MIDDLEWARE DATABASE
DRIVERS

P-4R2

A Project Report

SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING IN
COMPUTER SCIENCE AND ENGINEERING
OF BHARATHIAR UNIVERSITY

BY
P.S. JAYA SHANKARI
Reg. No. 9937K0004

GUIDED BY
Mrs. S.DEVAKI

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

KUMARAGURU COLLEGE OF ENGINEERING
COIMBATORE -641 006.

2000 - 2001

Department of Computer Science and Engineering

Kumaraguru College of Technology
(Affiliated to the Bharathiar University)
Coimbatore — 641 006

Project Work

CERTIFICATE

Bonafide record of the project work

Middleware Database Drivers
Done by

P.S.Jaya Shankari
(Reg. No. 9937K0004)

Submitted in partial fulfillment of the requirements
For the degree of Master of Engineering
in Computer Science and Engineering
Of the Bharathiar University

KW ‘ < -:&Lo,/\m,..j.

Faculty Guide Head of the Depavtment

\x)\ \ 1)

Submitted for Viva-Voce Examination held on Lo~ /~doe [

Aeal SV)oreree
y L= ‘/{l! PR

Internal Examiner External Examiner

(

SANPO TECHNOLOGIES

6/42A, Kongu Nagar Entrance,

Opp. Alvernia School, Trichy Road,
Ramanthapuram, Coimbatore - 641 045.
Phone : 317738 / 574314

Mobile : 98422-92292

Email : sanpo@satyam.net.in

CERTIFICATE

This is to certify that Miss. P.S. JAY A SHANIKARI, final year M.E student of
KUMARAGURU COLLEGE OF TECHNOLOGY, Coimbatore, has completed the
project work entitled “MIDDLEWARE DATABASE DRIVERS” during the period

15" July 2000 to 12* December 2000 at our concern.
During her association with Sanpo Technologies, she is found to be sincere w her
assignments. She has developed the program and mstalled “MIDDILEWARE

DATABASE DRIVERS™ upto our satisfaction.

For Sanpe Yechnolkogies.
» ¥

A
T4

b Y L3
(P PONNUS WAMY)
Mrector

Declaration

I P.S.Jaya Shankari hereby declare that this project
work entitled “MIDDLEWARE DATABASE DRIVERS” submitted to Kumaraguru
College of Technology, Coimbatore (Affiliated to Bharathiar University) is a record of
original work done by me under the supervision and guidance of Mrs. S.Devaki M.S.,

Department of Computer Science and Engineering.

Name of the Candidate Register Number Signature of the Candidate
P.S. Jaya Shankari 9937K0004 ~ g Lol e i
P
(PA.‘Z. Jaya Shankari)

Countersigned by: Staff Ain Charge

Mrs. S.Devaki M.S.

Assistant professor

Department of Computer Science and Engineering
Kumaraguru College of Technology

Coimbatore — 641 006

Place : Coimbatore
Date :

Acknowledgement

] am greatly indebted to Dr.K.K.Padmanabhan Ph.D., principal, KCT, for
having provided all the facilities for carrying out the project.

I earnestly express my sincere thanks to Dr.S.Thangasamy, Head of the
department, Department Of ComputerScience for encouraging me through the project

I owe a great debt to my internal guide Mrs.S.Devaki MLS., Asst.Proffesor,
Department Of ComputerScience for imparting an invaluable guidance, steadfast support
and impeccable tutelage for the successful completion of the project.

I am thankful to Mr.T.Babu Kumar B.E., Software Engineer, Sanpo
Technologies, for his valuable guidance and suggestions throught the project.

I express my greatfulness to Mr.P.Ponnuswamy, Managing Director, Sanpo
Technologies, coimbatore, for giving me an oppurtunity to undertake my project in this
organisation and giving all infrastructural facilities for carrying out this project.

Jam very much obliged to express my sincere thanks to Mr.R.Kannan MLE. ,
Asst.Professor, Department Of ComputerScience for his suggestions in the project.

Finally, I acknowledge my immence gratitude to all the staff members of the
Department Of Computerscience and Engineering, KCT, for their encouragement and

moral support in the successful completion of the project.

Synopsis

Synopsis

When Microsoft Corp.came along and started pushing Open Database
Connectivity(ODBC) as the answer to simplified data access from any
datasource and in any place, it worked! Developers had a standard
Application Programming Interface(API) that they could depend on for
virtually any platform and development tool. This solved the developer's
problem. For the Network manager, however, ODBC magnifies the problem
of software distribution. To access these datasources, a driver is needed for
every single datasource on every single client. Suppose if there are 1000
clients and if an additional DataBase Management System(DBMS) is just
installed then this requires installation of driver for that datasource on all
1000 client machines.

To alleviate this problem of Network Manager, this project has been
developed in which only a single driver for each datasource is required
irrespective of any number of client machines. It comprises of a server
program and client program and a programatical connection between them.
The server program can handle as many client connections as needed and

servicing is done as and when connections are needed.

Contents

Acknowledgement

Synopsis

1.

2.

Introduction

System study and problem formulation
2.1 Survey of the existing system

2.2 Limitations of the existing system

2.3 Objectives of the proposed system
2.4 Proposed system overview

. Overview of ODBC and JDBC

3.1 ODBC
3.2JDBC

. Overview of the concepts involved in the project

4.1 Three Tier client/server,object style
4.1.1 Advantages of 3-Tier Architecture

4.2 CORBA Overview

4.3 CORBA Architecture

4.4 CORBA static method invocation

4.5 Benefits of CORBA ORB

. Hardware and software Environment

. Implementation of the project

6.1 Class diagram.

6.2 RecordSetl Interface
6.3 DBManager Interface
6.4 DBMServant Class
6.5 RecordSet Class

6.6 DBMServer Class
6.7 DBMClient Class

oA W W

oo 00

12
12
13
14
16
18
20

22

23
23
24
25
29
30
30
32

7. VC++ Connectivity
7.1 Introduction.
7.2 The IDL
7.3 VC++ Implementation
7.4 VC++ Client
7.5 VC++ Server
7.6 Running the client/server application

8. Connection Monitoring
8.1 Illustration of Connection Monitoring

9, System Testing
9.1 Employee Management System

10. Conclusion

BIBLIOGRAPHY
APPENDICES

Appendix-A Sample Source Code
Appendix-B Sample Screens

35
35
35
37
37
37
38

39

41
41

45

1. Introduction

Middleware Database Drivers is mainly developed to maintain the
transaction between various types of GUI tools and various types of
databases in a more convinient manner than the existing one from the
network administrator’s point of view. The network administrator is freed
from the maintenance of the database drivers on all client machines, since
the client machines in this system does not require any drivers at all. All
the database drivers are maintained centrally at the middleware.

This system helps the network administrator to maintain the database
drivers in a single system. The system also allows the fresh programmers
to manipulate with the database without even the knowledge of database
programming in the programming language.

The project is based on three modules or tiers

1. Client tier

2. ODBC server tier

3. Database tier

Each module starts with a discussion of terminologies,concepts and
mechanisms, followed by the software implementation.The connection
program is written using CORBA3.1. An Employee Management System
application is also being developed to illustrate the communication of the

client and server. The client program is implemented using javal.l.5. The

same application is developed using VC++, to illustrate the reusability of
code in CORBA

The system also consists of a connection monitoring module which
allows the network administrator to view what all clients are connected to

the database presently and also during a particular time interval.

2.System Study and Problem Formulation

2.1 Survey of the Existing System

In an existing client/server system, ODBC driver along with the

database specific drivers are installed in all client machines.

APPLICATION

ODBC-DLL(DRIVER MGR.)

DBMS-SPECIFIC DRIVER)

DATASOURCE(DBMS&N/W
S/W)
DBMS

Figure 2.1 ODBC Architecture

ODBC is a layered architecture. The client side layers provide the API
to the application as well as define datasources to their use. Driver Manager 1s

the visible part of ODBC, where drivers are added and datasources

configured on each client.

Below the Driver Manager are the ODBC drivers themselves. These
are specific components that interface with individual datasources. These
drives contain the logic to interface over the network using the database
server specific middleware. Ofcourse, each database vendor's middleware
product(SQL *Net, DB-Library,etc) must also be installed on client machines.
This whole driver portion - from the ODBC driver through the network layers

to the datasource itself - is the most complex part of the ODBC architecture.

2.2 Limitations of the existing System

1. Since the driver must be present on all client machines, once the
administrator has installed the database vendor's software on the server
computer, he or she then visits each client computer to install that specific
driver on all client machines. Thereafter each time a network loses or gains a
client machine, the administrator performs maintenance tasks to install or
remove driver software

7 The database access middleware running at each client computer
must be configured into the protocol stack by an administrator, and typically

all clients should run the same version of the middleware.

2.3 Objectives of the Proposed System

The main objective of this project is to make database driver
management easier by having only one driver for each datasource present in
the network, rather than having all vendor specific database drivers on all

client computers.

2.4 Proposed System Overview

The proposed system consists of a middleware ODBC server. On the
ODBC server a driver is installed for every datasource. This requires
installing no drivers on the client computer.

The Usecase diagram is shown in figure 2.4.1

Figure 2.4.1 Usecase diagaram

In the above Usecase Diagram, C++ client, Java client and VB client
are comnected to the backends namely Oracle, SQL Server and MS Access
via the DBManager. Here DBManager is the middleware ODBC server which
consists of the required database drivers. The client machines here do not
require any drivers to be installed on them.

The sequence diagram shown in figure 2.4.2 illustrates the sequence in

which the connections are established and exited.

SEQUENCE DIAGRAM

ANY DATABASE

ANY CLIENT DBMANAGER
CONNECT TODB IJ’l CONNECTS
CONNECTION SUCCESS / FALLURE
é’jfdg;'[;; CHECKS THE RESULT, IF SUCCESS
TRANSACTIONS
RETURNS UNIQUE
CONNECTION IDENTIFIER
IF RESULT IS CONNECTION FAILURE
INDICATE CONNECTION FAILURE
EXECUTE DB STMT
CHECKS FOR VALIDITY OF
CONNECTION ID, IF VALID
CONNECTION
ID HAS BEEN
SENT TO THE
b8 mﬂf‘g &R EXECUTE THE DB STMT
EXECUTING
ANY DB STMT
ELSE
INDICATE THE CLIENT,

H

THE INVALIDITY OF CONNECTION ID

H

1

CLOSE THE DB CONNECTION
CHECKS FOR VALIDITY OF
;:] CONNECTION 1D, IF VALID
CLOSE DB CONNECTION
SUCCESS / FAILURE
INDICATE THE USER ABQUT
DB CONNECTION CLOSE
IF CONNECTION ID IS NOT VALID
INDICATE THE CLIENT,

THE INVALIDITY OF CONNECTION ID

The above sequence diagram shows how a client establishes a
connection with the DBManager and acquires the respective database.

The client when required to connect to any database, it first gets
connected to the DBManager. The DBManager inturn establishes the
connection with the required database and checks if the connection with
the database is successfully accompalished. If success, DBManager
returns an unique connection identifier for each connection
established. This connection identifier is used in all future database
transcations. If failure, DBManager indicates the connection failure to the
client.

During execution of the database statement, connection identifier is
sent to the DBManager. The DBManager checks for the validity of the
connection identifier. If the connection identifier is valid, it executes the
statement on connecting database, If the connection identifier is invalid, it
indicates the client regarding the invalidity of the connection identifier.

To close with the database connection, the DBManager checks for
the validity of the connection identifier. If valid, it ends the database
connection and indicates the client about the close of the connection. Else

it indicates the invalidity of the connection identifier to the client.

3.1 ODBC
ODBC is a multidatabase API for programs that uses SQL statements
to access data. An ODBC based program can access heterogenous databases

without needing source code changes.

Figure 3.1 ODBC Driver types

The ODBC driver types are shown in Figure 3.1.ODBC defines the
client side of the database connectivity but not the server side. ODBC
middleware drivers typically rely on the underlying presence of a vendor’s
proprietary driver(SQL *Net, in the case of Oracle). ODBC drivers transform
ODBC calls into vendor specific access requests and responses. As a result,

network administrators must install and configure not only an ODBC driver

on each client, but the underlying vendor specific proprietary driver. (Referred
from URL [1] in Bibliography)

ODBC'’s addition of an extra layer of insulating middleware is both its
strength and its weakness. ODBC presents a common standard mterface no
matter what the vendor specific middleware might look like, but ODBC
consumes some memory, and in its earliest incarnations slowed data access

noticebly.

3.2 JDBC

JDBC is a collection of database access middleware drivers that
provide Java programs with a call-level SQL API. Java applications use the
Java API to connect to databases, store and retrieve database content, thus
making JDBC a Java enabled delivery mechanism for SQL. JDBC is to Java
programs what ODBC is to programs written in languages other than Java.
JDBC includes four types of drivers. Figure 3.2 illustrates the JDBC driver
types. (Referred from Book [1] in Bibliography].The JDBC driver types are
as follows
Typel Driver

These drivers use a bridging technology to access a database. It is a
JDBC-ODBC bridge that provides JDBC connectivity via ODBC drivers. It
provides a gateway to the ODBC API. Implementations of that API inturn do
the actual database access.

Type2 Driver
These drivers are native API drivers. The driver contains Java code that

calls native C or C++ methods provided by the individual database

Figure 3.2 JDBC driver types

vendors that perform the database access. i.e., Type2 JDBC driver is typically
a direct bridge to the proprietary call-level API of the database product. It
does not require the presence of ODBC.
Type3 Driver

These drivers provide a client with the generic network API that is then
translated into database specific access at the server level. In otherwords, the
JDBC driver on the client uses sockets to call a middleware application on the
server that transfers client requests into an API specific to the desired driver.
Type3 drivers are highly generic—it will run on any Java enabled platform
with the TCP/IP connection to the database server.

10

Type4 Driver

Using network protocols built into the database engine, Type4
JDBC drivers talk direcly to the database using Java sockets. This is the
most direct pure Java solution. In otherwords, Type4 Java drivers

converts JDBC requests into a database vendor’s database product.

4. Overview of the concepts involved in the
project
4.1 3-Tier client/server Architecture, object style

This project involves 3-tier architecture where the first tier is the client,
second tier is the ODBC server and the third tier is the database server. The
key characteristic of a 3-Tier client-server architecture is the separation of a
distributed computing environment into presentation, functionality, and data
components, such that there is a well-defined interface between each

component, and the software used to implement each component can be

replaced easily. The 3-tier client/server architecture in an object style is as

shown in figure 4.1

Tierl Tier2 Tier3
ViewObjects Server Legacy
Objects Applns.

Figure 4.1 3-Tier Client/Server,Object Style

12

The first tier represents the visual aspects of the business object-one or
more visual objects may each provide a different view. These visual objects
typically live on the client.In the middle tier are server objects that represent
the persistent data and the business logic functions. In the third tier are
existing databases and legacy applications.

Middle-tier server objects interact with their clients and implement the
logic of the business object. They can extract their persistent state from
multipile data sources.The server object provides an integrated model of the
disparate data sources and backend applications.

The clients typically interact with the middle-tier server objects via an
ORB. Clients must never interact directly with third-tier datasources. These
sources must be toally encapsulated and abstracted by the middle-tier server
objects. In addition, middle-tier objects can communicae with each other via a
server ORB that they can use to balance loads, orchestrate distributed
transactions, and exchange business events. This makes ORB based business
objects very scalable. Finally, the server objects communicate with the third

tier using traditional midleware.(Referred from Book [2] in bibliography)

4.1.1 Advantages Of 3-Tier Architecture

Isolation of concerns

The major advantage is that the front end clients are clearly separated
from the back end data manipulation facilities. This allows details of the data
storage mechanisms such as which database is used, record structure and field
names to be abstracted away from the client processes. All the front end sees

is an abstract operation request which takes mput and output parameters.

13

Enabling database migration

Database restructuring, upgrades, migration or other changes can be

performed without the necessity to stop or alter the client programs.
Front end modifications

Similarly, new front end clients can be introduced or old ones removed

without any need to modify the databases or provide new access mechanisms.
Data from multiple sources

A client may require data from a number of servers. This can be
handled easily because a CORBA server can communicate with multiple

servers at a time.
Reduced connections

With M client programs and N data servers direct connection requires
M x N connections; use of a 3-Tier architecture reduces this to M + N

connections.
Reduced database loading

In a Three Tier Architecture, not only does the database machine
benefit from fewer connections but any data caching operations result in
fewer data operations and therefore less throughput. In addition, this saving is
concentrated on those very queries that are most commonly performed, thus
reducing the potential for conflict on any hot-spots in the data.(Referred from

URL [2] in Bibliography].

4.2 CORBA Overview
In a normal object oriented program written in C++ or Java, the

program contains all of the classes that the application needs. The compiler

14

compiles and links these objects. When these objects are instantiatiated with
the new statement, they are created in the application's memory space and
methods execute as part of a single process.

CORBA is a technology that allows a client application to call objects
that reside on a server. The server may be running on the same machine or on
a machine 3,000 miles away. At its most basic level, CORBA is extremely
simple - instead of instantiating an object in our process's memory space, we
instantiate the object on a server machine somewhere on the network. The
calls to the object's methods and the parameters passed to the methods are
then packaged in the form of a network packet and sent to the server. The
function actually runs on the server, and any results are sent back to the caller
through the network.

The advantage of this approach is that the server can act as a high-
powered, central shared resource. The server can have databases or other
local services that the server-based CORBA objects can access. The
disadvantage, of course, is speed. The number of function calls you can make
per second is severely limited by the speed of the network. That holds true for
any technology that uses a network connection for data transport, so CORBA
is not unique. DCOM and even sockets suffer from the same delays.

One thing unique to the CORBA approach is a facility called the ORB
(Object Request Broker). The ORB runs as part of the client and server
processes and handles the network connection between the two. In this
projectVisiBroker ORB is used.(Referred from URL [3] in Bibliography].
With VisiBroker, the client and server machines also use a service called the
OSAGENT. The OSAGENT is contacted by a client ORB at a standard port
number (generally 14000). The OSAGENT acts as a directory that helps a
client ORB to find an object that it is looking for.

15

4.3 CORBA Architecture
The architecture of CORBA is shown in figure 4.3

e HR e

Figure 4.3 Structure of CORBA O

The Client IDL stubs

The Client IDL stubs provide static interfaces to object services. These
precompiled stubs define how clients invoke corresponding services on the
servers.A client must have an IDL stub for each interface it uses on the server.
The stubs include code to perform marshaling.

The Dynamic Invocation Interface(DII)

DII lets us discover methods to be invoked at runtime. CORBA defines
standard APIs for looking up the metadata that defines the server interface,
generating the parameters, issuing the remote call, and getting back the
results.

The Interface Repository APIs
The Interface Repository is a run-time distributed database that

contains machine-readable versions of the IDL-defined interfaces.

16

The Object Request Broker(ORB)

The ORB is the central component in CORBA. It provides a
mechanism for transparently communicating client requests to target object
implementations. It simplifies distributed programming by decoupling the
client from thr details of the method invocations, and hence makes client
requests appear to be local procedure calls.

The Object Interface

The Object Interface consists of few APIs to local services that may be
of interest to an application.

The Server IDL stubs(skeletons)

The server IDL stubs provide static interfaces to each exported by the
server. '

The Dynamic skeleton Interface(DSI)

DSI provides a run-time binding mechanism for servers that need to
handle incoming method calls for components that do not have IDL based
compiled skeketons. The Dynamic skeleton looks at the parameter values in
an incoming message to figure out who it's for--that is, the target object and
method.

The Object Adapter

The Object Adapter sits on the top of the ORB's core communication
services and obtains requests for services on behalf of the server objects. It
provides the run-time environment for instantiating server objects, passing
requests to them, and assigning them Object IDs.CORBA calls the IDs Object
References.The OA also registers the classes it supports and their run-time

instances(i.e.,objects) with the Implementation Repository.

17

The Implementation Repository
The Implementation Repository provides a run-time repository of
information about the classes a server supports, the objects that are

instantiated, and their IDs. (Referred from Book [2] in Bibliography).

4.4 CORBA static method invocation

Since static method invocation is involved in the project, the following

discussion gives a brief overview of the static method invocation in CORBA.

> Create IDL definitions |
Interface
Z : Repository
_/ Skeleton
Client IDL stubs Example Servant
\ 11868 +
Implement client Implement Servant
OA
Implementa
Client class Servant class tion .

Repository

Figure 4.4 Static method invocation

Figure 4.4 shows the steps we go through to create server classes,
provide interface stubs for them, store their definitions in the Interface
repository, instantiating yhe objects at run-time, and record their presence
with the Implementation Repository.The steps involved are as follows
Define Server interfaces using Interface Definition Language

The IDL is the means by which objects tell their potential clients what

operations are available and how they should be invoked. The IDL definition
18

language defines the type of objects, their attributes, the methods they export,
and the method parameters.
Bind the interface definitions to the Interface Repository

The IDL information is loaded in an Interface Repository that programs
can access at run-time.
Run the IDL file through the language compiler

A typical CORBA precompiler is capable of generating atleast three
types of output files:
1. import files that describe the objects to an Interface Repository
2. client stubs for the IDL defined methods-- these stubs are invoked by a
client program that needs to statically access the IDL-defined services via
ORB. |
3.server skeletons that call the methods on the server. They are also called up-
call interfaces.
Add the implementation code

The code that implements the methods in the skeleton must be
supplied. In otherwords server classes must be created.
Compile the code

The code is compiled using a regular language compiler.
Register the run-time objects with the Implementation Repository

The Implementation Repository must know which classes are
supported on a particular server. The ORB uses this information to locate
active objects or to request the activation of objects on a particular server.
Instantiate the objects on the server

At startup time, a server Object Adapter may instantiate on demand

server objects that service remote client method invocations. These run-time

objects are instances of our implementation classes.

19

Implement the client code

The client invokes CORBA objects using language-specific bindings.
These stubs take care of all marshaling and unmarshaling.
Compile the client code

This is done using a regular language compiler.

4.5 Benefits of using CORBA ORB

CORBA is the best client/server middleware ever defined. To illustrate
why CORBA ORBs make such great client/server middleware, the short list
of benefits that every CORBA ORB provides is figured out.(Referred from
Book [2] in Bibliography).
Static and dynamic method invocations

A CORBA ORB lets us to either statically define our method
invocations at compile time, or it lets us dynamically discover them at run-
time.
High-level language bindings

A CORBA ORB lets us invoke methods on server objects using our
high-level language of choice. It doesn’t matter in what language server
objects are written in. CORBA seperates interface from implementation and
provides language-neutral data types that makes it possible to call objects
across language and operating system boundaries.
Self-describing system

Every CORBA ORB must support an Interface Repository that
contains real-time information describing the functions a server provides and
their parameters. The clients use metadata to discover how to invoke services
at run time. No other form of client/server middleware provides this type of

run-time metadata and language independent definitions of all its services.

20

Local/Remote Transparency

An ORB can run in a standalone mode on a laptop, or it can be
interconnected to every other ORB in the universe using Internet Inter ORB
Protocols(IIOP). An ORB can broker inter-object calls within a single
process, multiple processes runnimg within the same machine, or multiple
processes running across networks and operating system.
Built-in security and transactions

The ORB includes context information in its messages to handle
security and transactions across machine and ORB boundaries.
Polymorphic messaging

In contrast to other forms of middleware, an ORB does not simply

invoke a remote function—it invokes a function on a target object.

21

5. Hardware and Software Environment

The hardware environment under which the system is developed is as

follows:

A LAN with atleast two Pentiumll machines

e 64 MB RAM

e 43 GBHDD

The software requirements of the system are as follows
e Windows98 Operating system

e JDK 1.2

o VC++6.0

e Visigenic Vbroker ORB for Java and CORBA3.1

o TCP/IP installed.

e MS Access

22

6. Implementation Of the Project
6.1Class Diagram

Figure 6.1 Class diagram

The Class diagram is shown in figure 6.1. The implementation of the

project is as follows

23

The system is divided into three parts
1.DBMServant
2.DBMServer
3.The Client

The DBMServant is the actual driver. All the database drivers are
present here.

DBMServer is the proxy for the DBMServant. It creates an object for
the DBMServant class and registers with the ORB which allows the client to
access the driver.

The Client is any client that supports ODBC or JDBC. They can
manipulate with the database using the DBMServant class.

The detailed description of the implementation of the project is
presented below.

The first step in the development process is to create language
independent IDL definitions of the server’s interfaces. Here the IDL
definition consists of two interfaces namely RecordSetl and DBManager
The dbm.idl file contains the IDL for both the interfaces. The interfaces are
defined inside the module “dbm”.A module is the CORBA equivalent of the
java package or a C++ namespace. It provides a naming context for a set of
related interfaces. Names must be unique within a module’s scoping context.

The two interfaces in the dbm module are as follows

6.2 RecordSetl Interface
The Interface RecordSet] consists of five methods as follows
1.1ast()
2.first()
3.next()

4.previous()

5.getString()

The methods last(),first(),previous() and next() are written so as to
fetch the last, first, next and previous records from the given table m a
particular database.

The method getString() is written so as to fetch the item from the table
given the column number.

The specification of the methods are only allowed in the interface. All
the implementations of the methods in this interface are provided in the

class that implements this interface.

6.3 DBManager Interface

The Interface DBManager acts as the middleware. It consists of four
methods as follows

1. Long openConnection(String dsn, String user, String pwd);

2. Boolean closeConnection(long connectionld);

3. RecordSetl createRecordSet(long connectionld, String query);

4. Boolean execute(long connectionld, String stmt);

The openConnection method opens a connection with the particular
database given the dsnusername and password. On success, it returns a
unique connectionld for each connection established. This connectionld is
used for further transactions. On failure it returns zero.

The closeConnection method closes the connection that is currently
opened given a valid connectionld. It returns true indicating the successful
close of the connection if the connectionld provided is a valid one. If the

connectionld is invalid it returns false.

The RecordSetl method executes the query which is passed as the
parameter to it. It creates a RecordSet object. It returns a reference to the
RecordSet Object .

The execute method executes the DML/DDL statement which 1s
passed as the parameter to it. On succesful execution of the statement it
returns true. Otherwise it returns false.

The implementation of the above methods are provided in the
DBMServant class.

The idl file is compiled using a IDL-to-Java compiler. Compiling the
idl file generates the following classes and the interface.

e _DBManagerImplBase and _RecordSetlimplBase
e DBManagerHelper and RecordSetIHelper
e DBManagerHolder and RecordSetIHolder
e st DBManager and _st_RecordSetl
e sk DBManager and _sk RecordSetl
e _example DBManager and _example RecordSetl
e DBManager and RecordSetl
¢ DBManagerOperations and RecordSetlOperations
e _tie DBManager and _tie RecordSetl
Figure 6.3 shows the Java classes and interfaces generated by the

id12java compiler.The functions of the various classes and the interface

generated are as follows

26

Client_side java Server side java

Figure 6.3 java classes and interfaces generated by idl2java compiler

_DBManagerImpiBase

This is the java class that implements the CORBA server side skeleton
for DBManager. It unmarshals the arguments for the DBManager object. In
addition, this is the class that brings together the CORBA and Java object
models. It does this by being a Java object that also implements the Java
org.omg.CORBA.object interface. This is the root CORBA interface; all
CORBA objects must implement it. The implementation of DBManager will
simply inherit this dual functionality by extending the DBManager class.

27

_st_DBManager

st DBManager is a Java class that implements the client side stub for
the DBManager object. It’s an internal implementation of the DBManager
interface that provides marshaling functions.
DBManagerHelper

DBManagerHelper is a Java class that provides useful helper
functions for DBManager clients. The compiler automatically generates
codes for a narrow function that lets clients cast CORBA object references
to the DBManager type. In addition to the required CORBA helper
functions, the visibroker implementations provide a very useful, but non
standard function called bind; it is used by clients to locate objects of this
type. In this project, this is used to find remote objects that implements the
DBManager interface.
DBManagerHolder

DBManagerHolder is a Java class that holds a public instance member
of type DBManager. It is used by clients and servers to pass objects of type
DBManager as out and inout parameters inside method invocations.
DBManager

DBManager is a Java Interface. It maps the DBManager interface to
the corresponding Java interface. The code that implements this interface
must be provided.
_example_DBManager

_example_DBManager is an example class for the DBManager object
implementation. It contains constructors and example methods for the
methods that were found in the dbm.idl. With this example as a starting

point, completing the DBManager object implementation is easy.

RecordSet

RecordSet is a Java interface. It maps the RecordSet interface to the
corresponding Java interface.

The functions of the classes generated for the RecordSet are same as

that for DBManager.

6.4 DBMServant

Description

The DBMServant class contains the implementations for all the
methods that are specified in the Interface DBManager.

In addition DBMServant also contains the methods
insertConnectionIntoDB and UpdateConnectionlnDB. ~ The method
InsertConnectionlnDB inserts into the database the connectionld, DSN and
the time at which the connection is established to the database for every
connection that is made. The method UpdateConnectionInDB insert the exit
time of a particular given its connection ID. These information are later used
for monitoring the connections.

With the CORBA inheritance model, the server implementation class
is always derived from the corresponding _DBManagerimplBase class. This
is how the servant class inherits the functionality of both the CORBA and
Java object models. The skeleton function is also inherited from this class.
These are up-calls that allow the ORB to automatically invoke the object’s
methods. In addition to implementing the DBMServer functions, the
constructor for the DBMServant class. The constructor calls its super—in
this case, the parent is the skeleton class—to create a named implementation

object. This means that each instance of DBMServant will have a persistant

name.

29

Usage

The usage of this class is to get the reference to this object and invoke
openConnection to get unique connectionld. All other database operations
like executing a DDL/DML/SQL can be done by invoking the appropriate
methods.
Related Class

The class that is related to the DBMServant class is the RecordSet
class. The queries in this class is sent to the RecordSet class for actual

execution. After the execution of the query the results are returned back to

the DBMServant class.

6.5 RecordSet class
Description

The RecordSet class contains all the implementations of the methods
present in the RecordSetl interface. The server implementation is derived
from the corresponding RecordSetlimplBase class.
Usage

The usage of the RecordSet class is to get the reference to this object

and invoke the appropriate navigation methods.

6.6 DBMServer class
Description:
The DBMServer class provides the main function on the server side.

The main program is managing multiple objects, each running in its own
thread.

30

Usage:
The DBMServer class performs the following functions:
1.Initialize the ORB.
2.Initialize the BOA.
3.Create a DBMServant object.
4.Export to the ORB the newly created object.

5.Wait for incoming requests.

DBMServer ORB BOA
]]]
 ORBinit
BOA init >
Servant
Obisis-ready >
___ Impkisready ‘ >
Wait for client rjquests

Figure 6.6 object interaction diagram for server side

31

The org.omg.CORBA.ORB class is part of the visibroker run-time. It
implements in Java most of the function that OMG specifies in the
CORBA::ORB interface. The org.omg.CORBA.ORB.nit is a Java class
method. This method returns an object of type org.omg.CORBA.ORB. This
method also lets to pass in the main program’s command line arguments,
which lets to set certain ORB related properties at run-time. Now, a
reference to the visibroker ORB object is obtained. This object is invoked to
initialize the BOA. The BOA_init call returns an object reference for BOA.
This reference is then used to register with the BOA the newly created
DBMServant object. Finally, the BOA is told that the object is ready for
business. The server side is now complete.

Related Classes:
The classes related to the DBMServer class is the DBMServant class.

6.7 DBMClient class
Description:
There are two client programs. One is the Java client and the other is
the VC++ client.
The Java client is explained here and the VC++ client is dealt later.
The Java client is DBMClient. This class provides the main method.
Usage:
The object interaction diagram is shown in figure 4.7. The DBMClient
class performs the following functions:
1.Initialize the ORB.
2.Locate the remote object.

3.Invoke the appropriate methods.

32

DBMClient ORB DBMHelper DBMServant

Client server

6.7 Client side object interaction

To invoke the methods in the server, the bind method of the
DBManagerHelper class is used. Now, the methods in the server is called as
if calling a local method no matter wherever the mehod resides in the
network.

Related classes:

The DBMClient class has no related classes.

33

Visibroker osagent

To run the client/server program, visibroker osagent is started first.
This osagent provides fault tolerant location services. The osagent must be

running on atleast one machine in the LAN environment.

34

7. VC++ connectivity

7.1 Introduction

One of the main benefits of CORBA is that is lets objects
communicate across languages and operationg syatems. Here a VC++ client
is developed and made to talk to the Java counterparts. A VC++ client can
invoke the Java objects. This is established using Borland/Visigenic
Visibroker for VC++

A VC+ client is also developed to illustrate the reusability of code in
this project. A VC++ client can communicate with the database and perform
database programming without knowing the interfaces involved in database
programming. To train a programmer in database programming in VC++

consumes time. This problem can allevated as follows:

7.2 The IDL

The IDL file is same as for Java client. Because CORBA IDL is
language independent the dbm.idl used in Java can be used again in VC++.
This IDL file is mapped to something that C++ clients and servers can
understand. This is done using an IDL-to-CPP compiler. The compiler
generates four C++ files from the IDL input. The files generated are shown
in figure 6.2
The functions performed by the varius classes are as follows:
DBManager_s.cpp

The DBManger s.cpp is the server skeleton for the methods of
DBManager class. This is the code that unmarshals calls for the DBManager

object and then invokes the implementation of the object.

35

Client server

Figure 7.2 C++ files generated by idI2cpp compiler

DBManager_s.hh

DBManager s.hh is the server header file that includes the class
definitions for the server skeletons inplemented in DBManager s.cpp
DBManager _c.cpp

DBManager c.cpp contains a class called DBManager that serves as a
proxy on the client for the DBManager object. It provides stubs and
marshaling functions for all the methods defined in the DBManager
interface. It also implements a bind method that helps the client locate the

DBManager server.

36

DBManager_c.hh

DBManager c.hh is a client header file that includes declarations and
class definitions for the stub implementations in DBManager c.cpp.

The functions of the classes generated for yhe RecordSetl is same as

that for DBManager interface

7.3 VC++ Implementation

The VC++ implementation of the methods present in the DBManager
interface and the RecordSetl interface which corresponds to the
DBMServant class and RecordSet class in Java is not necessary. The
implementation that is provided once in Java can be used by any other
clients. This is the major advantage of this project.i.e., the methods that are
implemented in the DBMServant class can be used by the C++ client

without any manual code modifications.

7.4 VC++ Client

The VC++ client is very similar to the Java counterpart. . It initializes
the ORB, locates the remote object and invokes the appropriate methods.
The bind method is used by the client inorder to locate the DBManager

Proxy Server.

7.5 VC++ Server

The Java server acts as the server for both Java and VC++. The VC++

Client can communicate with the Java server as shown in figure 6.5

37

1(0)

Figure 7.5 C++ client invoking Java Server

The figure7.5 demonstrates how a C++ ORB on the client side can
talk to a Java ORB on the server side via the Internet Inter ORB
Protocol(IIOP) and illustrates that ORBs allow to transparently invoke
objects across languages.In this case VC++ client calls Java server object

without requiring any changes to either side.

7.6 Running the client server application

To run the client/server program, first the visibroker OSAgent is
started. The OSAgent must be present atleast on one computer in the
network and the client must be informed about the location of the OSAgent.
After that the server is started. The server program must always be running

to service the clients at any time. Finally the client is fired off.

38

8. Connection Monitoring

8.1 Illustration Of Connection Monitoring

A Connection Monitoring program is developed for the network
administrator to monitor the clients that are presently connected to the
database. This program displays the connectionld, Data Source Name, Start-
time of the connection and End-time of the connection of all the clients that
are connected to the darabase during a particular time interval.

In the DBMServant class, whenever a connection is established in the
openConnection method, the start-time at which the connection is
established is got and put into the database. Likewise the end-time at which
the connection terminates is also got in the closeConnection method and put
in the database.

The start-time and end-time are obtained with the help of the
TimeStamp class which comes under the java.util package. The arguments
passed to TimeStamp are year, month, day, hour, minute, second and
millisecond.

The method insertConnectionIntoDB in the DBMServant class adds
start-time into the database along with the the connectionld and DSN of that
particular connection.

The method UpdateConnectionInDB in the DBMServant class takes
the connectionld and end-time as its arguments and inserts the end-time into
the database such that the connectionId of the start-time and the end-time are
the same.

Given a particular time interval, the class DBMMonitor displays all

the clients that were connected during the given time interval. The details

39

includes the connectionld, DSN, start-time and end-time of the connection
with the database.

This connection Monitoring allows the network administrator to have
an idea of the various clients that are connected during a particular time

interval.

40

9. System Testing

Software testing is considered as one of the final oppurtunity for the
developer to detect and convert (or) rectify any defects that may be in the
software. Software testing is the process of testing a program with the
explicit intention of finding errors that are making the program fail.

In short, system testing and quality assurance is a review of the
software products and related documentation for completion, correctness,
reliability and maintainability.

Software testing is defined as a process by which one detects the
defects in the software. The first step in system testing is to prepare a plan
that will test all aspects of the system. System testing can be grouped into
two levels
1.Unit Testing
2.Integrated Testing

The system here is tested on the top of a real time application namely
Employee Management System where the client here is the Java client, the

middletier is the ODBC server and the backend being MSAccess.

41

9.1 Employee Management System
Features Of Employee Management System
The features of the system includes
1. giving up-to-date minute status and information about the employees and
their monthly salary details.
2. Computerising various operations like
B Employee details
B Monthly Salary details

B Lecave details

Employee Management System Overview
The proposed system consists of following features which are
desirable in any Employee Management System activities
¢ Provision for on-line queries and status
e Centralised database
¢ Provision for on-line data validation
e User friendly, easy to use system for the non technical employees of an
organisation

e System with full data security and all recovery facilities.

42

Employee Management System Flowchart

Employee Monthly
Master Details
Table ———— P . o BE—— Table
Processing
Salary Pay slip
statement
Input Design

In input design user oriented inputs are converted to computer based
format. Inaccurate inputting of data may lead to flaws during
processing.Commonly these mistakes occur at data entry level. Input design
objectives in the application are
1. contrlling amounts of inputs
2. avoid data errors
3. avoid extra steps

4. keep process simple

43

Output Design

In output design the emphasis is producing the bard copy of the
information or displaying the output.

One of the most important reasons which tempts the system to go for a
new system is the output. Hence a predetermination of the output
requirements is required before going for the actual system.

The main hard copy reports generated for the Employee Management
system are
1. salary statement
2. pay slip
Database design

The most important aspect of building an application system is the
design of tables. The data they store must be organised acording to user
requirements. The important tables constructed are as follows
Employee Master

The Employee Master table captures the details of the employee.
Monthly Details

This table captures the monthly details of the employees such as
number of working days, number of days worked,etc.

Testing

The application is designed using Java. All the queries are done using
the methods in the RecordSet class. The DBMServant class is again the
. implementation class and the DBMServer is the server for this application.

44

10.Conclusion

Middleware Database drivers is successfully developed.
The three tiers, client tier, ODBC server tier and the database
tier are developed and the connection between the client and the
server is established. The client can now communicate with any
database on the backend without the database drivers on the
client machine. The program is tested using an Employee
Management System application and it found working. The
VC++ client also communicates with the Java server and
performs database manipulations.

The Connection Monitoring program successfully displays
the connections established with the ODBC server in a particular
time interval. A chart displaying the connections that are
maintained with the ODBC server at various time intervals is

also drawn.

Scope for further development

For the purpose of Network Administrator, the project can
be further developed to monitor parameters like connection
response time, determining the performance of the server,etc.

Middleware database can also be extended to work with

other clients like Visual Basic client, Power Builder client,etc.

43

BIBLIOGRAPHY

URLSs

[1] http://www.networkcomputing.com/713/713workODBC.html
Description of ODBC and JDBC drivers and networking concepts.
[2] http://www.ftech.co.uk/
Description of three tier architecture and its advantages.
[3] http://www.omg.org/
Description of CORBA.
[4] http://java.sun.com/products/jdbc/
Description of JDBC documentation.
[5] http://www .sei.cmu.edu/str/description/threetier-body . html
Description of three tier architecture.
Books
[1] Cay S. Horstmann, Gary Cornell, “Core Java2 Volume II Advanced
Features” Prentice Hall, pp 203-253, 298-317, 2000
[2] Robert Orfali, Dan Harkey, “Client/server programming with java and
CORBA” Shroff Publishers and Distributers Pvt. Ltd., pp 10-16, 27-30, 64-
82,97-111, 521-573, 1998
[3] Patrick Naughton, Herbert Schilt, “The Complete Referece Java2”, Tata

McGraw Hill Publications, pp 717-780, 1999

/************* IDL *************/

module dbm
{
interface RecordSetl
{
boolean first():
boolean next ();
boolean previous();
boolean last()}:
boolean isFirst();
boolean isLast();
string getString(in long col);
i
interface DBManager
{
long openConnection(in string dsn, in string user, in
string pwd);
boolean closeConnection(in long connectionId);
RecordSetI createRecordSet (in long connectionId, in string
query) ;
boolean execute (in long connectionId, in string stmt);

}:
b

sk ok ok 3k 3k o 5K % ok 5k 3 sk sk 3k ok sk ok sk ok 3k sk sk ok sk ok ok ok sk ok sk 3K ok sk sk ok ok ok 3 ok sk e ok sk ok sk sk ok ok ok ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk kR sk skok sk ok ok kR ock sk ok ok ok
import dbm.*;

import org.omg.CORBA.*;

import java.sqgl.*;

import java.util.*;
/***

* CLASS

* DBMServant
* DESCRIPTION
* Contains all the interface function implementations, which

helps the user to open and close db connections and as well as to
execute DML/DDL/SQL statements

* USAGE)

* Get the reference to this object and invoke OpenConnection
to get the unique connection id. With the help of this connection
id, all other database operations like executing a DDL/DML/SQL can
be done by invoking appropriate methods.

* RELATED CLASSES

* RecordSet

* ok ok ok ok ok ok ok ko sk sk ek sk sk ek sk b ek sk ke ke sk ke ke ok ke ke ke sk Rk ke sk ke ke ke ke ke ke ke ke ke ok ke ke ke ke ke ke ke ke ok ok ko ke ok ok

public class DBMServant extends ~DBManagerImplBase

{
/17

// Unique Connection Identifier.

//

private static int nextConnectionId = 0;

/17

// Connections

//

private Hashtable connections = new Hashtable ()

public DBMServant (String name) {
super (name) ;

}

JI)IIIIIIII 171011071700 70 07007707777 77077777077771777777777/777/7

// Opens a new database connection.

//

// RETURN VALUE:

// On SUCCESS - Returns Unigque connection identifier , which
can be used for further transaction.

// On FAILURE - It returns O (Zero).

JIIIIITT11 100707770777 7777707700777777777777777770777777777777777777

public int openConnection (String dsn, String user, String pwd)
{ .
System.out.println(dsn + " " + user + " " + pwd);
try |
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver™) ;
Connection con =
DriverManager.getConnection("jdbc:odbc:" + dsn,user,ped);
/77
// Incrementing the unique connection id for the this
connection.
//

nextConnectionId++;

/17
// Making the connection entry in the hash table.
//

connections.put ("" + nextConnectionId, con);

java.util.Date d = new java.util.Date();

Timestamp startTime = new Timestamp (d.getYear(),
d.getMonth (),
d.getDate (),
d.getHours (),
d.getMinutes (
d.getSeconds (

)
), 0):

InsertConnectionIntoDB (nextConnectionId, dsn,
startTime) ;

/17
// Returning the connection identifier of this
connection
//
return nextConnectionId;
} catch (Exception ex) {
ex.printStackTrace();
return 0;

JI1IIIILTTI0 7717777777777 777777777777777/7777777/7/7/7/7777777777777/77/
/1177

// Closes the connection with the help of the specified unique

// connection identifier.

!/

// RETURN VALUE:

// On SUCCESS - true

// On FAILURE - false

JI11117 7070770007700 77707777777/77777777777007777777777777777777777
/1117

public boolean closeConnection (int connectionld)

{

boolean rv = false;
try |
Connection con = (Connection) connections.get("" +
connectionId);

con.close ()

connections.remove ("" + connectionId);
rv = true;

java.util.Date d = new java.util.Date();

Timestamp endTime = new Timestamp (d.getYear (),
d.getMonth (),
d.getDate (),
d.getHours (),
d.getMinutes (),
d.getSeconds (), 0);

UpdateConnectionInDB(connectionld, endTime) ;
} catch (Exception ex) {
ex.printStackTrace () ;

}

return rvy;

//
/1777

// Executes the given query and creates a RecordSet.

/7

// RETURN VALUE:

// RecordSet object reference will be returned.

//
/1717
public RecordSetlI createRecordSet (int connectionId, String
query)
{
RecordSetI recordSet = null;
try {
Connection con = (Connection) connections.get ("" +
connectionld);
Statement stmt

con.createStatement () ;
ResultSet rs = stmt.executeQuery(query);

recordSet = new RecordSet (rs):;

I

ORB orb ORB.init () ;
BOA boa = orb.BOA init();
boa.obj is ready(recordSet);

} catch (Exception ex) {
ex.printStackTrace () ;

}

return recordSet;

//
/1777

// Executes the given DML/DDL.

//

// RETURN VALUE:

// On SUCCESS - true

// On FAILURE - false

JIII)IIIT)11 0 1017710707117 17 77777777777 7700777777777777777
11777
public boolean execute (int connectionId, String sqgl)

{

boolean rv = false;
try |
Connection con = (Connection) connections.get ("" +
connectionId);
Statement stmt = con.createStatement():;

System.out.println(sqgl);
stmt.execute(sql);

rv = true;
} catch (Exception ex) {
System.out.println ("ERROR: " + eXx);
// ex.printStackTrace () ;
}

return rv;

}

public void InsertConnectionIntoDB(int connectionId, String
dsn,

Timestamp startTime)

try {
String st = startTime.toString();

String SQL = "INSERT INTO Connections VALUES (" +
connectionId + ", '™ 4+ dsn + "', '" +
St + " , 1" + St + LA |) ";

System.out.println (SQL) ;

Connection tcon =
DriverManager.getConnection("jdbc:odbc:dbmadmin",
"admj_n", "") ;
Statement tstmt = tcon.createStatement();
tstmt.execute (SQL) ;

tstmt.close () ;
} catch (Exception ex) {
ex.printStackTrace () ;
}
}

public void UpdateConnectionInDB(int connectionId, Timestamp
endTime)
{
try {
String st = endTime.toString();

String SQL = "UPDATE Connections SET EndTime = '" +
endTime +
"' WHERE connectionlId = " +
connectionId;

System.out.println (SQL);

Connection tcon =
DriverManager.getConnection ("jdbc:odbc:dbmadmin",
"admin", " ") ;
Statement tstmt = tcon.createStatement ()
tstmt.execute (SQL) ;

tstmt.close()
} catch (Exception ex) {
ex.printStackTrace();

}

}

s sk sk ok ok 3K 3K 5k 3k sk ok ok ok ok 3k 3k 5k 3k sk ok ok sk ok sk ok ok sk 3k ke ke sk 3k sk sk sk ok ok ok ok 3k ok s sk ok ok ok sk ok sk 3k sk sk sk ok ok ok ok ok sk ok ok ok sk ok Sk ok ok ok ok ke ok sk sk kokokk ok ok ok
import org.omg.CORBA. *;

import java.sqgl.*;

import java.util.*;

import java.io.*;

import dbm.*;
/**/

* CLASS

* F ok X X

RecordSet
DESCRIPTION
Contains all the interface function implementations, which
helps the user to navigate through the record set.
USAGE
Get the reference to this object and invoke appropriate
navigation methods.
RELATED CLASSES
none

/**/

public class RecordSet extends _RecordSetIImplBase

{

/17

// Reference to ResultSet.

//

private java.sqgl.ResultSet rs;

/17

// Constructor with initializer.

//

public RecordSet (ResultSet rs) {
this.rs = rs;

}

/17

// Moves the pointer to the first record.

//

public boolean first()

{

boolean rv = false;

try {
return rs.first();
} catch (Exception ex) {

ex.printStackTrace () ;
}
return rv;

}
s

// Moves the pointer to the next record.
//
public boolean next ()
{
boolean rv = false;
try {

return rs.next();
} catch (Exception ex) {
ex.printStackTrace();

return rv;

}
/17

// Moves the pointer to the previous record.
//

public boolean previous()

{

boolean rv = false;

try A
rv = rs.previous();

} catch (Exception ex) {
ex.printStackTrace () ;

}

return rv;

}
/17

// Moves the pointer to the last record.

//
public boolean last()

{

boolean rv = false;

try |
rv = rs.last();
} catch (Exception ex) {

ex.printStackTrace();
.
return rv;

}
/177

// Checks whether the record pointer is in first record
//
public boolean isFirst ()
{
boolean rv = false;
try {
rv = rs.isFirst (),
} catch (Exception ex) {
ex.printStackTrace();
}

return rv;

}
/17

// Checks whether the record pointer is in last record
//
public boolean isLast ()
{
boolean rv = false;
try {
rv = rs.isLast ()i
} catch (Exception ex) {
ex.printStackTrace();
}
return rv;

}

/17
// Returns the value of the specified column of the current
TOW.
//
public String getString(int col) {
String rv = "";
try {
rv = rs.getString(col);
} catch (Exception ex) {

ex.printStackTrace();

}

return rv;

}

**

import org.omg.CORBA.*;

public class DBMServer |
public static void main(String[] args) {
ORB orb = ORB.init();
BOA boa = orb.BOA init();
DBMServant dbm = new DBMServant ("dbm");
boa.obj is ready (dbm);
System.out.println("Server ready");
boa.impl is ready();
}
-

ok hkkkkkhkkdkhkhkhkdhhkhkhkdk ok dkdkkhkddkdhdkdhhhhkkhkhkhkhkhkhkhkhkhkhhkhkkdhdhdkkkkkdkdkdok

import org.omg.CORBA.*;
import java.awt.*;
import java.awt.event.*;
import dbm.*;

public class DBMClient extends Frame implements ActionListener {
private TextField txtRollno;
private TextField txtName;
private TextField txtAge:;

private DBManager dbm;

private String dsn;
private String user;
private String pwd;
private int conld;

private ORB orb;

public DBMClient (String title, Stringl] args) {
super(title);

dsn = args(O0];
user = argsil]l;
pwd = args[2];
try {
orb = ORB.init();

dbm = DBManagerHelper.bind(orb, "dbm");

conId = dbm.openConnection(dsn, user, pwd) ;
} catch (Exception ex) {

ex.printStackTrace();

}

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent we) |
dispose();

try {
dbm.closeConnection (conlId);
dbm = nuill;

} catch (Exception ex) {

ex.printStackTrace () ;

txtRollno = new TextField();
txtName = new TextField();
txtAge = new TextField():
Button bl = new Button ("Insert");
Button b2 new Button ("Update");
Button b3 new Button ("Delete");
()

4

Button b4 = new Button "Search"

setLayout (new GridLayout (5, 2));
add (new Label ("Roll Number: ")
add (txtRollno);

add (new Label ("Name: "));

add (txtName) ;

add (new Label ("Age: "))’

add (txtAge) ;

add (bl);
add (b2) ;
add (b3);
add (b4) ;

bl.addActionListener (this);
b2.addActionListener (this);
b3.addActionListener (this);
b4 .addActionlistener (this)

14

pack();
}

public void actionPerformed (ActionEvent ae) {
String cmd = ae.getActionCommand();

try {
if (cmd.equalsIgnoreCase("Search")) {
String SQL = "SELECT * FROM Biodata WHERE RollNo =

txtRollno.getText () ;
RecordSetI rs = dbm.createRecordSet (conlId, SQL);
if (rs.next()) {
txtName.setText (rs.getString(2));
txtAge.setText (rs.getString(3));
} else {
txtName.setText ("Not Found");
txtAge.setText ("Not Found");

(cmd.equalsIgnoreCase("Update")) {
"Update Biodata SET Name='" +
txtName.getText () + ", Age=" +

txtAge.getText ()7
System.out.println(SQL);
dbm. execute (conId, SQL);

} else 1if (cmd.equalsIgnoreCase("Insert")) {

} else if
String SQL =

String SQL = "Insert INTO Biodata VALUES (" +
txtRollno.getText () + ",'" +
txtName.getText () + "', " +

")";

txtAge.getText () +
system.out.println(SQL);
dbm.execute (conId, SQL);

} else 1if (cmd.equalsIgnoreCase("Delete")) {
string SQL = "Delete from BRiodata " +
" WHERE Rollno = " +

txtRollno.getText ()
System.out.println(SQL);

dbm.execute (conId, SQL);
}
} catch (Exception ex) {
ex.printStackTrace();
}
}

public static void main(String[] args) |

if (args.length == 3) {
(new DBMClient ("DB Manager Demo", args)).show();

} else {
System.out.println("Usuage: java DBMClient dsn user

pwd") ;

package dbm;
abstract public class _DBManagerImplBase extends
org.omg.CORBA.portable.Skeleton implements dbm.DBManager {
protected _DBManagerImplBase(java.lang.string name) {
super (name) ;
}
protected _DBManagerImplBase() {
}
public java.lang.Stringf[] _ids () |
return _ ids;
}
private static java.lang.String(] __ids = {
"IDL:dbm/DBManager:1.0"
i
public org.omg.CORBA.portable.MethodPointer[] ~methods () {
org.omg.CORBA.portable.MethodPointer[] methods = {
new org.omg.CORBA.portable.MethodPointer("openConnection",
0, 0),
new org.omg.CORBA.portable.MethodPointer("closeConnection",

new org.omg.CORBA.portable.MethodPointer("createRecordSet",

new org.omg.CORBA.portable.MethodPointer("execute", o, 3).,
}i
return methods;

}

public boolean ”execute(org.omg.CORBA.portable.MethodPointer

method, org.omg.CORBA.portable.InputStream input,
org.omg.CORBA.portable.Outputstream output) |

switch (method.interface id) {

case 0: {
: return dbm._DBManagerImplBase._execute(this,
method.method id, input, output);

}

}
throw new org.omg.CORBA.MARSHAL () ;

}

public static boolean _execute (dbm.DBManager self, int
_method_id, org.omg.CORBA.portable.InputStream ~input,
org.omg.CORBA.portable.OutputStream output) { -
switch (_method id) B
case 0: { -
java.lang.String dsn;
dsn = input.read_string();
java.lang.String user;

user = _input.read_string();
java.lang.String pwd;
pwd = _input.read_string();
int result = _self.openConnection(dsn,user,pwd);
_output.write_long(_result);
return false;
}
case 1: {
int connectionId;
connectionId = _input.read_long();
boolean result = _self.closeConnection(connectionId);
_output.write_boolean(_result);
return false;
}
case 2: {
int connectionld;

connectionId = _input.read long();
java.lang.String guery;
query = _input.read_string();

dbm.RecordSetI _result =
_self.createRecordSet(connectionId,query);

dbm.RecordSetIHelper.write (_output, _result);
return false;

}

case 3: {
int connectionId;
connectionId = _input.read_long();
java.lang.String stmt;
stmt = _input.read_string();
boolean result = _self.execute(connectionId,stmt);
_output.write_boolean(_result);
return false;

}

}
throw new org.omg.CORBA.MARSHAL() ;

}

**

package dbm;

public class example DBManager extends dbm. DBManagerlImplBase {

public ﬂexample_DBManager(java.lang.string name) {
super (name) ;

}

public example_ DBManager () {
super ()

}

public int openConnection (
java.lang.String dsn,
java.lang.String user,
java.lang.String pwd

) |
// implement operation...
return 0;

}

public boolean closeConnection (
int connectionId

) |
// implement operation...
return false;

} .

public dbm.RecordSetl createRecordSet (
int connectionId,
java.lang.String query

) |
// implement operation...
return null;

}

public boolean execute(
int connectionId,
java.lang.String stmt

) |
// implement operation...
return false;

}

**

package dbm;
public class st DBManager extends
org.omg.CORBA.portable.ObjectImpl implements dbm.DBManager {
public java.lang.String(] _ids() {
return _ ids;
}
private static java.lang.String[] ids = {
"TDL:dbm/DBManager:1.0" -
i
public int openConnection(
java.lang.String dsn,
java.lang.String user,
java.lang.String pwd

{
try {
org.omg.CORBA. portable.OutputStream _output =
this. request("openConnectlon true);
_output write string(dsn);
_output. wrlte_strlng(user);
output.write_string(pwd);
Brg.omg.CORBA.portable.InputStream _input =
this._invoke(output, null);

int result;

_result = _input. read long();

return _result,

}
catch (org.omg.CORBA.TRANSIENT _exception) {

return openConnection (
dsn,
user,
pwd

) ;

}
}

public boolean closeConnection (
int connectionId
) |
try f{
org.omg.CORBA.portable. OutputStream output =
this. request("closeConnectlon true);
_output. write long(connectlonld)
org.omg.CORBA. portable InputStream _input =
this. invoke(_output, null);
boolean result;
_result = _input.read_boolean();
return result;
}
catch (org.omg.CORBA.TRANSTENT _exception) {
return closeConnection/(
connectionId
) ;
}
}
public dbm.RecordSetI createRecordsSet (
int connectionId,
java.lang.String query
) .

{
try |

org.omg.CORBA. portable.OutputStream _output =
this. request("createRecordSet" true);
_output. write long(connectlonld)
_output. write strlng(query)
org.omg.CORBA. portable InputStream input =
this. invoke(output, null);
“dbm.RecordSetI _result;
_result = dbm.RecordSetIHelper.read(input);
return _result;

}
catch (org.omg.CORBA.TRANSIENT _exception) {

return createRecordSet(
connectionld,
guery
):
}
}
public boolean execute
int connectionId,
java.lang.String stmt
) A
try |
org.omg.CORBA. portable.OutputStream _output =

this. request ("execute", true);
_output. write long(connectlonld)
_output. wrlte_strlng(stmt)
org.omg.CORBA.portable.Inputstream _input =
this. invoke(_output, null);
boolean result;
_result = _input.read boolean();
return result;
}
catch (org.omg.CORBA.TRANSIENT exception) {
return execute (
connectionId,
stmt
)

}

**

package dbm;

public class _tie DBManager extends dbm. DBManagerImplBase {
private dbm.DBManagerOperations _delegatg;

public tie DBManager (dbm.DBManagerOperations delegate,
java.lang.String name)

{
super (name) ;
this. delegate = delegate;
}
public _tie_DBManager(dbm.DBManagerOperations delegate) {
this. delegate = delegate;
}
public dbm.DBManagerOperations _delegate () {
return this. delegate;
}
public int openConnection (
java.lang.String dsn,
java.lang.String user,
java.lang.String pwd
) |
return this._delegate.openConnection(
dsn,
user,
pwd
)
}
public boolean closeConnection (
int connectionId
) |
return this._delegate.closeConnection(
connectionld
);
}
public dbm.RecordSetlI createRecordsSet (
int connectionId,
java.lang.String query
) |
return this._delegate.createRecordSet(
connectionld,
guery
)i
}
public boolean execute(
int connectionld,
java.lang.String stmt
) A
return this. delegate.execute(
connectionld,
stmt) ;
}

package dbm;
public interface DBManager extends org.omg.CORBA.Object {
public int openConnection
java.lang.String dsn,
java.lang.String user,
java.lang.String pwd
)i
public boolean closeConnection (
int connectionId
)7
public dbm.RecordSetlI createRecordSet (
int connectionId,
java.lang.String query
)i
public boolean execute(
int connectionId,
java.lang.String stmt
)
}

* package dbm;
abstract public class DBManagerHelper ({

public static dbm.DBManager narrow (org.omg.CORBA.Object object)
{

return narrow (object, false);
}
private static dbm.DBManager narrow (org.omg.CORBA.Object
object, boolean is_a)
{
if (object == null) {
return null;
}
if (object instanceof dbm.DBManager) f{
return (dbm.DBManager) object;
}
if(is a || object._is_a(id())) |
dbm.DBManager result = new dbm. st DBManager();
((org.omg.CORBA.portable.ObjectImpl) result). set delegate
(((org.omg.CORBA.portable.ObjectImpl)
object). get delegate());
return result;
}
return null;
}
public static dbm.DBManager bind(org.omg.CORBA.ORB orb) {
return bind(orb, null, null, null);

}
public static dbm.DBManager pbind (org.omg.CORBA.ORB orb,
java.lang.String name)
{
return bind(orb, name, null, null);
}
public static dbm.DBManager bind (org.omg. CORBA.ORB orb,
java.lang.String name, java.lang.String host,
org.omg.CORBA.BindOptions options) {
return narrow{orb.bind(id(), name, host, options), true);
}
private static org.omg.CORBA.ORB _orb() {
return org.omg.CORBA.ORB.init ()’
}
public static dbm.DBManager
read(org.omg.CORBA.portable.InputStream _input) {
return dbm.DBManagerHelper.narrow(_ input.read _Object (),
true):;
}
public static void write (org.omg.CORBA.portable.OutputStream
_output, dbm.DBManager value) {
_output.write_object(value);
}
public static void insert (org.omg.CORBA.Any any, dbm.DBManager
value) {
org.omg.CORBA.portable.OutputStream output =
any.create output_stream();
write (output, value);
any.read value (output.create_input stream(), type());
}
public static dbm.DBManager extract (org.omg.CORBA.Any any) {
if (lany.type() .equal (type()))
throw new org.omg.CORBA.BAD TYPECODE () ;
}
return read(any.create_input_stream());
}
private static org.omg.CORBA.TypeCode _type;
public static org.omg.CORBA.TypeCode type () |
if(_type == null) {
_type = _orb().create_interface_tc(id(), "DBManager");
}
return _type;
}
public static java.lang.String 1id() {
return "IDL:dbm/DBManager:1.0";
}

package dbm;
final public class DBManagerHolder implements
org.omg.CORBA.portable.Streamable {

public dbm.DBManager value;

public DBManagerHolder () {

}
public DBManagerHolder(dbm.DBManager value) |

this.value = value;

}
public void _read(org.omg.CORBA.portable.InputStream input) {

value = DBManagerHelper.read(input);

}
public void _write(org.omg.CORBA.portable.OutputStream output)

{
DBManagerHelper.write(output, value) ;

}
public org.omg.CORBA.TypeCode _type () |
return DBManagerHelper.type();
}
}

* package dbm;
public interface DBManagerOperations {
public int openConnection (
java.lang.String dsn,
java.lang.String user,
java.lang.String pwd
);
public boolean closeConnection
int connectionId
)
public dbm.RecordSetl createRecordSet (
int connectionId,
java.lang.String query
)i
public boolean execute(
int connectionId,
java.lang.String stmt
)i

package dbm;
abstract public class _RecordSetIImplBase extends
org.omg.CORBA.portable.Skeleton implements dbm.RecordSetI {
protected _RecordSetIImplBase(java.lang.String name) |
super (name) ;
}
protected _RecordSetIImplBase() {
}
public java.lang.String[] _ids () |
return _ ids;
}
private static java.lang.String[] __ids = {
"IDL:dbm/RecordSetI:1.0"
}i
public org.omg.CORBA.portable.MethodPointer[] _methods () |
org.omg.CORBA.portable.MethodPointer[] methods = {
new org.omg.CORBA.portable.MethodPointer("next", 0o, 0),
new org.omg.CORBA.portable.MethodPointer("getString", 0,
1),
i
return methods;

}
public boolean execute(org.omg.CORBA.portable.MethodPointer

method, org.omg.CORBA.portable.InputStream input,
org.omg.CORBA.portable.OutputStream output) {
switch (method.interface_id) {
case 0: {
return dbm._RecordSetIImplBase._execute(this,
method.method _id, input, output):
}
}
throw new org.omg.CORBA.MARSHAL();
}
public static boolean _execute (dbm.RecordSetI _self, int
_method_id, org.omg.CORBA.portable. InputStream _input,
org.omg.CORBA.portable.OutputStream _output) {
switch(method_id) {
case 0: {
boolean _result = _self.next();
_output.write boolean(_result);
return false; B
}

case 1: {

int col;
col = input.read long();
java.lang.String result = _self.getString(col);

_output.write string(_result);

return false;

}

}
throw new org.omg.CORBA.MARSHAL();

}

**

package dbm;
public class

{

_example_RecordSetl extends dbm. RecordSetIImplBase

public _example_RecordSetI(java.lang.String name) {
super (name) ;

}
public _example_RecordSetI() {

super () ;

}

public boolean next () {
// implement operation...
return false;

}
public java.lang.String getString(

int col

) A

// implement operation...
return null;

}

**

package dbm;
public class _st RecordSetI extends
org.omg.CORBA.portable.ObjectImpl implements dbm.RecordSetI {
public java.lang.Stringl(] _dds () {
return __ ids;

}

private static java.lang.Stringl] _ ids = {
"IDL:dbm/RecordSetI:1.0"
}i
public boolean next () {
try {
org.omg.CORBA.portable.OutputStream output
this._request("next", true); B
org.omg.CORBA.portable.InputStream input =
this. invoke (_output, null); -
boolean _result;
_result = _input.read_boolean();

return _result;

}
catch(org.omg.CORBA.TRANSIENT _exception) {

return next();
}
}
public java.lang.String getString(
int col
) |
try {
org.omg.CORBA.portable.OutputStream _output =
this._request("getString", true);
_output.write_long(col);
org.omg.CORBA.portable.Inputstream _input
this. invoke(output, null);
—java.lang.String _result;
_result = _input.read_string();
return _result;

}
catch (org.omg.CORBA.TRANSIENT _exception) {

return getString(
col
)

}

**

package dbm;
public class _tie RecordSetl extends dbm. RecordSetIImplBase {
private dbm.RecordSetIOperations delegate;
public _tie_RecordSetI(dbm.RecordSetIOperations delegate,
java.lang.String name) {
super (name) ;
this._délegate = delegate;
}
public _tie_RecordSetI(dbm.RecordSetIOperations delegate) {
this. delegate = delegate;
}
public dbm.RecordSetIOperations delegate () {
return this. delegate; B
}
public boolean next () {
return this. delegate.next(
)
}
public java.lang.String getString(

.int col
) |
return this._delegate.getString(
col
);

}
**
package dbm;
public interface RecordSetI extends org.omg.CORBA.Object {

public boolean next ()’

public java.lang.String getString(

int col
)
}
}

**

package dbm;
abstract public class RecordSetIHelper {
public static dbm.RecordSetl narrow (org.omg.CORBA.Object
object) {
return narrow(object, false)
}
private static dbm.RecordSetl narrow (org.omg.CORBA.Object
object, boolean is_a) {
if (object == null) {
return null;
}
if (object instanceof dbm.RecordSetI) {
return (dbm.RecordSetI) object;
}
if(is_a || object. is a(id())) {
dbm.RecordSetI result = new dbm. st RecordSetI();
((org.omg.CORBA.portable.ObjectImpl) result). set delegate
(((org.omg.CORBA.portable.ObjectImpl)
object)._get_delegate());
return result;
}
return null;
}
public static dbm.RecordSetl bind (org.omg.CORBA.ORB orb) {
return bind(orb, null, null, null);
}
public static dbm.RecordSetl bind (org.omg.CORBA.ORB orb,
java.lang.String name) {
return bind(orb, name, null, null);

}

public static dbm.RecordSetI bind(org.omg.CORBA.ORB orb,
java.lang.String name, java.lang.String host,

org.omg.CORBA.BindOptions options) {
return narrow(orb.bind(id(), name, host, options), true);

}
private static org.omg.CORBA.ORB _orb () {
return org.omg.CORBA.ORB.init ()’
}
public static dbm.RecordSetl
read(org.omg.CORBA.portable.InputStream _input) {
return dbm.RecordSetIHelper.narrow(#input.read_Object(),

true) ;

}
public static void write (org.omg.CORBA.portable.OutputStream

_output, dbm.RecordSetI value) {
_output.write_Object (value);

}
public static void insert (org.omg.CORBA.ANy any,

dbm.RecordSetI value) {
org.omg.CORBA.portable.OutputStream output =
any.create output_stream();

write (output, value);
any.read_value(output.create_input_stream(), type()):

}
public static dbm.RecordSetl extract (org.omg.CORBA.Any any) {

if (lany.type() .equal(type())) {
throw new org.omg.CORBA.BAD TYPECODE () ;
}

return read(any.create input_stream());
} ;
private static org.omg.CORBA.TypeCode _type;
public static org.omg.CORBA.TypeCode type () {

if(type == null) ({
_type = _orb().create_interface_tc(id(), "RecordSetI");

}
return type;

}
public static java.lang.String id()

return "IDL:dbm/RecordSetI:1.0";
}
}
**

package dbm;
final public class RecordSetIHolder implements
org.omg.CORBA.portable.Streamable {

public dbm.RecordSetI value;

public RecordSetIHolder () {

}
dbm.RecordSetl value) {

public RecordSetIHolder (
this.value = value;

}
public void _read(org.omg.CORBA.portable.InputStream input) {
value = RecordSetTHelper.read (input);
}
(org.omg.CORBA.portable.OutputStream output)

public void _write

{
RecordSetIHelper.write (output, value) ;

}
public org.omg.CORBA.TypeCode _type () {

return RecordSetIHelper.type ()’

package dbm;
public interface RecordSetIOperations ({

public boolean next (};
public java.lang.String getString(

int col
) ;

{
!

‘[PUS >> ,pIiomssed dwrUIIST USP JUI[DDA, >> INOD

}

ENE

{
{

}
{

JpUd >> X9 >> 1n0d
(xo puonldooxquwalsLS:ivgd0)) yoieo
{
‘Ipud>> (g£)3u111g198
< -SI>> (7)8ung1e8«<-s1 >> , , >> (1)8uIng198<«-s1 >> 109
}

(()1xou<-s1) S1Iym

‘(118 ‘QIuUOod” 1)19SPpI009YIeaId<-wqp 1 = sI 11d [195pIooay iwqgp
{(118)s198

‘Ipue >> , : K190 ' 193Uy, >> 1N0D

‘(1S ‘gIuod” 1)9IN0dXd<-Wqp I

{(118)5198
‘[pud >> , 1wl aseqeie(Aue 133Uy, >> N0

‘foo1]ns TeYd

‘([¢]a8ae ‘[g]a8ie ‘[[]a8ie
yuonposuuo)uado<-wqp 1 = qUOd 1 SuoTvaI0D
{(,mqp,)putq ::1efeuepNg:iwqp = wqp 1 1d 1e3eueNgq:iwqp

‘{(a81e o81e)IUl GYO: I VEIO0D = qio nd gY0::vgd0D

;

A1l

1

(¥ =< o31e) J1

([]1a81e Lreyo ‘08ie jur)urewr proa

< O1u0d> apnjouly
<[WBIIISOI> ApN[oUl#
<yy'o Wdd> Spn[ouly

Jskkssknknssrns AVANDIUUOD) +4+ DA woseskskkkkknkx/

/*********** Connectlon Monltorlng ***********/

import java.awt.*;
import java.awt.event.”*;
import java.sgl.*;

public class DBMMonitor extends Frame implements ActionlListener {
private TextField txtST;
private TextField txtET;
private TextArea ta;
private Button btnList;
private Button btnExit;
public DBMMonitor() {
super ("DBM Monitor");
addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent we) {
dispose ()
}
}):
txtST = new TextField ("yyyy-mm-dd hh:mm:ss.ns");
£xtET = new TextField("yyyy-mm-dd hh:mm:ss.ns");
ta = new TextAreal); '

btnlList = new Button("List");
btnExit = new Button("Exit"):;

btnList.addActionListener (this);
btnExit.addActionListener (this);

Panel pl = new Panel();
pl.setLayout (new GridLayout (1, 4));
pl.add (new Label ("Start Time"))
pl.add (txtsST):

pl.add (new Label ("End Time"));
pl.add (txtET);

Panel p2 = new Panel();
p2.setLayout (new GridLayout (1, 2));
p2.add (btnList);

p2.add (btnExit);

add (pl, "North"):;
add(ta);
add (p2, "South"):;
pack() ;

public void actionPerformed (ActionEvent ae) {

if (ae.getSource() == btnExit)
dispose()
if (ae.getSource() == btnList) {
try {
Class.forName("sun.jdbc.odbc.JdchdbcDriver">;
Connection con = DriverManager.getConnection(

"jdbc:odbc:dbmadmin", "admin",

"") ,.

Statement stmt = con.createStatement () ;

String SQL = "SELECT * FROM Connections";
ResultSet rs stmt .executeQuery (SQL) ;

Timestamp st = Timestamp.valueOf (txtST.getText ());
Timestamp et = Timestamp.valueOf (txtET.getText ());

ta.setText ("conID --- DSN --- Time \n");
while (rs.next()) {
int conID = rs.getInt(1l);
String dsn = rs.getString(2);
Timestamp ts =
Timestamp.valueOf (rs.getString(3));

if ((ts.after(st) && ts.before(et)) II
ts.equals(st) || ts.equals(et)) {
ta.append(conID + " --- " + dsn + " --= "

+ ts.toString() + "\n");
}
}
rs.close();
stmt.close();
} catch (Exception ex) {
ex.printStackTrace() ;
}
}
}
public static void main(Stringl[] args) {
(new DBMMonitor()).show();
}

/**x*kx***x** Connection Monitoring Chart Kk ke Sk Sk ok ok ok ke ok /

import com.objectplanet.chartl02.*;
import java.awt.*;

import java.awt.event.*;

import java.sqgl.*;

public class FregInputScreen extends Frame implements

ActionListener {
private TextField f1;
private TextField £2;
private TextField £3;
private TextField f4;
private TextField £5;
private TextField £6;
private TextField £f7;
private TextField £8;
private TextField £9;
private TextField f10;

Button btnChart;
Button btnExit;

private double[] noc = new double[9];
private String barlabels[] = new String[9];

public FregInputScreen()
{

super ("Connection Monitoring Chart Entryr");

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent we) {
dispose ()
1
1)

fl = new TextField("yyyy-mm-dd hh:mm:ss.ns");
f2 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
£f3 = new TextField ("yyyy-mm-dd hh:mm:ss.ns");
f4 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
f5 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
f6 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
£f7 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
f8 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
£f9 = new TextField("yyyy-mm-dd hh:mm:ss.ns");
f10 = new TextField("yyyy-mm-dd hh:mm:ss.ns")

setLayout (new GridLayout (6, 2));

add (£f1) ;
add (£2);
add (£3);
add (f4) ;
add (£5) ;
add (£6) ;
add (£7);
add (£8) ;
add(£9);
add (£10);

btnChart =

btnExit

btnChart.

addActionListener (this);

btnExit.addActionListener (this);

add (btnChart) ;
add (btnExit) ;

pack () ;
}

new Button ("Show Chart"):;
= new Button ("Exit");

public void actionPerformed(ActionEvent ae)

{

.getText
.getText

getText

.getText

(
(
(
.getText (
(
(

getText

.getText (
.getText (

if (ae.getSource() == btnExit)
dispose();

if (ae.getSource() == btnChart)
noc[0] = GetNoOfConnections(fl
noc[l] = GetNoOfConnections (£f2
noc[2] = GetNoOfConnections (£3.
‘noc[3] = GetNoOfConnections (f4
noc[4] = GetNoOfConnections (£f5
noc[5] = GetNoOfConnections (f6.
noc[6] = GetNoOfConnections(f7
noc[7] = GetNoOfConnections (£f8
noc[8] = GetNoOfConnections (f9.

f10.getText ())

barlabels[0] = "f1";

barlabels[1]
barlabels[2]
barlabels{3]

"f2";
"f3";
"f4",.

barlabels[4] = "f5";

{

4

14

4

’

f2
£3
f4
£5
f6

£8

.getText
.getText
.getText
.getText
.getText
£7.

getText

.getText
£9.

getText

(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)

’

4

4

14

14

r

14

r

barlabels[5] = "fe";

barlabels[6] = "£7";
barlabels[7] = "f8";
barlabels[8] = "f9";

ConnChart cc = new ConnChart();:
cc.show () ;

}

private long GetNoOfConnections(String startTime,
String endTime) {
int noc = 0;
try {
Class.forName ("sun. jdbc.odbc.JdbcOdbcDriver") ;
Connection con = DriverManager.getConnection
"jdbc:odbc:dbmadmin", "admin", "");

Statement stmt = con.createStatement () ;

String SQL = "SELECT * FROM Connections ";
ResultSet rs stmt.executeQuery (SQL) ;

Timestamp st = Timestamp.valueOf (startTime) ;
Timestamp et = Timestamp.valueOf (endTime) ;

while (rs.next())

{

Timestamp ts = Timestamp.valueOf (rs.getString(3));

if ((ts.after(st) && ts.before(et)) ||
ts.equals(st) || ts.equals(et))

noc++;
}

rs.close();
stmt.close();
con.close () ;
} catch (Exception ex) {
ex.printStackTrace () ;
}
System.out.println (noc);
return noc;

private class ConnChart extends Frame {
public ConnChart () {
BarChart chart = new BarChart();

chart.setSampleCount (noc.length);
chart.setSampleValues (0, noc);

chart.setBarLabels (barlabels)
chart.setBarLabelsOn(true);

chart.setLabel ("rangeAxisLabel"”, "No of Connections");
chart.setLabel ("sampleAxisLabel™, "Time");

addWindowListener (new WindowAdapter () {
public void windowClosing(WindowEvent we) {
dispose();
}
b)
add (chart) ;
pack();

}

public static void main(String[] args) {
FregInputScreen fis = new FregInputScreen();
fis.show();

Connection Monitoring

L[5 0BM Monitar

Start Time 2001-01-08 16:09:41.0
{coniD - DSN - Time
18-~ tablet — 2000-11-07 18:22:00.
11— stu— 2000-11-08 05:28:34.0
{2 stu—2000-41-08 05:32:58.0
{1 — stu— 2000-11-08 08:26:04.0
{1 stu—2000-11-0810:5417.0
12— jaya— 2001-01-08 15:56:58.0
13~ shank~ 2001-01-08 16:01:240
{4 stu— 2001-01-08 16:01:55.0
15— proj— 2001-01-08 16:03:220
16— sales — 2001-01-08 16:08:46.0
{7 table — 2001-01-08 16:00:27.0

Connection Monitoring Time Interval

e T i e et A S e S e

f, Connectmn Honltunng Time ﬁnteweﬂ

Eznnnﬂomamnﬁu [2000-11-07 15:56:42.0
200011707 19:1224.0 [2000-11-08 19:20:08.0
20001109 205501 4.0 ~ [2001-01-08 17:29:34.0
[2001-01-08 17:56:58.0 [2001-01-08 21:09:24.0

12001-01-00 15.:24:14.0 3001-01-09 16.09-24.0

Connection Monitoring Bar Chart

' ga Connection Montornng Ehaﬂ . : .

