Automation Of Harn Winding Machmne

*

2000-2001

Project Report

P - 5249 Submitted by

K. Karthik

S. Praveen Moses

K. Saravanan

K. Shanmuga Sundaram

Guided by

Mr. G. Sivasalapathy, B.E.,
Senior Lecturer
EEE Department.

Sponsored by

Miltronics, Coimbatore

In partial fulfilment of the requirements
for the award of the Degree of
BACHELOR OF ENGINEERING in
Electrical and Electronics Engineering
of the Bharathiar University.

Department of Electrical and Electronics Engineering

Kumaraguru College of Technology

Coimbatore — 641 006.

CERTIFICATE

Department of Electrical and Electronics
Engineering
Kumaraguru College of Technology
Coimbatore — 641 006.

CERTIFICATE

This is to certify that the Report entitled
AUTOMATION OF YARN WINDING MACHINE
Has been submitted by

K. Karthik
S. Praveen Moses
K. Saravanan
K. Shanmuga Sundaram

In partial fulfilment of the requirements for the award of
Bachelor of Engineering
in the Electrical and Electronics Engineering

Branch of the Bharathiar University, Coimbatore — 641 046

during the academic year 2000-2001. ‘] '
D e
Y v{w ¥ ‘ * .

Dr, '
K. A, PALANISW AMY 8EM€ﬂ {Engg) p
Jg) PR
MiSTE CE Fif
..... ’g?/ cenenee Professor-gng- d‘e’a‘dt---??".‘.*.s" iz

Department of Elacm
{ and
? gﬁ‘ffﬁfeﬂ!“”"’
vge ot Technology,

Cmm batore ¢4 1 006

Certified that the candidate with University Register Number

was examined in project work viva-voce Examination heldon

..

Internal Examiner External Examiner

n‘- MILTRONICS

in

el

i
e
A
fomes

po]
]
L
Lt

e}

21/1K, Gopal Nagar, Ondipudur, Coimbatore - 641 016. INDIA

V2N DR

Y

»

R

Dedicated
fo Our
Beloved Parents and
Friends

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

With deep sense of gratitude we express our heartful
thanks to our guide Mr.G.Sivasalapathy, BE., Senior Lecturer in EEE for
his guidance, valuable suggestions and constant interest evinced by him
throughout the course of the project work.

We are highly grateful to our beloved professor and Head
of the Department Dr.K.A.Palaniswamy, M.Sc (Engg.), Ph.D., C.Eng.(I),
M.LS.T.E., F.LE., for his remarkable support and encouragement.

Our sincere thanks are due to our Principal
Dr.K.K.Padmanabhan, B.Sc (Engg.), M.Tech., Ph.D., M.IS.T.E., F.LE,,
for having made available all the facilities to do this project.

We would like to thank Mr. C.Jayaveeraiya, Chief -
Executive of miltronics for providing us an opportunity to do this project
work at miltronics, Coimbatore.

, We have no words to express our profound
gratitude to our esteemed guide Ms.Shanthi, B.E, for her valuable co-
operation and suggestions without which our project would not have been
feasible. |

We are indebted to the support, encouragement
and help rendered by all the faculty members and the non-teaching staff of
the Electrical and electronics Engineering Department.

Last but not the least we thank our dear friends for

helping us a lot with their innovative ideas.

SYNOPSIS

SYNOPSIS

This project is based on interfacing of
length measuring system used in winding section of textile industry to
the personal computer. This system is accurate and versatile.
Normally in textile industry, the total production is calculated from
the length of yarn. Thus maintenance of yarn length to exact specified
length is must for both in quality and quantity aspect.

The existing unit controls single machine
and every time the unit is to be reset and the new preset value should
. be manually entered for all drums connected to it. In this project we
connect many machines to PC.

A user-friendly frontend designed using VB
displays the status of various units such as:

v’ Length of yarn measured/ drum.
v' Error indication

v’ Preset length/ drum.

This project aims at connecting more
number of machines to a single PC. Monitoring and controlling of all

machines as well as drums are possible by single touch of a key.

CONTENTS

Chapter Page no.
CERTIFICATE
ACKNOWLEDGEMENT
SYNOPSIS
INTRODUCTION 1

1.1. INTRODUCTION TO MICRO CONTROLLER
1.2. 8031 MICROCONTROLLER
1.3. FEATURES OF 8031

HARDWARE DESCRIPTION 6

2.1. PORT STRUCTURE AND OPRETIONS
2.1.1 PORTO
2.1.2 PORT1
2.1.3 PORT2
2.14 PORT3
2.2 INTERRUPTS
2.3 SERIAL INTERFACE
2.4 TIMER/ COUNTERS

PROJECT DESCRIPTION 17
3.1. MICROCONTROLLER UNIT
3.2. INTERFACING UNIT
3.2.1. TRANSCEIVER
3.2.2. CONVERTER
SOFTWARE DESCRIPTION 24

4.1.PROGRAM CODING
INTRODUCTION TO VISUAL BASIC 45

5.1 DEVELOPING AN APPLICATION

6.

10.

FEATURES OF VISUAL BASIC -6

6.1. DATA BASE CONCEPTS IN VISUAL BASIC

6.2. RECORD SETS
6.3. MS-COMM CONTROL

FRONTEND DESIGN USING VISUAL BASIC

DESCRIPTION OF THE PROJECT

SOFTWARE
9.1. FORM WINDOWS
9.2. PROGRAM CODING
CONCLUSION
REFERENCES

APPENDIX

48

52

55

58

75

76

77

CHAPTER 1

INTRODUCTION

CHAPTER.1

Introduction

India is one of the fast developing countries
in the world at present. The economy of India depends upon the
various Industries. The textile industry plays an important role for the
economy of our country. Textile goods manufactured in India 1s
popular all over the world.

Nowadays automation is used almost in all
the industries. Textile industry is also not lagging behind in the use of
Electronics and computers, as it has to face the challenge of the
emerging Globalization of the market. Thus various new Electronics
technique should be employed to make the textile industry more
efficient and profitable. So Electronics and computers provide a wide
scope for development of textile industry.

The era of manual control is fast giving
way to automatic control system. Computers play a major role in the
field of automatic control and monitoring systems. The main
advantage of using computers is that they are more accurate and
compact. Moreover precise monitoring and are faster monitoring
systems. With the advent of microprocessors and microcontroller the
same chip is performing various complex functions. Thus the size of
the control system is reduced greatly.

The main-aim of this project is to monitor
the cone winding process. The wastage of yarn is reduced

considerably; the accurate length of Yarn is measured and the

production details are maintained as records. The advantage of this
project is that it drastically reduces the number of laborers required.
This project is the interfacing of a personal

computer with a microcontroller-based system.

1.1 INTRODUCTION TO MICRO CONTROLLERS:

A microcontroller is nothing but a true computer on a
single chip. The design incorporates all of the features found in a
microprocessor CPU : ALU, PC, SP and Registers. It also has added
other features needed to make a complete computer: ROM, RAM,

Parallel I/O, Serial I/O counters and a clock circuit.

Like the microprocessor a microcontroller is a general
purpose device, but one that is mean to read data, perform limited
calculations on that data, and control its environment based on those
calculations. The prime use of a microcontroller is to control the
operation of a machine using a fixed program that is stored in ROM

and that doses not change over the life of a system.

The microcontroller design uses a much more limited set
of single and double byte instructions that are used to move code and

data from internal memory in to ALU. Many instructions are coupled

with pins on the integrated circuit package, the ping are programmable

that is, capable of having several different functions depending on the

wishes of the programmer.

The evaluation of the microcontroller based system
follows these steps
Define a specification.
Design a microcontroller system to this specification.
Write programs that will assist in checking the design.

Write several common subroutines and test them.

1.2 8031 MICROCONTROLLER

The Intel MCS-51 family is a highly versatile general-
purpose 8-bit system. Its enhanced architecture offers applications
requiring a high degree of on-chip functionality. It is most suitable for
control-oriented applications. The MCS-51 family includes 8031,
8051, and 8751.

The 8051 family is chosen for the following reasons:
Low part cost.

Multiple vendors.

Available in NMOS and CMOS technologies.
Software tools available and inexpensive.

High-level language compilers available.

The 8031 has control-oriented RAM and I/O. It is
actually a ROM-less version of the 8051 and it fetches all instructions
from external memory. The CPU of 8031 is very fast with larger
number of powerful single cycle opcodes. In the other general purpose
microprocessor a lot of hardware is necessary, but in 8031 it needs
very few simple interfaces to be associated with, due to its very scale

integration on a single chip. It includes a clock, interrupts, timers,

UART, /O ports, and RAM, etc. This chip is ideal in control,

instrumentation, robotics, and data processing applications.

The 8031 operate on 5 volts supply with power down
mode for saving internal RAM contents. It possesses 128 bytes of
register memory on a chip. Four banks of 8 registers have special
functions and 2 registers have special indexing capability in each
bank. It is equipped with 12 MHz crystal having clock time 1
microsecond instruction cycle. It has 2-level priority, level or edge
trigger able external interrupts, two timer interrupts and one UART

interrupts.

The 8031 possess one bit addressable 8-bit I/O port and
one UART port, which is high speed programmable. Two-timer inputs
maybe gated by interrupt inputs. Two multi mode 16-bit timer or

counters enhance the system performance.

The ALU has the capability of performing binary or
decimal, arithmetic, Boolean bit processing for control logic
programs, 8-bit multiplication or division in 4 microseconds, parity

computations, and overflow detections, etc.

1.3 FEATURES OF 8031

The 8031 is a member of the MCS-51
family and it is an 8-bit microcontroller. The main features are as

follows:

High performance HMOS process.

Two 16-bit Timers/Counters.

Two levels interrupt priority structure.

32 bi-directional and individually addressable I/O lines.
On chip oscillator and clock circuitry.

64k address space for external data memory.

64k address space for external program memory.

111 instructions.

Boolean processor.

Programmable Full Duplex serial channel.

CHAPTER 2

HARDWARE DESCRIPTION

CHAPTER. 2
HARDWARE DESCRIPTION

2.1 PORT STRUCTURES AND OPERATION

All four ports in the 8031 are bi-directional.
Each consists of a latch (Special Function Registers PO through P3),

an output driver, and an input buffer.

The output drivers of port 0 and 2,and the
input buffers of port 0, are used in accesses to external memory. In
this application, Port O outputs the low byte to external memory. In
this application, Port 0 outputs the low byte of the external memory
address, time-multiplexed with the byte being written or read. Port 2
outputs the high byte of the external memory address when the
address is 16 bits wide. Otherwise the port 2 pins continue to emit the

SFR content.

All the port 3 pins, and (in the 8031) two
Port 1 pins are multifunctional. They are not only port pins, but also

serve the functions of various special features as listed,

Port Pin Alternate Function

*P1.0 T2 (Timer/Counter 2 external input)
*Pl.1 T2EX (Timer/Counter 2 Capture/
Reload trigger)
P3.0 RXD (special input port)
P3.1 TXD (Serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 (external interrupt)
P3.4 TO (Timer/Counter 0 external input)
P3.5 T1 (Timer/Counter 1 external input)
P3.6 WR (external data memory write strobe)
P3.7 RD (external data memory read strobe)

*P1.0 and P1.1 serve these alternate functions only on the 8052.

The alternate functions can only be activated
if the corresponding bit latch in the port SFR contains a 1. Otherwise
the port pin is stuck at 0.

2.1.1. PORT 0

Port 0 pins may serve as inputs, outputs, or, when
used together, as a bi-directional low-order address and data bus for
external memory. For example, when a pin is to be used as an nput, a
1 must be written to the corresponding port 0 latch by the program,
thus turning both of the output transistors off, which in turn causes the
pin to “float” in a high-impedance state, and the pin is essentially

connected to the input buffer.

When used as an output, the pin latches that are
programmed to a 0 will turn on the lower FET, grounding the pin. All
the pins that are programmed to a 1 still float thus; external pull up
resistors will be needed to supply logic high when using port 0 as an
output.

When port 0 is used as an address bus to external
memory, internal control signals switch the address lines to the gates
of the Field effect transistor. Logic 1 on a address bit will turn the
upper FET on and the lower FET to provide a logic high at the pin.
When the address bit is zero, the lower Fet is on and the upper FET
off to provide a logic low at the pin. After the address has been
formed and latched into external circuits by the address latch enable
pulse, the bus is turned around to become a data bus. Port 0 now reads
the data from the external memory and must be configured as an
input, so a logic 1 is automatically written by internal control logic to

all port O latches.

2.1.2. Port 1

Port 1 one pins have no dual functions. Therefore,
the output latch is connected directly to gate of the lower fit, which
has s FET circuit labeled internal FET pull up as an active pull up
load. Used as an input, al is returned to the latched, turning the lower
fit off, the pin and the input to the pin buffer are pulled by the FET
load. An external circuit can overcome the high impedance pull up
and drive the pin low to input a 0 or leave the input high for 1.

If used as an output the latches containing can drive the
input of an external circuit high through the pull up. If a 0 is written to
the latch, the lower FET is on, the pull up is off and the pin can drive
up the input of the external circuit low. To aid in speeding up
switching times when the pin is used as an output, the internal FET
pull up has another FET in parallel with it. The second FET is turned
in two oscillators time periods during a low to high transition on the
pin. This arrangement provides a low impedance path to the positive

voltage supply to help reduce rise times in charging any parasitic capacitances in

the external circuitry.

2.1.3 PORT 2

Port2 is used as an input or output port similar in operation to
portl. The alternate use of port2 is to supply a high order address byte

in conjuction with the port 0 low order byte to external memory.

Port 2 pins are momentarily changed by the address control
signals when supplying the high byte of a 16-bit address. Port2 latches
remain stable when external memory is addressed, as they do not have

to be turned around for data input as in the case port 0.

2.1.4. PORT3

Port 3is an input or output similar to portl. The
input and output functions can be programmed a under the control of
P3 latches or under the control of various other special function
registers. Unlike ports 0&2, and which can have external addressing
functions and change all eight port bits when in all alternate use, each
pin of port3 may be indivually programmed to be used either as 1/0 or

as one of the alternate functions.

2.2. INTERRUPTS:

The 8031 provide 5 interrupt sources where as

8052 provides 6 interrupts.

The external interrupts INTO and INTT can each be
either level activated or transmission activated depending on bits ITO
and IT1 in register TCON. The flags that actually generate these
interrupts are bits IE Oand IE 1 in TCON. When an external is
generated, the flag that generated it is cleared by the hardware when

the service routine is vectored to only if the interrupt was transition

10

activated. If the interrupt was level activated, then the external

requesting source is what controls the request flag, rather p+8Xthan the on

chip hardware.

The timer O and timer 1 interrupts are generated by
TFO and TF1, which are set by a roll over in their respective timer or
counter register. When a timer interrupt is generated, the flag that
generated it is cleared by the on chip hardware when the service

routine is vectored to.

The serial port interrupt is generated by the logical
OR of RI and TI. Neither of these flags is cleared by hardware when
the service routine is vectored to. In fact the service routine will
normally have to determine whether it was RI or TI that generated the

interrupt and the bit will have to be cleared in software.
2.3. SERIAL INTERFACE

The serial port is full duplex, meaning it can
transmit and receive simultaneously. It is also receive buffered,
meaning it can commence reception of a second byte before a
previously received byte has been read from the receive register.
(However, if the first byte still has not been read by the time reception
of the second byte is complete, one of the bytes will be lost). The
serial port receive and transmit registers are both accessed at special
function register SBUF.Writing to SBUF loads the transmit register,

and reading SBUF accesses a physically separate receive register.

11

The serial port can operate in 4 modes:

MODE 0

Serial data enters and exits through RXD. TXD
outputs the shift clock. & bits are transmitted / received: 8 data bits.
The baud rate is fixed at 1/12 the oscillator frequency

MODE 1

10 bits are transmitted (through TXD) or received
(through RXD): a start bit 0, 8 data bits, and a stop bit 1. On receive;
the stop bit goes into RB8 in special function register SCON. The

baud rate is variable.

MODE 2

11 bits are transmitted (through TXD) or received
(through RXD): a start bit 0 , 8 data bits , a programmable 9th data bit
and a stop bit 1. On transmit; a 9th data bit can be assigned the value
of 0 or 1. Or, for example the parity bit could be moved into TB3. On
receive, the 9th data bit goes into RB8 in special function register
SCON, while the stop bit is ignored. The baud rate is programmed to
either 1/32 or 1/64 the oscillator frequency.

12

MODE 3

11 bits are transmitted (through TXD) or received (through
RXD) : a start bit 0 , 8 data bits , a programmable 9™ data bit and a
stop bit 1.In fact, mode 3 is same as mode 2 in all respects except the

baud rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction
that uses SBUF as a destination register. Reception is initiated in
mode 0 by the condition RI=0 and REN=1. Reception is initiated by
in the other modes by the incoming start bit if REN=1.

2.4. TIMER/COUNTERS:

Many Microcontroller applications require the
counting of external events, such as the frequency of a pulse train, or
the generation of precise internal time delays between computer
actions. Both of these tasks can be accomplished using software
techniques, but software loops for counting or timing keep the
processor occupied so that other, perhaps more important functions
are not done. To relieve the processor of this burden two 16 bit up
counters are provided for the general usage of the programmer. Each
counter may be programme to count internal clock pulses acting as a

timer ,or programmed to count external pulses as a counter.

The Counters are divided into 2 eight-bit registers called

the timer low and high bytes. All counter action is controlled by bit

13

states in the timer mode control register, the timer/counter control

register and certain program instructions.

The 8031 has two 16-bit timer/counter registers. Timer 0
and timer 1. All these can be configured to operate either as a timer or
event counters. In the timer function, the register 1s incremented every
machine cycle. Thus, one can think of it as counting machine cycles.
Since a machine cycle consists of 12 oscillator periods, the count rate

is 1/12 of oscillator frequency

In the counter function, the register is incremented in
response to a 1-to-0 transition at its corresponding input pin, TO, T1,
or T2. In this function, the external input is sampled during S5P2 of
every machine cycle. When the samples show a high in one cycle and
a low in the next cycle, the count is incremented. The new count value
appears in the register during S3P1 of the cycle following the one in
which the transition was deducted. Since it takes two machine cycles
(24 oscillators periods) to recognize a 1-to-0 transition, the maximum
count rate is 1/12 of the oscillator frequency. There are no restrictions
on the duty cycle of the external input signal, but to ensure that a
given level is sampled at least once before it changes, it should be

held for at least for one full machine cycle.

In addition to timer or counter selection, timer 0
and timer 1 have four operating modes from which to select. These
timer/counters are present in both 8031 and 8052. The timer or

counter function is selected by control bits C/T in the special function

14

register TMOD. These 2 timer/counters have four operating modes,
which are selected by bit pairs (M1, M0) in TMOD. Modes 0, 1, and 2
are the same for both timer/counters. Mode 3 is different. The four

operating modes are described in the following text.

MODE O

Either timer in MODE Ois a 8 bit counter with a divide
by 32 prescaler. This 13 bit timer Is MCS-48 compatible. In this
mode, the Timer register is configured as 13- bit register .As the count
rolls over from all 1s to all zero, it sets the timer interrupt flag
TFLThe counted input is enabled to the Timer when TR=1 and either
GATE=0or INTI=1 (setting GATE=lallows the TIMER to be
controlled by external input INTLto facilate pulse width
measurements). TR1 is a control bit in Special Function Register

TCON.

The 13-bit register consists of all 8 bits of TH1 and
lowers 5 bits of TL1 .The upper 3 bits of TL1 are intermediate and
should be ignored. Setting the run flag (TR1) does not clear the

registers.

Mode 0 operation is the same for timer O as for timer 1.
Substitute TRO,TFO and INTO for the corresponding timer 1 signals.
There are two different GATE bits, one for timerl (TMOD.7) and one
for timer 0 (TMOD.3).

15

MODE 1

Mode 1 similar to mode 0 except TLX 1is configured as
full 8 bit counter when the mode bits are set to 01b in TMOD. The

timer flash would be set in 0.1311 secs using 8 mhz crystal.

MODE 2

Setting the mode bits to 10b in TMOD configures the
timer to use only the TLX counter as an 8-bit counter. THX is used to
hold a value that is loaded in to TLX, every time TLX overflows from
FFh to 00h. The timer flag is set when TLX overflows. This mode
exhibits an auto reload feature: TLX will count up from the number 1n
THX, over flow, and be initialized again with the contents of THX.
For example, placing 9Ch in THX will result in a delay of exactly in

0.0002 secs before the overflow flag is set if a 6 mhz crystal is used.

MODE 3

Timer 0 and 1 may be programmed to be in mode 0,1or 2
independently of a similar mode for the other timer. This is not true
for mode3, The timer do not operate independently if mode 3 is
chosen for timer0. Placing timer 1 in mode3 causes it to stop counting,

the control bit TR1 and the timer 1 flag TF1 are then used by timer 0.

16

CHAPTER 3

PROJECT DESCRIPTION

CHAPTER.3
PROJECT DESCRIPTION

The generalized block diagram in fig 3.1 shows the
arrangement of microcontroller, interfacing unit and PC. The fig 3.2
shows the hardware arrangement of existing microcontroller unit and

the location of 8031 microcontroller.

The speed of the drum is sensed by the sensors and
is given to the microcontroller unit that is nothing but a counter, from
the speed the microcontroller unit counts the length of the yarn in
meters. This microcontroller unit requires manual settings for the
operation. But it is Interfaced with the PC and made automatic by this
project. This is possible by writing programs on both microcontroller
side and PC side.

In the microcontroller side, we are
programming the 8031 chips by keeping the existing hardware as it 1s.
But befgoing into the programming side, the existing hardware is

studied first to understand the different technical facts.

17

3.1 MICROCONTROLLER UNIT:

Description:

The counter receives pulses from the
proximity sensor in the pin P1.6. Once the length count reaches the
preset value, the preselection relay, RELAY 1 (pin P1.4) is activated
which energizes the alarm signal. Similarity when final set value 1s
reached the final set relay, RELAY 2 will be energized (pin Pl .5) Pin
1.3 is connected to the security lock switch which is checked when the
reset key is pressed. If the switch is closed, the system is reset else the

key pressed is ignored.

The software is in the EPROM 2764
whose memory capacity is 2K. The pins (P1.0- P1.7 and P2.0 — P2.4)
are used as address lines for 2764. Pins P2.5 — P2.7 is used to obtain

the chip select lines for 8279.

Lines RLO and RL1 of the 8279 is
connected to the rows of the matrix keyboard and the output lines (A0
— A3 and B0 — B3) are connected to drive the LED segments through
the transistors. The three scan lines are connected to the decoder to
generate 8 decoded signals. In this circuit 6 output lines of the decoder
are connected as digit drives, to turn on 6 seven segment LEDs. Two
output lines are unused. In addition the data lines of 8279 are
connected to the data bus of the 8031 and 2764. IRQ of 8279 1s
connected pin P3.2 of 8031.

18

Four signals RD, WR, CLK, RESET
are connected directly from 8031. The system has 3.072 MHz clock
when 8279 is reset, the clock prescalar is set to 31. This divides the
clock frequency by 31 to provide the scan frequency of approximately
100 KHz. After the initialization of 8279, the respective codes are sent
to the display RAM to display any character. The 8279 takes over the
task Of displaying the characters by outputting the codes and digit
strobes. To read the keyboard, the 8279 scan the columns. If a key
closure is detected, it debounces the key. If a key closure is valid it
loads the key codes in the FIFO, and the IRQ lines goes high to
interrupt the system. Also the Al flag is set, the IRQ line is cleared by
the first data read operation and this enables further writing into
RAM. For each IC, a tantalum capacitor of value 0.1mf is connected

across each to suppress any unwanted noise entering the system.

3.2 INTERFACING UNIT:

The existing microcontroller unit is
interfaced with the personal computer through a interfacing unit
shown in figure 1. This consist of a transceiver (transmitter/receiver)
and a converter. Here we have used RS 232convertor and RS 485
Transceiver. This interfacing unit is connected to the serial port and

the personal computer.

19

YV V V V

A\

3.2.1. TRANSCEIVER:
The RS 485 is a high-speed differential TRI-

STATE Bus/Line transceiver with extended common mode range of
+12v to —7v, for multipoint data transmission. In addition, it is
compatible with RS — 422. The driver and receiver outputs feature
TRI-STATE capability, for the driver outputs over the active common
mode range of +12v to —=7v. A thermal shutdown circuit, which forces
the driver outputs into the high impedance state, handles bus
contention or fault situations that cause excessive power dissipation

within the device.

FEATURES OF RS-485 TRANSCEIVER:

The RS-485 Transceiver has the following
features:
Meets EIA standard RS 485 or multipoint bus transmission and is

compatible with RS-422.

Small outline package option available for minimum board space.

22 ns driver propagation delays.

Single +5V supply.

7V to +12V Bus common mode range permits +/- 7V ground

difference between devices on the bus.

Thermal shutdown protection.

High impedance to bus with driver in TRI-STATE or with power off,
over the entire common mode range allows the usual devices on bus
to be powered down.

70 mv typical receiver hysterisis.

20

YV V V V V V

3.2.2. CONVERTOR:
The converter is a multi-channel RS-232
Driver/Receiver and they are mostly used in communication interfaces
and in particular for those applications where +/- 12V is not available.
Also, this RS-232 is particularly useful in battery-powered systems.
Since their low-power shutdown mode reduces power dissipation to
loss than 5 Micro Watt.
The RSS-232 converter has the following
features they are as follows,
Operate from single +5V power supply.
Low power receive mode in shutdown.
Meet all EIA/Ha —232E specifications.
Multiple Drivers and receivers.
3- state Driver and Receiver outputs.
Open-Line Detection.
Because of these above features, they are used in
many applications such as,
o Portable computers.
o Low-power modems.
o Interface translation.
o Battery powered RS-232 systems.
o Multi-drop RS-232 networks.
This Rs-232 converter is connected to the serial
port(D9 port) of the PC through which the communication takes

place.

21

MICRO
CONTROLLER
UNIT

Interface unit

RS 485 i

TTL ;
Lo'gic D RS 232 P Tx
<«—> TRANS > !

i | CEIVER D !
‘15§v "1 Tr/Rr ”1 CONVERTER & >

Fig.3.1. General Block Diagram

22

EPROM
PROG

27C128

8
0SC 0 BATTERY
CIRCUIT
3 BACK UP
1
EPROM
cs
POWER >
SUPPLY DEMUX
LED
8279 CS
SpLAy =71 DISPLAY

8279

KEY
BOARD

FIG.3.2 BLOCK DIAGRAM OF EXISTING MICROCONTROLLER
SYSTEM

CHAPTER 4

SOFTWARE DESCRIPTION

CHAPTERA4
SOFTWARE DESCRIPTION:
4.1 Microcontroller coding:

CPU "8031.TBL"
HOF "INT8"

i\IOFCHAN:EQU 16D ; Total number of channels used
TOTCHAN:EQU NOFCHAN+2
BLCNT EQU 250D ; THE BLINKING RATE

EQUATES FOR VARIABLES IN EXTERNAL DATA MEMORY

RAMAD: EQU 2000H
RAMEND: EQU RAMAD+7FFH

RTNRIT: EQU RAMAD

RTNLFT: EQU RTNRIT+2

RRFTR:EQU RTNLFT+2 ; To hold left side ratio
LRFTR: EQU RRFTR+2 : To hold right side ratio
TOTDRM: EQU LRFTR+2

TOTDRML:EQU TOTDRM+2H
SLIPADR:EQUTOTDRML+1

SCNTADR:EQU SLIPADR+TOTCHAN
RCNTADR:EQU SCNTADR+{3*TOTCHAN}

PRAM: EQU RCNTADR+{4*TOTCHAN}

CODEXT:EQU PRAM+1 ; 12 bytes are required
BITRADR:EQU CODEXT+15D
BITLADR:EQU BITRADR+{{NOFCHAN+2}/2}

DFCNTR: EQU BITLADR+{{NOFCHAN+2}/2}
CTCNTR: EQU DFCNTR+2 ;2BYTES
BYTLADR:EQU CTCNTR+2

BYTRADR:EQU BYTLADR+{ {NOFCHAN+2}/2}
FDLADR: EQU BYTRADR+{{NOFCHAN+2}/2}
FDRADR: EQU FDLADR+{{NOFCHAN+2}/2}
INCLOCL: EQU FDRADR+{ {NOFCHAN+2}/2}
INCLOCR: EQU INCLOCL+{ {NOFCHAN+2}/2}
PASSWORD:EQU INCLOCR+{{NOFCHAN+2}/2}
SIDE: EQU PASSWORD-+10H
SETPASS:EQUSIDE+1

TSETPASS:EQU SETPASS+10 4 bytes

223

24

ADRMC:
STSRAM:
TMPCOM:

EQU TSETPASS+10
EQU ADRMC+]

EQU STSRAM+17

; DEFINE PORT ADDRESS FOR KB/D CONTROLLER

CMD79:EQU
DAT79: EQU

4001H
4000H

Z EQUATES FOR BIT ADDRESSABLE VARIABLES

P10: EQU
WSIG: EQU
LBYRIT:

STSIN: EQU
SCLOK:EQU
PCLOK:EQU

STROBE:
SHCLK:EQU
DOUT: EQU

MKEY: EQU
CNTL: EQU

DPSIDE:
RDRM: EQU
LDRM: EQU
EDSIDE:

90H
P10
EQU WSIG+!

LBYRIT+1
STSIN+1
SCLOK+1

EQU PCLOK+1
STROBE+1
SHCLK+1

0B5H
0B4H

EQU 07FH
07EH
07DH
EQU 07BH

INVLDBIT:EQU 07AH

BRKBIT:
YESBIT:

EQU 079H
EQU 078H

SYESBIT:EQU 077H
NVLDBIT:EQU 076H
SBRKBIT:EQUO075H

PLFLG: EQU
PRFLG: EQU
DFLG: EQU
ZFLG: EQU
PASSOK:

NP: EQU

9932599333

GETFLG:

074H ; INDICATION FOR POWER ENTRY FOR FDI
073H

072H ; 00H=LEFT : 01H =RIGHT :FDI

071H ;01 =RCNT IS NOT EQUAL TO 00000

EQU 06FH

6EH ; Used to display digit value in direct drum no. press

EQU 6CH ; Set to put In recieve mode

25

MCNFLG: EQU
TRNSFR: EQU
MAST: EQU 69H
SCRT: EQU 68H
SPIN: EQU 67H
DELV: EQU 66H
HANK: EQU 65H

RRRCLS: EQU
REESET: EQU
VELOC: EQU

ALLPR:EQU 61H
INDCATO:EQU

HOUR: EQU 5FH
PARAMI: EQU
SBIT: EQU S5DH
REVSGL: EQU
CHKBIT: EQU
RPMBIT: EQU

TBIT: EQU 59H
REVENBL:EQU
REVBIT: EQU
PARAM?2: EQU
PARAM3: EQU
PARAM4: EQU
PARAMS: EQU
UPFLG:EQU 51H
DOWNFLG:EQU
BUSY: EQU 4FH
SPDABRT:EQU
ALTVIEW:EQU
TEMP2: EQU 4CH
INVLDBYTE:EQU
PASS20K:EQU
RESET: EQU 49H
RCLOSE: EQU
STXFLG: EQU

6BH
6AH

64H
63H
62H

60H

SEH

5CH
5BH
SAH

58H
57H
56H
55H
54H
53H

50H

4EH
4DH

4BH
4AH

48H
4TH

. Set if recieved m/c address get matched.
: Set to put in transmit mode

. CODES USED FOR SERIAL COMMUNICATION

EOT: EQU 4AH
STATUS: EQU
EOC: EQU 7AH
STX: EQU 6AH
SACK: EQU 4FH

1AH

: End Of Transmission code
: System STATUS code
; End of m/c communication
: Start of communication
. Acknowledge with address byte

26

SSTAT: EQU

RT2PARA:EQU

RSLSPD:
RDOFFP:

BRKCNTC:EQU

RXD: EQU
TXD: EQU
T2CON:EQU
RCAP2H:
RCAP2L:
TR2: EQU

1AH : Send system status
5EH
4ADH
4EH

26H

EQU
EQU

0BOH
0B1H
0C8H
EQU OCBH
EQU OCAH
0CAH

;DEFINE ADDRESS FOR INTERNAL DATA MEMORY

OBUFF:EQU 30H . Contain data that is displayed

DRAM: EQU OBUFF+8 - Holds code for display

IBUFF: EQU DRAM+8 : Holds key code pressed last
RPNTR:EQU IBUFF+1 - Pointer for real time count

SPNTR: EQU RPNTR+2 : Pointer for set count

TEMP: EQU SPNTR+2 - Temperary location

TEMP1:EQU TEMP+1 - Scratch pad in main rtn

FLAG: EQU TEMPI1+1 - Holds status of display
POINTER:EQUFLAG+1 : Holds addr. of slip loc.

SCRTCH.: EQU POINTER+2 ; Used in intr routines

SETVAL: EQU SCRTCH+1 ;A scratch for set count/slip
ASKPRAM:EQU SETVAL+3 ; To hold count for auto skip
BLRAM: EQU ASKPRAM+tl; Blinking rate counter

DPCHNL.: EQU BLRAM+l - Channel being displayed
SUBCHNL:EQU DPCHNL+1 - ; Temp. channel storage

MSGF: EQU SUBCHNL+1; Holds status of msg display

SUBF: EQU MSGF+1 - Sub flag used to run within selected menu
YNCNTR: EQU SUBF+1 : To hold count for FULL-PACK
FLCNTR: EQU YNCNTR+2 ;To hold count for YARN-CUT
CNT: EQU FLCNTR+2 ; Temp. counter

DUMMY: EQU CNT+1 - Temp. used during scanning

LCHNUM: EQU

DUMMY+1 : Right side total drum

LCHNUML:EQU LCHNUM-+1 ; Left side total drum

LKY: EQU LCHNUML+1 - Used in non. ejection routine for side
LKY1l: EQU LKY+l1 ; " " " for chnl. no.
NEPTR: EQU LKY1+1 ; Used for addr. storage

GST1: EQU NEPTR+2 ; group starting channel

GEN1: EQU GSTi+l1 . group ending channel

CHKSUM.: EQU GENI1+1

SUMBYT: EQU CHKSUM+1

‘DEFINE CONSTANTS USED IN VARIOUS ROUTINE

27

SKIPKY: EQU OAH ; Skip to previous stage

NXTKY: EQU O0BH : Confirmation key

UNITKY: EQU OCH - To increment chnl number in units
LBYRKY: EQU ODH - Select the side of channel
INDVKY: EQU OEH - To select a function for particular chnl
TENKY: EQU OFH - To increment chnl number in tens
SELKY:EQU 10H ; To select a function from main menu
UNIVKY: EQU 11H - To select a function for all chnls
PSTN1: EQU 90H ; Display start position

NULL: EQU O00H

EMPTY: EQU 80H : Tbuff empty flag

PCODE:EQU 66H : Power failure code

DLPCNT: EQU O05H - Parallel pulse width

BLICNT: EQU 025D : Blink once 1n every .25s

DOT: EQU O08H

: IE0 = 0003H

:IE1 =0013H

- TFO = 000BH

: TF1 =001BH

ORG OH

SIMP WRMSTRT - Poweron entry point

ORG 03H

LIMP RDRMISR ; Right side drum sense service routine
ORG O0OBH

LIMP KBDISR - Key board interrupt service routine

ORG 13H

LIMP LDRMISR : Left side drum sense service routine
ORG 1BH

RETI

ORG 23H

LIMP SSISR

;**
ok sfe sk sk sk

s ok sk sk sfe ok ok sieske sk sl sk skeskeokok kR sk
;**
e sk ke ke sk

ORG 30H

28

WRMSTRT:

MOV
MOV

MOV
WLP2:
MOV
WLP3:
DINZ
DINZ

MOV
MOV
MOVX
MOV
MOVX
SETB

.************************
2

o ke stk ok

;************INITIALISATION

P1,#0FFH
SP.#07H

RO,#20H
R1,#0FFH

R1,WLP3
RO,WLP2

DPTR,#CMD79
A,#00H
@DPTR,A
A#3FH
@DPTR,A

ES

: Define portl

. Initialise stack

- Define mode of opn for 8279
- Encoded scan, 2key lockout
. 8 digit display, left entry

- Program clock by xx

**

OF USER DEFINED

-**
H

sk ok 3k sk ok

SETB
SETB

CLR
CLR
CLR
CLR

CLR
CLR

CLR
MOV
MOVX
JZ
MOV
MOVX
SETB

PCLOK
PCLOK

STROBE
STROBE
DOUT
DOUT

LDRM
RDRM

DPSIDE
DPTR,#SIDE
A,@DPTR
SIDE10
A#OFFH
@DPTR,A
DPSIDE

SIDE10:CLR NP

MOV
MOV

DPCHNL,#01H
SUBCHNL,#01H

‘Initialisation of parameters

29

MOV FLAG#NULL
MOV MSGF #NULL
MOV SUBF,#NULL

MOV TEMP1#01H
MOV BLRAM,#BLCNT
MOV DPTR#DFCNTR
MOVX A,@DPTR

MOV FLCNTR,A

INC DPTR

MOVX A,@DPTR

MOV FLCNTR+1,A

MOV DPTR#CTCNTR
MOVX A,@DPTR

MOV YNCNTR,A

INC DPTR

MOVX A,@DPTR

MOV YNCNTR+1,A

CLR INVLDBIT
CLR BRKBIT
CLR SBRKBIT
CLR YESBIT
CLR SYESBIT
CLR NVLDBIT

LCALL INITDRM
LCALL INITDRML
MOV DPTR#TOTDRM
MOVX A,@DPTR

MOV LCHNUM,A
MOV DPTR#TOTDRML
MOVX A,@DPTR

MOV LCHNUML,A

SETB PLFLG
SETB PRFLG

MOV LKY,#00H

MOV TEMP1,#01H

MOV LKY1,#00H

MOV GSTI1,#00

MOV GEN1,#00

MOV DPTR#PASSWORD
MOV A#0

30

MOVX @DPTR,A
CLR PASSOK

LCALL LTRCHK
LCALL RTRCHK

CLR STROBE
CLR STROBE

LCALL UPDTDPL ; Display run message
LCALL ENBLINT

-**
2>

sk ok sk sk

; SCANNING OF DRUMS STARTS HERE

-**
s

sk koo

MERGEIL:

CLR STROBE

LCALL UPDTDPL

JB LDRM,SCANLI1 : Check for completion of left ratio
JB RDRM,SCANRI1 : Check for completion of right ratio
SIMP MERGEI1

MERGE?2:

CLR STROBE

LCALL UPDTDPL

IB RDRM,SCANRI

JB LDRM,SCANLI

SIMP MERGE2

SCANRI1:

LIMP SCANR

SCANL1:

LIMP SCANL

2

SSISR: PUSH DPH
PUSH DPL

PUSH A

PUSH PSW

PUSH B
PUSH 5

PUSH O
PUSH 7
PUSH 1

RECIV: JNB RLRECIV ; Wait till sbuff is filled

31

MOV
CLR
MOV

JB

CINE
SETB
SIMP

A, SBUF ; save in B register
RI
B,A

STXFLG,SSISR10 ; STX already recieved
AH#STX,SQUIT - Set STXFLG if STX recieved
STXFLG

SQUIT

SSISR10:

B
MOV
MOV
MOVX
CINE
SETB
CLR
CLR
LIMP

MCNFLG,SELMCN ; See if m/c is already selected
ROA : adr. recieved

DPTR #ADRMC

A,@DPTR

A,00,SQUITA ; compare with the m/c addr. sent from
MCNFLG ; pc and set m/c select flag
GETFLG

TRNSFR

SRLQIT

SQUITA: CLR STXFLG

SQUIT:

LIMP SQUIT1

SELMCN: CINE A #7AH,SEL1; END(7A) of this machine communi

CLR
LIMP

SEL1:
SETB
CLR
SETB
LIMP
SEL2:
SETB
CLR
SETB
LIMP
SEL3:
CLR
CLR
CLR
LIMP

STXFLG
SQUIT1 ; clear control flags and go out

CINE A #3AH,SEL2; Code (3A) to reset the machine
GETFLG

TRNSFR

RESET

NXTQIT

CINE A #3BH,SEL3; Code (3B) to rclose emergncy
GETFLG

TRNSFR

RCLOSE

NXTQIT

CINE A#3EH,PROCED

PASSOK

PASS20K

STXFLG

SQUIT!

SELNOT: LIMP RESI1 ; refuse since SECURITY is ON

PROCED: JB GETFLG,RCVPT ; if not see if reception or

JB

TRNSFR,TRAES : transmission is enabled

32

MOV AB : Code (5A) to check for trns or recp
CINE AMH#5AH,RDYTRS ;notequal go to transmit
LJMP RESPT ; Equal go to recive

RDYTRS: CLR GETFLG
SETB TRNSFR

CLR CNTL

LIMP SRLQIT

RCVPT:

B MAST,SOMST

B VELOC,SOVEL

JB ALLPR,SOALL

JB SCRT,SOSCR

B SPIN,SOSPN

JB PARAMI1,SOPARALI
JB PARAM2,SOPARA?2
JB PARAM3,SOPARA3
JB PARAM4,SOPARA4
JB PARAMS5,SOPARAS
JB RESET,SORESET

JB RCLOSE,SORCLOSE
LIMP RECIPT

SOMST: LIMP GETMST
SOVEL:LIJMP GETVEL
SOALL:LJMP GETALL
SOSCR:LIMP GETSCR

SOSPN: LJIMP GETSPN
SOPARA1:LJMP GETPARI
SOPARA2:LJMP GETPAR2
SOPARA3:LJMP GETPAR3
SOPARA4:LJMP GETPAR4
SOPARAS:LJMP GETPARS
SORESET:LJMP GETRESET
SORCLOSE:LJMP GETRCLOSE

TRAES:MOV AB

CINE A, #SSTAT,SRLPRG ; Code to send system status
MOV A #67TH

CLR C

ORL C,PASSOK

ORL C,PASS20K

JNC TM10

MOV A #68H

TM10: MOV DPTR#STSRAM+12

MOVX @DPTR,A

33

MOV A, OBUFF+2

CINE AMHLLETR,TM20
MOV DPTR,#STSRAM
MOV A #0CH

MOVX @DPTR,A

TM20: JNB BUSY,TM30
SETB SPDABRT

SIMP TM40

TM30:

MOV DPTR#STSRAM+4
MOVX @DPTR,A

MOV DPTR#STSRAM+S5
MOVX @DPTR,A

TM40: MOV DPTR#STSRAM+16
MOV A,#4AH

MOVX @DPTR,A

MOV CHKSUM,#00
MOV DPTR#STSRAM
MOVX @DPTR,A

LCALL PAUSE o
LCALL PAUSE

LIMP SRLSTAT

SRLPRG: MOV AB
CINE A#SPGM1,SL2PRG
: MOV DPTR#TOTBYT
MOVX A,@DPTR

LCALL CHK VALPGM_BYTES
JNB INVLDBYTE,TM45
MOV A#75

TM45: MOV SUMBYT,A
SETB CNTL

MOV CHKSUM,#00

. MOV DPTR,#SRLONE
REPET: LCALL PAUSE ko
LCALL PAUSE Sk
LCALL PAUSE

LCALL PAUSE

LCALL TRPRG

: LCALL PAUSE
LCALL PAUSE

CLR CNTL

CLR STXFLG

LIMP SRLQIT

SL2PRG: MOV A,B

34

JNB INVLDBYTE,TM50
MOV A#75D

TMS50:

MOV SUMBYT,A

SETB CNTL

: MOV DPTR#SRLTWO
MOV CHKSUM,#00
LJMP REPET

SL1RTI: MOV AB
LIMP REPET

SL2RT2: MOV AB
SETB CNTL

; MOV DPTR,#DLVRTIO
MOV CHKSUM,#00
LIMP REPET

SRIL.TM1:

MOV AB

: MOV DPTR#T1RTIO
MOV CHKSUM,#00
LIMP REPET
SRLTM2:

MOV AB

SETB CNTL

; MOV DPTR#T2RTIO
MOV CHKSUM,#00
LIMP REPET

SRLDF:

MOV AB

SETB CNTL

; MOV DPTR#D1RTIO
MOV CHKSUM,#00
LIMP REPET

SL3RT3: MOV AB
SETB CNTL

: MOV DPTR,#HNKRTIO
MOV CHKSUM.,#00
LJMP REPET

SL4RT4:

MOV AB

MOVX A,@DPTR

: MOV DPTR #SLTRAM
MOVX @DPTR,A

35

MOV CHKSUM,#00
LIMP REPET

SUIT1A: CLR STXFLG
SUIT1: LIMP SQUITI1
SL5RTS: MOV AB
CINE AMHSACK,SUITIA ; Codeto send acknowledge
MOV SUMBYT,#01H
SETB CNTL

MOV DPTR #ADRMC
MOVX A,@DPTR

: MOV DPTR#ACK

; MOVX @DPTR,A
MOV CHKSUM,#00
LIMP REPET
SRLSTAT:

MOV DPTR,#STSRAM
LCALL PAUSE
LCALL PAUSE

SETB CNTL

LCALL PAUSE

LCALL PAUSE

LCALL TRANSD
LCALL PAUSE
CLR CNTL

CLR STXFLG

LIMP SRLQIT

GETSCR60A:LIMP GETSCR60
GETSCR:

LCALL QUEUPA

MOV ADUMMY

INZ GETSCR60A

DEC DPL

MOVX A,@DPTR

XRL CHKSUM,A

CINE A#0A4H,GETSCRS

MOV A#4AH

GETSCRS5:CINE A,CHKSUM,GETSCR70
MOV DPTR#TMPCOM+1

MOVX A,@DPTR

MOV R7,A

ADD AA

ADD AR7

INC A

MOV R7A ; No of bytes to be copied

; MOV DPTR,#CODE

36

MOVX A,@DPTR

CINE A #01H,GETSCR30

MOVX @DPTR,A

INC DPTR

MOV RO,DPH

MOV R5,DPL ; destination area

GETSCR10:MOV DPTR #TMPCOM+1
MOV TEMP1,DPH
MOV TEMP1+1,DPL ; source area

GETSCR20:MOV DPH,TEMP1
MOV DPL,TEMP1+1
MOVX A,@DPTR

INC DPTR

MOV TEMPI1,DPH

MOV TEMP1+1,DPL
MOV DPH,RO

MOV DPL,RS

MOVX @DPTR,A

INC DPTR

MOV RO,DPH

MOV R5,DPL

DINZ R7,GETSCR20
CLR SCRT

CLR STXFLG

LIMP SQUIT1
GETSCR30:

CINE A #02H,GETSCRA40
MOVX @DPTR,A

INC DPTR

MOV RO0O,DPH

MOV R5,DPL ; destination area
SIMP GETSCRI10
GETSCRA40:

CINE A #03H,GETSCR50
MOVX @DPTR,A

INC DPTR

MOV RO,DPH

MOV R5,DPL ; destination area
SIMP GETSCRI10
GETSCRS50:

CINE A #04H,GETSCR70
MOVX @DPTR,A

INC DPTR

MOV RO,DPH

37

MOV R5,DPL ; destination area
SJIMP GETSCRI10
GETSCR60:LIMP SRLQIT
GETSCR70:

CLR SCRT

MOV CHKSUM,#00

CLR STXFLG

LIMP SQUITI1

GETSPN: LCALL QUEUPA
MOV A DUMMY

INZ GETSPNI10

DEC DPL

MOVX A,@DPTR

XRL CHKSUM,A

CINE A,#0A4H,GETSPN5

MOV A#4AH

GETSPNS:

CINE A,CHKSUM,GETSPN20
MOV DPTR#TMPCOM

MOVX A,@DPTR

MOV ROA ; MSB

INC DPTR

MOVX A,@DPTR ; LSB
: MOV DPTR#RTIOLOC+1
MOVX @DPTR,A

DEC DPL

XCH ARO :RO-LSB, A - MSB
MOVX @DPTR,A

MOV ARO

INC DPTR

MOVX @DPTR,A

CLR SPIN

CLR STXFLG
LJMP SQUITI
GETSPNI10:

LJMP SRLQIT
GETSPN20:

MOV CHKSUM.,#00
CLR SPIN

CLR STXFLG
LIMP SQUITI

GETPARL.LCALL QUEUPA
MOV A DUMMY

INZ GETPAR110

DEC DPL

38

MOVX
XRL
CINE
MOV

A,@DPTR
CHKSUM,A
A#0A4H,GETPARIS
AH#4AH

GETPARI15S:

CINE
MOV
MOVX
MOV
INC
MOVX
: MOV
MOVX
DEC
XCH
MOVX
; MOV
MOVX
INC
MOV
MOVX
CLR
CLR
LIMP

A,CHKSUM,GETPAR120
DPTR,#TMPCOM
A,@DPTR

RO,A

DPTR

A,@DPTR
DPTR,#T1RTIO+I
@DPTR,A

DPL

ARO

@DPTR,A
DPTR,4TIRBAK
@DPTR,A

DPTR

A,RO

@DPTR,A
PARAMI
STXFLG

SQUITI

GETPAR110:

LIMP

SRLQIT

GETPARI120:

MOV
CLR
CLR
SIMP

CHKSUM,#00
PARAM1
STXFLG
SQUIT1

SQUIT1: CLR GETFLG

CLR
CLR

MCNFLG
TRNSFR

SRLQIT: POP 1

POP
POP
POP
POP
POP
POP
POP
POP
RETI

39

GETPAR2:LCALL QUEUPA
MOV A DUMMY

INZ GETPAR210

DEC DPL

MOVX A,@DPTR

XRL CHKSUM,A

CINE A,#0A4H,GETPAR25
MOV A #4AH

GETPAR25:

CINE A,CHKSUM,GETPAR220
MOV DPTR#TMPCOM
MOVX A,@DPTR

MOV RO,A

INC DPTR

MOVX A,@DPTR

- MOV DPTR#T2RTIO+1
MOVX @DPTR,A

DEC DPL

XCH ARO

MOVX @DPTR,A

- MOV DPTR#T2RBAK
MOVX @DPTR,A

INC DPTR

MOV A,RO

MOVX @DPTR,A

CLR PARAM2
CLR STXFLG
LJMP SQUITI
GETPAR210:

LIMP SRLQIT
GETPAR220:

MOV CHKSUM.,#00
CLR PARAM2
CLR STXFLG
LJMP SQUITI

GETPAR3:LCALL QUEUPA
MOV A,DUMMY

INZ GETPAR310

DEC DPL

MOVX A,@DPTR

XRL CHKSUM,A

CINE A,#0A4H,GETPAR35

40

MOV A,#4AH
GETPAR3S5:

CINE A,CHKSUM,GETPAR320
MOV DPTR#TMPCOM
MOVX A,@DPTR

MOV BA

INC DPTR

MOVX A,@DPTR

- MOV DPTR#DIRTIO+]
MOVX @DPTR,A

DEC DPL

MOV AB

MOVX @DPTR,A

CLR PARAM3

CLR STXFLG

LIMP SQUITI
GETPAR310:

LIMP SRLQIT
GETPAR320:

MOV CHKSUM,#00
CLR PARAM3

CLR STXFLG

LIMP SQUITI

GETPAR4:LCALL QUEUPA
MOV A, DUMMY

JNZ GETPAR410

DEC DPL

MOVX A,@DPTR

XRL CHKSUM,A

CINE A#0A4H,GETPAR45
MOV A#4AH
GETPARA45:

CINE A,CHKSUM,GETPAR420
MOV DPTR#TMPCOM
MOVX A,@DPTR

MOV B.A

INC DPIR

MOVX A,@DPTR

: MOV DPTR#SLRAM
MOVX @DPTR,A

INC DPTR

MOV AB

MOVX @DPTR,A

CLR PARAM4

CLR STXFLG

41

LIMP SQUITI

GETPAR410:

LIMP SRLQIT

GETPARA20:

MOV CHKSUM,#00

CLR PARAM4

CLR STXFLG

LIMP SQUITI

------------ TO BE CHNAGED FOR CHECKSUM

995593223533

GETPARS:RET

TRNS1:

LCALL PAUSE
LCALL TRNOUT

INC DPTR
TRANSD:

MOVX A,@DPTR
XRL CHKSUM,A
CINE A#EOT,TRNSI1
MOV A,CHKSUM
XRL A#4AH

CINE A #4AH,TRANSDI0
MOV A #0A4H
TRANSD10:

LCALL PAUSE
LCALL TRNOUT
LCALL PAUSE

MOV A #4AH
LCALL PAUSE
LCALL TRNOUT

RET

TRNOUT: MOV SBUF,A
TROUT: JNB TLTROUT
CLR TI

RET

PAUSE: MOV R3,#07H
PAUS: MOV RS5#0EFH
PAUS1: DINZ RS5,PAUSI
DINZ R3,PAUS

RET

TPROG:
LCALL PAUSE
LCALL TRNOUT

42

INC DPTR

TRPRG:

MOVX A,@DPTR

XRL CHKSUM,A
DINZ SUMBYT,TPROG
LCALL PAUSE

LCALL TRNOUT

LCALL PAUSE

MOV A, CHKSUM
CINE A #4AH,TRPRGI10
MOV A #0A4H
TRPRG10:LCALL PAUSE
LCALL TRNOUT

LCALL PAUSE

MOV A#4AH

LCALL PAUSE

LCALL TRNOUT

RET

995999352993%5)3

INITIAL:MOV PCON,#80H
MOV SCON,#50H

MOV TMOD,#21H

MOV TH1,#0F3H

SETB TRI

RET

SENDIN:

LCALL PAUSE
LCALL TRNOUT
INC DPTR

SEND: CLR A
MOVC A,@A+DPTR
CINE A#EOT,SENDIN
MOV A #4AH
LCALL PAUSE

LCALL TRNOUT

RET

GRPMSG: DFB
BLANK,BLANK,BLANK,GLETR,RSLETR,OLETR,ULETR,PLETR
GRP1IMSG: DFB BLANK,GLETR,BLANK,0,0,DASH,0,0 ;G 00-

00

43

GPRCNTMSG: DFB
BLANK,BLANK,GLETR,PLETR,RSLETR,CLETR.NSLETR, TLETR

DRMLMSG: DFB
DASH,DLETR,RSLETR,DASH,LLETR,DASH,BLANK,BLANK
DRMMSG: DFB
DASH,DLETR,RSLETR,DASH,RSLETR,DASH,BLANK,BLANK
PASSMSG: DFB
PLETR,DLETR,BLANK,BLANK,BLANK,BLANK,BLANK,BLANK

; PD msg
GRSTMSG: DFB

BLANK,BLANK,GLETR,RSLETR,ESLETR,SLETR,ESLETR,TLETR ;GReSet
msg

DISYES:

MOV DPTRH#YESMSG
LCALL LOAD

LCALL ENCODE
LCALL DISPLAY

RET

END

44

CHAPTER 5

INTRODUCTION TO VISUAL
BASIC

CHAPTER. 5

Introduction to visual basic:

Visual basic is a powerful programming
system for developing sophisticated, graphical applicatSions for
Microsoft windows environment. Its productivity has been enhanced
by addition of a complete set of tools to simplify rapid application

development.

“Visual” refers to the method used to create
the graphical user interface (GUI), that uses illustrations, rather than
writing numerous lines of code to describe the appearance, function
and location of interface elements. “Basic” refers to the BASIC
programming language, a widely preferred language by many
programmers for its simplicity. Visual basic has evolved from the
original BASIC language and now contains several hundred
statements, functions and keywords, many of which relate directly to
the windows GUI.

Visual Basic offers many salient features to
aid in the development of full-featured applications including:

Data access functionality allows creation of front-end applications
that can work on most of the popular database systems.

ActiveX technology allows usage of the functionalities provided by
other applications, such as Microsoft Word, Microsoft Excel, and
other windows applications and their possible deployment on the web.

Access to documents and applications across the Internet from

within your application is made easier through Internet capabilities.

45

Applications developed using visual basic provide a true .EXE file
that uses a run time dynamic link library (DLL), which can be freely
distributed.

Calling powerful API functions available in Visual Basic optimizes

application performances.

Visual basic is an ideal programming
language for developing sophisticated professional applications for
Microsoft Windows. It makes use of Graphical user interface for
creating robust and powerful applications. The graphical user
interface as the name suggests illustrates to text, which enable users to
interact with an application. This feature makes it easier to
comprehend things in quicker and an easier way.

Coding in a GUI environment is quite
transition to traditional, linear programming methods where the user is
guided through a linear path of execution and is limited to a set of
operations. In a GUI environment, the number of options open to the
user is much greater, allowing more freedom to the user and the
developer. Features such as easier comprehension, user friendliness,
faster application development and many other aspects such as
introduction to ActiveX technology and Internet features make Visual

Basic an interesting work tool to work with.

Visual Basic was developed from the
basic programming language. In 1970’s Microsoft got it start by
develoPing ROM based interpreted BASIC for the early

microprocessor based computers. In 1982 Microsoft quick Basic

volitionized hasie and leothimized as 4 sertes development IQHQUQQB

for MS-DOS environment. Later on, Microsoft corporation created the

enhanced version of BASIC called Visual Basic for Windows.

5.1. Developing an application:

To create an application with Visual Basic,
we work with project. A project is a collection of files that are used to
build an application. Writing an Visual Basic program involves two
steps
Visual programming step

Code programming step

Visual programming step involves designing an application
With various tools that come along with visual Basic package. The

code-programming step involves writing programs using a text editor.

Visual basic uses building blocks such as
variables, data types, procedures, functions and control structures in
its programming environment. Code in Visual Basic is stored in the
form of modules. The three kinds of modules are form modules,
standard modules and class modules. In this project we have used

standard modules.

47

CHAPTER 6

FEATURES OF VISUAL BASIC-6

CHAPTER. 6
FEATURES OF VISUAL BASIC-6.

6.1 Data base concepts in visual basic:

Nearly all business applications need
to store large volumes of data, organized in a format that simplifies
retrieval. This is accomplished with a database management system
(DBMS), a mechanism for manipulating tabular data with high level
commands. The database management system hides low-level details
such as how data are stored in a database, and frees the programmer to
concentrate on managing information, rather than on the specifics of
manipulating files or maintaining links among them.

Visual Basic provides a wealth of tools for
creating and accessing databases on both individual machines and
networks. The two major tools are

The data control.
The data access object.

The data control gives access to databases without any programming.
Few properties of the control can be set and regular controls such as
textboxes can be used to display the values of the fields in the
database. This is the no code approach to database programming,
which is implemented quite nicely in Visual Basic.

The data access object is a structure of
objects for accessing databases through the code. All the functionality
of the data control is also available in the code, through the data

access object (DAQO). A database is simply a grouping of related

48

information organized for easy processing. The actual data n a
database is stored in tables, which are similar to random access files.
Data in a table is made up of columns and rows. The rows contained
identically structured pieces of information, which are equivalent to
the records of random access files. A record is a collection of values

(called Fields).

6.2. Record sets:

Record sets are objects that represent
collections of records from one or more tables. Record sets are
equivalent of variables in regular programming. The tables of a
database cannot be accessed directly. The only way to view or
manipulate records is via Record Set objects. A Record Set 1s
constructed of columns and rows and is similar to a table, but it can
contain data from multiple tables.

A Record Set, therefore, is a view of some
of the data in the database, selected from the database according to
user-specified criteria. The three types of Record Sets are:

e Dynasets, which are up datable views of data.
¢ Snapshots, which are static (read-only) views of data.
e Tables, which are direct views of tables.

Dynasets are updated every time user
changes the database, and changes they make to the corresponding
Record Sets are reflected in the underlying tables. Snapshots are static
views of the same data. A Snapshot contains the records requested the
moment the Snapshot was generated and Snapshots cannot be

updated.

49

The Dynaset is the most flexible and powerful type of Recordset,

although a few operations may be faster with the table RecordSets

6.3 MSComm Control :

The MSComm control provides serial communications for your
application by allowing the transmission and reception of data through

a serial port.

The MSComm control provides the following two ways for handling

communications:

« Event-driven communications is a very powerful method for handling
serial port interactions. In many situations where it is to be notified
the moment an event takes place, such as when a character arrives or a
change occurs in the Carrier Detect (CD) or Request To Send (RTS)
lines. In such cases, the MSComm control’s OnComm event is used to
trap and handle these communications events. The OnComm event

also detects and handles communications errors.

« Events and errors can be polled by checking the value of the
CommEvent property after each critical function of your program.

This may be preferable if your application is small and self-contained.

Each MSComm control corresponds to one serial port. If we need to
access more than one serial port in our application, we must use more
than one MSComm control. The port address and interrupt address

can be changed from the Windows Control Panel.

50

Although the MSComm control has many important properties, there
are a few that you should be familiar with first. The CommEvent
property contains the numeric code of the actual error or event that
generated the OnComm event. Note that setting the Rthreshold or
Sthreshold properties to 0 disables trapping for the comEvReceive and
comEvSend events, respectively. The OnComm event 18 generated
whenever the value of the CommEvent property changes, indicating

that either a communication event or an error occurred.

51

CHAPTER 7

FRONTEND DESIGN USING
VISUAL BASIC

CHAPTER. 7

Frontend design using VB:

The data accessing through PC is facilitated
through the frontend tool visual Basic. Visual Basic is just not a
language. It is an integrated development environment in which you
can develop, run, test and debug your applications. Data project is a
feature of the enterprise edition, and it doesn’t corresponds to a new
project type. It is identical to standard EXE project type, but it
automatically adds the controls that are used in accessing Databases to
the toolbox. The toolbox contains the icons of the controls, which you
can place on a Form to create an applications user, interface. Here in
this project we make use of user-defined controls to browse through

the databases.

The Recordset placeholder is an object
variable that represents an updatable Recordset object to which you
want to add a new record. We use the Add New method to create and
add a new record in the Recordset object named by record set. This
method sets the fields to default values, and if no default values are
specified, it sets the fields to null (the default values specified for a
table-type Recordset.

After you modify the new record, use the
Update method to save the changes and add the record to the
Recordset. No changes occur in the database until you use the Update

method.

52

If we issue an Add New and then
perform any operation that moves to another record, but without using
Update, the changes are lost without warning. In addition, if we close
the Recordset or end the procedure that declares the Recordset or its

Database object, the new record is discarded without warning.

When we use Add New in a Microsoft
Jet workspace and the database engine has to create a new page to
hold the current record, page locking is pessimistic. If the new record

fits in an existing page, page locking is optimistic.

If we haven't moved to the last record of your Recordset, records
added to base tables by other processes may be included if they are
positioned beyond the current record. If we add a record to our own
Recordset, however, the record is visible in the Recordset and
included in the underlying table where it becomes visible to any new

Recordset objects.
The position of the new record depends on the type of Recordset:

In a dynaset-type Recordset object, records are inserted at the end of
the Recordset, regardless of any sorting or ordering rules that were in

effect when the Recordset was opened.

In a table-type Recordset object whose Index property has been set,
records are returned in their proper place in the sort order. If you
haven't set the Index property, new records are returned at the end of

the Recordset.

53

The record that was current before you used AddNew remains current.
If you want to make the new record current, you can set the Bookmark
property to the bookmark identified by the LastModified property

setting.

Note To add, edit, or delete a record, there must be a unique index on
the record in the underlying data source. If not, a "Permission denied"
error will occur on the AddNew, Delete, or Edit method call in a
Microsoft Jet workspace, or an "Invalid argument" error will occur on

the Update call in an ODBCDirect workspace.

54

CHAPTER 8

DESCRIPTION OF THE PROJECT

CHAPTER. 8

Description of the project:

This automation project is aimed at serving
to the fast needs of the textile industry. This interfacing system is
designed with VB as frontend and microprocessor as the interfacing
unit. The data storage is facilitated by the usage of MS-access as the
backend unit. While working with data in a Microsoft Access
database, first a connection to a database file is created. The easiest
way to create a connection to a Microsoft Access file is to create a
data environment using the Data Environment designer. A Data
Environment designer provides an easy way to create connections to

many types of databases.

The databases are accessed through DAO
environment facilitated by the use of codings for the data retrieval
window. The recordset type of data is maintained with the MS-access.
‘The interrupt from the microcontroller is verified through comm
control in VB and the data interrupt is feedback to the microcontroller
for further processing. The sensor in the machine collects the data
from the machine and interrupts to the microcontroller, which is

interfaced to the computer by the interfacing unit.

The measurement of the length of the
yarn is measured by the counting the rotations of the main drum

thereby, the yarn intake is calculated. The yarn take-up of each drum

55

is updated depending on the yarn running signal available from the
sensor of the particular drum. This counting continues till the package
reaches the preset length. If there is no yarn in the drum, then the
counting process is halted and it resumes only when the yarn is being

wound.

When the preset length is reached on the
particular drum, the centralized counter actuates the lifting mechanism
or sends cutting signal to stop the further take-up of yarn, along with
full doff indication. The main advantage of this automation project is
that it indicates all the production details. The drums are installed with
the sensors for measuring the yarn intake. The microcontroller based
preset length measurement is already in existence. This
microcontroller-based system has to be initialized manually for each
and every drum. By this automation project these parameters can be
automatically set from the PC alone and individual setting for the

machines can be eliminated.

The automation process is maintained in

two different levels through two individual forms, namely:

Forml: This form asks the user to specify the machine number to
which the parameters are interrupted. It sends an interrupt signal to the
microcontroller sensors to check whether the machine is ready or not.
When an OK signal is received from the machine the microcontroller
is instructed to activate the sensors for receiving data from the

machine.

56

Form?2: When the machine is ready for interruption, the parameters
are set for each and every drum and the data signals are send back to
the microcontroller for updating the preset parameters required for
interrupting the yarn-winding machine. Thus the parameters for the
drums are updated even at runtime and manipulated. These parameters

are stored in the form of recordsets for production details scheduling.

Each and every recordsets can be browsed
through the browser controls set with individual seek commands.
These recordsets are linked with the date control by which daily
schedules for the yarn lengths are taken into production details. The
interfacing unit just interrupts with the computer for retrieving
information from the machine. The slip factors for drums are
programmed with the microcontroller. This automation device

monitors up to 200 drums. And it can handle two different speeds.

Individual drum settings are the main
feature of this automation project. The production details of all the
machines are maintained within the database, which is maintained

with MS-access.

57

CHAPTER 9

SOFTWARE

CHAPTER. Y

9.1.Form window:

Entering window:

AUTOMATION OF N WINDING

MAC

ELECT THE MACHINE NUMBE

58

Data retrieval window:

MACHINE NUMBER:

DRUM NUMBER:

SPEED:

YARM LENGTH:

SLIP FACTOR:

PRESET LENGTH:

9.2. Project coding:

The coding for the data transmission window is as follows:
Form Module coding:

Public mcno As Integer

Public s As String

Public a As Variant

Public rs As Recordset

Public db As Database

Public MSComm1 As MSComm

Public Const SEND STATUS = &H1A
Public Const SEND PROGRAMI1 = &HIB
Public Const SEND_PROGRAM?2 = &H1C
Public Const RX_COMMANDS = &H5A
Public Const RX RESET = &H3A

Public Const CONFIRM_RESET = &HA3

Public Const RX CLOSE = &H3B
Public Const CONFIRM_CLOSE = &HB3

Public Const RX_CUR_TIME = &H2A
Public Const RX_CUR_STEP = &H3C

Public Const RX PROGRAMI1 = &HI1B
Public Const RX PROGRAM?2 = &H2B

Public Const CODEO = &HO
Public Const CODE1 = &H1
Public Const PRESENT OR_NOT = &H4F

Public Const START COMMUNICATION = &H6A

Public Const END SEQUENCE = &H4A ' Marks end of command sequence™/
Public Const END TX _FROM PC = &H7A 'Marks end of transmission from PC*/
vixxx END OF COMMAND WORDS **#*

Const RX PROGRAM = &H2B

Const STX = &H6A

Const MCNADDR = &H1

Const TRANSMIT = &HS5F

Const RECIEVE = &HS5A

Const ACK = &H4F

Option Explicit

Public data As Integer

60

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Const SEND PGM = &HIB

Const RCV_PGM = &H2B

Const STATUS = &H1A

Const ETX = &H4A 'Marks end of command sequence™/

Const EOT = &H7A "Marks end of transmission from PC*/

Public Function send_a_char(data)

"Form2.MSComm1.InBufferSize = 20

' 1024 default

If (Form2.MSComm1.PortOpen) Then
Form2.MSComm1.PortOpen = False

End If

Form2.MSComm1.PortOpen = True

Form2.MSComm1.RTSEnable = True

Dim 1 As Integer
Form2.MSComm1.RTSEnable = False
Form2.MSComm1.Output = Chr(data)
Fori=0 To Form2.Textl.Count - 1

"Form2.Text1(i).Text =" " + Hex(data)

Next 1

DoEvents

Sleep (5)

Form2.MSComm1.RTSEnable = True

DoEvents

End Function

Public Function SendProgram(recno As Integer) As Integer

Form2.MSComm1.InBufferSize =20 ' 1024 default
If (Form2.MSComm1.PortOpen) Then
Form2.MSComm].PortOpen = False
End If
Form2.MSComm1.PortOpen = True
Form2.MSComm1.RTSEnable = True
Dim NoSteps As Integer, i As Integer, dummy As Integer
Dim bytel As Integer, byte2 As Integer, byte3 As Integer
Dim CheckSum As Byte, Reply As Variant
NoSteps =1
send_a_char (Chr(EOT)) -
CheckSum =0
CheckSum = NoSteps Xor 0
send a_char (Chr(STX))
send_a char (Chr(MCNADDR)) 'M/c address
send a char (Chr(RECIEVE))
send_a_char (Chr(RX_PROGRAM))

61

send_a_char (Chr(0))
send_a char (Chr(NoSteps)) 'Send No. of bytes as it is DO NOT CONVERT to
BCD
Fori=1 To NoSteps
dummy = dec2bcd(TempProg2(i).step, , , bytel)
dummy = dec2bcd(TempProg2(i).time, , byte2, byte3)
send_a_char (Chr(bytel)) 'Send STEP
GoToSleep (2)
send_a_char (Chr(byte2)) 'Send TIME - Ist byte
send a char (Chr(byte3)) 'Send TIME - 2nd byte
CheckSum = CheckSum Xor bytel Xor byte2 Xor byte3
Next 1
send_a_char (Chr(CheckSum))
send_a_char (Chr(ETX)) 'Marks end of command sequence™/
send_a_char (Chr(EOT)) 'End Sequence
send a_char (Chr(EOT)) 'End Sequence
GoToSleep (5)
Form2.MSComm1.InputLen = 0
Reply = Form2.MSComm1.Input
GoToSleep (5)
End Function
Public Function dec2bcd(inbyte As Integer, Optional ByRef bytel As Integer, Optional
ByRef byte2 As Integer, Optional ByRef byte3 As Integer)
Dim item%
Dim mystr$, al$, a2$, a3$
mystr = Format(inbyte, "000000")
al$ = Mid$(mystr, 1, 2)
a2$ = Mid$(mystr, 3, 2)
a3$ = MidS$(mystr, 5, 2)
item = Val(al$)
bytel = (item \ 10) * 16 + item Mod 10
item = Val(a2$)
byte2 = (item \ 10) * 16 + item Mod 10
item = Val(a3$)
byte3 = (item \ 10) * 16 + item Mod 10
End Function
Public Function Reset()
Form2.MSComm1.InBufferSize =20 ' 1024 default
If (Form2.MSComm1.PortOpen) Then
Form2.MSComm]1.PortOpen = False
End If
Form2.MSComm]1.PortOpen = True
Form2.MSComm1.RTSEnable = True
Dim CheckSum As Byte
CheckSum = RX_RESET Xor CONFIRM_RESET
Form2.MSComm1.InputLen = 0

62

send a char (STX)
send a char (1) '™/c address
send a_char (&HSF) RX_RESET EMERGENCY) 'Rx_Reset Emergency
send a_char (RX_RESET) 'Rx_Reset
send a char (CONFIRM_RESET) 'Rx_Reset
send a_char (CheckSum)
Sleep (5)
send a char (ETX) 'Marks end of command sequence™/
send a char (EOT) 'End Sequence
End Function

Data Transmission window coding:

Const STX = &H6A

Const MCNADDR = &H1
Const TRANSMIT = &HS5F
Const RECIEVE = &HSA
‘Const ACK = &H4F

Const SEND PGM = &H1B
Const RCV_PGM = &H2B
Const STATUS = &H1A
Const ETX = &H4A

Const EOT = &H7A

' Definition of Global Constants
Const MAX_STEPS = 25" for program
Const MAX_FRAMES = 100 ' for frames - not significant
Dim CurrenttMAX_FRAMES, MAX_STEPS) As Program, TempProgl(MAX_STEPS)
As Program, TempProg2(MAX_STEPS) As Program
' Definition of different structures
Private Type Program
step As Integer
time As Integer
End Type
Dim mcaddr%

Public db As dao.Database
Public rs As dao.Recordset

Public rs1 As dao.Recordset
Public flag As Boolean

Private Sub Combol Click()

"Text2(0).Text = Combol.Text

Fnd Sub

Private Sub Combol KeyPress(KeyAscii As Integer)
Combol.Text=""

Select Case KeyAscii
Case 65 To 90

MsgBox ("invalid entry")
Combol.Text=""
Form1.Show
Combol.Text=""

Case 97 To 122

Combol. Text=""
MsgBox ("invalid entry")
Form1.Show

End Select

End Sub

Private Sub Commandl Click()

mcno = Combol.Text
Text2(0). Text = mcno

Dim flag As Boolean
"™MSComm1.Output = Text2(0).Text
Form2.Show

'"End If

End Sub

Private Sub Form_Load()

MSComm1.InBufferSize =20 ' 1024 default

If (MSComm1.PortOpen) Then
MSComm1.PortOpen = False

End If

'MSComm1.PortOpen = True

Form1. MSComm1.RTSEnable = True

Dim db As dao.Database
Dim rs As dao.Recordset
Combol.AddItem "1", 0
Combol.AddItem "2", 1
Combol.AddItem "3", 2
Combol.AddItem "4", 3
Combol.AddItem "5", 4

64

Combol.AddItem "6", 5
Combol.Addltem "7", 6
Combol.AddItem "8", 7
Combol.AddItem "9", 8
Combol.AddItem "10", 9

Set db = dao. Workspaces(0).OpenDatabase("c:\kar.mdb ")
Set rs = db.OpenRecordset("drumno")

'App.Path

If rs.EditMode = dbEditAdd Then

rs.Update

End If

MSComm1.CommPort = 1
MSComm1.Settings = "9600,N,8,1"
MSComm].InputLen =0

'If MSComm1.PortOpen = True Then

"MsgBox (" port is open")

'Else:

'MSComm1.PortOpen = True

'End If
End Sub

Private Sub Timerl Timer()

Text1(0) = Format(Date, "dd:mm:yyyy")
Text1(1) = Format(time, "hh:mm:ss")
End Sub

Data retrieval window coding:

Const STX = &H6A

Const MCNADDR = &H1
Const TRANSMIT = &HSF
Const RECIEVE = &HS5A
Const ACK = &H4F

Const SEND PGM = &H1B
Const RCV_PGM = &H2B
Const STATUS = &HIA
Const ETX = &H4A

Const EOT = &H7A

' Definition of Global Constants
Const MAX_STEPS = 25" for program
Const MAX_FRAMES = 100 ' for frames - not significant

Dim Current(MAX_FRAMES, MAX_ STEPS) As Program, TempProgl(MAX_STEPS)

As Program, TempProg2(MAX_STEPS) As Program
' Definition of different structures

Private Type Program
step As Integer
time As Integer

End Type

Dim mcaddr%

Dim db As dao.Database

Dim rs As dao.Recordset

Dim flag As Boolean

Dim i As Integer

Dim a As Variant

Private Sub Command1_Click()
'With rs

'Set db = dao. Workspaces(0).OpenDatabase("c:\kar.mdb")
'Set rs = db.OpenRecordset("'drumno")
rs.MoveLast

rs.AddNew

Fori=1 To Textl.Count - 1

If Val(Text1(1).Text) >= 128 Then
MsgBox ("invalid entry")
Text1(1).Text=""
Text1(1).SetFocus

Else: Text1(2).SetFocus

End If

If Val(Text1(2).Text) >= 1000 Then
MsgBox ("invalid entry")

Text1(2). Text=""
Text1(2).SetFocus

Else: Text1(3).SetFocus

End If

If Val(Text1(3).Text) >= 99999 Then
MsgBox ("invalid entry")

Text1(3). Text=""
Text1(3).SetFocus

Else: Text1(4).SetFocus

End If

If Val(Text1(4).Text) >= 100 Then
MsgBox ("invalid entry")

Textl(4). Text=""
Text1(4).SetFocus

Else: Text1(5).SetFocus

66

End If

If Val(Text1(5).Text) >= 99999 Then
MsgBox ("invalid entry")
Text]l(5). Text =""
Text1(5).SetFocus

Else: Command1.SetFocus

End If

Next 1

Fori=0 To Textl.Count - 1

rs(i) = Val(Text1(i). Text)
"Textl(1). Text=""

Next 1

'rs.Edit

If rs.EditMode = dbEditAdd Then
rs.Update

'End With

End If

End Sub

Private Sub Command10_Click()

Dim a As Variant, b As Integer
MSComm1.InputLen =0

chk ack

End Sub

Private Sub Command2_Click()
rs.Edit

Fori=1 To Textl.Count - 1
rs(i) = Val(Text1(1).Text)

Next i

rs.Update

End Sub

Private Sub Command3_Click()
MSComm1.InputLen = 0

Ibl2 =""

rcv_pgml

"Fori=1 To Textl.Count - 1
"Textl(i) =""

"Next i

'Dim m As Integer

'Dim a As Integer

MSComm]1.InputLen =0
'a=MSCommIl.Input
'm = LenB(a)

Fori=0Tom-1

"Text1(i). Text = Text1(i) + Hex(a(1))

"Next i
End Sub

Private Sub Form2 Load()
Text1(0).Text = mcno
End sub

Private Sub Command4 Click(Index As Integer)

Unload Me
End Sub

Private Sub Command5_Click()
rs.MoveFirst

rs.Edit

Fori=1 To Textl.Count - 1
Textl(i).Text = rs(i).value

Next 1

End Sub

Private Sub Command6_Click()
rs.MovePrevious

If rs.BOF Then

MsgBox "First Record”

Else

Fori=1 To Textl.Count - 1
Text1(i). Text = rs(i).value

Next i

End If

End Sub

Private Sub Command7 Click()
rs.MoveNext

If rs.EOF Then

MsgBox "End of the Record"
Else

'rs.Edit

Fori=1 To Textl.Count - 1
Textl(i). Text = rs(i).value
Next

End If

End Sub

Private Sub Command8 Click()
rs.MoveLast

68

Fori=1 To Textl.Count - 1
Text1(i). Text = rs(i1).value
Next1i

End Sub

Private Sub Form_Load()
Dim find As Integer
MSComm1.CommPort = 2
MSComm1.Settings = "9600,N,8,1"
MSComm1.InputlLen =0
Text1(0).Text = mcno
Text1(0).Enabled = False
Set db = dao. Workspaces(0).OpenDatabase("c:\kar.mdb")
Set rs = db.OpenRecordset("drumno")
find = Text1(0).Text
If Text1(0).Text = "mcno="text1(o).text" & find & "™ Then
'rs.Edit
rs.FindFirst find
MSComm1.InBufferSize = 20 ' 1024 default
If MSComm1.PortOpen) Then
MSComm1.PortOpen = False
End If
MSComm1.PortOpen = True
MSComm1.RTSEnable = True
Fori=0 To Textl.Count - 1
Text1(i).Text = rs(i)
Next 1
With rs
Set db = dao. Workspaces(0).OpenDatabase("c:\kar.mdb")
Set rs = db.OpenRecordset("drumno")
.MoveLast
.FindFirst find
If NoMatch Then
MsgBox "No records found with "

Else

Do

DoEvents
Loop Until MSComm 1 .InBufferCount >= 2
' Read the "OK" response data in the serial port.
Fori=0 To Textl.Count - 1
MSComm1.Output = Text1(i). Text
Next i
a(99) = MSComm1.Input
' Close the serial port.
MSComm1.PortOpen = False

69

'Dim k As Integer

'Dim t As Integer

'Dim c As Integer
'With rs

'c = Val(Text1(1).Text)
Fork=0Toc-1
'Fort=1To5
"MoveLast

" AddNew

"For i = 0 To MSComm1.InputLen - 1
"Text1(i). Text = a(i)
'rs(i) = Text1(1). Text
Next 1

.Update

If .EditMode = dbEditAdd Then
.Update

End If

'rs.Update

"Next t

"Next k

End If

End With

End If

End Sub

Private Sub Textl Change(Index As Integer)

If Val(Text1(3).Text) >= Val(Text1(5).Text) Then
Text1(3).ForeColor = &HFF&

Else

Text1(3).ForeColor = &HO0&

End If

End Sub

Private Function chk ack() As Integer

'MSComm1.InBufferSize = 20 ' 1024 default

If (MSComm1.PortOpen) Then
MSComm]1.PortOpen = False

End If

MSComm]1.PortOpen = True

MSComm1.RTSEnable = True

Dim a As Variant

send a char (STX)
send a char (MCNADDR)

(
send @ char (TRANSMIT)
yond @ char (ACK)

Sleep (50)

send a char (ETX)

send_a char (EOT)

MSComm1.InputLen =0

a=MSComml]l.Input

1= LenB(a)

Dim m As Integer

Fori=0Toi-1

Form =3 To Textl.Count - 1
Text1(3).Text =" " + Hex(a(1))

Next m

Next i

End Function

Private Function rcv_status() As Integer

MSComm1.InBufferSize =20 ' 1024 default

If (MSComm1.PortOpen) Then
MSComm1.PortOpen = False

End If

MSComm1.PortOpen = True

MSComm1.RTSEnable = True

Dim a As Variant, Speed As Single

send_a char (STX)

send_a_char (MCNADDR)

send_a_char (TRANSMIT)

send_a char (STATUS)

Sleep (100)

send_a char (ETX)

send_a char (EOT)

MSComm1.InputLen =0

MSComm1.InputLen = 0

a =MSComml!.Input

1=LenB(a)

Dim m As Integer

Fori=0Toi-1

For m =3 To Text1.Count - 1
Textl(m).Text =" " + Hex(a(i))

Next 1

Nextm

"

'item = Val(a(13)) 'Current step delay in mins.

'item1 = Val(a(14))

‘value = (item \ 16) * 10 + (item Mod 16)

'valuel = (item1 \ 16) * 1000 + (item1 Mod 16) * 100

71

'"TIMELEFT = valuel + value
"Text2 = TIMELEFT
'"CURSTEPNO = Val(a(15))
'"Textd = CURSTEPNO

"t

" Current SET SPEED is evaluated here
'item1 = Val(a(11))

'setSpeed = ((item1 \ 16) * 10 + (item1 Mod 16)) * 100 + 8000

'Text3.Text = setSpeed

"MEASURED SPEED

'Speed = 100 + Clnt((a(4)) * 100 + CInt(a(5)) * 10)

'"Textl.Text = Speed

End Function

Private Function rcv_pgm1() As Integer

"MSComm1.InBufferSize =20 ' 1024 default

If MSComm1.PortOpen) Then
MSComm1.PortOpen = False

End If

MSComm1.PortOpen = True
MSComm1.RTSEnable = True

Dim 1%, 1%, item%, item1%, value%, valuel%, tmp$
Dim inp, Strng As Variant, tmpstr As Variant, tmpchr As Integer
Dim CheckSum As Integer, RxdCheckSum As Integer
Dim j As Integer, ENDTRANS As Integer
Strng = Array()

MSComm/1.InputLen = 0

tmpstr = MSComm1.Input

send_a_char (STX)

send_a char (1) 'M/c address
send_a_char (TRANSMIT) 'Rx_Reset
send_a char (SEND_PGM)

Sleep (100)

MSComm1.InputLen = 0
MSComm!.InputLen = 0
a=MSComml.Input

i=LenB(a)
Dim m As Integer

72

Form=0Toi-3

Textl1(3).Text =" " + Hex(a(m))
Text1(4). Text ="" + Hex(a(m + 1))
Text1(5).Text ="" + Hex(a(m + 2))

Next m

send a_char (ETX) 'Marks end of command sequence™/
send a char (EOT) 'End Sequence
End Function

Public Function SendProgram() As Integer
Dim NoSteps As Integer, i As Integer, dummy As Integer
Dim bytel As Integer, byte2 As Integer, byte3 As Integer
Dim CheckSum As Byte, Reply As Variant
TempProg2(0).step = 10
TempProg2(0).time = 3
TempProg2(1).step = 2
TempProg2(1).time = 1
TempProg2(2).step = 3
TempProg2(2).time = 14
TempProg2(3).step = 4
TempProg2(3).time = 18
TempProg2(4).step = 5
TempProg2(4).time = 100
TempProg2(5).step =0
TempProg2(5).time = 100
Fori=0To 25
If (TempProg2(i).step <= 0) Then Exit For
Next 1
NoSteps =1
send a_char (ETX)
CheckSum =0
CheckSum = NoSteps Xor CODEO
send a char (STX)
send_a char (1) '"M/c address
send a_char (RECIEVE) 'Rx_Reset Emergency
send a char (RCV_PGM)
send a char (2)
send a_char (NoSteps) 'Send No. of bytes as it is DO NOT CONVERT to BCD
For i =0 To NoSteps
dummy = dec2bcd(TempProg2(1).step, , , bytel)
dummy = dec2bcd(TempProg2(i).time, , byte2, byte3)
send_a_char (bytel) 'Send STEP
Sleep (2)

'

send a char (byte2) 'Send TIME - 1st byte
send a char (byte3) 'Send TIME - 2nd byte*
CheckSum = CheckSum Xor bytel Xor byte2 Xor byte3

Next 1

send_a char (CheckSum)

send a char (ETX) 'Marks end of command sequence™/

send a char (ETX) 'End Sequence

send a char (EOT) 'EndSequence

Steep (5)

MSComm1.InputLen =0

Reply = MSComm1.Input

Sleep (5)

'RESET MACHINE

Text1(i). Text =" "

Reset

Reset
Reset

Modulel.SendProgram (recno)

End Function

74

CHAPTER 10

CONCLUSION

CHAPTER. 10
CONCLUSION

The project has been successfully completed and
tested for any errors. The system was found to give the best results. The
expected accuracy of the project is of the order of 1% error under normal
conditions. Thus the wastage of yarn can be reduced drastically. Skilled
labor is not required since the process is made automatic.

This automation of yarn winding machine includes
the following advantages.

v" Multiplexed control.

v" Individual drum settings.

v' Indicates all production details.

v Reduced number of operating personals.

v" Remote control of the entire machine.

FUTURE PROSPECTS:

In this project we have done interfacing with fixed
number of drums. But this can be developed further such that more number

of drums can be controlled.

75

REFERENCES

. Handbook of 16-bit Microcontroller.

Intel corporation Itd, 1989 USA,.
. Interface Data book.

National semiconductor.

1990 edition.

. Maxim Data book, volume-4.
New releases- 1995

. Mastering Visual basic 6.
Evangelos Petroutsos

BPB publications.

. www.microcontrollers.com

. www.vbonline.com

76

APPENDIX

APPENDIX
ARCHITECTURE OF 8031

The fig.1 shows the internal architecture of
8031 microcontroller. The standard functions, which make up a
‘microprocessor, are in the center of the diagram. These include the
ALU, accumulator, stack pointer, a block of registers and general
purpose registers-the B register. All of these devices are connected to

the 8031 internal 8-bit Data bus.

The functions if the Special function registers are outlined below:

Accumulator: ACC is the accumulator register. The mnemonics for
accumulator- specific instructions, however, refer to the accumulator

simply as A.

B register: The B register is used during multiply and divide
operations. For other instructions it can be treated as another scratch

pad register.

Program status word: In order that the flags may be conveniently
addressed, they are grouped inside the program status word and the
power control registers. The PSW contains the math flags, user
program flags FO, and the register select bits that identify which of the

four general purpose register bank is currently in use by the program.

77

Stack pointer: The stack pointer register is 8-bits wide. It 1S
incremented before data is stored during PUSH and CALL
instructions. While the stack may reside anywhere in on chip RAM,
the stack pointer is initialized to 07H after a reset. This causes the

stack to begin at location O8H.

Data pointer: The data pointer consists of a high byte (DPH) and a
low byte (DPL). Its intended function is to hold a 16-bit address. It
may be manipulated as a 16-Bit register or as a two independent 8-Bit

register.

Serial data buffer: The serial data buffer is actually two separate
registers, a transmit buffer and a receive buffer register. When data is
moved to SBUF, it goes to the transmit buffer where it is held for
serial transmission. When data is moved from SBUF, it comes from

the receive buffer.

Timer registers: Register pairs (THO, TLO), (TH1, TL1) and (TH2,
TL2) are the 16-bit counting registers for timer/counters 0,1 and 2

respectively.

Capture registers: The register pairs (RCAP2H, RCAP2L) are

capturing registers for the timer2 capture mode.

Control registers: Special function registers [P, IE , TMOD, TCON,
T2CON, SCON, PCON contain controlled status bits for the interrupt

system, the timer/counters, and the serial port.

78

Pin Description of 8031:

The pin configuration is shown in fig 2.

Vee - Supply voltage.

Vss - Circuit ground potential.

Port 0 - It is an 8-Bit Bi-Directional I/O port. It serves as the
multiplexed low order Address and Data bus during access to

external memory.

Port 1 - Itis an 8-Bit Bi-Directional I/O port. They are used as
follows:

P1.0 - Reset of 8279.

P1.1 - Rotary switches.

P1.2 - Rotary switches.

P1.3 - Security lock.

P1.4 - Preset relay.

P1.5 - Finalset relay.

P1.6 -Sensing pulse.

P1.7 - Not used.

Port 2 - It is an 8-Bit Bi-Directional I/O port. It emits the high-
order address byte during access to external memory that uses 16-Bit

address

79

Port 3 - It is an 8-bit Bi-Directional 1/O port. It serves the functions

of various special features of the MCS-51 family as given below.

P3.0 — R X D (Serial input port)

P3.1 — T X D (Serial output port)

P3.2 — INTO (External interrupt zero)

P3.3 — INT1 (External interrupt one)

P3.4 — TO (Timer Zero external input)

P3.5 — T1 (Timer one external input)

P3.6 — WR (external data memory write strobe)
P3.7 — RD (external data memory read strobe)

RST - Resetinput:
A reset is accomplished by holding the reset pin high for two machine

cycles while the oscillator is running.

ALE/PROG — Address latch enable:
Output pulse for latching the low byte of the address during access to
external memory. This pin is also the program pulse input during

EPROM programming.
PSEN - program store enable is the read strobe to the external

program memory. When the device is executing out of external

program memory PSEN is activated twice each machine cycle.

80

EA/VPP — In 8031 EA should be externally wired low as the central

processing unit executes out of external program memory.

XTAL1 - It is the input to the oscillators high gain amplifier, which

is intended, for use as a crystal or external source can be used.

XTAL2 — It is the output from the oscillators amplifier which is

required when a crystal is used.

81

P0.0-P1.7

oo R s S

Port9
Drivers

il

' P2.0-P3.7

Drivers

Port 2

A

A

cc
v V |
; RAM R PORT 0 PORT 2 EPROM | .
' ADDR v RAM LATCH LATCH T~ X
! REG ﬁ H ﬁ X
= i ;
; ACC STACK
: l POINTER :
; PORT 2 PROG :
: LATCH TMP2 IV TMP1 PCON |SCON | T™MODB| TCON ADDR REG <::
i T2CON] THO ™o ™ : : BUFFER <:>
E A U TTH TH2 TL2 CAPZH
E v RCAPZ§ SBUF| 1E w P C INCR C:>
E PSW INTERRUPT
i SERIAL PORT AND
' TIMER BLOCKS PRG =)
< COUNTER
<] TIMING
| AND
~—»{ CONTROL |* <,7 . " J> DPTR CZL
_l? :
E Port 1 Port3 :
! Drivers Drivers !
.| OSC j |
E Port 1 Port 3
': Drivers . Drivers :
P1.0-P1.7 P3.0-P3.7
1 - PSEN 2 -ALE
* - Instruction Register _
3-EA 4 - RST
Fig 1 82

PIN CONFIGURATION:

Port 1 Bit 0
Port 1 Bit 1

Port 1 Bit 2
Port 1 Bit 3

Port 1 Bit 4
Port 1 Bit 5
Port 1 Bit 6
Port1 Bit 7

Reset Input

Port 3 Bit 0
Port 3 Bit 1
Port 3 Bit 2
Port 3 Bit 3
Port 3 Bit 4
Port 3 Bit 5
Port 3 Bit 6

Port 3 Bit 7

crystal Input 2

crystal Input 1
Ground

nonpoponnonaofonapnoinrn

! P1.0
2 P10

3PILO
4P1.0

5P1.0
6 P1.0
7 P1.0
8 PI1.0
9 RST
10 P3.0
11 P3.1

12 P3.2
/13 P3.3
14 P3.4
I15P3.5
16 P3.6

—_ W O OO

17 P3.7
18 XTAL2
19 XTALI
20 Vss

Vee 40
P0.0 39

PO.1 38
P0.2 37
P0.3 36
P0.4 35
P0.5 34
P0.6 33
P0.7 32
EA 31

ALE 30
PSEN 29
P27 28
P2.6 27
P2.5 26
P24 25
P2.3 24
P2.2 23
P2.1 22

P20 21

1+ Sy
1 Port 0 Bit 0

1 Port 0 Bit 1
T Port0 Bit 2

— Port 0 Bit 3
Port 0 Bit 4

Port 0 Bit 5

U U

Port 1 Bit 6
] Port 0 Bit 7
External Enable
ALE

Prg Store Enable
Port 2 Bit 7
Port 2 Bit 6
Port 2 Bit 5
Port 2 Bit 4

Jgoguouoououog Uy

Port 3 Bit 3
] Port 3 Bit 2

— Port 3 Bit 2
] Port 3 Bit 0

FI1G.2.

83

