P-512-
DIGITAL IMAGE COMPRESSION

Project work,
Submitted By

Kumaravel 7
Pragnesh K R V
Sathish Karthik ®,
Venkat Rama Rao A

1997 - 2001

Under the guidance of

Dr.S.Thangasamy Ph.D
Head of the Department
Computer Science and Engineering

In partial fulfillment of the requirements for the award of degree of
Bachelor of Engineering (B.E)in Computer Science and Engineering
of the Bharathiyar University,Coimbatore.

Department of Computer Science and
Engineering
Kumaraguru College of Technology
Coimbatore - 641 006

Kumaraguru College of Technology
Coimbatore - 641 006
Department of Computer Science and

Engineering

CERTIFICATE
This is to certify that the Project Report entitled
Digital Image Compression

has been submitted by

...

In partial fulfillment of the requirements for the award of degree of
Bachelor of Engineering (B.E) in Computer Science and

Engineering of the Bharathiyar Unj

2000-2001
______ S_;;J_g-._i:_ o ~
Guide

...

Declaration

We,Kumaravel J, Pragnesh K R V, Sathish Karthik
- R,Venkat Rama Rao A hereby declare that this project work entitled
"Digital Image Compression” submitted to Kumaraguru College of
Technology , Coimbatore (Affiliated to Bharathiyar University) is z
record of original work done by us under the supervision and guidance of
Dr.S.Thangasamy Ph.D, Head of the Department, Department of

Computer Science and Engineering.

Name of the Register Number Signature of the
candidate candidate
Kumaravel J 9727K0152 1 Ruwasava
Pragnesh KR V 9727K0159 {dyyyt R
Sathish Karthik R 9727K0175 . ?M;MA P =
Venkat Rama Rao A 9727K0520 A Ppbai et o
Countersigned :
Staff in Charge :
S . <\£ ‘_ = _:.\ ——— «(\ Ve ‘__% ; ’r‘C,\f
Dr.S.Thangasamy Ph.D S

Head of Department
Department of Computer Science and Engineering
Kumaraguru College of Technoiogy
Coimbatore - 641 006

Place ;

Date :

Acknowledgement

We deem this a rare Opportunity fo express our sincere thanks
and deep gratitude to all those who were responsible Jor the knowledge

and experience we acquired during our project as well as OU; course.

We would like to thank Dr.K.K.Padmanaban pPh.p principal,

Kumaraguru college of Technology Jor his kind co-operation ang
encouragemennt.

We would also like to thank Dr.S.Thangasamy Ph.D, Head of the

Computer science and Engineering Department Jor being our guide.

Our heartfelt thanks 10 staff members of Computer Science

Department Kumaraguru college of Technology for having provided us

the necessary infrastructure and Jor also having reminded our deadlines.

Respectful thanks to our Jamily members Jor their continued

encouragement and support during the project.

Our special thanks 1o Mr.Raja Vaidyanathan ASIC Engineer

Texas Instruments Jor his technical advice and also the reason behing

the project’s implementation in Linux.

Last but not the least » we would like to thank all those W10 were

involved in this project indirectly

CONTENTS

SYNOPSIS .ottt ettt eeestesasosnessnsnes i
1) INTRODUCTION
1.1) EXisting SYSteml eevveveuiineiicntnriesennsearcnseeassaoanss veesncsenns 4
1.2) Need for computeriZation vvueuiveeesrereeeeanrrrereesensnscesescacnns 4
1.3) Proposed SYSEeI ..vvussnrireieserereneesensannrenensssnsscasssssnnns 5
2) REQUIREMENT ANALYSIS
2.1) Hardware Requirements ...vveeviieeneecieiiinirnnrensessrcessnsnanee 8
2.2) Software ReqUirements «.....cucuvvireececrreeescsacsecernnncecsssssoee

3) HISTORICAL PERSPECTIVE

4) NEED FOR COMPRESSION.....ccintrninriiieiriiinirensnernencnens 12
4.1) How can images can be compPressed.........cvuveruiervnresiereninnneenennnns 12
4.2) Compression Standards.........coevevurieeeiiieriieencieiereiiennnenrreasnan i3
4.3) Lossy & Lossless COMPression...c...cociieeeeieirnerrvinenreniiennncnnn L3

5) GENERAL BLOCK DIAGRAMcviiiiiiiiiiiiiiirainrennaecns 18

0) Why DOT Z.iiiiiiiiiiiiiiiiiiiiirrreriaresnsesiessastimmmeessesssennnnns 20
21

7) Why Entropy encoding......cccouivrviererinreeeeeiereinsroneerancennenns

8.1) Discrete Cosine Transform U URU Jv.
8.2) QUantizationccoieiiiiiniieiisiiieee e 25
8.3) Zig Zag SCAN «...vvveuiiiieceeeee e 27
8.4) Differential Pulse Code Modulationc.o..oovvooeooi 27
8.5) Run Length Encodingc...voveumrenueieeereoseeeeoseeoooo 27
8.6) Entropy ENCOding «....oveiuveeveoiueinieiieneeeeieeeees oo 28
8.7) Implementation of DCT based COding ..covviiiiiniiiiii e, 29

9) PHASES OF DECOMPRESSIONuvuneieiieiseo 31

1) DECOING .eeeenrriniiiiiiiiiiitie e 31

9.2) Dequantizationceceevvuueeiieiiuieeieeeeesee e 31

9.3) InVerse DCT cooeunniiiiieienireeereeeee e 32

10) APPLICATIONS OF IMAGE COMPRESSION. ..o 33
11) FUTURE TRENDS AND CONCLUSION «..vvoeeee 35
12) BIBLIOGRAPHY ...ccovvruiniiiiminnnneseeeseeeeseeseeeeooeese 37

13) SOURCE CODEvvunniiimnieineeeeneeeeeeeeeeeeeeoee 39

14) SAMPLE OUTPUTS ..vvvenniieiieeeenee e 85

IS) TEST RESULTS ...oouiiiiiiiiii e eeeee e, 92

SYNOPSIS

This project titled “DIGITAL IMAGE COMPRESSION®

compresses images using the JPEG format.

This project deals with a Fourier transform called Discrete Cosine
Transform which converts images from a spectral framework to a spatial
framework. Once the spatial representation is obtained , the high
frequency values (or the irrelevant information) can be eliminated under
the pretext that they are not visible to the human eye. The remaining

redundant values can be encoded to give the compressed image.

The coding is done in C using LINUX; one of the most powerfu:

operating systems of its kind .

The synchronized and the simultaneous display of two images on a
single display unit, so that the variation in quality of the decompressed
image can be easily compared with that of the original image , and
conversion of a 256 color image into a gray image of photo quality are

some of the features offered by this project.

The ability to transfer images across the network is achieved using

streaming sockets.

1) INTRODUCTION

1.1) Existing System

The information highway, digital television,
teleconferencing, videophones and telemedicine are a few of the facets of
the emerging digital age. Developments in digital image processing
have aided their progression from design concepts to everyday
experience . Digital image compression methods have assisted this

progression .

Digital imaging is now prevalent in many areas . The storage
and transmission requirements of digital images are formidable . Image
compression techniques seek to maximize transfer speeds and efficiently

use archive space while retaining sufficient quality of 1mage.

1.2) Need for Computerization

Compression is the art of significantly reducing the
physical size of a block of information offering the following capabilities

such as .

1) Storing more information on the same mediza.
2) Reducing the transfer time of data on a network.
3) Improving the usage and reproduction of image with minimum

degradation.

This project examines compression techniques for still images .

Digital images contain a great deal of data. Electronic
transmission of uncompressed digital images can be very time-
consuming. Sending a 10 Mb image of a surface area of just
10mmx10mm would take approximately 45 minutes via a conventional
phone line and a modem operating at 28,800 bits per second. Image
compression techniques can reduce the size (and hence cost) of any

archive and can decrease transfer times.

Image compression operations reduce the data content of a
digital image and represent the image in a more compact form, usually
just before storage or transmission . Gray scale, color or binary images
can be compressed and different types of compression may be used for
different applications such as in medical imaging, finger-

printing/security, seismology and astronomy.
1.3) Proposed System

There are two types of image compression - lossy and
lossless. Lossy compression results in the decompressed image being
similar but not the same as the original image. This is because some of
the original data has been discarded and/or changed. Lossless
compression, however, retains the exact data of the original tmage bit for
bit. The compression ratio can be defined as the ratio between the data
content to be compressed and the data that results after decompression .
Lossy techniques can provide compression ratios of up to 100:7 and

beyond. Lossless compression ratios are much lower, however, achieving

rates of approximately 3:1.. In general as the lossy compression ratio

increases so does the degradation of the image.

Image compression is usually a two-way process involving
compression and decompression. This process may not be symmetricai,
i.e. the time taken and/or computing power for one process may differ

from the other given the type of compression algorithm used.

Many techniques are available to compress Images, namely
Fractals, Wavelets, and many transforms such as Fast Fourier transforms ,
Haar transform and the Hilbert transform. The most popular among these

are the Fractals, the Wavelets and the FFTs.

DCT is prevalent in the field of image compression. The technique
used to compress image depends upon the environment and the quantity
of data that will be processed. The application which we have designed
deals with only images of around 100K and finds application in Local

Area Networks.

Though wavelets and fractals provide a higher compression ratio
they are slow and they are ideal only for images of larger size say
18MB.This is the reason behind the selection of DCT(Discrete Cosine

Transform).

The proposed system is developed in Linux since much of image
processing is not done in this OS. The field of image processing can be
powerfully implemented in Linux by embedding the powerful OS

concepts.

2) REQUIREMENT ANALYSIS

2.1) Hardware Requirements

1. Linux Server

2. 2 PC’s connected to the Network

2.2) Software Requirements

1. Red Hat Linux Version 6.2

About Linux

Linux is an operating system for PC computers that use 386, 486 or
Pentium processors such as IBM compatibles. Linux was developed in
the early 1990s by Linus Torvald along with other programmers around
the world. As an operating system it performs the same function as that of
DOS or Windows. However , Linux is distinguished by its power and

flexibility.

Its development paralleled the entire communication revolution
over the past several decades .Linux ,like all versions of Unix adds two

more features .Linux is a multi-user and multitasking system.

Linux can be divided into four major components : the kemnel , the
shell ,the file structure and the utilities .The kernel is the core program
that runs programs and manages hardware devices such as disks and
printers. The shell provides an interface for the user. It receives

commands from the user and sends those commands to the kerne: o

execution. The File structure organizes the way files are stored on storage
device such as disk. Files are organized into directories. Each cirectory

may contain any number of sub-directories , each holding files.

Together , the kernel , the shell, and the file structure form the
basic the basic OS structure . With these three one can run programs,
manage files and interact with the system. In addition Linux has software
programs called utilities that have come to be considered standard
features of the system. The utilities are specialized programs , such as
editors , compilers , and communication programs , that perform standard

computing operations.

The reason we chose Linux for image compression is that there
isn’t any necessity for interrupts to set the 320x200 , 256 color mode or

even any other mode. It is even flexible for images that have 32

bits/pixel .

Concepts such as semaphores and mutual exclusions can be
implemented in the C available for Linux. File transfer across the network
can be easily implemented through socket programming with relatively
fewer lines of code for which in DOS requires huge lines of codes wit
too many interrupts. Interrupts result in task switching and that is not 2
desired feature in an efficient program . Several Interrupts in DOS are
replaced by simple library functions. This reduces the burder. on the

Processor.

About C

A Pseudo code “program” often leads to hazy or incomplete
definition full of lines like “PROCESS FILE UNTIL OUT OF DATA “.

The result is that Pseudo code is casy to read but not so easy to translate

into a working program .

If pseudo code is unsatisfactory the next best choice is to use
conventional programming language. Though hundreds of choices are
available , C seems the best choice for this type of work for several good

reasons.

First in many respects C has become lingua franca of
programmers . That C compilers support computers ranging from a lowly
8051 micro controller to super computers capable of 100 MIPS has had

much to do with this.

A second reason for using C is that a few constructs it uses as basic
language elements are easily translated to other languages . So a datz
compression program illustrated in C can be converted to a working
PASCAL program through a relatively straightforward translation
procedure. Even assembly language programmers should find the process

relatively painless.

Perhaps the most important reason for using C is simply one of

efficiency.

3) Historical Perspective

The first notable research on image compression was
carried out in the 1950's by Harrison and Huffman who specialized in

Predictive Coding.

The 1960's saw the emergence of transform coding which
dominated research for all of the seventies and the early eighties. From
the early sixties to present lunar scientists have also played an important

role as drivers of image compression development and its use.

These are based on mathematical processes that were

formulated in the nineteenth and early part of this century respectively.

Recent research has also centered on a psycho-visual
approach which aims to develop perceptually-tuned image compression

systems . This approach was previously popular in the sixties .

4) NEED FOR COMPRESSION

Image compression is necessitated by
- A need to store data efficiently in available
memory (ex cameras)
- A need to transmit data efficiently over a wide

communication channel

4.1) How can images be compressed ?

Images can be compressed by two ways

1) Redundancy :

There are certain parts of images that are repeated

very often that can be very well coded .

2) Irrelevancy :

This technique can be used In continuous tone
images where variation in intensities of adjacent
pixels cannot be identified by the observer . These

pixels are said to be irrelevant .

4.2) Compression Standards

(a) JPEG

The Joint Photographic Experts Group standard is
intended for compression of color or gray-scale images of natural real-

world scenes. It is usually used in lossy mode.

It uses several cascaded compression modes. Primarily, an
image is transformed to the frequency domain using the Discrete Cosine
Transform. The resulting smaller-valued frequency components are
rejected, leaving behind the larger-valued components. These are then

Differential Pulse Code Modulation coded and then Huffman coded.

The adjustable nature of JPEG compression allows for
variable compression ratios and fine-tuning the algorithm for a particular

application's requirements.

(b) MPEG

This standard for motion video and audio is a successor to
the H.261 which was based on DCT and Huffman coding. The MPEG
compression standard also uses DCT and Huffman coding methods but in
conjunction with inter-frame coding techniques which are utilized to give
better compression ratios than in still image schemes. MPEG-1 and
MPEG-2 are intended for low-resolution image sequences and higher-

resolution sequences respectively.

The Motion Picture Experts Group recently met in Dublin
to complete work on the new MPEG-4 standard and to 1initiate
specification of the future MPEG-7 standard. The MPEG-« is g
departure from the previous standards in that it concentrates on unified
audio-visual objects and scenes rather than frames, MPEG-7 is intended
to aid the location of audio-visual content rather like the way text-based

search engines operate.

4.3) Lossless and Lossy Image Compression

In various digital image applications that require image
compression, some of them do not allow error in reconstructed mmage,
and thus lossless compression techniques are used. For examples, medical
imaging prefers lossless image compression, since compressing digital
radiographs with lossy techniques may divert diagnosis accuracy.
Applications such as astronomical imaging also require lossless
compression, since the image is going to be processed by computing
devices instead of human eyes. But as in lossless digital data
‘compression, there is a trade-off of compression ratio for the error-free
reconstruction. Nevertheless, the above applications show the great neec
of efficient lossless image compressions technique. If this loss restrictior:
does not exist, lossy image compression can be used. Similar to the case
of lossless image compression, lossy image compression also has many
different kinds of application area. Some examples can be found zven in
daily life, such as digital camera and personal World Wide Web (NWW)
publications. These applications often require less image fidelity in
reconstructed image. Thus, they can afford some loss of informatior:
during the coding process. In addition, most of them require taat the
reconstructed images are recognized only by human beings, permitting
plenty of visual characteristics that can be exploited. Therefore, due to the
human-based nature of lossy image compression technique, its
compression performance usually outperforms that of Iossless
compression. This is because it can have more factors that can be

exploited to achieve higher compression performance, in terms of both

compression ratio and visual quality of reconstructed image. The
theoretical possibility of image compression, no matter lossless or
lossy , is primarily based on the redundancy inside image. The
redundancy is due to the correlation between neighbouring pixels that,
their physical values are expected to be near. This assumption is true in
most of the part of image, where occasional exceptions only occur at
major edges of objects in image. Based on this assumption, predictior
models can be constructed easily for correlating pixels. In other words, 7
one pixel is given accurately, its surrounding pixels are nearly known.
This correlation points out that there is little useful information in pixe.
values of an image. By representing only this useful information, we
should be able to compress the original image to a fraction of its size. I
addition to this redundancy in image, lossy image compression can also
utilize the characteristics of Human Visual System(HVS) as mentionec
above. These characteristics actually divided information in image as two
types: relevant to HVS and irrelevant to HVS. By excluding information
irrelevant to HVS, a better compression performance can be expectec.
Some HVS characteristics such as spatial and spectral redundancies help
predicts what information among pixels are relevant to our vision. As a
consequence, an image compression algorithm should have
considerations concerning the above arguments. In order to be efficient
enough for practical applications, a good image compression algorithm

should at least possess the following properties.

a) Good prediction model. The incoming pixel values are
actually events with different probability of occurrence. A
good predictor can predict with high probability a required
pixel by using its surrounding. Therefore, by coding what are
required by the predictor during prediction instead of coding
the original pixels can make use of thig high probability
distribution. This distribution is usually easier to be
compressed by statistical coder than the original distribution

does.

b) Adequate statistical coding. Huffman or arithmetic coding
are¢ some good coding techniques that can help us to get

near-optimal/optimal average code length

¢) Utilize two spatial dimensions. Since image is two-
dimensional, so the context is more complicated than that of
one-dimensional signal . If two-dimensional considerations
are taken into account in the coding techniques , ‘he

coding efficiency should be expected to increase.

In modern image compression formats, these properties
are often present. Different techniques approach these properties in
different ways. In the following sections, we are going to study some

modern compression techniques and formats,

5) GENERAL BLOCK DIAGRAM :

IMAGE

—

TRANS
FORM

LOSSY }

ENCODE COMPRESSED—I
L > DATA |

QUANTIZE

a) TRANSFORM THE IMAGE

b) QUANTIZE THE IMAGE

¢) ENCODE THE IMAGE

Step 1: Transform the image into a set of basis functions

- A transformation is a process which converts a set of numbders

into a new set of numbers.

- This is more amenable to efficient coding

- Reduces redundancy

eg : Fractal , Wavelet, DCT & Fourier Transforms

Step 2: Quantization of transformed image

- Reduces no of values
- Introduces errors
- Trades off image quality for data rate

eg) scalar & vector quantization

Step 3: Encode the transformed or the quantized data

- The image is a sct of symbols(o/pofa
quantizer)

- auniquely decodable code is assigned for each
symbol

- codes are assigned by exploiting statistica’
redundancy

eg) Arithmetic, Huffman ,Entropy encoding

6) Why DCT ?

Discrete frequency transforms provide a method to obtain
a global view of data within a window. Discrete cosine transform is the
frequency transform for practical image processing because of its
excellent energy compaction property. Another reason for its populari ty is

the existence of a fast implementation for the algorithm.

Stationary signals having complex waveforms (usually
more than one wave component in it) can be easily represented in spatial
frequency domain with the help of DCT. The DCT matrix is usually an
8x8 matrix as per jpeg standards with high and low frequency
components . This is the stage where compression can be enforced by
eliminating high frequency values under the pretext that they are not
visible to the human eye. These set of high frequency values are said o

be wrrelevant.

7) Why Entropy encoding?

A prior information of image statistics is required for
Huffman coding .Since Huffman coding achieves the minimum amoun:
of redundancy in a fixed set of variable length codes this does not mean
Huffman coding is an optimal coding method. But it provides best

approximation for coding symbols when used with fixed width codes .

The problem with Huffman or any other coding is that they use
integral number of bits in each code for example 2.5 bits cannot be
represented using them ,instead it can be either 2 or 3 bits . This problem
is eliminated in entropy encoding and bit codes like 2.5 or 3.5 can be very
well expressed with ease. This makes entropy encoding a better suited

and optimal encoding technique.

8) PHASES OF COMPRESSION

* DCT (Discrete Cosine Transformation)
¢ Quantization

e Zigzag Scan

e DPCM on DC component

¢ RLE on AC Components

* Entropy Coding

8.1) Discrete Cosine Transform (DCT)

« From spatial domain to frequency domain:
p q y

(i) _|

“ e ;

» DEFINITIONS

Discrete Cosine Transform (DCT):

A{u)A(r) I cos (Zit1)-ur cos (25 + 1) -or

Fu,v) = __'__ZZ 16

i=0j=0

4
so = [et

otherwise

F(u.v)

1€

+ The 64 (8 x 8) DCT basis functions:

One alternative method to the DFT is the Discrete Cosine Transform
(DCT). The last term, Transform, means what it umplies, a conversion
from one domain to another. A domain is a set for the definition of some
entity. In this case, the information carried by a signal is transformed

from the time domain (or spatial domain) into the frequency domain.

Cosine is one of the trigonometric functions. It is periodic, and an even

function. In this method, it is used as the basis function for the transform.

The term Discrete means that the value of some variable is known only a:
certain points in time or space. These points are usually uniformly
distributed. Discrete is commonly regarded as the opposite of continuous
when the value of the variable is known in €very point in time or space.
The process of converting a continuous-time signal to a discrete-time
signal is called sampling. Quantization, on the other hand, means
selecting a discrete value to represent a continuous one, thus these twe
terms are related but should not be mixed. In this method (DCTY, it is
very natural to use discrete values since the implementation will be
executed in a computer with the capability to store only discrete values

from a finite set.

8.2) Quantization

DCT is a lossless transformation that does not actually
perform compression. It prepares for the “lossy”,or quantization .Stage of

the process.

The DCT output matrix takes more space to store than the
original matrix of pixels .The input to the DCT function consists of ej ght-
bit pixel values ,but the values that come out can range from a low of
—1,024 to a high of 1,023 occupying eleven bits, Something drastic has to
happen before the DCT matrix can take up less space.

Quantization is simply the process of reducing the number
of bits needed to store an integer value by reducing the number of bits
needed to store an integer value by reducing the precision of the integer .
Once a DCT image has been compressed we can generally reduce the
precision of the coefficients more and more as W€ move away from tne

DC coefficient at the origin.

The JPEG algorithm implements Quantization matrix.For
every element position in the DCT matrix ,a corresponding value in the
Quantization matrix gives a quantum value .The quantum value indicates
what the step size is going to be for the element in the compressed

rendition of the picture ,with values ranging from one to 255.

The actual formula for quantization is quite simple and is

made use of in this project.
DCT(L))
Quantized Value(I,]) = aocemeeeee___. Rounded to nearest integer

Quantum(I,])

F'[u, v] =round (F[u, v]/ qlu, v]).
Why? -- To reduce number of bits per sample

Example: 101101 = 45 (6 bits).
q[u, v] =4 --> Truncate to 4 bits: 1011 = 11,

« Quantization error is the main source of the Lossy Compression.

8.3) Zig-zag Scan

After quantization the resulting matrix would look like an upper
triangular matrix .Hence the best way to Run Length Encode the zeros or
the high frequency values is to scan the matrix in a zig-zag pattern tc

obtain maximum length of a particular run

~

e

8.4) Differential Pulse Code Modulation (DPCM) on DC component

« DC component is large and varied, but often close to previous
value.
» Encode the difference from previous 8 x 8 blocks -- DPCM

8.5) Run Length Encode (RLE) on AC components

1 x 64 vector has lots of zeros in it
 Keeps skip and value, where skip is the number of zeros and valye
is the next non-zero component.

» Send (0,0) as end-of-block sentine] value.

8.6) Entropy Coding

« Categorize DC values into SIZE (number of bits needed to

represent) and actual bits.

TABLE REPRESENTING SIZE AND VALUE

SIZE VALUE
l -1, 1
2 -3,-2,2.3
3 -7..-4,4..7
4 -15..-8, 8..15

10 -1023..-512,512..1023

8.7) Implementation of DCT-based coding

The main procedures for all encoding processes is based on the
DCT. It illustrates the special case of a single-component image; this is
an appropriate simplification for overview purposes, because all
processes specified in this specification operate on each 1mage

component independently.

In the encoding process the input component's sampies are
grouped into 8 x 8 blocks, and each block is transformed by the forward
DCT (FDCT) into a set of 64 values referred to as DCT coefficients. One
of these values is referred to as the DC coefficient and the other 63 as the

AC coefficients.

Each of the 64 coefficients is then quantified using one of 64
corresponding values from a quantization table, No default values for
quantization tables are specified in this specification ; applications may
specify values which customise picture quality for their particular image
characteristics, display devices, and viewing conditions. This step
determines the compression rate you want and thus produces the lossy

compression,

After quantization, the DC coefficient and the 63 AC coefficients
are prepared for entropy encoding. The previous quantized DC coefficient
is used to predict the current quantized DC coefficient, and the difference
is encoded. The 63 quantized AC coefficients undergo no such
differential encoding, but are converted into a one-dimensional zig-zag

sequence.

The quantized coefficients are then passed to an entropy
encoding procedure which compresses the data further. One of two

entropy coding procedures can be used.

The following steps are taken for compressing each 8x8

block.

1. Shift the block

Perform a FDCT on the block

Quantize the block

Subtract the last DC coefficient from the current DC coefficient
Zigzag the block

Zero run length encode the block

NS kW

Break down the non-zero coefficients into variable-length binary
numbers & their lengths
8. Entropy encode the run lengths & binary number lengths

9. Write the entropy encoded information & binary numbers to the

output

9) PHASES OF DECOMPRESSION

1) Decoding
2) Dequantization

3) Inverse DCT application to the dequantized image.

9.1) Decoding and Dequantization

During decoding the dequantization formula operates in reverse:

DCT(LJ)=Quantized Value(LJ) * Quantum(l,J)

Once again , from this we can see when you use large
quantum values, you run the risk of generating large errors in the DCT
output during dequantization Fortunately, errors generated in the high
frequency components during dequantization normally do not have =

serious effect on picture quality.

9.3) Inverse DCT

The Inverse DCT is performed using the exact
reverse of the operations performed in the DCT . First ,the DCT
values in the N-by-N matrix are multiplied by the cosine transform
matrix .The result of this transformation is stored in a temporary N-
by-N matrix of doubles .This matrix is then multiplied by the
transposed cosine transform matrix .The result of this
multiplication is rounded ,scaled to the correct unsigned character

range of zero to 255,then stored in the output block of pixels.

9.3.1) Inverse Discrete Cosine Transform (IDCT)

1 & 2+ 1} - ur 25 + 1y -vr
fli.3) = 1 Z 3 A{u)A(v) cos (lﬁ) - cos (2 lﬁ) - F
u=0u=0
L
N E for 5 = 0
A{Y) = { 1 otherwise

{u.2

10) APPLICATIONS OF DIGITAL IMAGE
COMPRESSION

10.1) Image Compression in Healthcare
a) Radiology

The archiving and transmission requirements of digital images in
radiology are very high and image compression has alleviated some of
the burden Browning et al (1996) believe that without the use of
significant levels of compression, image transfer speeds would be
unacceptably slow. Pratt et al (1998) found that PACS (Picture Archiving
and Communication System) and computed radiography systems would
provide cost savings only if long-term archives were compressed at a rate

of 10:1.

Many compression algorithms have been used including Wavelets |
principal components neural network, multilevel decomposition and
discrete cosine transform coding. Maldijan et al (1997) obtained 90%
compression using the wavelet transform with minimal loss of image
detail and recorded standard modem transmission times of less than five

seconds per compressed image.

Concerns about image degradation post-compression have been widely
investigated. Most of these studies have been carried out using chest
radiographs (the most common x-ray examination). Erickson et al (1997
found that lossy compression of 40:1 or more could be used withou:
perceptible loss in the representation of anatomical structures. Savenko e:

al (1998) confirmed these findings and further stated that there was nc

statistically significant difference in diagnostic accuracy at 80:1
compression. Both used wavelet image compression. Cox et al (1996)
used a standard discrete cosine transform (DCT) technique and observed
that performance on the clinical task of detecting chest nodules would rnot
be affected materially by compression of up to 44:1. Kido et al /1996)
also used the DCT method but found that the interpretation of images
with a compression ratio of 30:1 was significantly less accurate than that

of uncompressed images (p<.05).

b) Cardiology

Silber et al (1997) investigated the impact of various compression rates
on interpretation of digital coronary angiograms and observed ngc
clinically relevant loss of information at a ratio of 6:1. They noted that the
ACC (American College of Cardiology)/ACR (American College of
Radiology))NEMA (National Electrical Manufacturers Association)
guidelines only allow lossless compression of 2:1 therefors the
angiograms could not be viewed in real-time directly from the CD-ROM.
Elion and Whiting (1996) are wary of using lossy compression on
coronary angiograms for fear of reducing any feature's detectablity. This,
they state, would be clear evidence of the potential loss of clinical
information. Holmes et al (1998), however, suggest that lossy
compression rates of up to 10:1 may be clinically acceptable. A ratio of
10:1 would result in the dramatic decrease in the data rate requirements

for real-time display of 512X512X8 bit images from 7.5 MB/sec to 730
KB/sec.

11) Future Trends and Conclusion

The systems of compression of images described here are not the only

ones one can find on the market, but are normalized systems.

Systems such as fractal compression give high compression rates.
These are based on a sharp analysis of the texture of the image and are
very slow for the compression and fast for the decompression. These

Systems may be interesting but are far from a normalization process.

The search for even more efficient compression algorithms wij
continue into the next century. Martyn (1996) believes that this searck
will move away from pixel-based methods toward mathematical methods

similar to wavelets and fractals,

Todd-Pokropek (1995) believes that the medical imaging department
of the future will be an audio-visual centre that will be primarily

concerned about extracting information from digital images.

It is expected that newer mathematical transforms that compress
images with comparatively less degradation in quality, will be developed
in the near future. Whatever the future brings, image compression
technology will be playing a significant role in the delivery of healthcare

for some time to come,

12) BIBLIOGRAPHY

Books

Stones , R., Matthew , N, “Beginning Linux Programming
Wrox Press , 1102 Warwick Road | Birmingham —B276BH,

Second Edition.

Nelson , M., Gailly , J.L., “The Data Compression Book” , BPB
Publications , B-14 Connaught Place , New Delhj -1 10001, Second
Edition.

Petersen Richard , “The Complete Reference - LINUX” ,Tata
McGraw Hill Publishing Limited , New Delhi, Second Edition.

URLs

1) Ivey ,E., “JpegCompression”,
http://web.usxchange.net/elmo/jpeg.htm

2) Chiang ,L., “Digital Data Compression”

http://www.image.citvu.edu.hk/wloben/thesis/node 10.html

3) Belov ,C.,”Discrete Cosine T ransform?”,

http://www.cabe]ov.com/ﬂo/scopro/isdct.shtml

4) Dominic Maguire ,D.C.R ..”Current Trends in Digital Image

Compression

http://twinpentium.lcp.Iinst.ac.uk/library/current.htm

DISP.C

/* Converts a 256 color image into gray scale for photo
quality. The intermediate steps and also the appearance of

the picture in various RGB combinations are shown

The header file vga.h contains functions that support
graphics. It
needs to be compiled as follows -

cc —lvga disp.c —o disp

The file disp ontains the executable code. When disp is run

it displays the image supplied as argument at the linux shell

prompt.
Usage: ./disp <Filename>
Eg: /disp cheetah.raw

where cheetah.raw is an 1mage file.

*/
include <stdio.h>
include <sys/types.h>
include <sys/time.h>
include <unistd.h>

include <vga. h>

main(int argc,char® argv[[)

{
int u,cx,x,mode,a,b,c,r,x1,yl.y;
FILE *fptr;
struct timeval t; /* defined */
fd set* rfds; /* to set delay */

If{arge!=2)
{
printf("\n Invalid arguments ");
printf("\n Usage : ./disp file\n");
}
printf("Enter the Image width : ");
scanf("%d",&x);
printf("Enter the Image Height : ");
senf("%d", &y);
printf("Enter the Graphics mode : ");
scanf("%d",&mode);
if(mode>10) mode=5;
1f(x==y==0)
{
printf("\n 320x200 image aasumed ");
x=320;
y=200;
}
fptr=fopen(argv[1],"rb");
rewind(fptr);

vga_setmode(mode);
/* sets 320%200 screen with 256 colors */
vga_clear();
for(r=0;r<7;r++)
{
for(y1=0;y1<y;yl++)
{
for(x1=0;x 1 <x;x 1++)
{
vga_setcolor(fgetc(fptr)>>r);
vga_drawpixel(x1,yl);
}
}

t.tv_usec=0; /* sets delay for 2 seconds */
t. tv_sec=2;

select(1,rfds, NULL,NULL,&t);

vga clear();

rewind(fptr);

}
rewind(fptr);

/* Indicates various stages during gray scale conversion and
includes

the mathematical computation for the necessary conversion
*/

for(u=0;u<5;u++)

{

for(y1=0;y1<200;y1++)
{
for(x1=0;x1<320;x1++)
{
r=fgetc(fptr)>>u;
1f(r<=16)
r+=16; -
vga_setcolor(r);

vga_drawpixel(x1,y1);

t.tv_usec=0;
t.tv_sec=2;
select(Lrfds, NULL,NULL,&t); /* delay of 2 seconds */
if(ul=4) vga_clear(); /* between images ¥/
rewind(fptr);
}

t.tv_usec=0;
t.tv_sec=§;
select(1 ,ofds, NULL,NULL, &t);

fclose(fptr);

b

SYNCDISP.C
/* Displays 2 images simultaneously . This uses multithreading
concept to display 2 images simultaneously. Two semaphore
variables are used to achieve synchronization so that the main
thread doesn’t hold the processor for a long time without giving it
to the second thread.
It should be compiled as follows -

cc syncdisp.c —lvga ~Ipthread —o syncdisp

The executable file will be available in syncdisp and should be run

as follows
Jsyncdisp <filenamel> <filename2>
eg) ./syncdisp cheetah.raw deccheetah.raw

The code written under the main function displays filenamel anc

that written under thread_function displays the filename2*/

include <stdio.h>

include <unistd.h>

include <pthread.h>

include <semaphore.h>

include <stdlib.h>

include <string.h>

include <vga.h>

#1fndef REENTRANT

define _ REENTRANT

endif

void *thread function(void *arg);

/*

Two semaphore variables are defined so as to

achieve synchronization

*/

sem_t bin_sem:;

sem_t bin_seml;

FILE *fptr;
FILE *fptrl;

/* beginning of main thread */

main(int argc,char* argv[])
{
int res;
int u=0,cx,x,modes,a,b,c,r;
pthread_t a_thread;

void *thread result;

if(argc!=3)
{
printf("Invalid arguments \n");
printf("Usage : ./syncdisp filel file2 \n");
exit(0);
}
fptr=fopen(argv[1],"rb™);
fptri=fopen(argv[2],"rb™);
vga_setmode(5);
vga clear();

rewind(fptr);

/* Initialize semaphore variable */

res=sem_init(&bin_sem,0,0);
if(res!=0)
{
perror("semaphore initialization failed ";
exit(EXIT_FAILURE);
}

/* Initialize semaphore variable */

res=sem_init(&bin_seml,0,0);
if(res!=0)
{
perror("semaphore initialization failed ");
exit(EXIT_FAILURE);

/* Creation of a thread -- cty] passed to thread function */

res=pthread_create(&a__thread,NULL,thread_function,NULL);
if(res!=0)
{
perror("Thread Creation failed ");
exit(EXIT_FAILURE);

}
/* Displays file 1 */

while(u!=5)
{
for(cx=0;cx<100;cx++)
{
for(x=0;x<320;x++)
{
r=fgetc(fptr)>>u;
if(r<=16)
r+=16;
vga_setcolor(r);

vga_drawpixel(x,cx);

sem_post(&bin_sem);
sem_wait(&bin_seml);
sleep(0.5);
}
rewind(fptr);
ut+;
b
sleep(10);
sem_destroy(&bin_sem);
exit(EXIT_SUCCESS);

}

/* Beginning of new thread */
void *thread_function(void *arg)

{

int v=0,cx,x,1;

/* Displays file 2 */
sem_wait(&bin_sem);
rewind(fptrl);
while(v!=5)
{

for(cx=0;cx<100;cx++)

{

for(x=0;x<320;x++)

{

r=fgetc(fptrl }>>v;

1f(r<=16)
r+=16;
vga_setcolor(r);
vga_drawpixel(x,100+cx);
}
sem_post(&bin_seml);

sem_wait(&bin_sem);

sleep(4);
vga_clear();
rewind(fptrl);
v++;
}
fclose(fptr);
pthread_exit(NULL);
}

SERVER.C

/* This program simulates a server .It waits for a client to
connect and once the connection is established it verifies
whether the file requested by a client is available in its
current directory . If found it sends the file to the client , else
returns the message file not found in server.

This program is written in such a way that even remote
clients can connect to the machine where this program is
executed .This is usually executed in the background as

Jserver & at the shell prompt.

Usage : ./server &

*/

include <stdio.h>
include <unistd.h>
include <netinet/in.h>
include <sys/types.h>
include <sys/socket.h>
include <arpa/inet.h>
include <stdlib.h>
main()
{
int server_sockfd,client sockfd;

int 1=0;

char *ch=(char*)malloc(20);
char *senddata;
int client_len,server len,ret;
struct sockaddr_in server address; |
struct sockaddr_in client address;
FILE *fp;
unlink("server_socket™);
server_sockfd=socket(AF__INET,SOCK__STREAM,O);
server_address.sin_family=AF INET;
server_address.sin_addr.s_addFINADDR_ANY;
server_address.sin_port=9734;
server_len——-sizeof(sérver_address);
bind(server_sockfd,(struct sockaddr
*)&server_address,server len);
listen(server_sockfd,S);
while(1)
{
printf("server waiting ");
client_len=sizeof{client_address);
client_sockfd=accept(server_sockfd,(struct
sockaddr*)&client_address,&client len);
read(client_sockfd,ch,20);
printf("\n%s\n",ch);
senddata=(char*)malloc(6400000);
fp=fopen(ch,"r");
if(fp==NULL) {
strepy(senddata,"FILE NOT AVAILABLE IN

SERVER");
ret=write(ch'ent_sockfd,senddata,strlen(senddata));
printf("\n no of bytes sent = %d\n" ret);
close(client_sockfd);
exit(0);

}
while(!feof(fp))
{
senddata(i]=fgetc(fp);
i+
}
ret=write(client_sockfd,senddata,strlen(senddata)— 1);
printf("\n no of bytes sent = %d\n" ret);
close(client_sockfd);

if(ret!=0) exit(0); /* exit when data is sent */

Get.c

/* This program when run on a machine will simulate a client. It requests

a file from the server and if available , will be returned by the server.

Usage : ./get <srcfilename> <destfilename>

Srcfilename is the one available in the server and destfilename is the
name of the file that is obtained from the server and stored in the client’s

directory

*/

include <stdio.h>
include <unistd.h>
include <netinet/in.h>
include <sys/types.h>
imclude <sys/socket.h>
include <arpa/inet.h>
include <string.h>
int main(int argc,char *argv[])
{
int sockfd;

int len,i=0;

struct sockaddr_in address;
int result;

FILE *fp;

char *chnew;
char *ch=argv{1];
if(argc!=3)
{

printf("\nINVALID ARGUMENTS \n");

printf("./get requestFilename newFilename \n");

exit(0);
}
sockfd=socket(AF INET,SOCK_STREAM,0);
address.sin_family=AF INET;
address.sin_addr.s_addr=inet_addr("199.199.199.3"};
address.sin_port=9734;
len=sizeof(address);
result=connect(sockfd,(struct sockaddr *)&address,len);
if(result ==-1)
{

perror("oops:client");
exit(1);

}
write(sockfd,ch,strlen(ch));
chnew=(char*)malloc(64000);
read(sockfd,chnew,64000):

printf{ "%d",strlen(chnew));
fp=fopen(argv[2],"w+");
if(fp==NULL) {
printf("\nerror opening file\n");
exit(0);
}
for(1'=0;1'<strlen(chnew);i++)
{
printf("%c" ,chnew[i]);
putc(chnew[i],fp);
b

fclose(fp);
/*write(1,chnew,strlen(chnew));*/
close(sockfd);
exit(0);

Comp.c

/%

* This is the DCT module, which implements a graphics
compression

* program based on the Discrete Cosine Transform. It
needs to be

* linked with the standard support routines.

*

It should be compiled as follows

cc -lm comp.c —o comp
Usage : ./comp <srcFile> <compressedFile>
*/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define ROWS 200
#define COLS 320
#define N 8
/*

* This macro is used to ensure correct rounding of integer

values.

*/

#define ROUND(a) (((a)<0)?(int)((a) - 0.5):(int) ((a) +
0.5))

char *CompressionName = "DCT compression";
char *Usage = "Infile outfile [quality]\nQuality from
0-25";

unsigned char PixelStrip[N][COLS |;
double C[N][N J;

double Ct{f N[N |;

int InputRunLength;

int OutputRunLength;

int Quantum|[N][N |;

struct zigzag {
int row;
int col;
} ZigZag| N*N] =
{
{0, 0},
{0, 1}, {1, 04,
{2,0}, {1, 1}, {0, 2},
{0,3}, {1,2}, {2, 1}, {3, 0},
{40}, {3, 1}, {2, 2}, {1, 3}, {0, 4},

10,53, {1, 4}, {2,3}, {3, 2}, {4, 1}, {5, 0},

16,0}, {5, 1}, {4, 2}, {3, 3}, {24}, {1, 5}, {0, 6},

10, 7}, {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5, 2}, {6, 1}, {7, 0},
7,13, 16,2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7},
12,7}, 43,6}, {4, 5}, {5, 4}, {6, 3}, {7, 2},

17,3}, 6,4}, {5, 5}, {4, 6}, {3, 7},

4,73, {5, 6}, {6, 5}, {7, 4},

7,5}, {6, 6}, {5, 7},

16,7}, {7, 6},

7,7}

typedef struct bit_file
{
FILE *file;
unsigned char mask;
int rack;
int pacifier_counter;
} BIT FILE;

BIT_FILE *OpenQOutputBitFile(char *name);
int quality;
main{int argc,char® argv[])
{
BIT FILE *output;
FILE *input;
printf{"Enter the Q - Factor : ");

scanf("%d",&quality);

printf(" RESULTANT MATRIX ‘n"});
input=fopen(argv[1],"rb"});

output= OpenOutputBitFile(argv([2]);

CompressFile(input,output);
CloseOutputBitFile(output);
fclose(input);
printf{"\ndone!\n");
getchar();

/*
* The initialization routine has the job of setting up the

Cosine

* Transform matrix, as well as its transposed value. These

two matrices

* are used when calculating both the DCT and its inverse.

In addition,
* the quantization matrix is set up based on the quality

parameter

* passed to this routine. Additionally, the two Tun _ength
parameters

* are both set to 0.

*/

Initialize(int quality)
{
int i;
int j;
double pi = atan(1.0) * 4.0;
OutputRunLength = 0;
InputRunLength = 0;
for (J=0;j<Nj;j++){
C[O][] 1=1.0/sqrt((double) N);
CtjI01=C[O0][j};
}
for(i=1;i<N;i++){
for(j=0;j<N;j++){
Cli][j]=sqrt(2.0/N) *
cos(pi* (2*j+1)*i/(2.0*N)}
Ctljllt]=Cli][jL

/*
* This routine is called when compressing a grey scale file.

It reads

* in a strip that is N (usually 8) rows deep and COLS

(usually 320)
* columns wide. This strip is then repeatedly processed, a
block ata
* time, by the forward DCT routine.
*/
ReadPixelStrip(FILE *input,unsigned char strip[N J[COLS
D
{
Int row;
1nt col;

int ¢;

for (row =0 ; row <N ; row++)
for (col=0; col <COLS ; col++)
{
¢ = getc(input);
strip[row][col] = (unsigned char) c;
;
}
/*
* This routine reads in a DCT code from the compressed
file. The code
* consists of two components, a bit count, and an encoded
value. The
* bit count is encoded as a prefix code with the following
binar

* values:

* Number of Bits Binary Code
*
* 0 00

* 1 010

* 2 011

* 3 1000

* 4 1001

* 5 1010

* 6 1011

* 7 1100

* 8 1101

* 9 1110

* 10 1111

*

* A bit count of zero is followed by a four bit number
telling how many

* zeros are in the encoded run. A value of 1 through ten
Iindicates a

* code value follows, which takes up that many bits. The
encoding of values

* into this system has the following characteristics:

* Bit Count Amplitudes
¥ et
* 1 -1,1

* 2 -3t0-2,2t03

3 ~7to-4,4t07
4 -15t0-8, 8to 15
5 -31to-16, 16 to 31
* 6 -63 t0 -32, 32 to 64
7 -127to -64, 64 to 127
8 255 t0 -128, 128 to 255
9 -511to -256, 256 to 511
* 10 -1023 t0 -512, 512 to 1023

OutputCode(BIT FILE *output_file,int code)
{

int top_of range;

int abs_code;

int bit_count;

if (code==10) {
OutputRunLength++;
return;
b
if (OutputRunLength 1= 0) {
while (OutputRunLength > 0) {
OutputBits(output_file, 0L, 2);
if (OutputRunLength <= 16)

OutputBits(output_file,
(unsigned long) (OutputRunLength - !
) 4);
OutputRunLength = 0;
}else {
OutputBits(output_file, 15L, 4)%
OutputRunLength -= 16;

}
if (code<0)
abs_code = -code;
else
abs_code = code;
top_of_range = 1;
bit_count = [;
while (abs_code > top_of range) {
bit_count++;
top_of_range = ((top_of range+1)*2)-1;
}
if (bit_count<3)
OutputBits(output_file, (unsigned long) (bit_count +
1),3)
else
OutputBits(output_file, (unsigned long) (bit_count +
5)4)
if (code>0)

OutputBits(output_file, (unsigned long) code,
bit_count);
else
OutputBits(output_file, (unsigned long) (code +
top_of range),

bit_count);

/*

* This routine takes DCT data, puts it in Zig Zag order, the
quantizes

* 1t, and outputs the code.

*/

WriteDCTData(BIT FILE *output_file,int output_data] N

IIND
{
int i,j;
int row;
int col;
double result;
for(i=0;i<N;i++)
for (j=0;j<N;j++)
{
Quantum[i][j]=1+((1+i+j) * quality);
printf("%d \t",Quantum[i][j]);

for(i=0;i<(N*N);it++){
row = ZigZag[i].row;
col = ZigZag[i].col;
result = output_data[row]{ col]/ Quantum| row il
col];
OutputCode(output_file, ROUND(result));

/*
* DCT = C * pixels * Ct
*/

ForwardDCT(unsigned char *input[N],int output[N IIN

)

{
double temp N[N];

double templ;
nt 1;
nt j;

nt k;

/* MatrixMultiply(temp, input, Ct); */
for (1=0;i<N;i++){
for (j=0;j<N;j++){
temp[1][j]=0.0;
for (k=0;k<N;k++)

temp[1][j]+=((int) mput[i][k]-128)*
CtLkI1

/* MatrixMultiply(output, C, temp); */
for (i=0;1<N;it+) {
for(J=0;7<N;j++){
templ = 0.0;
for(k=0;k<N;kt+t)
templ +=C[1][k] * temp[k][] I;
output[1][j]= ROUND(temp1);

/ *
* The Inverse DCT routine implements the matrix function:

®

* pixels=C * DCT * Ct
*/

/*
* This 1s the main compression routine. By the time it gets
called,

* the input and output files have been properly opened, so

all it has to

* do 1s the compression. Note that the compression routine
expects an

* additional parameter, the quality value, ranging from 0 to
25.

*/

CompressFile(FILE *input,BIT FILE *output)
{
int row;
int col;
int 1;
unsigned char *input_array[N |;
int output array[NJ[N];
printf("Using quality factor of %d\n", quality);
Initialize(quality);

OutputBits(output, (unsigned long) quality, 8);
for {(row =0 ; row <ROWS ;row +=N) {
ReadPixelStrip(input, PixelStrip);
for (col=0;col <COLS;col+=N) {
for(i=0;1<N;i++)
input_array| i1 | = PixelStrip[1 | + col;
ForwardDCT(input_array, output_array);
WriteDCTData(output, output array);

OutputCode(output, 1);

BIT FILE *OpenOutputBitFile(char *name)

{

BIT_FILE *bit_file;

bit_file=(BIT FILE *) calloc(1,sizeof(BIT_FILE));
if (bit_file==NULL)

return(bit_file);

bit_file->file = fopen(name,"wb");

bit_file ->rack=0;

bit_file ->mask=0x80;

bit_file ->pacifier_counter=0;

return(bit_file);
}

CloseOutputBitFile(BIT_FILE *bit_file)
{
if(bit_file->mask!=0x80)
if(putc(bit_file->rack,bit_file->file)!=bit_file->rack)
{
printf("\n\n\n");
//fatal_error("Fatal error in CloseBitFile!\n");

;

fclose(bit_file->file);

free((char *)bit_file);
}

OutputBits(BIT FILE *bit_file,unsigned long code,int

count)

{

unsigned long mask;

mask= 1L<<(count-1);

while(mask!=0)

{

if(mask & code)

bit_file->rack|=bit_file->mask;

bit_file->mask >>=1;

if(bit_file->mask==0)

{

if (putc(bit_file->rack,bit_file->file)!=bit_file->rack)
{

printf("\n\n\n");

//fatal_error("Fatal error in OutputBit!\n");

}

else
if((bit_file->pacifier counter++ & 2047)==0)
{
}
bit_file->rack=0;
bit_file->mask=0x80;
}

mask >>=1;

}

j
FilePrintBinary(file,code,bits)

FILE *file;
unsigned int code;
int bits;

{

unsigned int mask;
mask = 1<< (bits-1);

while(mask!=0)

{

if{(code & mask)
fputc('1',file);
else
fputc('0',file);
mask>>=1;

}

h

Decomp.C

J*

% This is the module, which implements a decompression

* program based on the Inverse Discrete Cosine Transform.
*

* [t should be compiled as follows :

* cc—Im decomp.c —o0 decomp

* Usage :

/decomp <compresedFile> <decompressedFile> <qf>

qf => quality factor with which the image was
compressed

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/%

* A few parameters that could be adjusted to modify the
decompression * algorithm. The first two define the number
of rows and columns in

* the gray scale image. The last one, 'N', defines the DCT
block

* gize.

*/

#define ROWS 200

#define COLS 320

#define N 8
/¥

* This macro is used to ensure correct rounding of integer
values.

*/

#define ROUND(a) (((2)<0)?(int) ((a)-0.5): (int)
((@+0.5))

char *CompressionName = "DCT compression";
char ¥*Usage = "infile outfile [quality]\nQuality from
0-25";

unsigned char PixelStrip[N [COLS];
double CIN][N [;

double Ct{ N} N |;

int InputRunLength;

int QutputRunLength;

int Quantum|[N J[N];

struct zigzag {
int row;
int col;

} ZigZag[N* N | =

{0, 03,
{0, 1}, {1, 03,
{2,0}, {1, 1}, {0, 2},
{0,3}, {1,2}, {2, 1}, {3, 0},
{4,0}, {3, 1}, {2, 2}, {1, 3}, {0, 4},
{0,5}, {1,4}, {2,3}, {3, 2}, {4, 1}, {5, 0},
(6,0}, {5, 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 65,
(0,7}, {1,6}, {2, 5}, {3, 4}, 14,3}, {5, 2}, {6, 1}, {7, 02,
{7,1}, 6,2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {L. 7},
{2,7}, (3,6}, (4,5}, {5,4}, {6,3}, {7, 2},
{7,3}, {6, 4}, {5, 5}, {4, 6}, 13, 7},
{4, 7}, 45,6}, 16,5}, {7, 4},
{7,5}, {6, 6}, {5, 7},
{6,7}, {7, 6},
7.7}
s
typedef struct bit_file
{
FILE *file;
unsigned char mask;
int rack;
int pacifier counter;
} BIT_FILE;
BIT FILE *OpenlInputBitFile(char *name);
int quality;

main(int argc,char® argv[])

{
mnt* w;
FILE *output,
BIT_FILE *input;
if(argc!=4)
{
printf("\n Invalid arguments ");
printf("\n Usage : ./decomp compressedfile decompress-
file\n");
exit(0);
}
quality=atoi(argv[3]);
input=OpenInputBitFile(argv{1]);
output=fopen(argv[2],"wb");
ExpandFile(input,output);
CloseInputBitFile(input);
printf("done !!!");
fclose(output);
getchar();

BIT FILE *OpenInputBitFile(char *name)
{
BIT_FILE *bit_file;
bit_file=(BIT_FILE *) calloc(l,sizeof(BIT_FILZ});
if (bit_file==NULL)

return(bit_file);

bit_file->file = fopen(name,"rb");
bit_file ->rack=0;

bit_file ->mask=0x8&0;

bit_file ->pacifier_counter=0;

return(bit_file);

CloselnputBitFile(BIT_FILE *bit_file)
{

fclose(bit_file->file);

free((char *)bit_file);

unsigned long InputBits(BIT_FILE *bit_file,int
bit _count)
{
unsigned long mask;
unsigned long return_value;
mask=1L<<(bit_count-1});
return_value =0;
while(mask!=0)
{
if(bit_file->mask==0x80)
{
bit_file->rack = getc(bit_file->file);
if(bit_file->rack == EOF)

printf{"\n\n\n");
}
if((bit_file->pacifier counter++ &

2047)==0)

}
if(bit_file->rack & bit_file->mask)

return_value [=mask;

mask>>=1;

bit_file->mask>>=1;

if(bit_file->mask==0)

bit_file->mask=0x80;
}/* end of while */

return(return_value);

}

FilePrintBinary(FILE *file,unsigned int code,int bits}
{
unsigned int mask;
mask = 1<< (bits-1);
while(mask!=0)
{
if(code & mask)
fputc('1',file);

else

fputc('0',file);
mask>>=1;
}
h
/* end ¥/

Initialize(int quality)
{

nt 1;

int j;

double pi = atan(1.0) * 4.0;

for (i=0;i1<N;it+t)
for (j=0;j<N;it+)
Quantum[i][j]=1+((1+i+j) * quality J;
OutputRuhLength =(;
InputRunLength = 0;
for (j=0;j<N;j+r){
C[0][j]=1.0/sqrt((double) N);
Ci[jJ01=ClO]lik
3
for(i=1;i<N;i++){
for (j=0;j<N;j+¥){
Cli][jl=sart(2.0/ N)*

cos(pi ¥ (2*j+1)*i/(2.0*N)}
CtfjI[i1=Cl11J};

int InputCode(BIT_FILE *Input_file)
{
int bit_count;

int result;

if (InputRunLength >0) {
InputRunLength--;
return(0);
5
bit_count = (int) InputBits(input_file, 2);
if (bit_count==0) {
InputRunLength = (int) InputBits(input_file, 4);
return(0);
3
if (bit_count=1)
bit_count = (int) InputBits(input_file, 1) + 1;
else
bit_count = (int) InputBits(input_file, 2) (

bit_count <<2)-35;

result = (int) InputBits(input_file, bit_count)i
if (result & { 1 << (bit_count - 1)))
return(result);

return(result - (1 <<bit_count) + 1Yy

/*

* This routine reads in a block of encoded DCT data from a
compressed file.

* The routine reorders it in row major format, and
dequantizes it using

* the quantization matrix.

*/

ReadDCTData(BIT_FILE *input_file,int input_data[N][N

D

{
int 1;
int row;

int col;

for(i=0;i<(N*N);i++) {
row = ZigZag[1].row;
col = ZigZag[1 J.col;
input_data[row][col] = InputCode(input_file } *

Quantum[row [col };

/*

* This routine outputs a code to the compressed DCT file.
For specs

* on the exact format, see the comments that go with
InputCode, shown

* earlier in this file.

*/

WritePixelStrip(FILE *output,unsigned char strip[N |
COLS)

{

int row;

int col;

for (row = 0 ; row <N ; row++)
for (col=0; col < COLS ; col++)
putc(strip[row J{ col], output);

/*
Applies inverse DCT and represents the image in the time
domain

*/

InverseDCT(int input[N][N J,unsigned char *output[N I}
{

double temp] N J{ N];

double templ;

int 1;

int j;

int k;

/* MatrixMultiply(temp, input, C); */
for (i=0;i<N;itt+){
for (j=0;j<N;jrt){
temp[1][j]1=0.0;
for (k=0;k<N;k++)
temp[i][j]+=input[i][k} * C[k][] J;

/* MatrixMultiply(output, Ct, temp); */
for (i=0;i<N;itt){
for (j=0;j<Njj++)H{

templ = 0.0;

for (k=0;k<N;k++)
templ += Ct[i [k] * temp{ k J(j

templ += 128.0;

if (templ <0)
output[1][j]1=0;

else if (templ > 255)
output]{ 1][j] =255;
else
output[1][j] = (unsigned char) ROUNI(

templ);
}
h
}
/*

* The expansion routine reads in the compressed data from
the DCT file,
* then writes out the decompressed grey scale file.

*/

ExpandFile(BIT_FILE *input,FILE *output)
{

int row;

int col;

int1;

int input_array[N J[N];

unsigned char *output_array[N |;

/*int quality=3;*/

quality = (int) InputBits(input, 8);
printf("\rUsing' quality factor of %d\n", quality);

I

Initialize(quality);
for (row =0 - row <ROWS ; row +=N) {
for (col =0 ; col <COLS ; col +=N) {
for(i=0;i<N;i++)
output_array[i]="PixelStrip[1]+ col;
ReadDCTData(input, input_array);
InverseDCT(input_array, output_array);

}
WritePixelStrip(output, PixelStrip);

NAME

TYPE
SIZE
WIDTH

HEIGHT

No of bits per pixel

CHEETAH.RAW

ORIGINAL IMAGE
64000 bytes
320 pixels

200 pixels

8

NAME

TYPE
WIDTH

HEIGHT
No of bits per pixel

SIZE

QUALITY
FACTOR

COMPRESSION
RATIO

CHEET.RAW

DECOMPRESSED IMAGE
320 pixels

200 pixels

8

64, 000 bytes (decompressed)
10, 232 bytes (compressed)

5

84 %

NAME

TYPE

SIZE

QUALITY
FACTOR

COMPRESSION
RATIO

CHEET2.RAW

Decompressed Image

64, 000 bytes (decompressed)
5093 bytes (compressed)

25

92 %

NAME

TYPE

SIZE

WIDTH

HEIGHT

No of bits per pixel

MOUSE.RAW

ORIGINAL IMAGE
64000 bytes
320 pixels

200 pixels

8

NAME

TYPE
WIDTH

HEIGHT
No of bits per pixel

SIZE

QUALITY
FACTOR

COMPRESSION
RATIO

DEM1.RAW
DECOMPRESSED IMAGE
320 pixels

200 pixels

8

64, 000 bytes (decompressed)
5651 bytes (compressed)

5

92 %

NAME
TYPE
WIDTH

HEIGHT
No of bits per pixel

SIZE

QUALITY
FACTOR

COMPRESSION
RATIO

DEM2.RAW
DECOMPRESSED IMAGE
320 pixels

200 pixels

8

64, 000 bytes (decompressed)
4337 bytes (compressed)

25

94 %

COMPARISON TABLE

File Quality Starting Compressed Compression
Size size ratio
Cheetah.raw 5 64000 10,232 84%
Cheetah.raw 25 64000 5093 92%
Mouse.raw 5 64000 5651 92%

Mouse.raw 25 64000 4337 94%,

