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ABSTRACT 

    System on Chip (SOC) having both digital and analog circuits has become 

increasingly prevalent in integrated circuit manufacturing industry. Diagnosis of 

analog faults are indeed challenging as well as interesting and motivating behind 

the project work. With better testing methodology, large analog circuit design is 

also feasible for low cost. This report proposes a new transfer function based 

component level fault diagnosis methodology for analog circuits using artificial 

intelligence technique. Neural Networks are one of analytical tools that can be 

used for fault classification. Architecture selection for a neural network depends 

on various factors such as selection of the optimal number of hidden nodes, 

selection of the relevant input variables and selection of optimal connection 

weights. This report presents hybridization model that combines Genetic 

Algorithm (GA) and Back Propagation network (BPN) where GA is used to 

initialize and optimize the connection weights of BPN. State variable filter and 

Sallen–Key Band pass filter are the circuits used as the circuit under test. Gain, 

Quality factor and Frequency are the parameters used to spot the faults in the 

filter circuits. The fault dictionary is generated with fault and fault free 

conditions. With the faulty input the neural network is trained and detects the 

fault. The results prove that, GA-optimized BPN approach has outperformed the 

BPN approach without GA optimization. 
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CHAPTER 1 

INTRODUCTION 

    Electronic tests are system dependent and are classified as digital, analog and mixed 

signal. Current methodologies for the testing of digital circuits are well developed. Some 

digital testing are D-Algorithm, Level sensitive scan design [LSSD], Build-in logic block 

observer [BILBO]. Automatic testing tools software also available for digital which 

automatically generate a test analysis for digital circuits. Some automatic testing software 

for digital are HP quick test professional, selenium, IBM Rational functional tester, silk 

test, win runner, WATIR, etc. 

    By contrast, methodologies for the testing of analog circuits remain relatively under 

developed due to complex nature of analog signals [1]. Despite the translation of many 

analog electronic functions into their digital equivalents, there still exists a need to 

incorporate analog sections on many chips. Therefore, the importance of analog testing 

cannot be underrated and there is a requirement to develop strategy, which will allow the 

analog and digital parts of the circuit to be tested simultaneously. 

    Analog and mixed-signal (AMS) integrated Circuits (IC) are gaining popularity in 

applications such as: 

 Consumer electronics 

 Biomedical equipments 

 Wireless communication 

 Networking 

 Multimedia 

 Automotive process control 

 Real-time control system 

    With such wide applications, AMS ICs will constitute the bulk of future electronic 

devices, making it imperative to research AMS testing. New analog testing and fault 

diagnosis methodologies need to be compatible with existing digital test methods and be 

practical in compromising and test overhead. 

 

1.1. FAULT DIAGNOSIS IN ANALOG CIRCUITS 

    Defects of analog circuits during the manufacturing process are caused by 

environmental defects and process variation or technological process inappropriateness. 
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There are certain classes of faults that occur and develop at slower rate in a circuit which is 

called as soft faults or parametric faults and these soft faults still continue to operate at 

poor effectiveness levels [2]. They do not change the circuit topology but cause the circuit 

to operate outside its allowable range of operation. Soft faults are due to distinction of one 

or more circuit component values outside the tolerance range. Performance of the circuit 

degraded when the tolerance range is exceeded. Soft fault recognition and identification of 

electronic circuits has been an active research topic in modern years. Fault diagnosis is 

often considered to be a two-stage process: fault detection and fault identification [3]. The 

Simulation Before Test approach (SBT) and the Simulation After Test approach (SAT) are 

two major approaches for fault diagnosis. For the SAT approach, fault analysis is obtained 

by analyzing the circuit components from the measured responses of the CUT [4]. For the 

SBT approach, compares the circuit responses associated with the predefined fault values 

in the dictionary to locate the faults. This SBT approach ensures a short test time even for 

complex circuits. 

     Diagnosis of the faults in analog circuits using the neural networks and the genetic 

algorithm were developed based on phenomena found in nature. Both of them have been 

widely used to solve a variety of computationally intensive problems. When combined 

they yield advantages over many conventional approaches. The purpose of this work is to 

apply a genetic algorithm to determine the optimal connection weights of an arbitrary 

neural network. 

 

1.2. ARTIFICIAL NEURAL NETWORK 

    The concept of an artificial neural network (ANN) is based on the human brain. Human 

brain is made up of billions or millions of neurons which are interconnected by synapses 

[5]. Similarly, an artificial neural network is composed of many computational units which 

are also called neurons. The interconnections of the neurons dictate the characteristics of 

both a neural network and a brain. ANN has three major advantages: the ability to learn, 

parallelism and the ability to generalize. 

    The human brain is highly parallel in nature since each neuron may communicate with 

several others concurrently. The parallelism is perfect for complicated and complex tasks 

such as data pattern classification, which would be much more complicated to realize in a 

serial fashion. Neural networks are arranged in a similar fashion, and are therefore ideal for 

pattern classification and similar applications which can exploit parallelism. 
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    Another major advantage of neural networks is their ability to learn by training. Training 

consists of supplying the neural network with many training samples, each of which 

consists of a set of inputs and the desired set of outputs. The back-propagation algorithm is 

a popular method used to train neural networks. Through an iterative learning process the 

synaptic weights are modified and eventually the neural network is trained to produce 

outputs close to those desired. 

    Neural networks can be trained to solve different types of application problems, such as 

pattern classification, function approximation, filtering, controlling, etc. Since only training 

samples are mandatory, the real relationship connecting the inputs and outputs does not 

require to be known. This is a benefit for many applications, particularly when the 

input/output relationship is extremely complex. Moreover, neural networks are capable to 

simplify and generate the exact results for inputs which are not found in the training 

sample set. 

    Before a neural network can be trained, topology (how they are connected), its size (how 

many neurons), learning rate (the speed of the back-propagation algorithm) and several 

other parameters have to be selected. Normally, more complicated functions require for 

larger neural networks consisting of more neurons and more synapses than those required 

for simpler functions. Major struggle can happen if the parameters are not selected 

correctly: over fitting and unacceptable error. 

    If a neural network is too small for a given application, it may never be able to learn the 

desired function and thus produce an unacceptably high error. An unacceptable error may 

also occur if the learning rate of the training algorithm is selected incorrectly. 

    Finally, if a neural network is too large for a particular problem, it may learn the training 

samples too fine and not be able to simplify to inputs outside the training data set. 

Selecting the suitable neural network parameters is more of an art than a science and 

usually turns into a trial-and-error. 

 

1.3. GENETIC ALGORITHM 

    The genetic algorithm (GA) also has its roots in nature, and is based on Charles 

Darwin’s theory of natural selection [6]. In Darwin’s theory, individuals in a population of 

reproductive organisms inherit traits from their parents during each generation. Each 

individual’s genome represents one’s phenotype (i.e., the physical characteristics), and is 

made up of many genes (the actual genetic makeup). Over time, desirable traits become 



4 
 

more common than undesirable ones since individuals with desirable traits are more likely 

to reproduce or replicate. The GA follows natural selection to a certain extent closely. 

    In the genetic algorithm, each gene is usually represented as a binary number which is 

encoded to represent several phenotypes. A population of individuals is originally created 

with all of their genotypes randomly selected, with each individual representing a potential 

solution to the problem. Once the initial population is created, it is sorted by fitness. The 

algorithm designer can choose how the fitness value is calculated, with a higher fitness 

value representing a better solution. During each generation, the parents (two individuals) 

are randomly selected to reproduce, with the more fit individuals getting selected. The 

chromosomes of the two parents are combined to create a new offspring in a process 

known as crossover. 

    During crossover, the offspring’s genotype is created by combining the genes of its 

parents in a random mode. After crossover, some of the bits in the offspring’s genes may 

be flipped at random in the process of mutation, which also occurs in natural world. At 

last, the offspring’s fitness value is evaluated. If the offspring’s fitness is better than the 

worst parent (individual) currently in the population, then the new offspring replaces that 

individual. The population repeatedly improves its overall fitness for the duration of each 

generation until finally the peak individual is optimized to an acceptable level. 

    With today’s extremely fast computer processors, running genetic algorithms for 

hundreds of generations is possible in a reasonable amount of time (on the order of 

minutes, hours, or days). 

 

1.4. OVERVIEW OF THE REPORT 

    This report is organized as follows. Chapter 2 discusses about the literature survey. 

Detailed descriptions of the fault diagnosis methods are found in chapter 3. Chapter 4 

outlines some necessary background information including a description of the neural 

networks and the genetic algorithm. Chapter 5 briefly describe about the circuit under test 

(CUT). The proposed BP-NN model and hybrid GA-BP model is discussed in chapter 6. 

Chapter 7 shows the simulation results of the project. The final conclusions and future work 

are discussed in chapter 8. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1. Analog Circuits Fault Detection Using Cross-Entropy Approach (27 

Jan 2013). 

    This paper presents a novel method that can detect component faults in analog 

circuits. Because the probability density function (PDF) of output voltage (current) is 

sensitive to the components of the circuit, the cross-entropy between the good circuit 

and the bad circuit is employed to detect component faults in analog circuits based on 

the autoregressive (AR) model [7]. In the proposed approach, the value of each 

component of the circuit under test (CUT) is varied within its tolerance limit using 

Monte Carlo simulation. The minimal and maximal bounds of the cross-entropy are 

found for fault-free circuit. While testing, the cross-entropy is obtained. If cross-entropy 

lies outside the tolerance limit then the CUT is declared faulty. The effectiveness of the 

proposed method is demonstrated via the second order Sallen-key band pass filter 

circuit and continuous-time low pass state-variable filter circuit. 

 

2.2. Diagnosis of Incipient Faults in Weak Nonlinear Analog Circuits (13 

April 2013). 

    Aiming at the problem to diagnose incipient faults in weak nonlinear analog circuits, 

an approach is presented in this paper. The approach calculates the fractional Volterra 

correlation functions beforehand [8]. The next step is to use the fractional Volterra 

correlation functions and different angle parameters of the fractional wavelet packet 

transform to extract the fault signatures. Meanwhile, the computational complexity is 

analyzed. Then the variables of the fault signatures are constructed, which are used to 

form the observation sequences of the hidden Markov model (HMM). HMM is used to 

accomplish the fault diagnosis. The simulations show that the presented method can 

significantly improve the incipient fault diagnosis capability. 

 

2.3. Diagnosis of Local Spot Defects in Analog Circuits (October 2012). 

    In this paper a method for diagnosing local spot defects in analog circuits. The 

method aims to identify a subset of defects that are likely to have occurred and suggests 
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giving them priority in a classical failure analysis [9]. For this purpose, the method 

relies on a combination of multiclass classifiers that are trained using data from fault 

simulation. The method is demonstrated on an industrial large-scale case study. The 

device under consideration is a controller area network transceiver used in automobile 

systems. This device demands high-quality control due to the reliability requirements of 

the application wherein it is deployed. The diagnosis problem is discussed by taking 

into consideration the realities of this case study. 

 

2.4. A Neuro-Fuzzy Inference System through Integration of Fuzzy Logic 

and Extreme Learning Machines (October 2007). 

    This paper investigates the feasibility of applying a relatively novel neural network 

technique i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi–

Sugeno–Kang fuzzy inference system [10]. The proposed method is an improved 

version of the regular neuro-fuzzy Takagi–Sugeno–Kang fuzzy inference system. For 

the proposed method, first, the data that are processed are grouped by the k-means 

clustering method. The membership of arbitrary input for each fuzzy rule is then derived 

through an ELM, followed by a normalization method. At the same time, the 

consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the 

approximate prediction value is determined by a weight computation scheme. For the 

ELM-based Takagi–Sugeno–Kang fuzzy inference system, two extensions are also 

proposed to improve its accuracy. The proposed methods can avoid the curse of 

dimensionality that is encountered in back-propagation and hybrid adaptive neuro-fuzzy 

inference system (ANFIS) methods. 

  

2.5. A New Analog Circuit Fault Diagnosis Method Based on Improved 

Mahalanobis Distance (21 December 2012). 

    This paper presents a new analog circuit fault diagnosis method based on improved 

Mahalanobis Distance. The Mahalanobis Distance is improved according to the 

characteristics of analog circuit, and then introduced into analog circuit fault detection 

[11]. First, the circuit testability was analyzed, and the relation of ambiguity groups was 

determined on the basis of the test matrix, and then the separable potential faulty 

components under the assumption of single fault were also determined. Finally, the 
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suspicious components could be classified using the improved Mahalanobis Distance 

according to the feature values of the test points, so as to reduce the number of classes 

and enhance the speed when classifying faults.  

2.6. Soft Fault Classification of Analog Circuits Using Network Parameters 

and Neural Networks (11 April 2013). 

    A new method to identify component faults in analog circuits is proposed using 

network parameters like driving point impedance, transfer impedance, voltage gain and 

current gain [12]. Using Monte-Carlo simulation each component of the circuit is varied 

within its tolerance limit and samples of each network parameter are found for fault free 

circuit. Similarly all possible single faults are introduced and the corresponding samples 

of network parameters are found. Fault classification is done through neural network. 

The proposed method is validated through second order Sallen-key band pass filter. 

Numerical results are presented to clarify the proposed method and prove its efficiency. 

 

2.7. Analog Circuit Fault Detection Using Location of Poles (11 August 

2011). 

    A method for detection of parametric faults occurring in linear analog circuits based 

on location of poles of the Circuit Under Test (CUT) is proposed. In the proposed 

method, the value of each component of the CUT is varied within its tolerance limit 

using monte-carlo simulation [13]. The upper and lower bounds of magnitude, phase 

angle, real part and imaginary part of all poles of the CUT are obtained. While testing, 

the locations of poles are obtained. If any one or more of the poles lies outside the 

tolerance limit then the CUT is declared faulty. The effectiveness of the proposed 

method is validated through two benchmark circuits like second order sallen-key band 

pass filter and fourth order leapfrog low pass filter. 

 

2.8. Parametric Fault Testing of Non-Linear Analog Circuits Based on 

Polynomial and V-Transform Coefficients (28 August 2012). 

   This paper is an exposition of recent advances made in polynomial coefficient and V-

transform coefficient based testing of parametric faults in linear and non-linear analog 

circuits. V-transform is a nonlinear transform that increases the sensitivity of 

polynomial coefficients with respect to circuit component variations by three to five 
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times [14]. In addition, it makes the original polynomial coefficients monotonic. Using 

simulation, the proposed test method is shown to uncover most parametric faults in the 

range of 5–15 % on a low noise amplifier (LNA) and an elliptic filter benchmark. 

Diagnosis of parametric faults clearly illustrates the effect of enhanced sensitivity 

through V-transform. Finally, we report an experimental validation of the polynomial 

coefficient based test scheme, with and without V-transform, using the National 

Instruments’ ELVIS bench-top test-bed. The result demonstrates the benefit of V-

transform. 

 

2.9. An Approximate Calculation of Ratio of Normal Variables and Its 

Application in Analog Circuit Fault Diagnosis (14 June 2013). 

    The challenging tolerance problem in fault diagnosis of analog circuit remains 

unsolved. To diagnose the soft-fault with tolerance effectively, a novel diagnosis 

approach based on the ratio of normal variables and the slope fault model was proposed. 

Firstly, the approximate distribution function of the ratio of normal variables was 

deduced and the basic approximate conditions were given to improve the approximation 

accuracy [15]. The conditional monotonous and continuous mapping between the ratio 

of normal variables and the standard normal variable was proved. Based on the 

aforementioned proved mapping, the estimation formulas of the range of the ratio of 

normal variables were deduced. Then, the principle of the slope fault model for linear 

analog circuit was presented. After the contrastive analysis of the typical methods of 

handling tolerance based on the slope fault model, the ratio of normal variables and the 

slope fault model were combined and a test-nodes selection algorithm based on the 

basic approximate conditions of ratio of normal variables was designed, by which the 

computation can be reduced greatly. 

  

2.10. Fault Diagnosis of Analog Circuits Using Systematic Tests Based on 

Data Fusion (19 September 2012). 

    An analog fault diagnosis approach using a systematic step-by-step test is proposed 

for fault detection and location in analog circuits with component tolerance and limited 

accessible node [16]. First, by considering soft faults and component tolerance, 

statistics-based fault detection criteria are established to determine whether a circuit is 
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faulty by measuring accessible node voltages. For a faulty circuit, fuzzy fault 

verification is performed using the accessible node voltages. Furthermore, using an 

approximation technique, the most likely faulty elements are identified with a limited 

number of circuit gain measurements at selected frequencies. Finally, employing the D-

S evidence theory, synthetic decision is made to locate faults according to the results of 

fault verification and estimation. Unlike other methods which use a single diagnosis 

method or a particular type of measurement information, the proposed approach makes 

use of the redundancy of different types of measurement information and the combined 

use of different diagnosis methods so as to improve diagnosis accuracy. 

 

2.11. Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain 

Features (29 May 2013). 

    Most researchers use wavelet transforms to extract features from a time domain 

transient response from analog circuits to train classifiers such as neural networks 

(NNs) and support vector machines (SVMs) for analog circuit diagnostics [17]. In this 

paper, we have proposed some new feature selection methods from a time-domain 

transient response, and compared the diagnostic results based on a least squares SVM 

(LS-SVM) using different time-domain feature vectors. First, we have improved two 

traditional feature selection methods: (a) using the mean and standard deviation in 

wavelet transforms features, and (b) using the mean, standard deviation, skewness, 

kurtosis, and entropy in statistical property features. Then, a conventional time-domain 

feature vector based on the impulse response properties of a control system has been 

proposed. The simulation experiments for a leapfrog filter and a nonlinear rectifier show 

that: (i) the two improved methods have better accuracy than the traditional methods; 

(ii) the proposed conventional time-domain feature vector is effective in the diagnostics 

of analog circuits—over 99 % for both of the two example circuits; (iii) the proposed 

diagnostic method can diagnose soft faults, hard faults, and multi-faults, regardless of 

component tolerances and nonlinearity effects. 
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CHAPTER 3 

FAULT DIAGNOSIS METHODOLOGY 

3.1. TESTING OF ANALOG 

    Testing techniques are available in past three decades for digital circuitry. The main 

reason for this is the ease of formulating the test generation as a mathematical problem 

due to the discrete signal and time values [18]. The distinction between what does and 

what does not work is crisp and clear for digital circuitry. 

    For analog circuitry, generation of optimal test signals based on design topology is 

still not fully automated. As opposed to the digital approach based on the gate-level net-

list, analog testing still relies mainly on a black-box approach. A similar test generation 

solution for analog testing became necessary with the increasing integration of analog 

and digital functionality on one chip. The analog test community has also been aiming 

at a solution comparable to that in digital, but the analog version of the problem is not 

solvable by similar analytical techniques. The main reasons for this are: 

 In Digital values (0 & 1)’s but in analog infinite number of signal values are possible. 

 The time variation properties of analog signals bring an extra dimension to the problem. 

 One-to-one link is possible in Digital but not possible in analog circuits. Given 

particular topology, there is no general way of determining which part of the 

functionality is of interest and what the related performance limits. 

 Propagation of  fault effect to the output is not simple as digital because of two reason: 

 Fault cannot be modeled in one direction as digital. Fault effect propagates in all 

directions and calculation of propagation pattern becomes more complex. 

 In analog, the information that fault present in certain nodes does not readily 

comprise signal value information for that node, making time consuming 

calculations of signal values are necessary. 

    The obstacles presented above have prevented analog test generation from being 

applied in practice. Unfortunately, a satisfying solution to the analog problem has not 

been found to this day. 

    The alternative of solving the analog test generation is based on two methods 

1. Specification based testing – checking whether the specification are met. 

2. Functional testing – checking the functioning of the circuit with a standard input. 



11 
 

3.2. TEST LEVELS 

Test can be performed at several levels: 

1. Wafer level 

2. Package level 

3. Module level 

4. System level 

5. Field level 

Test can be classified into three methods, 

1. Fault detection  

2. Fault location 

3. fault prediction 

 

3.3. APPROACH 

There are different approaches for fault diagnosis methodology. 

1. Fault verification approach 

2. Parameter identification approach 

3. Fault dictionary approach 

4. Approximation approach 

     The current (fault dictionary) approach is to detect manufacturing faults in analog 

electronic circuits using functional tester. 

 

3.4. FAULT DIAGNOSIS METHOD 

Analog fault diagnosis methods are generally classified into two methods 

1. Simulation-after-test (SAT) 

2. Simulation-before-test (SBT) 

3.4.1. Simulation-After-Test (SAT) 

    SAT methods focus on parameter identification and fault verification and they are 

very efficient for soft fault diagnosis because they are based on linear network models. 

a) Parameter Identification 

    Parameter identification technique is to formulate sufficient number of independent 

equations from the measurements to determine all component values. A component 
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value that lies outside the design tolerance range specification is identified as a faulty 

component. Saeks et al [19] proposed a method to determine parameter values using 

voltage and current measurement when a single excitation is applied. If multiple current 

excitation are applied to a network and voltage measurements are used to identify 

network parameters is proposed by Biernacki and Bandler [20]. Above methods is deal 

with DC domain or single frequency excitation. The multi-frequency techniques include 

research on the test point selection and test frequency selection. Their measure provides 

more information on the degree of difficulties about the testability. The time domain 

approach includes formulating testable equations, which are solvable from time domain 

measurements. 

b) Fault Verification 

    The fault verification methods use almost the same equations as are used in the 

parameter identification approaches, except that in the fault verification approaches, 

circuit components are partitioned into two classes, a fault-free class (class1) and faulty 

class (class2). It is assumed that all components in class1 are fault free and all faults are 

localised in class2. Using the measurement data and nominal characteristics of all 

circuit components, test equations are formulated and expressed as functions of 

deviations of class2 components. Test equations can be satisfied only if all faults are 

indeed localised in class2. 

    No matter what kind of testability measures are used, whether it is based on 

frequency domain, time domain or topology, the advantage is that the measure tells 

whether the CUT is testable or diagnosable. However, the computational complexity is 

a difficult problem to overcome. In manufacturing testing, this problem becomes more 

severe. SBT methods provide a compromise by shifting the computational burden to 

simulation before test. 

3.4.2. Simulation-Before-Test (SBT) 

c) Fault Dictionary 

    In this report, the fault detection of single element component failure is drawn and 

used to generate the fault dictionary. Different types of measurements were used in the 

literature to construct the dictionary. The wide used measurements are node voltage, 

magnitude and phase of node voltages, voltage/current measurements. Power supply 

current and voltage measurements are also used in linear bipolar ICs for fault detection. 
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Artificial intelligence and neural network methods have been widely used in analog 

fault diagnosis, especially in SBT methodologies 

    A fault dictionary constructs a look up table, which lists each faulty case and 

corresponding nominal case for comparison purpose. The objectives of fault detection 

must be clear because they are critical aspects for deciding the fault detection or 

diagnosis capability of the dictionary. They also have an impact on the size of the 

dictionary and impose a limitation on the dictionary approach. Too broad fault coverage 

may end up with prohibitively large number of combinations which may not be 

realisable algorithmically, while too narrow fault coverage may not meet the quality 

target. The anticipated faults and nominal circuit of the CUT need to be simulated in 

order to develop sets of stimuli and response to detect and isolate faults. To generate a 

reasonable fault list, physical failures and failure modes have to be related and suitable 

fault models have to be developed. 

 

3.5. ANALOG FAULT MODELLING 

Faults in analog are generally classified in to the following two categories 

i. Catastrophic faults 

    It is also known as hard faults. Catastrophic faults are all those changes to the circuit 

that cause the circuit to fail catastrophically. These faults include shorts, open or large 

variations of the design parameters. 

ii. Parametric faults 

    It is also known as soft faults. Parametric faults are those changes that cause 

performance degradation of the circuit. These faults are due to the process fluctuations. 

These faults involve parameters deviations from their nominal value that can 

consequently quit their tolerance band. 

 

3.6. FAULT DIAGNOSIS PROCEDURE 

   The general idea is to test the response of the given circuit. Deviations in circuit 

parameters caused by any fault will affect the output response, either in its amplitude or 

phase. 

    One problem central to testing is the determination of an optimal test pattern fulfilling 

the following essential requirements: 

 Detection of (ideally) all defects assumed in the fault model, 
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 Ease of the generation/storage (low overhead) and 

 Compactness (short test stimulus generation time). 

 

 

 

 

 

 

 

 

 

 

 

 

In this report, two filter circuit’s State variable filter and sallen-key band pass filter 

are consider as circuit under test. The circuit is mathematically represented using transfer 

function. The transfer function contains the specified parameters such as gain (K), pole 

selectivity (Q) and frequency (f) of the circuit. Fault dictionary stores the possible faults 

injected in the component values lying outside their nominal range. Artificial Neural 

Network (ANN) is used as a pattern classifier with its training and testing phase to detect 

the fault in the circuits. 

Hybridization of genetic algorithm and back propagation neural network (GA-BP) is 

done for improving the fault detection accuracy. GA is used to obtain optimum 

connecting weights and biases and then ANN is trained with optimum connecting 

weights and biases so that mean square value (MSE) is reduced. 

CUT 

(Circuit 
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Dictionary 
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Neural 

Network 

Fault 
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Transfer 

function 
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Fig.3.1. Architecture of a Typical Fault Diagnosis 
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CHAPTER 4 

AN OVERVIEW OF ARTIFICIAL NEURAL NETWORK 

AND GENETIC ALGORITHM 

4.1. ARTIFICIAL NEURAL NETWORK BASICS 

    Neural networks are easier to understand if they are broken down into their core 

components. This section explains the basics of neural networks. First, the nature of the 

neuron is explored (the elementary unit of a neural network). Next, the different ways in 

which neurons can be connected are shown [21]. Finally, neural network training (the 

way in which a neural network learns) is examined. 

4.1.1. The Neuron 

    Neural networks (NN) are made from as few as one to as many as hundreds of 

elementary units called neurons. A neuron produces an output from its arbitrary inputs 

[22]. As shown in figure 4.1, each neuron is made up of the following: inputs, synaptic 

weights, a bias, a summing junction, a local induced field, an activation function, and a 

single output. 

 

 

 

 

 

 

 

 

 

 

 

4.1.2. Network Architecture 

    The output of a neuron can be connected to the input of another neuron. In fact, one 

neuron’s output can be connected to any number of other neurons’ inputs, allowing 

numerous possible ways of combining neurons to form a neural network. Neural 

Fig.4.1. Model of an Artificial Neuron 
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networks are commonly organized in a layered fashion, in which neurons are organized 

in the form of layers. There are three kinds of layers: input layer, hidden layers, and 

output layer. The input layer is made up of the input nodes of the neural network. The 

output layer consists of neurons which produce the outputs of the network. All layers 

which do not produce outputs, but instead produce intermediate signals used as inputs to 

other neurons, are considered hidden layers. 

    Figure 4.2 shows a simple neural network, which consists of an input layer and an 

output layer (circles represent neurons and arrows represent synapses). In this network, 

three neurons process the three inputs to produce three outputs. 

 

 

 

 

    Figure 4.3 shows a multi-layer network. This network consists of all three layers: an 

input, hidden, and output layer. When designing the architecture of a neural network, 

there is no limit on the number of layers or the number of neurons within each of those 

layers. Some complex tasks require architectures that contain multiple hidden layers. 

 

 

 

 

Fig.4.2. Simple NN Architecture 
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4.1.3. Training 

    Neural networks can be trained in several different ways, the most common of which 

is called the back-propagation algorithm. In neural network training, error represents the 

difference between the produced outputs and the desired outputs. In order to train a 

network, it must be trained with a set of training samples (training set). Each training 

sample in the training set is made up of a set of inputs and the desired set of outputs. 

The training set should be a representative collection of input/output samples (all 

possible samples if available). 

    Initially, all synaptic weights are chosen at random throughout a neural network. 

Back-propagation learning is an iterative process, which modifies the synaptic weights 

to minimize error in the each training iteration. During the each iteration, the input set 

(from the training sample) is fed into the network. The produced outputs are compared 

to the expected outputs (from the training sample) and the error is computed. The error 

is used to modify the weights throughout the network in order to bring the outputs 

closer to their expected values. 

    Depending on the complexity of the application, a neural network requires many 

epochs of training before it produces an acceptably low error. An epoch consists of 

training a network with the entire training set. 

    A set of samples, sometimes referred to as the test set, is used to determine the mean 

squared error (MSE). If possible, test set should contain a different set of samples than 

the training set in order to test the network’s ability to generalize. Generalization is the 

ability of a neural network to produce accurate results for inputs not found in the 

training set. The mean squared error for a single sample (εj) is calculated as shown in 

Fig.4.3. Multi-Hidden Layer NN 
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equation 4.1, where n is the number of outputs. The MSE for the entire evaluation set 

(EMSE) is an average of the individual sample MSE values, as shown in equation 4.2, 

where m is the total number of samples in the evaluation set and j is the index. 
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    The total number of training epochs can vary, and usually relates with the maximum 

allowed EMSE. The training continues until EMSE has reached an acceptable value. 

However, networks can sometimes reach a local minimum in the error space (as 

opposed to the global minimum). In this case, the error cannot be lowered any further 

and the neural network is unacceptable. If a neural network has reached a local 

minimum, the only possible recourse is to restart the process with a new neural network 

that either has a different architecture, new randomly selected weights, or both. 

4.1.4. Back Propagation Algorithm 

    The back-propagation algorithm (BP) is used to modify the synaptic weights 

throughout a neural network in order to minimize error. It is an iterative process, which 

modifies the network one training sample at a time. During the each iteration the error 

signal travels backwards through the network, starting at the output neurons and ending 

at the input synapses. 

    The correction for a weight is defined as 

    jjij yw  ,                                                                                                           (4.3) 

    Where η is the learning rate, wj,i is the change in weight connecting neuron i in layer 

L to neuron j in layer L+1, δj is the local gradient, and yi is the output of neuron i. The 

learning rate affects how much a weight will change based on the error and can be 

chosen to be any real number. The local gradient is the error signal that travels 

backwards through the network and is based on activation function, as well as whether 

the neuron in question is an output and non-output neuron. Only the correction 

functions for sigmoid and tanh activation functions are shown, as they are the only 

functions used in this report. 
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    For output neurons using the sigmoid activation function 

  )1()( jjjj oooda                                                                                               (4.4) 

    Where a is the sigmoid parameter, dj is desired output, and oj is the actual output. The 

correction function for output neurons using the sigmoid activation function is therefore 

  ijjjjij yooodaw )1()(,                                                                                    (4.5) 

For non-output neurons using the sigmoid activation function 

 
k

jkkjjj wyay ,)1(                                                                                              (4.6) 

    Where yj is the output of neuron δ j,k is the local gradient of neuron k in the next 

layer, and k j w, is the weight connecting neuron j with each of the neurons in the next 

layer. The correction function for non-output neurons using the sigmoid activation 

function is 

   
k

jkkijjij wyyyaw ,, )1(                                                                                 (4.7) 

For output neurons using the tanh activation function 

 )1)(1)(( jjjjj oooda                                                                                       (4.8) 

Where a is the tanh slope. The correction function for output neurons using the tanh 

activation function is  

ijjjjij yooodaw )1)(1)((,                                                                               (4.9) 

For non-output neurons using the tanh activation function. 

The correction function for non-output neurons using the sigmoid activation function is 


k

jkkjjj wyya ,)1)(1(                                                                                     (4.10) 

Therefore 


k

jkkijjij wyyyaw ,, )1)(1(                                                                          (4.11) 

4.2. GENETIC ALGORITHM 

    The genetic algorithm (GA) is based on Charles Darwin’s theory of evolution and can 

be used to solve a wide variety of problems. In general, a GA is defined by an iterative 

process, comprised of six key stages: generating initial population, evaluation, ranking, 

selection, crossover, and mutation [23]. This iterative process resembles what occurs 

when organisms reproduce in nature. The first step necessary to understand the GA is to 
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learn about the overall structure and terminology of the GA. The next step is to learn 

about each of the six stages, some of which require a more detailed explanation than 

others. 

 

4.2.1. Structure and Terminology 

    Each genetic algorithm can differ, but all genetic algorithms have a few things in 

common. General structure of GA is shown in fig.3.4. Each GA has a population certain 

size, which is made up of individuals [24]. Each individual represents a potential 

solution to the problem the GA is trying to solve. 

    The first step in GA involves randomly generating the initial population. Each 

individual in the population (plus the newly created individual starting in the second 

iteration) is given a fitness value in the evaluation step. All of the individuals are then 

ranked based on their fitness. In the selection step, two individual are selected to 

reproduce based on their rank. The two selected individuals’ genotypes are used to 

produce a new individual in the crossover step. Finally, the new individual’s genes may 

be mutated (bits are randomly flipped) and the next iteration begins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.4. Flow Diagram of Genetic Algorithm 
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4.2.2. Initial Population and  Fitness Evaluation 

    The basis of the GA is that the population of a fixed size is improving with the each 

iteration of the algorithm. An initial population of size P is created by generating P 

individuals with randomly selected genes. 

    After the initial population has been generated, the population must be evaluated. 

Evaluation is one of the most important steps in the GA process, since it defines what 

constitutes an individual as ‘fit’. At the end of the evaluation, each individual will have 

a fitness value. The method for calculating the fitness of an individual is completely up 

to the GA designer, with the requirement that an individual with higher fitness represent 

a better solution than an individual with lower fitness. 

    The evaluation step also occurs after a new individual has been generated, and is used 

to maintain the population at a constant size P. Like in the theory of evolution, the more 

fit individuals survive: the least fit individual in the population is replaced if the new 

individual has a higher fitness value. 

4.2.3. Crossover and Mutation 

    There are two commonly used ways of generating new individuals in GA: mutation 

and crossover. As shown in fig.4.4, the order and inclusion of mutation and crossover 

can be arbitrarily made by a GA designer. Mutation is the simpler of the two processes 

and is examined first. 

    In mutation, an arbitrary number of bits are flipped in an individual’s genome. The 

probability of a bit flipping, the selection of which bits will be flipped, and the number 

of bits to be flipped are all parameters that a GA designer can adjust to produce a better 

solution. If crossover is not used, then new individuals are generated by mutating a 

single individual selected in the selection stage. Mutation can be applied randomly as an 

independent operator on any individual in the population, or just to the offspring 

produced with crossover. 

    The more complex crossover process is commonly used in combination with 

mutation. In crossover, the genes of two selected parents are combined to produce an 

offspring, similar to the reproduction of organisms in nature. There are several 

commonly used forms of crossover: 1-point crossover, multi-point crossover, and 

uniform crossover. 
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CHAPTER 5 

CIRCUIT UNDER TEST (CUT) 

    In this report, two circuits are considered for fault diagnosis method. First 

circuit is state variable filter (SVF) and another circuit is sallen key band pass 

filter (SKBPF). 

 

5.1. STATE VARIABLE FILTER (SVF) 

5.1.1. SVF Circuits 

 

 

    A state variable filter is a type of active filter. It consists of one or more integrators, 

connected in feedback configuration. Any Linear time invariant system can be 

described as a state-space model, with n state variables for an nth-order system. The 

low pass and high pass output’s are phase inverted while the band pass output 

maintains the in phase. The gain of each output is independently variable. Due to 

temperature variation, component value may vary but must be in tolerance limit. 

    A state variable filter (SVF) can't be used as a different filters from a single set of 

hardware. A SVF is just an active filter circuit that incorporates operational 

amplifiers, capacitors and resistors to form an integrator and a feedback network to 

create resonance peaks for boosting or cutting certain frequencies.  

Fig.5.1. State Variable Filter Circuits 
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    The State-Variable filter offers low pass, high pass, band pass, and band-reject all 

within one block. An added advantage over bi-quad section filters is that only one 

coefficient is needed, rather than their five coefficients. For the algorithm including 

pole selectivity (Q), there's an additional coefficient for its control. 

5.1.2. SVF Transfer Function 

     The nominal values of the circuit components [18] are: 

R1 = R2 = R3 = R4 = R5 = 10kΩ; 

R6 = 3kΩ; 

R7 = 7kΩ; 

C1 = C2 = 20nF. 

All the parameters were assigned ±5% tolerance. 

    The voltage transfer function of the second-order SVF (Fig 5.1.), considering its 

low-pass output (LPO) is given by 

    

      
 

   

  

 
 
 
 
 
 
 

 

     
        

   
   

  
  

 
  
    

   
  
       

 
     

        
 
 
 
 
 
 
 

                                             

Comparing the equation.5.1 with second order low-pass filter transfer function, 

we get the following relations for k, ὠ0 and Q. 
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Therefore for the LPO of filter with nominal values of the components yields k= 1.0, 

Q = 1.11 and fo = 796HZ. 

 

 

 



24 
 

5.1.3. Fault Dictionary Creation 

    The procedure for fault dictionary generation is shown in fig 5.2. The transfer 

function is simulated with faults injected to the components [25]. The fault injection is 

done to the extent of ±50% deviation from nominal value with a step size of 5%. 

Single fault are introduced to one component at a time with other fault free 

components taking different random values within their tolerance. 
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Fig.5.2. Fault Dictionary Generation-Flow Diagram 
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Table 5.1. Fault Dictionary samples 

ANN Input ANN Target 

Fault injected in 

Component 

Gain 

(k) 

Pole 

selectivity 

(Q) 

Pole 

frequency 

(fo) 

Fault 

detected 

R1+15% 

0.90941 1.1432048 796.2776 

1 

0.909191 1.145129 795.1583 

0.909389 1.143981 795.2185 

0.906775 1.143891 798.3586 

0.90769 1.144.32 796.4914 

0.910507 1.147908 796.1246 

0.909431 1.14824 735.1509 

0.909603 1.146166 796.0002 

0.909251 1.14508 796.2286 

0.910388 1.143313 794.4788 

R1+20% 

0.872328 1.164124 795.1364 

0.872123 1.159479 794.6936 

0.867851 1.159794 796.7802 

0.869872 1.157294 796.8162 

0.870619 1.169578 795.3414 

0.870069 1.161836 795.8468 

0.872095 1.162064 795.1361 

0.869524 1.162294 795.1274 

0.870863 1.156976 794.5657 

0.834129 1.169535 796.9395 

 

     Fault dictionary is generated injecting fault to all component and evaluating the 

parameter K, Q, f. The input sample of size 1854×4 is obtained. Fault dictionary are 

separated into train samples and test samples randomly. Samples of fault dictionary 

for component resistor R1 with fault index 1 and capacitor C2 with fault index 9 are 

shown in table 5.1, and table 5.2, to be used in ANN classifier for fault detection. 
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Table 5.2. Fault Dictionary samples 

ANN Input ANN Target 

Fault injected in 

Component 

Gain 

(k) 

Pole 

selectivity 

(Q) 

Pole 

frequency 

(fo) 

Fault 

detected 

C2-15% 

1.006933 1.169294 838.7723 

9 

1.004368 1.173732 838.2972 

1.004238 1.169415 838.1235 

1.001462 1.172438 837.8346 

0.996817 1.175384 839.3517 

1.003823 1.176335 836.4943 

1.003063 1.16539 839.0912 

0.999961 1.173119 837.4293 

1.000102 1.170809 840.5106 

1.000922 1.175286 839.3955 

C2-20% 

1.000335 1.204263 861.9353 

0.996622 1.200059 863.0687 

1.001686 1.202249 863.2027 

0.997482 1.206427 863.0931 

0.997623 1.206345 864.8744 

0.999166 1.209003 864.2478 

1.001493 1.200372 864.3618 

1.001164 1.206592 863.6756 

1.005795 1.201868 863.3667 

1.000705 1.207985 863.6945 

5.2. SALLEN KEY BAND PASS FILTER (SKBPF) 

5.2.1. SKBPF Circuit 

    The Sallen–Key filter used to implement second-order active filter that is 

particularly valued for its simplicity. It is a degenerate form of a voltage-controlled 

voltage-source (VCVS) filter topology. A VCVS filter uses a super-unity-

gain voltage amplifier with practically infinite input impedance and zero output 
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impedance to implement a 2-pole low-pass, high-pass, or band-pass response. The 

super-unity-gain amplifier allows for very high Q factor and pass-band gain without 

the use of inductors [18]. A Sallen–Key filter is a variation on a VCVS filter that 

uses a unity-gain amplifier (i.e., a pure buffer amplifier with 0 dB gain). Because of 

its high input impedance and easily selectable gain, an operational amplifier in a 

conventional non-inverting configuration is often used in VCVS implementations. 

Implementations of Sallen–Key filters often use an operational amplifier configured 

as a voltage follower; however, emitter or source followers are other common 

choices for the buffer amplifier.  

    VCVS filters are relatively resilient to component tolerance, but obtaining high Q 

factor may require extreme component value spread or high amplifier gain. Higher-

order filters can be obtained by cascading two or more stages. 

    The band-pass case of the Sallen-Key filter has a severe limitation. The value of 

Pole selectivity (Q) determines the gain of the filter, that is, it cannot be set 

independently, as it can with the low-pass or high-pass cases. The schematic of the 

Sallen-Key band-pass filter circuit are shown fig.5.3. 
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5.2.2.  SKBPF Transfer Function 

      The nominal values of the circuit components are given below: 

  R1 = 5.6kΩ; 

  R2 = 1kΩ; 

  R3 = 2.2kΩ; 

  R4 = R5 = 3.9kΩ; 

  C1 = C2 = 4.7nF. 

  All the components were assigned ±5%. 

    The voltage transfer function of the sallen- key band pass filter circuit is given 

by 
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    Comparing equation.5.5 with second order BPF transfer function, we get the 

following relations for K, ὠ0, and Q. 
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Therefore for the SKBPF of the filter with nominal values of the components yields 

k = 75,987, Q = 8.34 and fo = 25HZ. 

5.2.3. Fault Dictionary Creation 

     The procedure for the creation of fault dictionary is as same as SVF fault creation. 

The transfer function is simulated with faults injected to the components. The fault 
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injection is done to the extent of ±50% deviation from nominal value with a step size 

of 5%. Single fault are introduced to one component at a time with other fault free 

components taking different random values within their tolerance. 

 

Table 5.3. Fault Dictionary Samples 

ANN Input ANN 

Target 

Fault Injected in 

Component 

Gain Pole 

selectivity 

freq Fault 

Index 

R1+5% 

72206.5 10.4648 24861.68 

1 

72468.2 8.65264 24596.22 

72452.3 9.61235 24561.92 

72386.7 7.71696 24649.35 

72265.8 10.7935 24585.49 

72539.8 9.61000 24486.47 

72265.3 9.25718 24636.08 

72408.4 16.8320 24955.77 

72573.4 7.49430 24666.27 

72161.2 10.3563 24645 

R1+10% 

69007.6 8.721377 24576.05 

69197.11 8.825022 24429.72 

69143.26 13.54071 24793.58 

69060.86 9.881653 24920.91 

69136.2 10.43722 24629.85 

69169.81 8.976105 24429.01 

69141.01 7.135413 24434.82 

69255.5 12.06381 24806.14 

69065.08 14.17858 24690.2 

69089.22 10.76941 24732.67 

 

      Fault dictionary is generated injecting fault to all component and evaluating the 

parameter K, Q, f. The input sample of size 1408×4 is obtained. Fault dictionary are 
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separated into train samples and test samples randomly. Samples of fault dictionary for the 

component resistor R1with fault index 1and capacitor C1 with fault index 6 are shown in table 

5.3 and table 5.4 to be used in ANN classifier for fault detection. 

 

Table 5.4. Fault Dictionary Samples 

ANN Input ANN 

Target 

Fault Injected in 

Component 

Gain Pole selectivity freq Fault 

Index 

C1-50% 

151279 -3.25884 35006.89 

6 

151693.79 -4.381850 34577.621 

151599.9 -4.11038 35146.44 

151675.3 -3.4097 34931.66 

151935.4 -3.32773 35310.29 

152411.8 -4.93658 34803.7 

152019.2 -3.64331 34997.42 

151711.8 -4.24674 34995.43 

151170 -3.10716 35360.46 

151245.7 -4.01401 34764.09 

C1-45% 

 

138085 -4.42296 33215.69 

137969 -4.71895 33555.13 

138135.3 -4.9726 33463.16 

138519.5 -5.11997 33248.53 

137550.7 -4.13017 33802.65 

138248.8 -4.50096 33442.49 

138348.9 -5.18737 33004.70 

137542.6 -5.57255 33156.69 

137642. -4.690375 33677.30 

137703.7 -4.43746 33665.2 
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CHAPTER 6 

PROPOSED BP-NN MODEL AND HYBRID GA-BP 

MODEL 

6.1. PROPOSED BP-NN MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fault dictionary is created for two circuits State variable filter (SVF) and Sallen-key 

band pass filter (SKBPF). Fault dictionary are separated randomly into training set and 

testing set. Training set contains 25% of fault dictionary and remaining 75% as testing 

sets. Each fault dictionary data contains ANN inputs and ANN targets (desired outputs). 

Number of inputs and outputs for NN is designed depending on the components in the 

circuits. First train samples are given to ANN for training the neural network. BP 

algorithm regularly initializes all the weights of the network with minute random 

values; accordingly it takes the risk of being trapped in the local minimum. After 

training the network, test samples are given to the network and the trained networks 

correctly detects the particular fault injected. The effectiveness of correct classification 

is indicated by fault detection rate. Hidden layer neurons are varied and tested because 
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hidden layers neuron plays a major role to achieve better performance. Fault detection 

rate is calculated with the output of the neural network, setting tolerance limit ±2%. 

Fault detection rate = (No. of Correct classification) / (Total no. of test samples).    (6.1) 

6.2. HYBRID GA-BP MODEL 

    Neural networks offer many advantages in a variety of applications, but are 

ineffective if they are not properly designed.  GA has a directed stochastic search, 

makes it a very robust and universal tool for almost any optimization problem which 

can be expressed in a reasonably small set of parameters. There are several ways for 

combination of GA and BP algorithms that have been used in many articles. Such as 

using GA algorithm to determine the optimal structure of ANN, weight optimization in 

back propagation network (BPN) algorithm and determine the number of hidden layers 

in the ANN. In this report hybrid GA-BP model is used to optimize the initial weights 

of the artificial neural network using genetic algorithm. Neural network is unstable with 

different results because of a small change in training data sets. Therefore the training 

data sets and testing data sets were defined for each artificial neural network as shown 

in Figure 6.1 and then the genetic algorithm would find the optimum initial weights of 

ANN as shown in Figure 6.2. 

6.2.1. INITIAL POPULATION 

     In genetic algorithms, the binary code and the real code are the primary schemes to 

describe a chromosome. But, because the binary-coded scheme is neither necessary nor 

beneficial and according to the advantages of intuitiveness, resolution, and facility (i.e., 

need not to decode) for real code, the study used the real coded method for describing 

the chromosomes. There were 10 chromosomes generated in each generation, and each 

of chromosomes encoded with weights and biases representing the genes. The length of 

the chromosomes depends on the architecture. For each of architecture a number of 

connections weight vary according to the number of hidden layers and neurons in the 

hidden layers. 

    The range of lower bound and upper bound for weight based on trial and error basis.  

At first, the range between −2 and 2 was used, because all of the weights fell in this 

range after training by back-propagation neural network. But later, the study tried to set 

the value between −1 and 1 to compare with back-propagation neural network. And 
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last, because the crossover operator could search over the initial range, we tried to 

narrow the range again between −0.5 and 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2. Fitness Function Evaluation 

 

    Each individuals of the current population is evaluated by fitness function which is 

the mean square error value of the neural networks. The BPN network is initially trained 

with random connection weight value and MSE is calculated. The mean square error 

(MSE) value represents how the solution is fit for the problem. The optimum weights 

are obtained after GA runs for 100 generations. During the testing phase, best obtained 

value from GA is fed into the network and again MSE is evaluated. The fitness function 

is 
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      W is a vector constituted by all the weights and biases involved in the network, and 

n is the number of output units. In this scheme, an initial weight vector W0 is iteratively 

adapted according to the following recursion to find an optimal weight vector. The 

positive constant of ŋ is learning rate. 
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Fig.6.2. Functioning of GA-BP Model 
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6.2.3. GA Operators  

    The three operators of the genetic algorithm, are used in artificial systems are 

Mutation, Crossover and Selection. The evolution usually starts from a population of 

randomly generated individuals and is an iterative process, with population in each-

iteration called a generation. The more fit individuals are stochastically selected from 

the current population, and each individual’s genome is modified (recombined and 

possibly randomly mutated) to form a new generation. The new generation of candidate 

solutions is then used in the next iteration of the algorithm. Commonly, the algorithm 

terminates when either a maximum number of generations has been produced, or a 

satisfactory fitness level has been reached for the population. 

 

6.3. HYBRID GA-BP ALGORITHM 

    The GA algorithm requires initial settings for its run. The initial setting values of GA 

are shown in table.6.1. BP can converge quickly on the local optima and also regularly 

initializes all the weights of the network with minute random values; accordingly it 

takes the risk of being trapped in the local minimum. Now, the GA provides the back 

propagation neural network (BP-NN) better initial values. Subsequently, both the 

training efficiency and developing speed can be improved. So the fundamental idea of 

the hybrid GA-BP algorithm is straightforward and simple, GA algorithm is used to 

explore the optimal combination of all the neural network parameters and then BP 

algorithm is used to find the correct classification of the each parameter. The framework 

of GA-BP scheme is shown as fig.6.3. 

Table 6.1. Parameters of Genetic Algorithm 

Parameter Value 

Population size 10 

Generation 100 

Cross over probability 0.8 

Mutation probability 0.2 

Stall Gen limit 20 

Elite count 2 
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• Population is initialized with 10 individuals representing weights and bias 

values of designing the NN specific architecture and the length of 

chromosomes contains specific values of weight and biases for particular 

architecture. 

• Each individual is evaluating for its quality through MSE as the fitness 

function. 

• Termination criteria are fixed as 100 generation. 

• Initially the NN is trained with train sets and MSE calculated. 

• GA is invoked which gives the optimum value of weight value and using this 

weights NN is tested with test sets and MSE is minimized for improved 

performance. 
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CHAPTER 7 

SIMULATION RESULTS  

7.1. NEURAL NETWORK PERFORMANCE FOR SINGLE FAULT 

 
    Fault detection is carried by fixing the feed forward neural network architecture with 

suitable hidden layer neuron without hybridization. The weight and bias values 

automatically determined and fed into neural network along with train samples. After 

ANN trained, the separate test samples are fed to the network and faults which are 

correctly identified are observed. The fault detection rate of SVF and SKBPF is 

estimated for each component and is tabulated in table.7.1 and table.7.2 respectively. 

 
Table.7.1. Performance of BPN (SVF) 

Network 

topology 
Epoch 

Number 

of 

samples 

Time 

(secs) 
R1 R2 R3 R4 R5 R6 R7 C1 C2 

4-15-12-16-9 60 1407 10s 0.41 0.46 0.49 0.26 0.57 0.40 0.24 0.60 0.73 

4-16-6-9-9 52 1407 9s 0.43 0.57 0.26 0.31 0.26 0.63 0.10 0.32 0.56 

4-14-6-17-9 116 1407 18s 0.47 0.80 0.34 0.47 0.59 0.41 0.34 0.56 0.48 

4-12-8-20-9 102 1407 15s 0.59 0.54 0.47 0.58 0.64 0.49 0.17 0.43 0.60 

4-11-8-6-9 89 1407 12s 0.54 0.56 0.27 0.33 0.47 0.38 0.14 0.45 0.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.1. MSE Value of each epoch (SVF) 
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    The overall Mean square error (MSE) value of each iterations (epochs) are calculated. 

The 4-5-12-16-9 sample architecture is designed and mean square error (MSE) values 

are plotted in graph (Fig.7.1). Best performance (MSE) in epoch 19 is 0.031472.  

Table.7.2.Performance of BPN (SKBPF) 

Network 

topology 
Epoch 

No. of 

samples 

Time 

(secs) 
R1 R2 R3 R4 R5 C1 C2 

4-15-12-

16-7 
29 1090 7 0.3910 0.5556 0.4843 0.2368 0.1899 0.0655 0.0265 

4-15-18-

12-7 
33 1090 10 0.0833 0.4248 0.2579 0.2171 0.1853 0.0854 0.066 

4-15-9-

16-7 
36 1090 12 0.6923 0.7972 0.6352 0.5987 0.2911 0.0065 0.0662 

4-12-12-

16-7 
34 1090 11 0.2179 0.3856 0.2579 0.1645 0.2089 0.0844 0.0922 

4-15-15-

18 
24 1090 7 0.7244 0.9804 0.6289 0.7303 0.6582 0.0779 0.1722 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. HYBRID GA-BP PERFORMANCE FOR SINGLE FAULT 
 

The weight and bias values determined after 100 generation using GA for the same 

neural architecture is fed into neural network along with train samples. After ANN 

trained, the separate test samples are fed to the network and faults which are correctly 

identified are observed. The fault detection rate is estimated for each component and is 

tabulated in table 7.3 and table.7.4 respectively. GA-BP model outperformed BPN. 

 

 

Fig.7.2. MSE Value of each epoch (SKBPF) 
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Table.7.3. Performance of GA-BP (SVF) 

Network 

topology 
Epoch 

Number 

of 

samples 

Time 

(secs) 
R1 R2 R3 R4 R5 R6 R7 C1 C2 

4-15-12-

16-9 
56 1407 10s 0.72 0.85 0.78 0.57 0.62 0.55 0.49 0.70 

0.83 

4-16-6-

9-9 
55 1407 10s 0.78 0.80 0.45 0.45 0.67 0.73 0.45 0.54 

0.86 

4-14-6-

17-9 
102 1407 14s 0.75 0.82 0.54 0.52 0.79 0.54 0.51 0.45 

0.58 

4-12-8-

20-9 
112 1407 15s 0.62 0.64 0.56 0.78 0.84 0.60 0.32 0.61 

0.85 

4-11-8-

6-9 
95 1407 15s 0.69 0.65 0.57 0.47 0.65 0.55 0.48 0.65 

0.68 

 

Validation 

    Fault is injected in one component R1 to the extent of ±50% variation along with 

5% step size. The sample size for testing is 150×4(for one component). When this 

testing sample is fed to GA-BP network, the expected output is fault index 1. The 

correct classification done by the implemented model is identified and fault 

detection rate calculated by the equation 7.1 for R1 is 72% of GA-BP which is  

much higher than the value 41% obtained  without GA hybridization. Comparison 

of GA-BP and BPN are shown in fig.7.5 and fig.7.6 for SVF and SKBPF 

respectively. 

  

Performance samples = (No. of correct classification) / (Total No. of samples)   (7.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.3. MSE Value of each epoch (SVF) with GA Optimization 
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Table7.4.Performance of GA-BP (SKBPF) 

Network 

topology 
Epoch 

No. of 

samples 

Time 

(secs) 
R1 R2 R3 R4 R5 C1 C2 

4-15-12-

16-7 
31 1090 8 0.80 0.98 0.86 0.92 0.83 0.24 0.20 

4-15-18-

12-7 
37 1090 13 0.92 0.94 0.89 0.82 0.75 0.24 0.33 

4-15-9-16-

7 
33 1090 10 0.87 1.00 0.95 0.89 0.79 0.31 0.11 

4-12-12-

16-7 
30 1090 8 0.48 0.99 0.84 0.47 0.43 0.25 0.01 

4-15-15-

18-7 
33 1090 10 0.78 0.96 0.93 0.92 0.89 0.30 0.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.4. MSE Value of each epoch (SKBPF) with GA Optimization 
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Fig.7.6.Comparison of GA-BP and BPN (SKBPF) 
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7.3. DOUBLE FAULT DETECTION 

 
    SKBPF is considering for double fault detection as it contain lesser number of 

component. Fault is injected for two components at a time. Fault dictionary is created 

for all components and resulting a sample size of 50400×6 along with fault index. The 

fault dictionary is used for BPN and GA-BP model. The results obtained for GA-BP is 

much higher than the BPN models. Performance of the double faults for both BP-NN 

and GA-BP of a single architecture (5-15-12-16-7) are shown in table 7.5. 

 

Table.7.5 Performance of GA-BP and BPN (SKBPF) 

Fault injected Components 

Fault detection rate 

GA-BP BP-NN 

R1-R2 
0.8927 0.6637 

R1-R3 
0.7611 0.6692 

R1-R4 
0.5123 0.5257 

R1-R5 
0.6628 0.4733 

R1-C1 
0.4011 0.4135 

R1-C2 
0.4363 0.3523 

R2-R3 
0.8841 0.8449 

R2-R4 
0.7986 0.7405 

R2-R5 
0.8896 0.7460 

R2-C1 
0.6452 0.5035 

R2-C2 
0.4615 0.4743 

R3-R4 
0.7232 0.5139 

R3-R5 
0.8129 0.8027 
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Table.7.5 Performance of GA-BP and BPN (SKBPF) (Contd.) 

R3-C1 
0.3660 0.1296 

R3-C2 
0.4001 0.3093 

R4-R5 
0.5679 0.3620 

R4-C1 
0.3130 0.1493 

R4-C2 
0.3022 0.3168 

R5-C1 
0.3235 0.2957 

R5-C2 
0.3139 0.1439 

C1-C2 
0.9214 0.7394 

 

 

  The fault detection performance is improved with the hybrid model and the no of 

epochs taken is considerably reduced to 120 from 335 for BPN model. Time taken is 

also minimized to 2 min 22 sec where the BPN model it is doubled. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

    The proposed work describes the use of GA to train neural network. The weight in 

different layers of the network is optimized using genetic algorithm. The relative 

difference between the fault detection rate of ANN and GA-BP model is analyzed for 

fault diagnosis of two circuits SVF and SKBPF. The experimental results show that 

architecture 4-15-12-16-9 gave good results for single fault in SVF circuit. The average 

fault detection rate is 40% without optimization and 71% with GA optimization. 

Similarly for SKBPF, 4-15-18-12-7 architecture produced better results. The average 

fault detection rate is 36% without optimization and 80% with GA optimization. The 

work can be extended with other evolutionary algorithm like particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC) algorithm.  Neural network training 

can be implemented with optimization for deciding the number of internal layers and  

number of neurons in each layer. 
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