase in accuracy and reduction in execution time. 

1.2  FAULT DIAGNOSIS METHODS  

 Many analog diagnosis algorithms have been proposed and they fall into two categories: (i) 

Simulation after test (SAT) and (ii) Simulation before test (SBT). The SAT diagnosis 

implements costly circuit simulation and computation in test phase, which should be carried out 

in real time. SBT is more acceptable because it eliminates the on-line simulation and need only 

once off-line computation effort before test activities. Also there is no limitation for the 

application of SBT in test domain (parameters, frequency and time) and circuit type (linear or 

non-linear). Among all the SBT methods, data-driven methods, such as the artificial neural 

networks (ANNs) and Support Vector Machines (SVMs) are more suitable for analog fault 

diagnosis, since they do not need any explicit model. 
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1.3  ANALOG CIRCUIT FAULTS 

Faults in analog circuits are broadly classified into two types: (i) Catastrophic faults (hard 

fault) and (ii) Parametric faults (soft fault). A catastrophic fault is one in which discrete 

component of a circuit is destroyed (e.g short circuit, open circuit as well as topological change). 

With parametric fault, the component is still functioning but out of nominal tolerance band (i.e 

out of specification). Faults can also be categorized into single faults and multiple faults. In the 

proposed method, single fault in analog filter circuits are diagnosed.  

Many research works suggested the detection of faults in analog circuits using bandwidth, 

upper and lower cut-off frequencies, polynomial coefficients, supply current waveforms, peak 

amplitude, peak frequency and higher order sensitivity coefficients. In this proposed work, fault 

detection of analog filter circuits using Polynomial coefficients and V-Transform coefficients are 

used to detect the parametric faults. 

1.4  BENCHMARK CIRCUIT 

The benchmark circuits are a set of analog and mixed-signal circuits provided for the 

evaluation and performance of different testing approaches. However, the fault models for these 

benchmark circuits, along with a list of standard faults and range of acceptable component 

variations are not specified but they are a major concern in analog device testing. A circuit is 

designed to meet the tolerances associated with the specific requirement. Due to the very nature 

of the manufacturing process and working environment of the designed circuit, the values of the 

parameters often change. These variations are acceptable as long as circuit response is within 

specified limits. A known range of acceptable values for a circuit component parameter is 

necessary to establish the fault-free behavior for a given circuit, which can then be used to detect 

a fault. 

1.5  SVM CLASSIFICATION 

SVM classifier is used for fault classification in analog filter circuits. SVM is one of the most 

efficient machine learning algorithms, which is mostly used for pattern recognition and 

classification. SVM usually deals with pattern classification that means this algorithm is used 
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mostly for classifying the different types of patterns. SVM classifiers are robust, accurate and 

very effective even in cases where the number of training samples is very small. SVMs are 

essentially binary classifiers, but they can even handle multi-class problems. The multi-class 

classification based on the conventional “one against rest” SVC is used for the classification of 

Polynomial and V-transform coefficients. The “one against rest” SVC is faster and memory 

efficient and is widely used for multi-class classification problems. The classification is done in 

order to increase the accuracy and reduce the execution time of the process. 

1.5.1 FEATURE SELECTION 

Feature selection also known as variable selection, attribute selection or variable subset 

selection, is the process of selecting a subset of relevant features for use in model construction. 

In machine learning, the problem of supervised classification is concerned with using labeled 

examples to induce a model that classifies objects into a finite set of known classes. Some of the 

features may be irrelevant or redundant. Avoiding irrelevant or redundant features is important 

because they may have a negative effect on the accuracy of the classifier. In addition, by using 

fewer features we may reduce the cost of acquiring the data and improve the comprehensibility 

of the classification model. 

1.5.2 KERNEL FUNCTIONS 

Support Vector Machines along with kernel based algorithms provide good classification 

results than Artificial Neural Networks (ANNs) for most of the benchmark problems. Kernel 

methods used in SVM were applied to a variety of problems such as classification and 

regression. The different kernel functions available in SVMs are the Polynomial kernel, Radial 

Basis kernel, Pearson VII kernel functions. On selection of the kernel function, the different 

parameters have to be varied in order to obtain higher classification accuracy. 

1.5.3 HIERARCHICAL SUPPORT VECTOR MACHINES 

HSVM is the extension of the SVM for multi-class problems. It is a decision tree with an 

SVM at each node. At the root node of the decision tree, all classes are available for prediction. 

The number of classes available for prediction keeps decreasing as the tree gets descended. The 

speed and accuracy of HSVM depends on its tree structure. HSVM overcomes the disadvantages 
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of one-against-one and one-against-all classifiers by using a binary hierarchical classification 

structure. 

1.6  PROPERTIES OF SUPPORT VECTOR MACHINES 

• Flexibility in choosing a similarity function. 

• Ability to handle large feature spaces. 

• Provides better feature selection properties. 

• Achieve high generalization by maximizing the margin. 

• Support an efficient learning of nonlinear functions by kernel trick. 

 

1.7  BENEFITS OF SVM 

• Effective in high dimensional spaces. 

• Effective when number of dimensions is greater than number of samples. 

• Uses a subset of training points called Support Vectors, so it is memory efficient. 

• Different kernel function can be specified for the decision function. 

 

1.8  APPLICATIONS OF SVM 

• Digital Image Analysis 

• Text Categorization 

• Character Recognition 

• Bioinformatics 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Multi-Tone Testing of Linear and Nonlinear Analog Circuits using 

Polynomial Coefficients 

A method of testing for parametric faults of analog circuits based on a polynomial 

representation of fault-free function of the circuit is presented in this paper. The response of the 

circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant 

frequencies in addition to DC. Classification of CUT is based on a comparison of the estimated 

polynomial coefficients with those of the fault free circuit. By expanding polynomial coefficients 

at critical frequencies the fault coverage is significantly improved, yielding a minimum size of 

detectable faults in some parameters as low as 5%.  The proposed method is illustrated for a 

benchmark elliptic filter. It is shown to uncover several parametric faults causing deviations as 

small as 5% from the nominal values. 

2.2  Parametric Fault Diagnosis of Nonlinear Analog Circuits using 

Polynomial Coefficients 

In this paper, a method for diagnosis of parametric faults in analog circuits using polynomial 

coefficients of the circuit model is presented. In addition to the work proposed in the above 

paper, where the circuit response is modeled as polynomial for uncovering parametric faults in 

nonlinear circuits, the author has proposed diagnosis of such faults using sensitivity of 

coefficients of the estimated polynomial to circuit parameters.  The proposed method requires no 

design for test hardware as might be added to the circuit by some other methods. The method has 

been extended to sensitivity based fault diagnosis with probabilistic confidence levels in 

parameter drifts. The author has also demonstrated diagnosis of several parametric faults with 

confidence levels up to 98.9% in the benchmark elliptic filter. 
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2.3  Neural Network based Fault Diagnosis in Analog Electronic Circuit using 

Polynomial Curve Fitting 

The use of the neural network for parametric fault diagnosis in an analog circuit, based upon 

the polynomial curve fitting coefficients of the output response of an analog circuit is presented 

in this study. Building upon the theory of polynomial coefficients a parametric fault diagnosis 

methodology is proposed. A polynomial of suitable degree is fitted to the output frequency 

response of an analog circuit. The coefficients of the polynomial attain different values under 

faulty and non faulty conditions. These polynomial coefficients are used as signature for the 

training, validation and test sets for artificial neural network.  Using these features of polynomial 

coefficients, a BPNN is used to detect the parametric faults. Simulation results are presented for 

a benchmark biquad filter circuit. Single resistance and capacitance faults of ±1% to ±50% 

deviation from nominal values were correctly diagnosed. 

 

2.4  Polynomial Coefficient Based DC Testing of Non-Linear Analog Circuits 

DC testing of parametric faults in non-linear analog circuits based on polynomial 

approximation of the functionality of fault free circuit is presented. Classification of circuit under 

test (CUT) is based on comparison of estimates of polynomial coefficients with those of the fault 

free circuit. The method needs very little augmentation of circuit to make it testable as only 

output parameters are used for classification. Possible fault diagnosis in conjunction with 

sensitivity of polynomial coefficients is also presented in this paper. The minimum size 

detectable faults of some of the parameters in circuits are as low as 10% which implies 

impressive fault coverage. The method has been extended to sensitivity based fault diagnosis 

with probabilistic confidence levels in parameter drifts. 

2.5  Non-Linear Analog Circuit Test and Diagnosis under Process Variation 

using V-Transform Coefficients 

A new approach for test and diagnosis of non-linear circuits based on a transformation of 

polynomial expansion of the circuit is demonstrated. The V- Transform acts on the polynomial 

expansion of the circuit’s function. The V-Transform renders the polynomial coefficients 

monotonicity and enhances their sensitivity. The minimum sizes of detectable faults in some of 



 

7 

 

the circuit parameters are as low as 5% which implies that impressive fault coverage can be 

achieved with V-Transform Coefficients (VTC). The use of VTC shows a reduction in masking 

of parametric faults due to process variation. The method is then extended to sensitivity based 

fault diagnosis by evaluating VTC at different frequencies.  

 

2.6  Parametric Fault Testing of Non-Linear Analog Circuits Based on 

Polynomial and V-Transform Coefficients 

In this paper, the polynomial coefficient and V-transform coefficient based testing of 

parametric faults in linear and non-linear analog circuits is proposed. This paper describes two 

analog circuit test schemes for high resolution fault detection. The first scheme uses polynomial 

coefficients of the circuit’s input- output response for fault detection. The second scheme uses a 

transformation on the polynomial coefficients for fault detection. Further, these methods are 

extended to sensitivity based fault diagnosis of parameter drifts with probabilistic confidence 

levels. V-transform is a non- linear transform that increases the sensitivity of polynomial 

coefficients with respect to circuit component variations by three to five times. In addition, it 

makes the original polynomial coefficients monotonic. Using simulation, the proposed test 

method is shown to un-cover most parametric faults in the range of 5–15% on a low noise 

amplifier (LNA) and an elliptic filter bench-mark. The experimental results demonstrate the 

benefits of V-transform. 

 

2.7  Parametric Fault Detection of Analogue Circuits 

This paper presents a new testing approach for analog circuits based on the digital signature 

analysis. In this paper, the efficient parametric fault detection approach for analog circuits using 

the simulation environment is presented. This approach has three main parts, an analog test 

pattern generator (ATPG), an analog test response comparator (ATRC), and an analog circuit 

under test (ACUT) model, build in the PSpice circuit simulator. The proper ATPG is designed to 

sweep the applying sinusoidal frequencies to match the frequency domain of the ACUT. The 

output test response of the ACUT is acquired via the analog-to-digital converter (ADC). The 

ATRC accumulates digital samples of the output response from the ADC to generate a digital 

signature that can characterize the situation of the ACUT. The signature comparison is achieved 
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based on signature boundaries based on the worst-case analysis. It combines effective parameters 

of the transfer function of the ACUT with respect to the component variations. These parameters 

are the band-with and the passband transmission. Using the signature curve, a parametric fault of 

each component of the ACUT can be detected under the sweep sinusoidal frequency of the 

ATPG. Based on this curve, the relation between digital signatures and component variations of 

the ACUT combines the effects of the bandwidth (BW) and the passband transmission (Amax) 

on the output response of the ACUT during component variations. In some cases, the signature 

curve is affected with the bandwidth only during the constant variation of Amax. In some other 

cases, the signature curve is affected with the Amax only during the constant variation of 

bandwidth. In other cases, the signature curve is affected with both the bandwidth and the Amax. 

The presented testing approach is applied to the analog benchmark circuit to validate the 

presented testing approach.  

2.8  One-class classifier based on SBT for analog circuit fault diagnosis 

In OCB-SBT, many predefined fault classes are constructed from their corresponding fault 

simulation samples. One-class classifier based SBT diagnosis framework is proposed in order to 

overcome the shortcomings of MCB-SBT methods. The important feature of the proposed 

framework is robust and reliable to the effects due to not only component tolerances and 

nonlinearity but also poorly defined fault classes and low testability that are familiar in analog 

circuit fault diagnosis. 

 

2.9  Naive Bayes – Guided Bat Algorithm for Feature Selection 

A new hybrid feature selection algorithm has been proposed in this paper. Bio-inspired 

method called Bat Algorithm hired Naïve-Bayes algorithm to intelligently select the most 

convenient feature that could maximize the classification accuracy while ignoring redundant and 

noisy features. The performance of the proposed algorithm was compared with three other 

feature selection algorithms using twelve benchmark datasets obtained from different domains. 

Four types of performance measures were evaluated such as the number of features, 

classification accuracy, stability and generalization. Compared to the other algorithms, Naïve 

Bayes – guided Bat Algorithm (BANB) produced less number of features and the classification 
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accuracy obtained was better. In terms of stability and generalization of results, the presented 

algorithm is more stable than the other algorithms. 

2.10 A New Metaheuristic Bat-Inspired Algorithm  

A new metaheuristic algorithm named Bat algorithm for solving continuous constrained 

optimization problems is presented in this paper. The algorithm is based on the echolocation 

behavior of bats. The advantages of the existing algorithms are combined in the bat algorithm. 

The new solutions are generated by adjusting frequencies, loudness and pulse emission rates and 

the acceptance of the proposed solution depends on the quality of the solutions controlled or 

characterized by loudness and pulse rate which are in turn related to the closeness or fitness of 

the locations or solutions to the global optimal solution. The proposed algorithm is compared 

with the other existing algorithms such as genetic algorithm and particle swarm optimization 

algorithms. Simulation results show that the proposed algorithm is superior to the other existing 

algorithms. 

2.11 A Binary Bat Algorithm for Feature Selection 

In this paper, an optimization problem known as the feature selection problem is focused in 

order to obtain the most important information from a given set of features. A new nature 

inspired feature selection technique known as the Binary Bat Algorithm (BBA) is proposed 

which is based on the behavior of the bats. A binary version of the well-known continuous-

valued Bat Algorithm was derived in order to position the bats in binary coordinates along the 

corners of the search space, which represents a string of bits that encodes whether a feature will 

be selected or not. The wrapper approach is used along with Optimum-Path Forest classifier in 

order to find the set of features that maximizes the accuracy in a validating set. The experiment 

for the proposed method was conducted with five public datasets and it was compared with 

several meta-heuristic algorithms such as Particle Swarm Optimization (PSO), FFA and GSA to 

show the robustness and the good generalization capability of the bat inspired technique. The 

experimental results demonstrated that the proposed technique performed well compared to the 

other techniques. 
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2.12 A novel approach of analog circuit fault diagnosis using support vector 

machine classifier 

The proposed method presents a novel approach of diagnosing actual analog circuits using 

improved support vector machine classifier (SVC) .The fault classifier is based on the 

conventional “one against rest” svc, which is then used to train the feature samples. Two 

experiments based on DAC and DSP are demonstrated to validate the proposed method and the 

results given by the experiment yields that the proposed svc is suited to be applied in the domain 

of analog testing, if proper parameters are chosen. 

2.13 Fault diagnosis in analog electronic circuits – The SVM approach 

In this proposed method, the application of the SVM algorithm has been used for diagnosis 

and tests of analog electronic circuits. The diagnosis procedure belongs to simulation-before-test 

techniques. The SVM has been applied for the fault-driven test (FDT) and the specification-

driven test(SDT). The SVM classifies features which are calculated from the time domain 

responses. Results obtained from this approach prove a high detection and localization level of 

circuit states with the use of the SVM classifier. 

 

2.14 Feature selection and parameter optimization for support vector 

machines: A new approach based on genetic algorithm with feature 

chromosomes 

In this paper, a new approach based on genetic algorithm with feature chromosomes, is 

proposed to simultaneously optimize the feature subset and the parameters for SVM. Compared 

with GA without feature chromosomes, the proposed approach not only has higher classification 

accuracy and smaller feature subsets, but also has fewer processing time. 

 

2.15 Feature selection for support vector machines by means of genetic 

algorithms 

The proposed method consists of a special Genetic Algorithm, which especially takes into 

account the existing bounds on the generalization error for support vector machines instead of 

performing cross-validation. This is computationally much faster as each feature subset needs to 
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be trained only once. Additionally to the selection of the feature subset, kernel parameters can 

also be optimized such as the regularization parameter C of the SVM by means of GA.  

 

2.16 Optimization of SVM Multiclass by Particle Swarm (PSO-SVM) 

This paper proposes a PSO-SVM technique to optimize the performance of SVM classifier. 

In many classification problems, the performances of a classifier are often evaluated by a factor 

(the rate of error). The factor is not well adapted to the multi-class problems. Therefore an 

evolutionary method for optimizing this factor is obtained. The optimization method used in this 

paper is the Particle Swarm Optimization (PSO) technique which makes it possible to optimize 

the performance of SVM classifier. The experimental results show that the approach PSO-SVM 

gives a better classification in terms of accuracy even though the execution time is increased. 

 

2.17 Feature Selection for Multi-class Problems Using Support Vector 

Machines 

In this paper, feature selection for multi-class problems using support vector machines 

(SVM) is presented. Since feature selection can remove the irrelevant features and improve the 

performance of learning systems, it is a crucial step in machine learning. The feature selection 

methods using support vector machines have obtained satisfactory results. In this paper, a 

prediction risk based feature selection method using multiple classification support vector 

machines is proposed. The performance of the proposed method is compared with the previous 

methods of optimal brain damage based feature selection methods using binary support vector 

machines. The results of experiments on UCI data sets show that prediction risk based feature 

selection method obtains better results for multiple classification problems. 

 

2.18 Performance of SVM based on PUK kernel in Comparison to SVM 

Based on RBF Kernel in Prediction of Yarn Tenacity 

In the proposed method, a new kernel function of SVM based on the Pearson VII function 

has been applied and compared with the commonly applied kernel functions such as Polynomial 

and Radial Basis function (RBF) to predict yarn tenacity. The SVM models based on RBF and 

PUK kernel shows the same applicability, suitability and performance to map the nonlinear 
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relation between input and output data for predicting the yarn tenacity. A comparison of SVM 

models based on RBF and PUK kernels with ANN (Artificial Neural Network) model shows that 

the two SVM models have similar prediction performances as ANN model. 

 

2.19 A Support Vector Hierarchical Method for Multi-class Classification 

and Rejection 

This paper presents a new soft-decision hierarchical classifier to address multi-class 

classification and rejection problems, with focus on distortion invariant object recognition. The 

hierarchical structure is designed by the weighted support vector k-means clustering method. 

SVRDMs (support vector representation and discrimination machine) are used at each node as 

the classifiers to provide good generalization and rejection ability, which cannot be achieved by 

standard SVMs. The new aspect of this paper is that it provides remarks on the hierarchical 

design method, including the hierarchical clustering rule and discussed the meaning and the use 

of the probabilities in the soft-decision hierarchical SVRDM classifiers. The results were 

compared with the hierarchical SVM classifiers, the standard One-VS-All SVM and SVRDM 

classifiers and it was found that the new classifier gave better Pc and ���. Excellent 

classification and rejection results were obtained in initial tests on the COIL-100 database with 

aspect variations, while no prior work considered rejection of false classes for this database.  

 

2.20 A Comparison of Methods for Multiclass Support Vector Machines 

This paper presents a decomposition implementation for all-together methods such as binary 

classification and multi-class classification. Their performances are then compared with three 

methods based on binary classification such as “one-against-one”, “one-against-all”, and directed 

acyclic graph SVM (DAGSVM). The experiments indicate that for problems with larger dataset 

the “one-against-one” and DAG methods are more suitable for practical use than the other 

methods. 
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2.21 A Hierarchy of Support Vector Machines for Pattern Detection 

In this proposed work, a computational design for pattern detection based on a tree-structured 

network of support vector machines (SVMs) is introduced. The objective is to design and build a 

network which balances overall error and computation. An SVM is associated with each cell in a 

recursive partitioning of the space of patterns called hypotheses into increasingly finer subsets. 

The hierarchy is traversed coarse-to-fine and each chain of positive responses from the root to a 

leaf constitutes detection.  Initially SVMs were constructed for each cell with no constraints. 

This free network is then perturbed, cell by cell, into another network, which is graded in two 

ways: First, the number of support vectors of each SVM is reduced by clustering in order to 

adjust to a pre-determined, increasing function of cell depth and the Second, the decision 

boundaries are shifted to preserve all positive responses from the original set of training data. 

The limits on the number of clusters result from minimizing the mean computational cost of 

collecting all detections subject to a bound on the expected number of false positives. When 

applied to detecting faces in cluttered scenes, the patterns correspond to poses and the free 

network is already faster and more accurate than applying a single pose-specific SVM many 

times. The graded network promotes very rapid processing of background regions while 

maintaining the discriminatory power of the free network. 
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CHAPTER 3 

FAULT FEATURE EXTRACTION 

3.1  INTRODUCTION 

The proposed methodology mainly consists of three stages such as fault signature extraction, 

preprocessing techniques and the fault classification. The detailed flow of the methodology 

consisting of Polynomial coefficient and V-Transform coefficient based fault detection of analog 

filter circuit using SVM classification is illustrated in the fig 3.1. 

                                                

FIG 3.1: FLOWCHART FOR THE FEATURE EXTRACTION PROCESS 
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3.2  CIRCUIT UNDER TEST (CUT) 

The proposed methodology is validated by considering the benchmark circuit namely Two 

Thomas Biquad filter. The three-op-amp Biquad filter is used as the circuit under test for the 

proposed method. In signal processing, a digital biquad filter is a second order recursive linear 

filter, containing two poles and two zeros. Biquad is an abbreviation of biquadratic which refers 

to the fact that in the z-domain, its transfer function is the ratio of two quadratic functions. It is 

also sometimes called as the “ring of 3” circuit. Because of coefficient sensitivities in higher 

order filters, the biquad is often used as the basic building block for more complex filters. 

Biquad filters are typically active and implemented with the single-amplifier biquad (SAB) 

or two-integrator-loop topology. The SAB topology uses feedback to generate complex poles 

and possibly complex zeros. In particular, the feedback moves the real poles of an RC circuit in 

order to generate the proper filter characteristics. The two-integrator-loop topology is derived 

from rearranging a biquadratic transfer function. The rearrangement will equate one signal with 

the sum of another signal, its integral and the integral’s integral. By using different states as 

output, any kind of second-order filter can be implemented. The SAB topology is sensitive to 

component choice and can be more difficult to adjust. Hence, usually the term biquad refers to 

the two-integrator-loop state variable filter topology. 

The Biquad filter is an active RC-topology used to realize both band-pass and low-pass 

responses. Biquad filter consists of three operational amplifiers cascaded to produce the two 

output responses. It consists of two integrators and an inverter. The basic configuration of the 

biquad filter is shown in the figure and it can be used as either the low-pass or the band-pass 

filter depending on where the output signal is taken from. 
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FIG 3.2: BIQUAD FILTER CIRCUIT 
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Where �� is the gain of the filter, Q is the quality factor and w is the frequency. The 

bandwidth is given by  

B=w/Q 

The transfer function for obtaining the band-pass output is given by 

�������
������ � 	 − � 1����

�
 � � 1���
 � �����
������
															�2� 

The transfer function for obtaining the low-pass output is given by 

�������
������ � 	 −

�����
������
�
 � � 1���
 � �����
������

																�3� 

where Vo is the output voltage and Vi is the input voltage. The components of the circuit 

under test are R1, R2, R3, R4, R5, R6, C1 and C2. The nominal values of the components are 

R1=R3=2.7 KΩ, R2=1.5 KΩ, R4=12 KΩ, R5=1 KΩ, R6=10 KΩ, C1=C2=10 nF. 

3.4   FAULT DICTIONARY 

Fault dictionary is the practical approach belonging to the simulation before test (SBT) 

technique. Fault dictionary is constructed by injecting faults to each component of the filter with 

±50% deviation from the nominal value under faulty condition. Frequency response of an analog 

circuit is the graph which shows the variation in the gain of the analog circuit with respect to the 

frequency of operation. When the frequency of the input stimulus is varied the output voltage 

and hence the gain of the circuit varies. By plotting this variation in the gain with respect to 

frequency, a frequency response of the circuit is obtained. Mathematically to implement this,   

the transfer function of the analog circuit is required to be calculated depending upon its required 

response and the bandwidth requirement. 

Apart from mathematically obtaining the frequency response of the analog circuit, the 

frequency response graph is obtained by simulating the analog circuit using the bode plotter tool 

available in MATLAB. Bode plotter is very useful for the analysis of filter circuits. It produces a 
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graph of circuit’s frequency response. In this the gain of the circuit under test is plotted with 

respect to the frequency. Bode plotter is available as bode diagram of frequency response in the 

control system tool box of MATLAB software. This is used to compute the magnitude and phase 

of the frequency response of the linear time invariant models. In the bode diagram the magnitude 

is plotted in db and the phase in degrees. 

The frequency response graph thus obtained will contain several values, so while using all 

these values will result in more execution time and will reduce the accuracy. In order to increase 

the accuracy and reduce the execution time, two types of feature extractions are used.  

They are: 

1. Polynomial Coefficients 

2. V-Transform Coefficients 

 

3.5  POLYNOMIAL COEFFICIENTS 

For the fault injected on each component, the frequency response graph obtained will be 

different. There will be different frequency response graphs indicating the different parametric 

variation faults in each of the components present in the circuit. The parametric fault introduced 

in each component values are with the variation of ±50% (i.e.) two-hundred faults are there for 

each component keeping all other components at their nominal values within the tolerance limit. 

It has been observed that for each fault in the circuit component value a unique frequency 

response graph is obtained. 

The collected graphs are applied to the preprocessor to get the proper and distinguishable 

features. This is done using polynomial curve fitting. Polynomials are one of the most commonly 

used types of curves in regression. The Polynomial Curve Fitting uses the method of least 

squares when fitting data. The frequency response of the circuit is curve fitted with 9
th

 order 

polynomial curve fitting tool to yield 10 polynomial coefficients for the fault scenario of each 

component. Polynomial curve fitting is done using the curve fitting toolbox of MATLAB 

software. Since the frequency response graphs obtained are different for different fault 

components, polynomial coefficients obtained are also different and unique for different faults. 

These polynomial coefficients are used to prepare the fault dictionary, for further classification 
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of the faults. A feature set comprising of the components with values under fault condition and 

its corresponding polynomial coefficients will be constructed. 

The following steps are followed in the curve fitting process: 

1. The frequency response graph is first transferred and stored in a MICROSOFT office 

excel work sheet. 

  

2. These values of the graph from excel worksheet are transferred to the MATLAB 

workspace.  

 

3. The data stored in the MATLAB workspace is imported in the curve fitting tool box.  

 

4. The imported graph in the curve fitting tool box is curve fitted using polynomial 

curve fitting. 

 

5. A ninth order polynomial is used to fit output frequency response of CUT yielding ten 

polynomial coefficients.  

 

6. This process is repeated for every output frequency response related to each fault 

scenario of each component of CUT and ten polynomial coefficients are recorded for 

each curve fit. These coefficients are further used to build the fault dictionary.  

 

3.5.1 FAULT DICTIONARY USING POLYNOMIAL COEFFICIENTS 

Fault dictionary created by using the polynomial coefficients obtained by curve fitting the 

frequency response of the circuit with the polynomial curve fitting tool of MATLAB are 

tabulated. The table shows the sample fault dictionary for the faults injected on R1 component. 
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TABLE 3.1: SAMPLE FAULT DICTIONARY OF POLYNOMIAL COEFFICIENTS 

FOR R1 COMPONENT 

 

FAULT 

INDEX 

POLYNOMIAL COEFFICIENTS 

 a0
 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1 -0.9957 0.9918 -0.85 -0.9815 0.9612 -0.9257 0.8413 -0.6676 0.3726 0.0697 -0.6217 

1 -0.9951 0.9906 -0.85 -0.9847 0.9678 -0.9159 0.8246 -0.7262 0.4712 -0.0801 -0.465 

1 -0.9957 0.9919 -0.85 -0.9809 0.9604 -0.9385 0.8674 -0.6592 0.3587 0.0892 -0.6386 

1 -0.996 0.9922 -0.85 -0.9829 0.9643 -0.9311 0.8526 -0.6901 0.4001 0.0455 -0.6167 

1 -0.9957 0.9916 -0.85 -0.982 0.9626 -0.9373 0.8668 -0.6989 0.4234 0.0026 -0.5717 

1 -0.9962 0.9926 -0.85 -0.985 0.968 -0.9255 0.8393 -0.7319 0.4822 -0.0979 -0.4475 

1 -0.9958 0.9918 -0.85 -0.9817 0.962 -0.9329 0.8539 -0.6479 0.337 0.1216 -0.6629 

1 -0.9954 0.9911 -0.85 -0.9849 0.9677 -0.9248 0.841 -0.6434 0.3341 0.1211 -0.6622 

0 -0.9956 0.9915 -0.85 -0.984 0.9664 -0.9212 0.8312 -0.7213 0.464 -0.0723 -0.4683 

1 -0.9962 0.9927 -0.85 -0.9845 0.9671 -0.9236 0.8383 -0.723 0.4717 -0.0878 -0.4536 

1 -0.9957 0.9917 -0.85 -0.9855 0.9691 -0.9428 0.876 -0.6731 0.3679 0.0939 -0.6559 

1 -0.9953 0.9911 -0.85 -0.9868 0.9717 -0.9172 0.8255 -0.6258 0.3014 0.169 -0.6972 

0 -0.9949 0.99 -0.85 -0.9874 0.9731 -0.9256 0.8437 -0.6849 0.3919 0.0554 -0.6222 

1 -0.9955 0.9915 -0.85 -0.9863 0.9709 -0.932 0.8576 -0.6689 0.3713 0.0763 -0.6325 

1 -0.9958 0.992 -0.85 -0.9844 0.967 -0.9331 0.8578 -0.7154 0.4577 -0.0691 -0.4649 

 

Fault dictionary is created for all the other components in a similar manner. Randomly 75% 

of the samples are selected as training samples and the remaining 25% are selected as testing 

samples from the fault dictionary created for all the faulty components. 

 

3.6  V-TRANSFORM COEFFICIENTS 

V-transform is the transformation of the polynomial coefficients. V-transform is a non-linear 

transform that increases the sensitivity of polynomial coefficients with respect to circuit 

component variations by three to five times. In addition, it makes the original polynomial 

coefficients monotonic. The V-transform acts on the polynomial expansion of the circuit’s 

function. The main properties of the V-transform are: 

1. It makes the original polynomial coefficients monotonic. 

2. It reduces the masking of parametric faults due to process variation. 
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3. It increases the sensitivity of polynomial coefficients to the circuit parameter 

variation, thereby enhancing diagnostic resolution. 

The sensitivity of V-Transform Coefficients (VTC) with respect to circuit parameter 

variation is up to 3 to 5 times greater than the sensitivity of polynomial coefficients. 

V-Transform coefficients are defined as follows: if ��, �
 … �� are polynomial coefficients of 

CUT then their V-Transform coefficients �"�, �"
 … �"� are: 

 

�"� � #$%&' 	∀	0 ≤ + ≤ ,																						�4� 

 

Where  ��.    are the modified polynomial coefficients defined by 

 

/��./01 � 	 2/��/012	∀	0 ≤ + ≤ ,																						�5�					 
 

The modification ensures that the modified polynomial coefficients are monotonic with the 

polynomial coefficients. The V-Transform coefficients (VTC) are exponential functions of the 

modified polynomial coefficients and γ is a sensitivity parameter chosen according to the desired 

sensitivity. Choices of γ = 3, for instance, results in a 3 times more sensitive coefficient to circuit 

parameters. 

The sensitivity increase is due to enhancement of correlation of the V-transform coefficient 

to specific components, where each coefficient is multiplied by a factor. The transformation of 

the polynomial coefficients (i.e.) the V- Transform coefficients obtained is used to create the 

fault dictionary, for further classification of the faults. 

 

3.6.1 FAULT DICTIONARY USING V-TRANSFORM COEFFICIENTS 

Fault dictionary created by using the V-Transform coefficients (i.e.) the transformation of the 

polynomial coefficients are tabulated. The table shows the sample fault dictionary for the faults 

injected on R1 component. 
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TABLE 3.2: SAMPLE FAULT DICTIONARY OF V-TRANSFORM COEFFICIENTS 

FOR R1 COMPONENT 

 

FAULT 

INDEX 

V-TRANSFORM COEFFICIENTS 

 a0
 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1 388.5804 1.2443 0.0518 15.1318 1.0873 0.8354 1.4728 0.4951 3.0221 0.2250 0.1257 

1 386.4877 1.2432 0.0517 15.2824 1.1087 0.8067 1.3292 0.5885 2.6357 0.2455 0.3152 

1 388.6970 1.2443 0.0519 15.1137 1.0657 0.8698 1.5204 0.4662 3.0728 0.2240 0.1127 

1 389.3972 1.2448 0.0517 15.2023 1.0808 0.8457 1.4355 0.5073 3.0144 0.2176 0.1372 

1 388.3473 1.2443 0.0518 15.1636 1.0693 0.8661 1.4299 0.5142 2.8641 0.2248 0.1785 

1 390.0988 1.2452 0.0515 15.2870 1.0934 0.8244 1.3370 0.5853 2.5883 0.2479 0.3504 

1 388.6970 1.2445 0.0518 15.1500 1.0759 0.8503 1.5334 0.4605 3.1716 0.2232 0.0950 

1 387.4164 1.2437 0.0516 15.2801 1.0943 0.8269 1.5252 0.4675 3.1479 0.2244 0.0954 

0 388.1143 1.2441 0.0517 15.2503 1.0988 0.8164 1.3497 0.5765 2.6472 0.2470 0.3048 

1 390.2158 1.2452 0.0515 15.2663 1.0957 0.8243 1.3511 0.5770 2.5930 0.2496 0.3337 

1 388.4638 1.2443 0.0515 15.3122 1.0661 0.8697 1.4986 0.4667 3.1598 0.2153 0.1055 

1 387.3002 1.2435 0.0515 15.3720 1.1100 0.8031 1.5482 0.4556 3.2943 0.2236 0.0744 

0 385.5612 1.2428 0.0515 15.4044 1.0971 0.8236 1.4348 0.5078 3.0357 0.2185 0.1310 

1 387.9979 1.2439 0.0515 15.3536 1.0849 0.8437 1.4839 0.4822 3.0581 0.2219 0.1193 

1 388.9302 1.2445 0.0516 15.2640 1.0800 0.8489 1.3862 0.5487 2.6365 0.2506 0.3050 

 

Fault dictionary using V-transform coefficients are created for all the other components in a 

similar manner.  
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CHAPTER 4 

SUPPORT VECTOR MACHINES (SVM) 

4.1  SVM CLASSIFICATION 

Support Vector Machine (SVM) is one of the most efficient supervised machine learning 

algorithms which is mostly used for classification problems. SVM usually deals with pattern 

classification that means this algorithm is used mostly for classifying the different types of 

patterns. SVM approach has some advantages compared to other classifiers. They are robust, 

accurate and very effective even in cases where the number of training samples is very small. 

SVMs are essentially binary classifiers, but they can even handle multi-class problems. 

The aim of support vector classification is to device a computationally efficient way of 

learning good separating hyperplanes in a high dimensional feature space. Support vector 

machine is a Learning machine which finds an optimal separating hyperplane. It uses a linear 

hyperplane to create a classifier with a maximum margin. The algorithm aims to find support 

vectors and their corresponding coefficients to construct an optimal separating surface by the use 

of kernel functions in high dimensional feature space. 

SVM classifies data by finding the best hyperplane that separates all data points of one class 

from those of the other class. The best hyperplane for a SVM means the one with the largest 

margin between the two classes. Margin means the maximum width of the slab parallel to the 

hyperplane that has no interior data points. The maximal margin hyperplane will be more 

accurate in classifying the data than the smaller margin. The separating hyperplane can be 

written as 

                                                  w . x + b = 0                        (6) 

where, w is a weight vector and b is a bias (scalar). The maximal margin is denoted 

mathematically by the formula as 

                                                    M = 2 / ||W||                       (7)    

where, ||W|| is the Euclidean norm of w. 
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4.1.1 MULTI-CLASS CLASSIFICATION 

A multi-class classifier is constructed by combining several binary classifiers. In multi-class 

classification, each training point belongs to one of N different classes. The goal is to construct a 

function which, given a new data point will correctly predict the class to which the new point 

belongs. There are two approaches for multi-class classification: 

• One-Vs-One 

• One-Vs-All 

The earliest method is the One-Against-All (OVA) which constructs K classifiers, where K is 

the number of classes. The k th classifier is trained by labeling all the examples in the k th class 

as positive and the remainder as negative. The final hypothesis is given by the formula: 

                  fova(x)=arg max i=1,... ,k(f i(x))         (11)     

Another popular paradigm, called One-Against-One (OVO), proceeds by training k(k-1)/2 

binary classifiers corresponding to all the pairs of classes. From the two approaches the One-Vs-

All is more faster and memory efficient and is widely used for multiclass classification problems. 

It requires O(N2) classifiers instead of O(N), but each classifier is (on average) much smaller. If 

the time to build a classifier is super-linear in the number of data points, OVA is a better choice 

for SVM multi-class problems. 

 

                                   

FIG 4.2: SVM – MULTI-CLASS CLASSIFICATION 
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4.2  FEATURE SUBSET EXTRACTION 

Feature selection is a process of selecting subset of features from a large data set. The best 

subset of features contains least number of dimensions that contribute to the accuracy of the 

model by removing irrelevant features. The advantages of feature subset selection are: 

• It creates a less complex dataset which is easily interpretable. 

• It enhances the performance of the classifier. 

• Accuracy is increased. 

• It reduces the execution time. 

• Processing cost is reduced in terms of storage requirements. 

There are various evolutionary techniques available for obtaining the best feature subset such 

as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization 

(ACO), Bat algorithm (BA) etc., the evolutionary algorithm used for obtaining the best feature 

subset in the proposed method is the Binary Bat Algorithm (BBA). 

4.2.1 BINARY BAT ALGORITHM 

BBA is the binary version of the bat algorithm which is used to deal with the feature 

selection problem. The characteristics of bat for finding its prey are being used in binary bat 

algorithm. The BBA will have artificial bats navigating and hunting in binary search spaces by 

changing their positions from “0” to “1” and vice-versa. The BBA was inspired by the 

echolocation behavior of microbats with varying pulse rate of emission and loudness. As the bat 

approaches the prey, the bat’s pulse emission rate increases and the loudness decreases which are 

used for selecting the optimum points in the bat algorithm. Bats emit sonar signals in order to 

locate potential prey.  These signals bounce back if they hit an object. Bats are able to interpret 

the signals to see if the object is large or small and if it is moving toward or away from them. 
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The new velocity and position at time step t are calculated by 

 

�	 � �*	 � ��*�� − �*	��																���� 
 

,	� � ,	�-� � .�	�-� − �/0�
�1�											���� 
 

�	� � �	�-� � ,	�																											�2�� 
 

where �	3	�0,1& is a random vector drawn from a uniform distribution, (45678 is the current 

global best solution which is located after comparing all the solutions among all the bats. As all 

these equations guarantee the exploitability of BA, a new solution for each bat is updated as 

follows: 

9�: � 9;<� � =>�																				�2�� 
where ?	3	�−1,1& is a random number, @8 is the average loudness of all the bats at this time 

step. The two parameters, the loudness @" and the pulse rate �" are updated as follows: 

>	�A� � 	B>	�				; 			D	�A� � D	;�� − ��E�−F��&								�22� 
where G and H are constants. The loudness and the pulse rate are updated when the new 

solutions are improved to guarantee that the bats are moving toward the best solutions. 

To enhance the generalization capability of the analog fault diagnosis method, we proposed 

to construct a big feature set that contains different kinds of features and use the BBA to select 

the optimal feature subset. A binary version of BA is needed for the feature selection problem, as 

each bat moves in the search space towards continuous-valued positions in the BA. In BBA the 

bat's position are represented by binary vectors. V-shaped transfer function is used in the binary 

version of BA. The v-shaped transfer function and the position updating rule are given as 

follows: 

I.JKLMA�1 � 	 N2OPQRMPS	�2OJKLM �N													�2T� 
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�	U�A� �	V��	U� �-�			W�	D��	 < Y�,	U�A���	U� 									D��	 ≥ [�,	U�A� \ 													�2]� 
where '"8̂  and ("8̂  indicate the position and velocity of the i-th bat at iteration t in the k-th 

dimension, and  �("8̂ �-_		is the complement of ("8̂  . The figure shows the pseudo code of BBA. 

Binary bat algorithm 

Initialize the bat population (" (i=1,2,...,n)=rand(0 or 1)and   '" =0 

Define pulse frequency  " at (" 
Initialize pulse rates �"and the loudness @" 

While (t<Maximum number of iterations) 

Adjusting frequency and updating velocities 

Calculate transfer function value using equation (6) 

Update locations/solutions using equations (7) 

if (rand > �") 
Select a solution ((4� among the best solutions 

Change some of the dimensions of position vector with some  of the dimensions of (4  

end if 

Generate a new solution by flying randomly 

if (rand < @" &  �("� < 	 �(4�) 
Accept the new solutions 

Increase �" and reduce @" 
end if 

Rank the bats and find the current best (4  

end while 

 

FIG 4.4: PSEUDO CODE OF BBA 
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4.2.2 FEATURE SUBSET CONSTRUCTION 

The polynomial coefficients and the V-transform coefficients are used to construct the two 

big features set F in the proposed method. 

F = ���, �2, … �& 
 where n is the total number of features in big feature set F. In BBA, the bat's position is 

represented by binary vectors. The bat's positions are binary coded and the binary coded string is 

given to the feature set. A fitness function is used in order to select the best feature subset by 

using the BBA. At each  iteration of the bat's motion, the fitness value is calculated and the value 

that is closer to the fitness value is determined as the best value and is stored. Finally the feature 

subset is created consisting of all the best values. SVM then classifies the feature subset.   

 

4.2.3 FITNESS FUNCTION 

The fitness function is constructed by considering the important factors such as the SVM 

classification accuracy, the number of selected features and the feature cost. The fitness value is 

calculated in order to achieve higher accuracy solution with smaller number of features and with 

reduced total feature cost. The fitness function is given by 

 

�	��

 � 	a� × >� �a2 × c� −c
c� × d�																				�2e� 
 

 where Ac is the classification accuracy, f_ is the weight of the classification accuracy, 

g$ is the total number of all the features, g7 is the number of selected features Ct is the total 

cost of selected features, fh � 1 −f_is the weight of selected features. Parameters f_ and 

fh are set according to the degree of importance between classification accuracy and the 

number of selected features and they provide better tradeoff between fault diagnosis accuracy 

and the total cost. 

 

4.3  KERNEL FUNCTIONS OF SVM 

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best 

known member is the support vector machine (SVM). The general task of pattern analysis is to 

find and study general types of relations in datasets. For many algorithms that solve these tasks, 
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the data in raw representation have to be explicitly transformed into feature vector 

representations via a user-specified feature map. In contrast, kernel methods require only a user-

specified kernel, i.e., a similarity function over pairs of data points in raw representation. Kernel 

functions have been introduced for sequence data, graphs, text, images as well as vectors. 

Algorithms capable of operating with kernels include the kernel perceptron, support vector 

machines (SVM), Gaussian process, Principle component analysis (PCA), canonical correlation 

analysis, ridge regression, spectral clustering, linear adaptive filters and many others. Any linear 

model can be turned into a non-linear model by applying the kernel trick to the model replacing 

its features by a kernel function. 

Support vector machines along with kernel-based algorithms provide good classification 

results than Artificial Neural Networks (ANN’s) for most of the benchmark problems. Kernel 

methods used in SVM were applied to a variety of problems such as classification and 

regression. There are different kernel methods of SVM such as Polykernel, RBF kernel, Puk 

kernel etc., which are introduced to obtain higher classification accuracy by varying the kernel 

parameters. 

There are various kernel functions used with SVMs, but the choice of a particular kernel 

function to map the non-linear input space into a linear feature space depends highly on the 

nature of the data. As the nature of the data is unknown, the finest mapping function must be 

resolved experimentally by applying and validating various kernel functions producing the 

highest generalization performance. Therefore by adjusting the kernel parameters, the best kernel 

function can be determined. 

4.3.1 POLYNOMIAL KERNEL (POLY KERNEL) 

Polynomial kernels are commonly used with support vector machines which represents the 

similarity of vectors in the feature space over polynomials of the original variables. In a POLY 

kernel, K corresponds to an inner product in a feature space based on the mapping  i: 

	j	��, k� � 	 〈m���,m�k�〉																			�2o� 
where x and y are inputs in the vector space. 
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4.3.2 RADIAL BASIS KERNEL (RBF) 

RBF is a popular kernel function used commonly with SVM classification. The RBF kernel 

on two samples × and  ×′, represented as feature vectors in some input space is defined as 

j�×,×′� � ��Ep−q× − ×′q22r2 s																						�2t� 

where q× − ×′qh is the squared Euclidean distance between the two feature vectors and u is 

a free parameter. 

4.3.3 PEARSON VII KERNEL (PUK) 

PUK kernel is a Universal kernel function generally applied to SVM. PUK is very flexible 

and has possibility to change easily by adapting its parameters. Therefore it is possible to use 

Pearson VII kernel function as a general kernel which can replace the other kernel functions. 

 

4.4  SIMULATION RESULTS 

4.4.1 SIMULATION RESULTS FOR THE FEATURE SET 

The set of features obtained from the fault dictionary are split into training and testing 

samples. A set of 1870 samples are obtained from the fault dictionary from which 1470 samples 

are used for training and 400 samples are used for testing. The training and testing samples are 

given as input to the SVM for classification. The SVM classification is performed for the 

Polynomial coefficients and the V-transform coefficients. Using confusion matrix the 

performance measures such as accuracy, error, precision, specificity and sensitivity are 

computed. 

The confusion matrix consists of True Positive (TP), True Negative (TN), False Positive (FP) 

and the False Negative (FN) values from which the performance measures can be computed by 

using the formulas mentioned. 
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4.4.1.1  Accuracy 

Accuracy is the proportion of the correctly identified samples to the total number of samples. 

>��vD��k � 	 �w � �c�w � �c � xw � xc																				��2� 
4.4.1.2 Error 

Error is the deviation from accuracy or correctness. It is the difference between the observed 

or approximately determined value and the true value of a quantity in statistics. 

yDD;D � 	 xw � xc�w � �c � xw � xc																										��T� 
4.4.1.3 Sensitivity 

Sensitivity measures the proportion of positives that are correctly identified. Recall is the 

True Positive Rate also referred to as Sensitivity. 

z�
	�	,	�k � 	 �w�w � xc																										��]� 
 

4.4.1.4 Specificity 

True Negative Rate is also called Specificity which is the same as the FP Rate. Specificity 

measures the proportion of negatives that are correctly identified. 

zE��	�	�	�k � 	 �c�c � xw																									��e� 
4.4.1.5 Precision 

Precision refers to the closeness of two or more measurements to each other. Precision is also 

referred to as the Positive Predictive Value (PPV). 

wD��	
	; � 	 �w�w � xw																											��o� 
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4.4.1.6 F-Measure  

F-measure is a measure of a test’s accuracy and is defines as the weighted harmonic mean of 

the precision and recall of he test. 

x −{��
vD� � 	2 × ED��	
	; × 
�
	�	,	�kED��	
	; � 
�
	�	,	�k 												��t� 
The results obtained after the SVM classification with Polynomial coefficients and V-

transform coefficients are compared and tabulated. 

 

TABLE 4.1: COMPARISON OF RESULTS FOR THE FEATURE SET 

Performance Measures Polynomial Coefficients V-Transform Coefficients 

Accuracy 90.75% 81.75% 

Error 9.25% 18.25% 

Execution time 4.0938 s 3.875 s 

Specificity 0.8664 0.8990 

Sensitivity 0.0185 0.0950 

Precision  0.0625 0.1825 

F-measure 0.0285 0.1249 

 

It is observed that the accuracy has improved for the Polynomial coefficients than the           

V-transform coefficients. By varying the sensitivity factor H of VTC, there might be an increase 

in accuracy of V-transform coefficients. 
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4.4.2 SIMULATION RESULTS FOR THE FEATURE SUBSET 

 

SVM classification is performed for the feature subsets obtained by using the Binary Bat 

algorithm. Using confusion matrix different performance measures are computed for the feature 

subsets and are compared with the feature sets. 

 

TABLE 4.2: COMPARISON OF RESULTS FOR THE FEATURE SUBSETS USING    

BBA 

Performance Measures Polynomial Coefficients V-Transform Coefficients 

Accuracy 93.25% 87.50% 

Error 6.75% 12.50% 

Execution time 2.3906 s 2.0156 s 

Specificity 0.8862 0.9001 

Sensitivity 0.0812 0.1065 

Precision 0.1800 0.1900 

F-measure 0.1119 0.1365 

 

It is observed that by SVM classification the accuracy and the various performance measures 

have improved for the feature subsets obtained by using Binary Bat Algorithm. 

 

4.4.3 SIMULATION RESULTS FOR THE DIFFERENT KERNEL FUNCTIONS 

The set of 1870 samples from the fault dictionary are used from which 1470 are used as 

training samples and the remaining 400 are used as testing samples. SVM classification is 

performed for the two feature sets consisting of Polynomial and V-transform coefficients using 

different kernel functions by varying the kernel parameters. The value of the exponent in the 

Polynomial kernel is chosen to be 1. The value of gamma in the Radial basis function is set as 

0.01 and the values of omega and sigma in the PUK kernel function are chosen as 1. Therefore 

by varying the complexity parameter C in the ranges between 10
-6 

to 10
6  

and choosing the values 

for the insensitive loss function ?  as 0.1, 0.001 and 10
-12

, the accuracies for the kernel functions 
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are measured. Confusion matrix is used from which different performance measures between the 

kernel functions are compared. The following tables show the improved results for the varied 

parameters. 

TABLE 4.3: SIMULATION RESULTS FOR THE POLYNOMIAL KERNEL 

FUNCTION WITH = � �. � 

Performance  

Measures 

= �	0.1 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
  12.5% 12.5% 82.5%   84.25% 93% 91.25% 

Time 0.01s 0.11s 0.02s 0.001s 0.01s 0.01s 

Sensitivity 0.125 0.125 0.825 0.843 0.93 0.913 

Specificity 0.125 0.125 0.025 0.023 0.01 0.013 

Precision 0.016 0.016 0.844 0.881 0.94 0.928 

F-measure 0.028 0.028 0.816 0.834 0.93 0.911 

 

TABLE 4.4: SIMULATION RESULTS FOR THE POLYNOMIAL KERNEL FUNCTION 

WITH = � �. ��� 

Performance  

Measures 

= �	0.001 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 29% 31% 79.5% 83.25% 88% 93.25% 

Time 0.01 s 0.01 s 0.01 s 0.01 s 0.02 s 0.02 s 

Sensitivity 0.290 0.310 0.795 0.833 0.880 0.933 

Specificity 0.101 0.099 0.029 0.024 0.017 0.010 

Precision 0.196 0.235 0.868 0.879 0.915 0.946 

F-measure 0.213 0.247 0.787 0.824 0.871 0.931 
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TABLE 4.5: SIMULATION RESULTS FOR THE POLYNOMIAL KERNEL 

FUNCTION WITH = � ��-�2 

Performance 

Measures 

= �	10
-12 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 29% 31% 59% 84.5% 95.5% 93.75% 

Time 0.05s 0.01s 0.01s 0.02s 0.02s 0.01s 

Sensitivity 0.290 0.310 0.59 0.845 0.955 0.938 

Specificity 0.101 0.099 0.059 0.022 0.006 0.009 

Precision 0.196 0.235 0.597 0.891 0.967 0.951 

F-measure 0.213 0.247 0.558 0.835 0.953 0.936 

 

 

TABLE 4.6: SIMULATION RESULTS FOR THE RBF KERNEL FUNCTION WITH 

= � �. � 

Performance 

Measures 

= �	0.1
 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 12.5% 12.5% 41.25% 39% 82.75% 91.75% 

Time 0.01s 0.02s 0.39s 0.38s 0.09s 0.06s 

Sensitivity 0.125 0.125 0.413 0.39 0.828 0.918 

Specificity 0.125 0.125 0.084 0.087 0.025 0.012 

Precision 0.016 0.016 0.519 0.440 0.857 0.934 

F-measure 0.028 0.028 0.406 0.333 0.816 0.916 
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TABLE 4.7: SIMULATION RESULTS FOR THE RBF KERNEL FUNCTION WITH 

= � �. ��� 

Performance 

Measures 

= �	0.001
 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 29% 31% 49% 60.25% 91.75% 92% 

Time 0.45 s 0.45 s 0.39 s 0.38 s 0.13 s 0.09 s 

Sensitivity 0.290 0.310 0.490 0.603 0.918 0.920 

Specificity 0.101 0.099 0.073 0.057 0.012 0.011 

Precision 0.196 0.235 0.552 0.600 0.941 0.937 

F-measure 0.213 0.247 0.453 0.565 0.911 0.919 

 

 

 

TABLE 4.8: SIMULATION RESULTS FOR THE RBF KERNEL FUNCTION WITH 

= � ��-�2 

Performance 

Measures 

= �	10
-12

 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 29% 31% 36.5% 38.75% 92.25% 93.25% 

Time 0.63s 0.44s 0.39s 0.38s 0.06s 0.06s 

Sensitivity 0.290 0.310 0.365 0.388 0.923 0.933 

Specificity 0.101 0.099 0.091 0.088 0.011 0.010 

Precision 0.196 0.235 0.336 0.322 0.946 0.936 

F-measure 0.213 0.247 0.319 0.327 0.916 0.932 
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TABLE 4.9: SIMULATION RESULTS FOR HE PUK KERNEL FUNCTION WITH 

= � �. � 

Performance 

Measures 

= �	0.1
 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 12.5% 12.5% 96.25% 96.75% 98.5% 97.5% 

Time 0.03s 0.02s 0.23s 0.14s 0.13s 0.11s 

Sensitivity 0.125 0.125 0.963 0.968 0.985 0.975 

Specificity 0.125 0.125 0.005 0.005 0 0.003 

Precision 0.016 0.016 0.966 0.973 1 0.982 

F-measure 0.028 0.028 0.962 0.967 0.992 0.977 

 

 

 

TABLE 4.10: SIMULATION RESULTS FOR THE PUK KERNEL FUNCTION 

WITH = � �. ��� 

Performance 

Measures 

= �	0.001
 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 41.5% 48.5% 92.75% 96% 99.25% 98% 

Time 0.59 s 0.61 s 0.2 s 0.14 s 0.16 s 0.14 s 

Sensitivity 0.415 0.485 0.928 0.960 0.993 0.980 

Specificity 0.084 0.074 0.010 0.006 0.001 0.001 

Precision 0.328 0.358 0.952 0.967 0.993 0.991 

F-measure 0.328 0.380 0.923 0.959 0.992 0.984 
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TABLE 4.11: SIMULATION RESULTS FOR THE PUK KERNEL FUNCTION WITH 

= � ��-�2 

Performance 

Measures 

= �	10
-12 

C = 0.001 C = 1 C =10
3 

PC VC PC VC PC VC 

Accuracy
 41.5% 48.5% 93% 97% 100% 97.75% 

Time 1s 0.59s 0.13s 0.08s 0.05s 0.03s 

Sensitivity 0.415 0.485 0.93 0.97 1 0.978 

Specificity 0.084 0.074 0.010 0.004 0 0.003 

Precision 0.328 0.358 0.953 0.974 1 0.981 

F-measure 0.328 0.38 0.925 0.969 1 0.977 

 

The following figures show the variations in accuracies obtained for the different kernel 

functions for the values of C equal to 0.001, 1 and 1000 and for the ?	values equal to 0.1, 0.001 

and 10
-12

 between the two feature sets consisting of Polynomial coefficients and the V-transform 

coefficients. 

 

FIG 4.5: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 0.001 AND = � �. � 
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FIG 4.6: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 1 AND = � �. � 

 

 

FIG 4.7: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 1000 AND = � �. � 
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FIG 4.8: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 0.001 AND = � �. ��� 

 

 

 

 

FIG 4.9: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 1 AND = � �. ��� 
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FIG 4.10: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 10
3
 AND = � �. ��� 

 

 

 

FIG 4.11: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 0.001 AND = � ��-�2 
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FIG 4.12: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 1 AND = � ��-�2 

 

 

 

FIG 4.13: ACCURACY PLOT FOR POLYNOMIAL VS V-TRANSFORM 

COEFFICIENTS WITH C = 10
3
 AND = � ��-�2 
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It is observed that the SVM based on Polynomial kernel, RBF kernel and PUK kernel shows 

the similar performance on mapping the relation between the input and the output data. A 

comparison of simulation results for SVM classification based on POLY, RBF and PUK kernels 

show that the accuracy increases for both the Polynomial coefficients and the V-transform 

coefficients by choosing the complexity parameter value as 10
3 

and the insensitive loss function ε 

value as 10
-12

. This shows that for a maximum value of C and a minimum value of 	ε, the support 

vectors obtained will be maximum. Also from the comparison, PUK kernel produces higher 

classification accuracy compared to the Polynomial kernel and RBF kernel functions.  
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CHAPTER 5 

HIERARCHICAL SUPPORT VECTOR MACHINES 

5.1  OVERVIEW 

A Hierarchical Support Vector Machine (HSVM) is used for multi-class classification 

problems. HSVM is a tree-structured network of support vector machine (SVM). HSVM is a 

decision tree with a SVM at each node. At the root node of the decision tree, all classes will be 

available for prediction. The number of classes available for prediction keeps decreasing as the 

tree gets descended. 

Before learning the SVM classifier at a node, the classes available at that node are partitioned 

into two using a max-cut unsupervised decomposition. The classification model to distinguish 

between the two class partitions is then learnt using the bipartite decomposition as two-class 

input to train the SVM at that node. 

During classification, one traverses the decision tree from the root and keeps applying the 

SVM classifier at each visited node until one reaches a leaf node indicating the output class. It 

has been shown that HSVM uses distance measures to exploit the natural class groupings, the 

hierarchical structure results in a fast and intuitive SVM training process that requires little 

running and gives high classification accuracy and good generalization. 

The speed and accuracy of HSVM depends on its tree structure. HSVM overcomes the 

disadvantages of one-against-one and one-against-all classifiers by using a binary hierarchical 

classification structure. 
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FIG 5.1: AN EXAMPLE OF HIERARCHICAL CLASSIFICATION STRUCTURE 

The structure makes a coarse separation between classes at the upper levels and finer 

decisions are made at the lower levels. At the top node, the original k classes are divided into two 

smaller groups of classes called macro-classes. This procedure is repeated in subsequent levels, 

until there is only one class in the final sub-group. This method decomposes the original problem 

into k-1 binary sub-problems. In testing, a hard decision is made at each node, i.e. the test input 

is always assigned to one of the macro-classes at each node. If both outputs are smaller than 

some threshold, the test input is rejected as a false class. Thus only log2K classifiers are required 

to traverse a path from top to bottom. 

The drawback of a hard-decision hierarchical classifier is that if a miss or misclassification 

error occurs at some internal node, it cannot be corrected in the subsequent levels, since its 

correct path will not be visited. Therefore a soft-decision hierarchical classification strategy is 

normally used to address this problem. 

5.2  HIERARCHICAL CLASSIFIER DESIGN 

The hierarchical clustering (i.e. the macro-class selection) at each node in the hierarchy 

should not be done arbitrarily or by intuition. There are two different design approaches for the 

macro-class selection at each node. 

 



 

48 

 

They are: 

• Agglomerative (bottom-up) approach 

• Divisive (top-down) approach 

Of the two approaches, top-down is normally used for hierarchical classifiers, as bottom-up 

design does not provide a good separation of classes at each node. 

5.3  CLUSTERING RULES 

In HSVM, a set of classes is generally separated into two macro-classes at each node, where 

each class is present in only one of the two macro-classes. There are three general clustering 

rules in HSVM.  

 

 

 

FIG 5.2: ILLUSTRATION OF THE THREE CLUSTERING RULES 

In fig (a), each class always presents in only one macro-class in each level. This method 

decomposes the original k class problem into k-1 binary sub-class problems. 

In fig (b), each class may be entirely present in more than one macro-class in each level. This 

method results in overlapping macro-class pairs at many nodes in a hierarchy. 

In fig (c), each class may be divided into several macro-classes in each level (i.e) class B 

splits into B1 and B2. This method provides better clustering and classification results, but it will 

increase the width and depth of the tree (i.e) number of levels. 

From the three clustering rules, the rule in fig (a) is generally chosen, as it involves only k-1 

classifiers for k class problem. 
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5.4  SIMULATION RESULTS 

Hierarchical SVM classification is performed for the two feature sets consisting of the 

polynomial coefficients and the v-transform coefficients. HSVM splits the training samples into 

training and the testing samples. Out of 1870 samples from the fault dictionary, 1470 samples are 

selected as training samples and the remaining 400 samples are chosen as testing samples. From 

the 1470 training samples, a maximum of 100 rows of samples are chosen for each class, thereby 

choosing 800 rows of samples for eight classes.  

From 800 samples, 75% of the samples are chosen as training samples and the remaining    

25% of the samples are chosen as testing samples. HSVM classification is then performed for the 

two feature sets consisting of 800 rows of samples. 

 

TABLE 5.1: HSVM CLASSIFICATION 

Feature set Training Accuracy Testing Accuracy 

Polynomial coefficients 99.75% 99.5% 

V-transform coefficients 99.83% 100% 
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CHAPTER 6 

SUMMARY 

In the proposed work, analog fault diagnosis in filter circuit is performed based on the 

Polynomial coefficients and the V-transform coefficients. Two feature sets are extracted from the 

three op-amp biquad filter used as the circuit under test. Support Vector Machine (SVM) 

classification is performed for the two feature sets. By using Binary Bat Algorithm, feature 

subset selection is obtained for the two feature sets. SVM classification is performed for the 

feature subset and the results are compared with the feature set. Three kernel functions such as 

the Polynomial kernel, Radial Basis kernel and the Pearson VII kernel functions of SVM are then 

utilized. Choosing the default values of the kernel functions such as 1 for exponent value in 

Polykernel, 1 for omega and sigma values in PUK kernels and choosing 0.01 for gamma in RBF 

kernels and by varying the kernel parameters of SVM such as c and epsilon, the classification 

accuracy is increased for the feature sets. Different performance measures are computed using 

the confusion matrix and are compared between the feature sets, feature subsets and for the 

feature sets using the different kernel functions. Hierarchical SVM classification is then 

performed for the feature sets to attain better classification accuracy. 

The table shows the comparison of accuracies obtained between the feature sets and the 

subsets. 

TABLE 6.1: ACCURACY COMPARISON BETWEEN THE FEATURE SETS AND 

THE SUBSETS USING BBA 

Features Feature Set Feature subset using BBA 

Polynomial coefficients 90.75% 93.25% 

V-transform coefficients 81.75% 87.50% 

 

It is noticed that the accuracy has increased for the feature subsets obtained by using BBA 

than the feature sets. 
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By varying the kernel parameters c and epsilon of SVM for the varied kernel functions, it is 

observed that the accuracy increases for all the kernel functions by choosing the value of c = 10
3
 

and � = 10
-12

. The table shows the comparison of results between the different kernel functions. 

TABLE 6.2: ACCURACY COMPARISON BETWEEN THE KERNEL FUNCTIONS 

Features POLY kernel RBF kernel PUK kernel 

Polynomial coefficients 95.5% 92.25% 100% 

V-transform Coefficients 93.75% 93.25% 97.75% 

 

From the comparison, it is examined that the accuracy has increased for the Pearson VII 

kernel function.  

The increased classification accuracy obtained by using Hierarchical SVM for the feature 

sets with 800 rows of training and testing samples is shown in the table. 

TABLE 6.3: TRAINING AND TESTING ACCURACY OF HSVM 

Feature set Training Accuracy Testing Accuracy 

Polynomial coefficients 99.75% 99.5% 

V-transform coefficients 99.83% 100% 

 

It is observed that the accuracy increases for the training and the testing samples of V-

transform coefficients by using HSVM. 
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CHAPTER 7 

CONCLUSION 

Two analog circuit test schemes are proposed for high resolution fault detection. The first 

scheme uses Polynomial coefficients of the circuit's frequency response for fault detection. The 

second scheme uses a transformation on the polynomial coefficients (i.e.) V-Transform 

coefficients for fault detection. An experimental validation of the test scheme on the biquad filter 

and based on the SVM classification shows that polynomial coefficient provides better accuracy 

than the V-Transform coefficient. By changing the sensitivity factor of VTC, there might be an 

increase in accuracy of V-Transform coefficient. Feature subset selection is obtained using an 

evolutionary algorithm known as the Binary Bat Algorithm (BBA). SVM classification 

performed for the feature subset yields better classification results than that obtained for the 

feature sets. By varying the kernel parameters C and epsilon for the three kernel functions such 

as Polykernel, RBF kernel and the PUK kernel functions, the classification accuracy for the 

feature sets are increased. It is also observed that the PUK kernel function yields better accuracy 

compared to the other two kernel functions. The classification accuracy is further increased by 

using the Hierarchical SVM for the feature sets containing Polynomial and V-transform 

coefficients. 
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