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SYNOPSIS

This Project is a wrapper class for platform specitic thrend

APIs. If the application is not using our project they should directly use
the APIs provided by the platform. So this will make this application
unportable,because they have to recode the whole application according to

the targeted platform. This will take more time, manpower and moncy,

In the application uses our thread library then the application can be
ported to any platform as such. So the only module that we have (o
modify is our thread library, which will take very less time and

nmanpower.
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1. INTRODUCTION

A thread consists of two components:

» A kernel object that the operating system uses to manage the
thread. The kernel object is also where the system keeps statistical

information about the thread.

e A thread stack that maintains all the function parameters and local

variables required as the thread executes code.

A process never executes anything; it is simply a container ior
threads. Threads are always created in the context of some process and
live their entire life within that process. What this really means is tiat the
thread executes code within its process's address space and manipulutes
data within its process's address space. So if we have iwo or more threads
running in the context of a single process, the threads share a single
nddress space. The threads can execute the same code and manipuiaic the
same data. Threads can also share kernel ohiect handles because ihe

handle table exists for each process, not each thread.

Processes use a lot more system resources than threads do. The
veason for this is the address space. Creating a virtual address space lor
|rocess requires a lot of system resources. A lot of record keeping (ukes
place in the system, and this requires a lot of memory. Since .exe and .d!|
liles get loaded into an address space, file resources are required as well.

A thread, on the other hand, uses significantly fewer system resources.



A thread has just a kernel object and a stack; little record keeping

is involved, and little memory is required.

1.1 When to create a Thread

A thread describes a path of execution within a process. Every time
a process is initialized, the system creates a primary thread. This thread
begins executing with the C/C++ run-time library's startup code, which in
tum calls our entry-point function (wmain, wemain, WinMain, or
wWinMain) and continues executing until the entry-point function returns
and the C/C++ run-time library's startup code calls ExitProcess. For many
applications, this primary thread is the only thread the application
requires. However, processes can create additional threads to help them
do their work.issues). To keep the CPU busy, we give it varied tasks to

perform.

If we have two CPUs in your computer and two threads in our
application, both CPUs will be busy. In effect, we get two tasks done in

the time it would take for one.
1.2 Writing A First Thread Function

Every thread must have an entry-point function where it begins
execution. The entry-point function for our primary thread is: muain,
wmain, WinMain, or wWinMain. If we want to create a secondary thread
in our process, it must also have an entry-point function.Qur thread

function can perform any task we want it to.






2. HARDWARE AND SOFTWARE
ENVIRONMENT

2.1 Hardware environment

The hardware environment under which the thread library was
developed is as follows

Processor —» X86

Hard diskdrive —* 10.2GB

RAM >  32MB

2.2 Software environment
The m_inir_num software environment under which the thread
library can be executed is as follows

* Windows platform

* Any C + + compiler
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3. THE CreateThread FUNCTION

A process's primary thread comes into being when CreateProcess
is called. If we want to create one or more secondary threads, we

simply have an already running thread call CreateThread:

HANDLE CreateThread/(
PSECURITY ATTRIBUTES psa,
DWORD cbStack,
PTHREAD START ROUTINE pfnStartAddr,
PVOID pvParam,
DWORD fdwCreate,

PDWORD pawThreadlID) ;

When CreateThread is called, the system creates a thread kernel
object. This thread kernel object is not the thread itself but a small data
structure that the operating system uses to manage the thread. We can
think of the thread kernel object as a small data structure that consists
of statistical information about the thread. This is identical to the way

processes and process kernel objects relate to each other.

The system allocates memory out of the process's address space for

use by the thread's stack.



The new thread runs in the same process context as the creating
thread. The new thread therefore has access to all of the process's
kernel object handles, all of the memory in the process, and the stacks
~of all other threads that are in this same process. This makes it really
easy for multiple threads in a single process to communicate with each .

other.

3.1 psa

The psa parameter is a pointer to a SECURITY ATTRIBUTES
structure. We can (and usually will) pass NULL if we want the default
security attributes for the thread kernel object. If we want any child
processes to be able to inherit a handle to this thread object, we must
specify a SECURITY ATTRIBUTES structure, whose
blnheritHandle member is initialized to TRUE.

Security:

Kernel objects can be protected with a security descriptor. A
security descriptor describes who created the object, who can gain
access to or use the object, and who is denied access to the object.
Security descriptors are usually used when writing server applications;
we can ignore this feature of kernel objects if we are writing client-side

applications.

Most applications will simply pass NULL for this argument so that
the object is created with default security. Default security means that
any member of the administrators group and the creator of the object

have full access to the object; all others are denied access.



When we want to gain access to an existing kernel object (rather
than create a new one), we must specify the operations we intend to

perform on the object.

The function performs a security check first, before it returns a

valid handle value. If the access is denied the function returns NULL.
Object Handle Inheritance:

Object handle inheritance can be used only when threads have a
parent-child relationship. In this scenario, one or more kemnel object
handles are available to the parent thread, and the parent decides to

spawn a child, giving the child access to the parent's kernel objects.

First, when the parent thread creates a kernel object, the parent
must indicate to the system that it wants the object's handle to be
inheritable. Although kernel object handles are inheritable, kerne:

objects themselves are not.

To create an inheritable handle, the parent thread must allocate and
initialize a SECURITY_ATTRIBUTES structure and pass the
structure's address to the specific Create function. The following code

creates a mutex object and returns an inheritable handle to it:
SECURITY ATTRIBUTES sa;
sa.nlength = sizecf(sa);
sa.lpSecurityDescriptor = NULL;

sa.bInheritHandle = TRUE;



// Make the returned handle inheritable.

HANDLE hMutex = CreateMutex(&sa, FALSE, NULL)

;Error! Unknown switch argument.

Usually, when we spawn a process, we will pass FALSE for
bInheritHandles this parameter. This value tells the system that you do
not want the child thread to inherit the inheritable handles that are in
the parent threads process's handle table. When we pass TRUE, the
operating system creates the new child process, but does not allow the
child process to begin executing its code right away. Of course, the
system creates a new, empty process handle table for the child
process—just as it would for any new process. But because we passed
TRUE to blnheritHandles parameter, the system does one more thing: it
walks the parent's handle table, and for each entry it finds that contains
a valid inheritable handle, the system copies the entry exactly into the
child's handle table. The entry is copied to the exact same position in
the child’s handle table as in the parent's handle table. This fact is
important because it means that the handle value that identifies a kernel

object is identical in both the parent and the child threads.

In addition to copying the handle table entry, the system increments
the usage count of the kernel object because two threads are now using
the object. For the kernel object to be destroyed, both the parent threads
and the child thread must either call CloseHandle on the object or

terminate.



3.2 ebStack

The cbStack parameter specifies how much address space the
thread can use for its own stack. Every thread owns its own stack.
When CreateProcess starts a process, it internally calls CreateThread
to initialize the process's primary thread. For the ¢hStack parameter,
CreateProcess uses a value stored inside the executable file. You can

control this value using the linker's /STACK switch:
/STACK: [reserve] [, commit]

The reserve argument sets the amount of address space the system
should reserve for the thread's stack. The default is 1 MB. The conunit
argument specifies the amount of physical storage that should be
initially committed to the stack's reserved region. The default is one
page. As the code in our thread executes, we might require more than
one page of storage. When our thread overflows its stack, an exception
is generated. The system catches the exception and commits another
page (or whatever we specified for the commir argument) o the
reserved space, which allows a thread's stack to grow dynamicaliy as

needed.

When we call CreateThread, passing a value other than 0 causes
the function to reserve and commit all storage for the thread's stack.
Since all the storage is committed up front, the thread is guaranteed to
have the specified amount of stack storage available. The amount of
reserved space is either the amount specified by the /STACK linker
switch or the value of ¢hStack, whichever is larger. The amount of

storage committed matches the value we passed for cbStack.



If we pass 0 to the chStack parameter, CreateT. hread reserves a
region and commits the amount of storage indicated by the /STACK
linker switch information embedded in the .exe file by the linker.The
reserve amount sets an upper limit for the stack so that we can catch

endless recursion bugs in our code.
3.3 pfuStartAddr and pvParam

The pfnStartAddr parameter indicates the address of the thread
function that we want the new thread to execute. A thread function's
pvParam parameter is the same as the pvParam parameter that we
originally passed to CreateThread. CreateThread does nothing with this
parameter except pass it on to the thread function when the thread starts
executing. This parameter provides a way to pass an initialization value
to the thread function. This initialization data can be either a numeric
value or a pointer to a data structure that contains additional

information.

It is quite useful to create multiple threads that have the same
function address as their starting point. We can even implement a Web
server that creates a new thread to handle each client's request. Each
thread knows which client it is processing because we pass a different

pvParam value as we create each thread.




3.4 fdwCreate

The fdwCreate parameter specifies additional flags that control the
creation of the thread. It can be one of two values. If the value is 0, the
thread is schedulable immediately after it is created. If the value is
CREATE SUSPENDED, the system fully creates and initializes the
thread but suspends the thread so that it is not schedulable.

3.5 PdwThreadlD

The CREATE_SUSPENDED flag allows an application to alter
some properties of a thread before it has a chance to execute any code.
Because this is rarely necessary, this flag is not commonly used. The
last parameter of CreateThread, pdwThreadID, must be a valid address
of a DWORD in which CreateThread stores the ID that the system

assigns to the new thread.

When a process is created, the system automatically creates its first
thread, called the prfmary thread. This thread can then create
additional threads, and these can in turn create even more threads.
When a thread kernel object is created, the system assigns the object
~ unique, system-wide ID number. Process IDs and thread 1Ds share the
same number pool. This means that it is impossible for a process and a
thread to have the same ID. In addition, an object is never assigned an
[D of 0. Before CreateProcess returns, it fills the dwProcessid and
dwThreadld members of the PROCESS INFORMATICN structure
with these IDs. IDs simply make it easy for you to identify the

processes and threads in the system.



If our application uses IDs to track processes and threads, we must
be aware that the system reuses process and thread [Ds immediately. [
the process identified by the ID is freed and a new process is created

and given the same ID.

To guarantee that a process or thread ID isn't reused is to make sure
that the process or thread kernel object doesn't get destroyed. If we
have just created a new process or thread, we can do this simply by not
closing the handles to these objects. Then, once our application has
finished using the ID, call CloseHandle to release the kernel object(s)
and remember that it is no longer safe for us to use or rely on the

process ID.
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4. TERMINATING A THREAD

A thread can be terminated in four ways:
e The thread function returns.
e The thread kills itself by calling the ExitThread function.

e A thread in the same or in another process calls the

TerminateThread function.
e The process containing the thread terminates.

This section discusses all four methods for terminating a thread and

describes what happens when a thread ends.
4.1 The Thread Function Returns

We should always design our thread functions so that they return
when we want the thread to terminate. This is the only way to

guarantee that all our thread's resources are cleaned up properly.
Having our thread function return ensures the following:

e Any and all C++ objects created in our thread function will be

destroyed properly via their destructors.

o The operating system will properly free the memory used by the

thread's stack.

e The system will set the thread's exit code (maintained in the

thread's kernel object) to our thread function's return value.



» The system will decrement the usage count of the thread's kernel
Object.

4.2 The ExitThread Function

The ExitThread Function can force our thread to terminate by

having it call ExitThread:

VOID ExitThread(DWORD dwExitCode);

This function terminates the thread and causes the operating
‘system to clean up all of the operating system resources that were used
by the thread. However, C/C++ resources (such as C++ class objects)
will not be destroyed. For this reason, it is much better to simply return

from our thread function instcad of calling ExitThread .

We can use ExitThread's dwExitCode parameter to tell the system
what to set the thread's exit code to. The ExitThread function does not
return a value because the thread has terminated and cannot execute any

more code.

4.3 The TerminateThread function

A call to TerminateThread also kills a thread:
BOOL TerminateThread (
HANDLE hthread,

DWORD dwExitCode);



Unlike ExitThread, which always kills the calling thread,
TerminateThread can kill any thread. The hThread parameter identiﬁes
the handle of the thread to be terminated. When the thread terminates, its
exit code becomes the value you passed as the dwLxifCode parameter.

Also, the thread's kernel object has its usage count decremented.

The TerminateThread function is asynchronous. That is, it tells
the system that we want the thread to terminate but the thread is not

guaranteed to be killed by the time the function returns.

A well-designed application never uses this function because the
thread being terminated receives no notification that it is dying. The
thread cannot clean up properly and it cannot prevent itself from being
killed.

DLLs usually receive notifications when a thread is terminating. If
a thread is forcibly killed with TerminateThread, however, the DLLs do

not receive this notification, which can prevent proper cleanup.

4.4 Process Termination

A process terminates when one of the threads in the process
calls ExitProcess:
VOID ExitProcess (INT fuExitCode);
This function terminates the process and sets the exit code of the
process to fuExitCode. ExitProcess doesn't return a value because the

process has terminated.



A call to TerminateProcess also ends a process:
BOOL TerminateProcess(
HANDLE hProcess,
INT fuExitCode),

This function is different from ExitProcess in one major way: any
thread can call TerminateProcess to terminate another process or its
own process. The hProcess parameter identifies the handie of the
process to be terminated. When the process terminates, its exit code

becomes the value we passed as the fuFExitCode parameter.

We should use TerminateProcess only if we can't force a process
to exit by using another method. A process will not have a chance to do
its own cleanup, the operating system does clean up completely after the
process so that no operating system resources remain. This means that
all memory used by the process is freed, any open files are closed, all
kernel objects have their usage counts decremented, and all User and

GDI objects are destroyed.

The ExitProcess and TerminateProcess functions terminate
threads. The difference is that these functions terminate all the threads
contained in the process being terminated. Also, since the entire process
is being shut down, all resources in use by the process are guaranteed to
be cleaned up. This certainly includes any and all thread stacks. These
two functions cause the remaining threads in the process to be forcibly
killed, as if TerminateThread were called for each remaining thread.
This means that proper application cleanup does not occur: C++ object

destructors are not called data is not flushed to disk.



4.5 Thread Termination

The following actions occur when a thread terminates:

» All User object handles owned by the thread are freed. A thread
owns two User objects: windows and hooks. When a thread dies,
the system automatically destroys any windows and uninstalls any
hooks that were created or installed by the thread. Other objects are

destroyed only when the owning process terminates.

+ The thread's exit code changes from STILL ACTIVE to the code

passed to ExitThread or TerminateThread.
» The state of the thread kerne! object becomes signaled.

« If the thread is the last active thread in the process, the system

considers the process terminated as well.
« The thread kernel object's usage count is decremented by 1.

When a thread terminates, its associated thread kernel object does
not automatically become freed until all the outstanding references to

the object are closed.

Once a thread is no longer running, there isn’t much any other
thread in the system can do with the thread's handle. However, these
other threads can call GetExitCodeThread to check whether the thread
identified by AThread has terminated and, if it has, determine its exit

code.



BOOL GetExitCodeThread (HANDLE hThread,

PDWORD pdwExitCode);

The exit code value is returned in the DWORD pointed to by
pdwExitCode. If the thread hasn't terminated when GetExitCodeThread
is called, the function fills the DWORD with the STILL ACTIVE

identifier. If the function is successful, TRUE is returned.
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5. THREAD INTERNALS

A call to CreateThread causes the system to create a thread kernel
object. This object has an initial usage count of 2. (The thread kemnel
object is not destroyed until the thread stops running and the handle
returned from CreateThread is closed.) Other properties of the thread's

kernel object are also initialized:
e The suspension count is set to 1
e The exit code is set to STILL. _ACTIVE (0x103)
o The object is set to the nonsignaled state.

Once the kernel object has been created, the system allocates
memory, which is used for the thread's stack. This memory is allocated
from the process's address space since threads don't have an address
space of their own. The system then writes two values to the upper end
of the new thread's stack. (Thread stacks always build from high
memory addresses to low memory addresses.) The first value written to
the stack is the value of the pvParam parameter that we passed to
CreateThread. Immediately below it is the pfuStartAddr value that we

also passed to CreateThread.

Each thread has its own set of CPU registers, called the thread's
context. The context reflects the state of the thread's CPU registers when

the thread last executed.



Thread stack
-pvParan. ) High Address

i i} Low Addross
O

Kerneld2.dit

—> YOID BaseThreadStart()

1

How g thread is created and initialized

The set of CPU registers for the thread is saved in a CONTEXT
structure (defined in the WinNT.h header file). The CONTEXT structure

is itself contained in the thread's kernel object.

The instruction pointer and stack pointer registers are the two most
important registers in the thread's context. The threads always run in the
context of a process. So both these addresses identify memory in the
owning process's address space. When the thread's kernel object is
initialized, the CONTEXT structure's stack pointer register is set to the
address of where pfnStartdddr was placed on the thread's stack. The
instruction pointer register is set to the address of an undocumented (and
unexported) function called BaseThreadStart. This function is contained
inside the Kernel32.dll module (which is also where the CreateThread

function is implemented). The above figure shows all of this.



Here is what BaseThreadStart basically does:

VOID BaseThreadStart (PTHREAD START ROUTINE
PfnStartAddr, PVOID pvParam)

Try

ExitThread{ (pfnStartAddr) (pvParam) };

__except (UnhandledExceptionFilter

(GetExceptionInformation()))

ExitProcess (GetExceptionCode () ) ;
}
// NOTE: We never get here.

}

Inside a thread kernel object is a value that indicates the thread's
suspend count. When you call CreateProcess or CreateThread, the thread
kernel object is created and the suspend count is initialized to 1. This
prevents the thread from being scheduled to a CPU. This is desirable
because it takes time for the thread to be initialized and we don't want

the system to start executing the thread before it is fully ready.

After the thread has completely initialized, the system checks to
see whether the CREATE SUSPENDED flag was passed to
CreateThread. If this flag was not passed, the system decrements the
thread's suspend count to 0 and the thread can be scheculed to a

processor.



The system then loads the actual CPU registers with the values
that were last saved in the thread's context. The thread can now execute

code and manipulate data in its process's address space.

Because a new thread's instruction pointer s set to
BaseThreadStart, this function is really where the thread begins
execution. The new thread simply comes into existence and starts
executing here. BaseThreadStart believes that it was called from another
function because it has access to two parameters. But access to these
parameters works because the operating system explicitly wrote the
values to the thread's stack. The system initializes the proper registers
correctly before allowing the thread to execute the BaseThreadStart
- function. When the new thread executes the BaseThreadStart function.

the following things happen:

* A structured exception handling (SEH) frame is set up around your
thread function so that any exceptions raised while our thread
executes get some default handling by the system. The system calls
our thread function, passing it the pvParam parameter that vou

passed to the CreateThread function.

e When the thread function returns, BaseThreadStart calls
ExitThread, passing it the thread function's return value. The thread
kernel object's usage count is decremented and the thread stops

executing.

e If the thread raises an exception that is not handled, the SEH frame
set up by the BaseThreadStart function handles the exception.



e Within BaseThreadStart, the thread calls either ExitThread or
ExitProcess. This means that the thread cannot ever exit this
function; it always dies inside it. This is why BaseThreadStart 1s

prototyped as returning VOID—it never returns.

The thread function can return when it's done processing because
of BaseThreadStart. When BaseThreadStart calls our thread function, it
pushes its return address on the stack so your thread function knows

where to return.

When a process's primary thread is initialized, its instruction
pointer is set 1o another undocumented function called

BaseProcessStart. This function is almost identical to BaseThreadStart

The only real difference is that there is no reference to the pvParam
parameter. When BaseProcessStart begins executing, it calls the C/C++
run time library's startup code, which initializes and then calls main,
wmain, WinMain, or wWinMain function. When your entry-point
function returns, the C/C++ run-time library startup code calls

ExitProcess.

Gaining a Sense of Thread’s Own ldentity

As threads execute, they frequently want to call Windows functions
that change their execution environment. For example, a thread might
want to alter its priority or its process's priority. Since it is common for a
thread to alter its (or its process's) environment, Windows offers functions
that make it easy for a thread to refer to its process kernel object or to its

own thread kernel object:



HANDLE GetCurrentProcess():

HANDLE GetCurrentThread();

Both of these functions return a pseudo-handle to the calling
thread's process or thread kernel object. These functions do not create new
handles in the calling process's handle table. Also, calling these functions
has no effect on the usage count of the process or thread kermnel object. If
we call CloseHandle, passing a pseudo-handle as the parameter,
CloseHandle simply ignores the call and returns FALSE. When we call a
Windows function that requires a handle to a process or thread, we can
pass a pseudo-handle, which causes the function to perform its action on
the calling process or thread. The child thread to get its own CPU times,
not the parent thread's CPU times. This happens because a thread pseudo-
handle is a handle to the current thread— that is, a handle to whichever

thread is making the function call.

A few Windows functions allow us to identify a specific process
or thread by its unique system-wide ID. The following functions allow a

thread to query its process's unique ID or its own unique ID:
query its p q q

DWORD GetCurrentProcessId();
DWORD GetCurrentThreadId();

These functions are generally not as useful as the functions that

return pseudo-handles, but occasionally they come in handy.
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6.THREAD SCHEDULING

Ina preemptive multithreaded operating system a thread can be stopped at
any time and another thread can be scheduled. We have some control over
this, but not much. We cannot guarantee that our thread will always be
running, that our thread will get the whole processor, that no other thread

will be allowed to run.

The system only schedules schedulable threads, but as it turns out,
most of the threads in the system are not schedulable. For example, some
thread objects might have a suspend count greater than 0. This means that
the thread is suspended and should not be scheduled any CPU time. We
can create a suspended thread by calling CreateProcess or CreateThread

using the CREATE_SUSPENDED flag.

In addition to suspended threads, many other threads are not
schedulable because they are waiting for something to happen. The

system does not assign CPU time to threads that have nothing to do.

6.1 Suspending and Resuming a Thread

Inside a thread kernel object is a value that indicates the thread's
suspend count. When we call CreateProcess or CreateThread, the thread
kernel object is created and the suspend count is initialized to i. This
prevents the thread from being scheduled to a CPU. This is desirable
because it takes time for the thread to be initialized and we don't want the

system to start executing the thread before it is fully ready.



After the thread is fully initialized, CreateProcess or CreateThread
checks to see whether we've passed the CREATE_SUSPENDED flag. If
we have, the functions return and the new thread is left in the suspended
state. If we have not, the function decrements the thread's suspend count
to 0. When a thread's suspend count is 0, the thread is schedulable unless

it is waiting for something else to happen (such as keyboard input).

Creating a thread in the suspended state allows us to alter the thread's
environment (such as priority, discussed later in the chapter) before the
thread has a chance to execute any code. Once we alter the thread's
environment, we must make the thread schedulable. We do this by calling
ResumeThread and passing it the thread handle returned by the call to
CreateThread.

DWORD ResumeThread (HANDLE hThread) ;

[f ResumeThread is successful, it returns the thread's previous suspend

count; otherwise, it returns OxFFFFFFFF.

A single thread can be suspended several times. If a thread is
suspended three times, it must be resumed three times before it is eligible
for assignment to a CPU. In addition to using  the
CREATE_SUSPENDED flag when you create a thread, you can suspend
a thread by calling SuspendThread:

DWORD SuspendThread (HANDLE hThread) ;

Any thread can call this function to suspend another thread (as long

as we have the thread's handle).



A thread can suspend itself but cannot resume itself. Like
ResumeThread, SuspendThread returns the thread's previous suspend

count. A  thread can be  suspended as many @ as

MAXIMUM_SUSPEND_ COUNT times (defined as 127 in WinNT.h).

6.2 Sleeping

A thread can also tell the system that it does not want to be
schedulable for a certain amount of time. This is accomplished by

calling Sleep:
VOID Sleep (DWORD dwMilliseconds) ;

This function causes the thread to suspend itself until dwMilliseconds

have elapsed. There are a few important things to notice about Sleep:

« Calling Sleep allows the thread to voluntarily give up the remainder

of its time slice.

« The system makes the thread not schedulable for approximately
the number of milliseconds specified, possibly several seconds or
minutes more. Our thread will probably wake up at the right time,

but whether it does depends on what else is going on in the system.

+ We can call Sleep and pass INFINITE for the dwMilliseconds
parameter. It is much better to have the thread exit and to recover

its stack and kernel object.



« We can pass 0 to Sleep. This tells the system that the calling thread
relinquishes the remainder of its time slice and forces the system to
schedule another thread. However, the system can reschedule the
thread that just called Sleep. This will happen if there are no more

schedulable threads at the same priority.

6.3 Switching to Another Thread
The system offers a function called SwitchToThread that allows
another schedulable thread to run if one exists:

BOOL SwitchToThread():

When we call this function, the system checks to see whether there is
a thread that is being starved of CPU time. If no thread is starving,
SwitchToThread returns immediately. If there is a starving thread,
SwitchToThread schedules that thread (which might have a lower priority
than the thread calling SwitchToThread). The starving thread is allowed
(o run for one time quantum and then the system scheduler operates as

usual.

This function allows a thread that wants a resource to force a lower-
priority thread that might currently own the resource to relinquish the
resource. If no other thread can run when SwitchToThread is called, the
function returns FALSE; otherwise, it Calling SwitchToThread is similar
to calling Sleep and passing it a timeout of 0 milliseconds. The difference
is that SwitchToThread allows lower-priority threads to execute. Sleep
reschedules the calling thread immediately even if lower-priority threads

are being starved. returns a nonzero value.



6.4 Context in Context

The context structure plays an important role thread scheduling. The
context structure allows the system to remember a thread's state so that
the thread can pick up where it left off the next time it has a CPU to run

O1l.

A CONTEXT structure contains processor-specific register data. The
system uses CONTEXT structures to perform various internal operations.

Currently, there are CONTEXT structures defined for Intel, MIPS, Alpha,
and PowerPC processors. The CONTEXT structure is the only data
structure that is CPU-specific.

CONTEXT structure contains a data member for each register on the
host CPU. On an x86 machine, the members are Eax, Ebx, Ecx, Edx, and
so on. For the Alpha processor, the members are /ntV0, IntT0, IntT],

IntS0, IntRa, IntZero, and so on.

A CONTEXT structure has several sections. CONTEXT CONTROL
contains the control registers of the CPU, such as the instruction pointer,

stack pointer, flags, and function return address.
CONTEXT INTEGER identifies the CPU's integer registers;

CONTEXT FLOATING POINT identifies the CPU's floating-point

registers;
CONTEXT_ SEGMENTS identifies the CPU's segment registers
CONTEXT DEBUG_REGISTERS identifies the CPU's debug registers

CONTEXT EXTENDED REGISTERS identifies the CPU's extended

registers.
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7.THREAD PRIORITIES

Threads are assigned a lot of different priorities and this affects which
thread the scheduler picks as the next thread to run. Every thread is
assigned a priority number ranging from 0 (the lowest) to 31 (the highest).
When the system decides which thread to assign to a CPU, it examines the
priority 31 threads first and schedules them in a round-robin fashion. If a
priority 31 thread is schedulable, it is assigned to a CPU. At the end of
this thread's time slice, the system checks to see whether there is another
priority 31 thread that can run; if so, it allows that thread to be assigned to
a CPU.

As long as a priority 31 thread is schedulable, the system never
assigns any thread with a priority of O through 30 to a CPU. This
condition is called starvation. Starvation occurs when higher-priority
threads use so much CPU time that they prevent lower-priority threads
from executing. - Starvation is much less likely to occur on a
multiprocessor machine because on such a machine a priority 31 thread
and a priority 30 thread can run simultaneously. The system always tries
to keep the CPUs busy, and CPUs sit idle only if no threads are
schedulable.

Higher-priority threads always preempt lower-priority threads,
regardless of what the lower-priority threads are executing. For example,
if a priority 5 thread is running and the system determines that a higher-
priority thread is ready to run, the system immediately suspends the
lower-priority thread and assigns the CPU to the higher-priority thread,

which gets a full time slice.



By the way, when the system boots, it creates a special thread called
the zero page thread. This thread is assigned priority 0 and is the only
thread in the entire system that runs at priority 0. The zero page thread is
responsible for zeroing any free pages of RAM in the system when there
are no other threads that need to perform work.When we design an
application, we should choose a priority class based on how responsive

we need the threads in your application to be.
7.1 Process Priority

When we design an application, we should choose a priority class
based on how responsive we need the threads in your application to
be.Windows supports six priority classes: idle, below normal, normal,
above normal, high, and real-time. Normal is the most common priority
class and is used by 99 percent of the applications out there. The table

below describes the priority classes.

Real-ime  The:threads.in this process must respond. immediately ;tg:_e_uent’_s‘;in,ﬁrder.to
' execute time-critical tasks. Threads in this process: alsa-preempt operating
system components, Use this priority class with extreme caution.

High The threads in this process must respond immediately to events in order to
execute time-critical tasks, The Task Manager runs. at this class so a user
can kil runaway processes.

&bove - - The:threads —:in.th_i_s::p'rnce's,s run-between-the normal and: high prionty
normal . classes {new in. Windows 2000).

Nc:«'rr;_'_aal. © The threads in this process have no special scheduling needs.

Below .  Thethraads in'this process run between the normal and idle priority-classes
normal (new in ‘Windows 2000).

Idle The threads in this process run when the system is otherwise idle. This

process is typically used:by screensavers or background utility and
statistic-gathering software.

Table 1 : Priority Classes



The idle priority class is perfect for applications that run when the
system is all but doing nothing. Statistic-tracking applications that
periodically update some state about the system usually should not

interfere with more critical tasks.

We should use the high priority class only when absblutely
necessary. We should avoid the real-time priority class if possible. Real-
time priority is extremely high and can interfere with operating systems
tasks because most operating system threads execute at a lower priority.
So real-time threads can prevent required disk I/O and network traffic
from occurring. In addition, keyboard and mouse input are not processed
in a timely manner; the user might think that the system is hung.
Basically, we should have a good reason for using real-time priority, such
as the need to respond to hardware events with short latency or to perform

some short-lived task that just can't be interrupted.

A process cannot run in the real-time priority class unless the user
has the Increase Scheduling Priority privilege. Any user designated an

administrator or a power user has this privilege by default.

Most processes are part of the normal priority class. The two other
priority classes, below normal and above normal along with these priority

classes offer enough flexibility.



7.2 Thread Priority

Windows supports seven relative thread priorities: idle, lowest,
below normal, normal, above normal, highest, and time-critical. These
priorities are relative to the process's priority class. Our process is part of
a priority class and we assign the threads within the process relative thread
priorities. Application developers never work with priority levels. Instead,
the system maps the process's priority class and a thread's relative priority

to a priority level. Again, most threads use the normal thread priority.

The table below describes the relative thread priorities.

Relative Thread
Priority | |
Time-critical Thread runs at 31 for the real-time priority class and at 15 for
all other priority classes.
Highest Thread runs two levels above normal,
Above normal Thread runs one level above normal.
Mormal Thread runs normally for the process's: priority-class.
Below normal Thread runs one level below normal,
Lowest Thread runs two levels below normal,
Tdle Thread runs at 16 for the real-time priority class and-at1 for all

other priority classes.

Table 2 : Relative Thread Priorities

For example, a normal thread in a normal process is assigned a
priority level of 8. Since most processes are of the normal priority class
and most threads are of normal thread priority, most threads in the system

have a priority level of 8.



If we have a normal thread in a high-priority process, the thread
will have a priority level of 13. If you change the process's priority class
to idle, the thread's priority level becomes 4. Remember that thread
priorities are relative to the process's priority class. If we change a
process's priority class, the thread's relative priority will not change but its

priority level will.

Time-critical 15 15 15 15 15 31

Highest & 5 10 i1z 15 26
Above normal S 7 9 11 14 25
Normal 4 6 8 10 13 24
Below normal 3 S 7 9 1z 23
Lowest 2 4 ) 8 11 zz
Idle 1 1 1 1 1 1

Table 3 : Process Priority with corresponding Thread priorities

The table above does not show any way for a thread to have a
priority level of 0. This is because the 0 priority is reserved for the zero
page thread and the system does not allow any other thread to have a
priority of 0. Also, the following priority levels are not obtainable: 17, 18,
19, 20, 21, 27, 28, 29, or 30. If we are writing a device driver that runs in
kernel mode, we can obtain these levels; a user-mode application cannot.
Also note that a thread in the real-time priority class can't be below
priority level 16. Likewise, a thread in a non-real-time priority class

cannot be above 15.



In general, a thread with a high priority level should not be
schedulable most of the time. When the thread has something to do. it

quickly gets CPU time.

At this point, the thread should execute as few CPU instructions as
possible and go back to sleep, waiting to be schedulable again. In contrast,
a thread with a low priority level can remain schedulable and execute a lot

of CPU instructions to do its work.
7.3 Programming Priorities

A process is assigned a priority class when we call CreateProcess,
we can pass the desired priority class in the fdwCreate parameter. The

table below shows the priority class identifiers.

Real-time REALTIME_PRIORITY_CLASS

High HMIGH_PRIORITY_CLASS

above normal ABOVE_NORMAL_PRIORITY_CLASS
Normal NORM&L_PRIORITY_CLASS

Below normal BELOW_NORMAL_PRIORITY_CLASS
Idle IDLE_PRIORITY_CLASS

Table 4 : Symbolic Identifiers for Threads

It might seem odd that the process that creates a child process
chooses the priority class at which the child process runs. However once
the child process is running, it can change its own priority class by calling

SetPriorityClass:

BOOL SetPriorityClass (HANDLE hProcess,

DWORD fdwPricrity);



This function changes the priority class identified by hProcess to
the value specified in the fdwPriority parameter. The fdwPriority

parameter can be one of the identifiers shown in the table above.

Because this function takes a process handle, we can alter the
priority class of any process running in the system as long as we have a

handle to it and sufficient access.

Here is the complementary function used to retrieve the priority

class of a process:
DWORD GetPriorityClass (HANDLE hProcess);

This function returns one of the identifiers listed in the table above.

When a thread is first created, its relative thread priority is always
set to normal. To set and get a thread's relative priority, we must call these

functions:

BOOL SetThreadPriority/{
HANDLE hThread,

int nPriority);

The hThread parameter identifies the single thread whose priority
we want to change, and the nPriority parameter is one of the seven

identifiers listed in the following table.



Relativ ThreadPriuritv : ' symbolic.Cg

Time-critical THREF\D_F‘RIORITY_'TIME__CRITICAL..

Highest THREAD_PRIORITY_HIGHEST

Above normal THREAD_PRICRITY_ABOVE_NORMAL
Normal THREAD_PRIORITY_NORMAL

Below normal THREAD_PRIORITY_BELOW_NORMAL
Lowest THREAD_PRIORITY_LOWEST

idle ' THREAD_PRIORITY_IDLE

Table 5 : Relative Thread Priorities and Symbolic Constants

Here is the complementary function for retrieving a thread's relative
priority:
Int GetThreadPriority(HANDLE hThread) ;

The CreateThread always creates a new thread with a normal
relative thread priority. To have the thread execute using idle priority, we
pass the CREATE_SUSPENDED flag o CreateThread; this prevents the
thread from executing any code at all. Then we call SetThreadPriority to
change the thread to an ‘dle relative thread priority. We then call
ResumeThread so that the thread can be schedulable. The scheduler takes
‘nto account the fact that this thread has an idle thread priority. Finally.
we close the handle to the new thread so that the kernel object can be

destroyed as soon as the thread terminates.



8. THREAD SYNCHRONIZATION WITH
KERNEL OBJECTS

Kernel objects can be used to synchronize threads. We've
discussed kernel objects of threads. For thread synchronization, each of
these kernel objects is said to be in a signaled or nonsignaled state. The
toggling of this state is determined by rules that Microsoft has created for
each object. Process kernel objects are always created in the nonsignaled
state. When the process terminates, the operating system automatically
makes the process kernel object signaled. Once a process kernel object is
signaled, it remains that way forever; its state never changes back to

nonsignaled.

A process kernel object is nonsignaled while the process is running,
and it becomes signaled when the process terminates. Inside a process
kernel object is a Boolean value that is mitialized to FALSE (nonsignaied)
when the object is created. When the process terminates, the operating
system automatically changes the corresponding object's Boolean value to

TRUE, indicating that the object is signaled.

If we want to write code that checks whether a process is still
running, all we do is call a function that asks the operating system to
check the process object's Boolean value. Wo may also tell the system to
put our thread in a wait state and wake it up automatically when the

Boolean changes from FALSE to TRUE.



This way, we can write code in which a thread in a parent process
that needs to wait for the child process to terminate can simply put itself
to sleep until the kernel object identifying the child process becomes

signaled.

Thread kernel objects are always created in the nonsignaled state.
When the thread terminates, the operating system automatically changes
the thread object's state to signaled. Therefore, we can use the same
technique in our application to determine whether a thread is no longer
executing. Just like process kernel objects, thread kernel objects never

return to the nonsignaled state.

The following kernel objects can be in a signaled or nonsignaled

state:
e Processes o File change notifications
e Threads e Events
s Jobs e Waitable timers
e Files e Semaphores
o Console mput e Mutexes

Threads can put themselves into a wait state unti! an object becomes
signaled. The rules that govern the signaled/nonsignaled state of each
object depend on the type of object. We'll took at the functions that allow

a thread to wait for a specific kernel object to become signaled.

Kernel objects can be imagined as flag (the wave-in-the-air kind,
not the bit kind). When the object was signaled, the flag was raised; when

the object was nonsignaled, the flag was lowered.



Signaled & Nonsignaled States of Thread

8.1 Wait Functions

Wait functions cause a thread to voluntarily place itself into a wait
state until a specific kernel object becomes signaled. By far the most

common of these functions is WaitForSingleObject:

DWORD WaitForSingleCbject |
HANDLE hObject,

DWORD dwMilliseconds) ;

When a thread calls this function, the first parameter, hObject,
identifies a kernel object that supports being signaled/nonsignaled. The
second parameter, dwMilliseconds, allows the thread to indicate how long

it is willing to wait for the object to become signaled.

The following function call tells the system that the cailing thread
wants to wait until the process identified by the hProcess handle

terminates:

WaitForSingleObject (hProcess, INFINITE);



The second parameter tells the system that the calling thread is
willing to wait forever (an infinite amount of time) until this process
terminates.Usually, INFINITE is passed as the second parameter to
WaitForSingleObject, but we can pass any value (in milliseconds). By
the way, INFINITE is defined as OxFFFFFFFF (or -1).

Passing INFINITE can be a little dangerous. If the object never
becomes signaled, the calling thread never wakes up—it is forever
deadlocked but, fortunately, not wasting precious CPU time.We can pass
0 for the dwMilliseconds parameter. If we do this, WaitForSingleObject

always returns immediately.

WaitForSingleObjects return value indicates why the calling
thread became schedulable again. If the object the thread is waiting on
became signaled, the return value is WAIT OBJECT 0; if the timeout
expires, the return value is WAIT _TIMEOUT. If we pass a bad parameter
(such as an invalid handle) to WaitForSingleObject , the return value is

WAIT FAILED.

The  function  WaitForMultipleObjects, is  similar to
WaitForSingleObject except that it allows the calling thread to check the

signaled state of several kernel objects simultaneously:

DWORD WaitForMultipleObijects |
DWORDRD dwCount,
CONST HANDLE* phObjects,
BOOL fwaitaAll,
DWORD dwMilliseconds) ;



The dwCount parameter indicates the number of kernel objects we
want the function to check. This value must be between i and
MAXIMUM_WAIT_OBJECTS (defined as 64 in the Windows header
files). The phObjects parameter is a pointer to an array of kernel object

handles.

We can use WaitForMultipleObjects in two different ways—to allow
a thread to enter a wait state until any one of the specified kernel objects
becomes signaled, or to allow a thread to wait until the entire specified kernel
objects become signaled. The fWaitAll parameter tells the function which
way we want it to work. If we pass TRUE for this parameter, the function
will not allow the calling thread to execute until all of the objects have
become signaled.

The dwMilliseconds parameter works exactly as it does for
WaitForSingleObject. If, while waiting, the specified time expires, the
function returns anyway. Again, INFINITE is usually passed for this
parameter, but you should write our code carefully to avoid the possibility of
deadlock.

The WaitForMultipleObjects function's return value tells the
caller why it got rescheduled. The possible return values are
WAIT_FAILED and WAIT TIMEOUT. If we pass TRUE for fWaitAli
and all of the objects become signaled, the return value is
WAIT_OBJECT_0. If we pass FALSE for fWaitdll, the function returns
as soon as any of the objects becomes signaled. In this case, we probably
want to know which object became signaled. The return valuve is a value

between WAIT_OBJECT 0 and (WAIT OBJ ECT_0 + dwCount -1).



In other words, if the return value is not WAIT_TIMEOUT and is
not WAIT FAILED, we should subtract WAIT _OBJECT 0 from the
return value. The resulting number is an index into the array of handles
that we passed as the second parameter to WaitForMultipleObjects. The

index tells us which object became signaled.

For example, our thread might be waiting for three child processes
to terminate by passing three process handles to this function. If the
process at index 0 in the array terminates, WaitForMultipleObjects
returns. Now the thread can do whatever it needs to and then loop back
around, waiting for another process to terminate. If the thread passes the
same three handles, the function returns immediately with
WAIT _OBJECT 0 again. Unless we remove the handles that we've

already received notifications from, our code will not work correctly.
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9 THREAD SYNCHRONIZATON USING

CRITICAL SECTION

A critical section is a small section of code that requires exclusive
access to some shared resource before the code can execute. This is a way
to have several lines of code "atomically" manipulate a resource. By
atomic, we mean that the code knows that no other thread will access the
resource. Of course, the system can still preempt our thread and schedule
other threads. However, it will not schedule any other threads that want to

access the same resource until our thread leaves the critical section.

While managing a linked list of objects, if access to the linked list
is not synchronized, one thread can add an item to the list while another
thread is trying to search for an item in the list. The situation can become
more chaotic if the two threads add items to the list at the same time. By
using critical sections, we can ensure that access to the data structures is

coordinated among threads.

When we have a resource that is accessed by multiple threads, we
should create a CRITICAL_SECTION structure. Since the critical section
is small, only one thread at a time can be inside the critical section using

the protected resource.

If we have multiple resources that are always used together, we can
place them all in a single critical section: we should create just one

CRITICAL SECTION structure to guard them all.



If we have multiple resources that are not always used together—
for example, threads 1 and 2 access one resource and threads 1 and 3

access  another  resource—you  should create a  separate

CRITICAL_SECTION structure, for each resource.

Now, wherever we have code that touches a resource, we must
place a call to EnferCriticalSection, passing it the address of the
CRITICAL SECTION structure that identifies the resource. This is like
saying that when a thread wants to access a resource. The
CRITICAL_SECTION structure identifies which thread wants to enter
and the EnterCriticalSection function is what the thread uses to check the

occupied sign.

If EnterCriticalSection sees that no other thread is in the critical
section, the calling thread is allowed to use it. If EnterCriticalSection sees
that another thread is in the critical section, the calling thread must wait
outside the critical section until the other thread in the critical section

leaves.

When a thread no longer executes code that touches the resource, it
should call LeaveCriticalSection. This is how the thread tells the system
that it has left the critical section containing the resource. If we forget to
call LeaveCriticalSection, the system will think that the resource is still in

the Critical Section and will not allow any waiting threads in.



Any code we write that touches a shared resource must be wrapped
inside EnterCriticalSection and LeaveCriticalSection functions. If we
forget to wrap your code in just one place, the shared resource will be

subject to corruption.

If we forget calls to EnterCriticalSection & LeaveCriticalSection,
the thread just muscles its way in and manipulates the resource. If just one

thread exhibits this, the resource is corrupted.

We can solve our synchronization problem using critical sections.
Critical sections are easy to use and they use the interlocked functions
internally, so they execute quickly. The major disadvantage of critical
sections is that we cannot use them to synchronize threads in multiple

processes.

To manipulate a CRITICAL SECTION structure, we call a
Windows function, passing it the address of the structure. The function
knows how to manipulate the members and guarantees that the structure's
state is always consistent. So now, let's turn our attention to these

functions.

Normally, CRITICAL SECTION structures are allocated as
global variables to allow all threads in the process an easy way to refer the
structure by variable name. However, CRITICAL_SECTION structures
can be allocated as local variables or dynamically allocated from a heap.
There are just two requirements. The first is that all threads that want to
access the resource must know the address of the CRITICAL_SECTION
structure that protects the resource. We can get this address to these

threads using any mechanism we like.



The second requirement is that the members within the
CRITICAL_SECTION structure be initialized before any threads attempt

to access the protected resource. The structure is initialized via a call to:

VOID InitializeCriticalSection|

PCRITICAL SECTION pcs);

This function initializes the members of a CRITICAL_SECTION
structure (pointed to by pcs). Since this function simply sets some
member variables, it cannot fail and is therefore prototyped with a return
value of VOID. This function must be called before any thread calis

EnterCriticalSection.

When we know that our process's threads will no longer attempt to
access the shared resource, we should clean up the CRITICAL SECTION

structure by calling this function:

VOID DeleteCriticalSection/
PCRITICAL SECTION pcs;:

DeleteCriticalSection resets the member variables inside the
structure. We should not delete a critical section if any threads are still

using it.

When we write code that touches a shared resource, we must

prefix that code with a call to:

VOID EnterCriticalSection!

PCRITICAL SECTION pcs);



EnterCriticalSection examines the member variables inside the
structure. The variables indicate which thread, if any, is currently

accessing the resource. EnterCriticalSection performs the following tests:

e If no thread is accessing the resource, EnterCriticalSection
updates the member variables to indicate that the calling thread
has been granted access and returns immediately, allowing the

thread to continue executing (accessing the resource).

« If the member variables indicate that the calling thread was
already granted access tO the resource, EnterCriticalSection
updates the variables to indicate how many times the calling
thread was granted access and returns immediately, allowing the
thread to continue executing. This situation is rare and occurs
only if the thread calls EnterCriticalSection twice In a row

without an intervening call to LeaveCriticalSection.

e If the member variables indicate that a thread (other than the
calling thread) was granted access 10 the resource,
EnterCriticalSection places the calling thread in a wait state.
The waiting thread does not waste any CPU time. The system
remembers that the thread wants access to the resource and
qutomatically updates the CRITICAL_SECTION's member
variables and allows the thread to be schedulable as soon as the
thread currently accessing the resource calls

LeaveCriticalSection.



EnterCriticalSection is not too complicated internally; it
performs just a few simple tests. This function is so valuable is that it can
perform all of these tests atomically. If two threads call
EnterCriticalSection at exactly the same time on a multiprocessor
machine, the function still behaves correctly: one thread is granted access

to the resource, and the other thread is placed in a wait state.

If EnterCriticalSection places a thread in a wait state, the thread
might not be scheduled again for a long time. In fact, in a poorly written
application, the thread might never be scheduled CPU time again. If this
happens, the thread is said to be starved.

At the end of our code that touches the shared resource, we must call :

VOID LeaveCriticalSection(

PCRITICAL SECTION pcCs )i

LeaveCriticalSection examines the member variables inside the
structure. The function decrements by 1 a counter that indicates how
many times the calling thread was granted access to the shared resource.
If the counter is greater than 0, LeaveCriticalSection does nothing else

and simply returns.

If the counter becomes 0, it checks to see whether any other
threads are waiting in a call to EnterCriticalSection. If at least one thread
is waiting, it updates the member variables and makes one of the waiting
threads schedulable again. If no threads are waiting, LeaveCriticalSection
updates the member variables to indicate that no thread is accessing the
resource.Like EnterCriticalSection, LeaveCriticalSection performs all of

these tests and updates atomically.



If we forget to call CloseHandle, it is possible for a process to leak
resources (such as kernel objects) while the process runs. However, when
the process terminates, the operating system ensures that any and all

resources used by the process are freed-—this is guaranteed.

For kernel objects, the system performs the following actions:
When our process terminates, the system automatically scans the process's
handle table. If the table has any valid entries (objects that we didn't close
before terminating), the system closes these object handles for us. If the
usage count of any of these objects goes to zero, the kernel destroys the

object.

So, our application can leak kernel objects while it runs, but when
our process terminates, the system guarantees that everything is cleaned
up properly. By the way, this is true for all objects, resources, and
memory blocks: when a process terminates, the system ensures that our

process leaves nothing behind.






CONCLUSION

A wrapper class for platform specific thread APIs is
developed. If the application is using our thread library the appiication can
be ported to any platform as such. So the only module that we have o
modify is our thread library, which wili take very less time and
manpower. Since the application has to be recoded according to the
working platform it makes the applicatior unportable, where as the thread

library makes the application portable.

Scope for future development

We can create a thread manager, which contains the
centralized control of all the thread in the application. We can also creste
some utilities like queues and we can implement the thread
synchronization algorithm in it,so that the data inside those queues can be
protected from data corruption which can be caused by the scenario like

two thread attempting to write data in to the queus.
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Thread class implementation

The Thread class
The function StartProc does Start up procedure for thread.

Its input argument is a long Pointer to Void, no output arguments

and the return value is a DWORD.

The function Thread has a default constructor; it has no

input, output arguments and no return value.

The Thread function also has a constructor with initializer
whose input argument is a pointer to Runnable interface. It has no

input, output arguments.

The function start() Starts the thread; it has no input, output

arguments and no return value.

The function kill() ends the thread life; it has no input,
output arguments and no return value.

The function suspend() suspends the execution of the thread; it has
no input, output arguments and no return value.

The function resume() resumes the execution of the thread; it has no

input, output arguments and no return value.

The function setPriority() sets the priority for the thread; its input

argument is an integer value, which specifies the priority for the thread.



The function getPriority() returns the priority of a thread which is

an integer value; 1t has no input, output arguments.

The function sleep() makes the thread to move to the sleeping state
for specific duration. Its input argument is an integer value, which
specifies the duration for which the thread has to sleep and it is an integer

value.

The function wait() makes the other threads to wait until this thread
ends. Its input argument is an integer value, which specifies the duration

of time for which the other threads has to wait.

The Runnable class
This class is an interface which defines the signature for run(). The

run() forces to provide the task for the thread to execute. We can Create
a class by extending this class Runnable and provide an implementation

for run().
Thread header file (Thread.h)

The Thread class represents the thread. This provides a lot of
members to manipulate the threads in a more effective way. This class can
be used to create a thread by passing Runnable object pointer to the
Thread's constructor. After the thread object creation, start the thread by
invoking start() method of the thread class. The class Runnable can be

used to implement the thread.



/#%x THREAD.CPP ***/

#include <Thread.h>

#include <iostream~>

using namespace std;
/////////////////////////////////////////////////////////////////////
// Function Name: StartProc

// Description : Start up procedure for thread.

// Input Args :Long Pointer to Void

// Output Args : None

// Return Value : DWORD

/////////////////////////////////////////////////////////////////////

DWORD WINAPI Thread::StartProc(LPVOID vpv)
{ Runnable* r= (Runnable®) vpv;
r->run();

return 0;



I I T T
// Function Name: Thread

// Description : Constuctor - Default.

// Input Args : None

// Output Args : None

// Return Value : None
ST T T
Thread:: Thread()

{  m_Runnable = this;

}

T T
// Function Name: Thread

// Description : constructor with initializer

// Input Args : Runnable®

// Output Args : None

// Return Value : None

I T



Thread::Thread(Runnable* a_Runnable)

{

m_Runnable = a_Runnable;
j
i
// Function Name: start
// Description : Starts the thread.
// Input Args :None
// Output Args : None
// Return Value : None
I T
void Thread::start()
{ m_ThrdHdl = CreateThread(NULL,
0,
StartProc,
m_Runnable,
0,

&m_Threadld);



if (m_ThrdHdl = NULL)

{

cout << "ERROR: Thread Creation Failed" << endl;

}

I T
// Function Name: kill

// Description : Ends thread's life.

// Input Args : None

// Output Args : None

// Return Value : None

I T T

void Thread::kill()

{ if (m_ThrdHdl != NULL)

ExitThread(10);
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I T
// Function Name: suspend
// Description : Suspends the execution of this thread.
// Input Args : None
// Output Args : None
// Return Value : None
I T
void Thread::suspend()
{
if (m_ThrdHdl = NULL)
{
int rv = SuspendThread(m_ThrdHdl);
if (rv =="-1)
{

cout << "Suspend Thread operation failed" << endl;



else

cout << "Suspend count ="
<<tV
<< " Max. suspend count ="

<< MAXIMUM_SUSPEND COUNT << end];

i

// Function Name: resume

// Description : Resumes the execution of this thread.
// Input Args : None

// Output Args : None

// Return Value : None

I T T



void Thread::resume()
{
if (m_ThrdHdl != NULL)
{
int rv = ResumeThread(m_ThrdHdl);
if (rv == -1)
{
cout << "Resume Thread operation failed" << endl;
} else
{
cout << "Thread resumed. Suspend count ="

<< rv << endl;



I
// Function Name: setPriority

// Description : Sets the priority for this thread.
// Input Args : int - thread priority

// Output Args : None

// Return Value : None

I T T

void Thread::setPriority(int a_nPriority)
{
if (m_ThrdHdl != NULL)

{

SetThreadPriority(m_ThrdHdl, a_nPriority);

T T
// Function Name: getPriority
// Description : Returns the priority of this thread.

// Input Args : None



// Output Args : None
J/ Return Value : int - Thread priority
/////////////////////////////////////////////////////////////////////
int Thread::getPriority()
{

intrv=0; -

if (m_ThrdHdl = NULL)

{

rv = GetThreadPriority(m_ThrdHdl);
} return rv;
}
/////////////////////////////////////////////////////////////////////
// Function Name: sleep

// Description : Makes the thread to move to the Sleeping state for

specific duration.

// ITnput Args :int- duration to sleep
// Output Args : None

// Return Value : None

/////////////////////////////////////////////////////////////////////



void Thread::sleep(int m_nDuration)
{
if (m_ThrdHdl 1= NULL)

{

Sleep(m_nDuration);

}

/////////////////////////////////////////////////////////////////////
// Function Name: wait
// Description : Makes the other threads to wait until this thread ends.
// Input Args :int - duration to wait
// Output Args : None
// Return Value : None
/////////////////////////////////////////////////////////////////////
void Thread::wait(int m_nDuration)
{ if (m_ThrdHdl 1= NULL)
{  WaitF orSingleObj ect(m_ﬁThrdel,m_nDu‘ration);

}



/¥ *RUNNABLE.H***/

#ifndef Runnable_h
#define Runnable_h
PR R R o RS R SRR R SRR o
* CLASS:

* Runnable

*DESCRIPTION:

* This class is an interface which defines the signature for
- * run(). The run() forces to provide the task for the thread
* to execute.

* USAGE:

* (Create a class by extending this class Runnable. Provide an
* implementation for run().

* RELATED CLASSES:

* Runnable



class Runnable
{
public:
1/
// Provides Task for thread to execute.
1
virtual void run() = 0;
35

#endif Runnable_h



F**THREAD.H***/

#ifndef Thread_h

#define Thread h

#include <Runnable.h>

#include <windows.h>

/**********************************************************/

* CLASS: Thread

DESCRIPTION:

* This class represents the thread. This provides a lot of members to
* manipulate with the threads in a more effective way.

* USAGE:

* Create a thread by passing Runnable object pointer to the

* Thread's constructor. After the thread object creation, star:

* the thread by invoking start() method of the thread class.

* RELATED CLASSES:

* Runnable

/**********************************************************/



class Thread : public Runnable
{
public:
/1
// Constuctor - Default.
/f
Thread();
"l
// Constructor with initializer.
//
Thread(Runnable *a_Runnable);
1/
// Starts the thread.
/f
void start();
1
// Ends thread's life.

1



void kill();
i
// Makes the thread to move to the Sleeping state for specific

// duration.

I/
ind sleep(int m_nDuration——'INFIN"ITE);
i
// Makes the other threads to wait until this thread ends.
1
void wait(int m_nDuration=INFINITE);
/!
// Suspends the execution of this thread.
/1
void suspend();

| 1
// Resumes the execution of this thread.
1

void resume();

/1



// Sets the priority for this thread.

/

void setPriority(int a_priority);

/1

// Returns the priority of this thread.

1/

int getPriority();

1

// Null implementation for Runnable's run method.

/!

void run()

{
}



private:
// Start up procedure for thread.
static DWORD WINAPI StartProc(LPVOID vpv);
// Runnable object pointer.
Runnable* m Runnable;
// Handle to the Thread object.
HANDLE m_ThrdHdl;
// Unique thread identifier.

unsigned long m Threadld;

}s



[F*¥*TEST.CPP**%/

#include <Thread.h>
#include <Nos.h>

void main()

{
Nos *nol = new Nos("Even", 0, 2);
Nos *no2 = new Nos("0dd", 1, 2);
Nos *no3 = new Nos("* of 5", 0, 5);
Nos *no4 = new Nos("* of 10", 0, 10);
Thread *t1 = new Thread(nol);
Thread *t2 = new Thread(no2);
Thread *t3 = new Thread(no3);
Thread *t4 = new Thread(no4);
t1->start();
t2->start(); |
t3->start();

t4->start();



t1->setPriority(THREAD PRIORITY NORMAL);
t2->setPriority(THREAD PRIORITY HIGHEST);
t3->setPriority(THREAD PRIORITY LOWEST);

t4->setPriority(THREAD PRIORITY IDLE);

t1->wait();
t2->wait();
t3->wait();

t4->wait();



APPENDIX — B

Producer Consumer problem

Producer produces a lot of data (here, it 1s natural numbers}. The
produced data is stored in mailbox. The mailbox can have only one data at
any time. The consumer consumes the data from the mailbox. The
consumer should consumes all the data produced by the producer. No data
should be left unconsumed.

Thread synchronization win32 APIs are used for this.

Class diagram for Producer Consumer problem
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/#+*PRODUCER.H***/

#ifndef Producer_h

#define Producer_h

#include <Runnable.h>

#include <Mailbox.h>

#include <string.h>

using namespace std;

1

// Producer class.

/

class Producer : public Runnable
{

public:

/i

J/ Constructor with intializer.

/

Producer(Mailbox* a_Mailbox)
: m_Mailbox(a_Mailbox), m_bStop(false)
1

}

/1
J/ Post new messages in to the mail box.

/1



void Run()
{
int count = 1;
1
// Post new messages until the Stop flag is set. /
while (!m_bStop)
{
m_Mailbox—>Put(count++);
}

;
/1!

/1 Stop the producer. //

void Stop()
{
m_bStop = true;
}
private:
1
// Reference to the Mailbox object. //
Mailbox* m_Mailbox;
1
// Thread exit flag. //
bool m_bStop;
35
#endif Producer_h



[F¥*CONSUMER.H***/

#ifndef Consumer_h
#define Consumer h
#include <Runnable.h>
#include <Mailbox.h>
#include <iostream>
using namespace std;
/"
/! Consumer class.//
class Consumer : public Runnable
{
public:

// Constructor with intializer.
Consumer(Mailbox* a Mailbox): m_Mailbox{a_Mailbox),
m_bStop(false)

{1}

"l

// Consumes the messages in the mail box. //
void Run()

{

int count = 0;

while (!m_bStop)

{

cout << "Data - " <<m_Mailbox->Get() << endl;

}
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// Stops the consumer. //
void Stop()

{

m_bStop = true;

}

private:

"

// Pointer to the Mailbox object. //
Mailbox* m_Mailbox;

11/

// Thread exit flag. //

bool m_bStop;

b

#endif Consumer h



// Posts new message. //
void Put(int a_Data)
{

/I Sleep until the consumer consumes the existing message //
while (m_bFlag)

{

Sleep(200);

}

// Lock the Data. //
EnterCriticalSection(&m_DataCS);
i

// Assign new Data. //

m_Data =a_Data;

11

// Enable New Message flag. //
m_bFlag = true;

1l

// UnLock the Data. //
LeaveCriticalSection(&m_DataCS);

}
/i

// Consumes message. //

int Get()
{

int data;

1/



/1 Wait unt.il new message is posted. //
while (!m_bFlag)
{
Sleep(200); }
1!
// Lock the Data. //
EnterCriticalSection(&m_DataCS);
// Take local copy.//
‘data = m_Data;
/f Disable new message flag.//
m_bFlag = false;
// UnLock the Data.//
LeaveCriticalSection(&m DataCS);
// Return the data to the consumer.//
return data;
}
private:
// Data produced by the Producer.//
“int m_Data;
// Message Flag //
bool m_bFlag;
// Critical Section structure for Data.//
CRITICAL_SECTION m_DataCs;
I
#endif Mailbox_h



/2% * MAIN.CPP***/

#include <Producer.h>

#include <Consumer.h>
#include <Thread.h>

#include <conio.h>

void main() {

/1

// Create mailbox object. //
Mailbox* m = new Mailbox();
1/

// Create Producer object. //
Producer* p = new Producer(m);
/1

// Create Consumer object. //
Consumer* ¢ = new Consumer(m);
/il

J/ Create thread object. //
Thread* t1 = new Thread();
Thread* t2 = new Thread();

i

// Start the thread object. //

t1->Start(p);
t2->Start(c);
cout << "Press any key to stop this Program” << endl;

getch();
v



