Department of Computer Science and Engineering

Kumaraguru College of Technology

COIMBATORE - 64] 006

CERTIFICATE

€ his is to eertity that the “Report entitled

Implementation of Digital Filters
Using TMS 32010

has been Submitted by

in partial jullilment }jor the award o}
“Bachelor o} Cngineering in the Computer Science and
Engincering Branch o} the
Bharathiar “University, Coimbatore-641 046
during the academic year 1993-71994

f\\\ht@k*‘“*f

""""" Diloject Quide | Flead o} the Dept.

Eertijied that the candidate was examined by us in project work

Diva-“Voce < xamination held on

CDegioter “Number was. .

Internal S xaminer €xter;;1al- exammer

Brdicated te nur Belofed
Havents & Teachers

Acknotoledgement

ACKNOWLEDGEMENT

It gives us a great pleasure to express our gratitude
to Dr.S. Subramanian, B.E., M.Sc (Engg.) Ph.D., SMIEEE (USA)
Principal, KCT and the management for the interest and

encouragement given in making this project a success.

We are obliged to Prof. P.Shanmugam B.E. , M.Sc(Engg),
M.S (Hawaii)},MISTE, SMIEEE (USA), Head Of Dept, CSE, KCT who
has been especially enthusiastic in giving his impressions,

constructive and critical reviews.

We are greatly indebted to our beloved guide
Mr. Muthuraman Ramswamy, M.E., MISTE., MIE., MIEEE (USA),
C.Engr., '~ for his excellent guidance. His valuable

assistance helped us a great deal during ocur project.

Cur profound thanks are due to Mr. K.Ramprakash M.E.,

senior lecturer, dept. of ECE for his valuable comments on

our project.

Our profused gratitude is also to the CSE staff for the

encouragement given in making this project a successful one.

We are thankful to the staff of CSE lab,ECE lab for all
the favours and assistance rendered to us.
We express our heartful thanks to our friends and all

others who helped us in completing this project.

SYNOPSIS

This project entitled IMPLEMENTATION OF DIGITAL FILTERS
USING TMS 32010, involves implementation of Infinite Impulse
Response filters using the DSP chip TMS 32010.TMS 32010 is
the first digital signal processor of its series developed

by TEXAS INSTRUMENTS INC.

The essential feature of this project is the usage of
DSP chip TMS 32010 which has a very bigh throughput, which
is the result of the comprehensive, efficient and easily
programmed instruction set and the highly pipelined

architecture.

Specialized instructions have been incorporated to
speed up the execution of digital signal processor

algorithms.

This is a novel and sincere attempt involving the DSP
processor TMS 32010.A real-time signal 1is captured and
filtered for a specified frequency band. The filtered output

can be viewed on a computer screen.

¢ ontents

CONTENTS

PAGE NO

1. INTRODUCTICN 1
2. DIGITAL SIGNAL PROCESSING 4
2.1. FROM ANALOG TO DIGITAL 4
2.2, DIGITAL FILTER CLASSIFICATIONS 8
2.3. COMPARISION BETWEEN FIR AND IIR FILTERS 15
2.4, BASIC DESIGN PARAMETERS 16
2.6. IIR FILTER DESIGN TECHNIQUES 17
2.7. INDIRECT APPROACHES FOR IIR FILTER DESIGN i8
2.7.1. BUTTERWCRTH FILTERS 19

2.7.2. CHEBYSHEV FILTERS 18

2.8. IMPULSE INVARIANT TRANSFORMATION 21
2.9. TEE BILINEAR Z - TRANSFORMATION 26

3. AN EXBMPLE DESIGN 29
4. TMS 32010 DETAILS AND INSTRUCTION SET SUMMARY 31
4.1. DESCRIPTION 31
4.2. KEY FEATURES OF TMS 32010/C10 32
4.2.1. KEY FEATURES 32

4.2.2. ARCHITECTURE 32

4.2.3. 32-BIT ALU/ACCUMULATOR 33

4.2.4. SHIFTERS
4.2.5. 16 x 16-BIT PARALLEL MULTIPLIER
4.2.6. DATA AND PROGRAM MEMORY
4,2.7. PROGRAM MEMORY EXPANSION
4.2.8. INTERRUPTS AND SUBROUTINES
4.3. INSTRUCTION SET
4.3.1. DIRECT ADDREGSSING
4,3.2. INDIRECT ADDRESSING
4.3.3. IMMEDIATE ADDRESSING
FLOW CHARTS..

PROGRAMS

OUTPUT *

CONCLUSION

REFERENCES

APPENDIX

10.1. FLOW DIAGRAM

10.2. PINOUT DIAGRAM OF TMS 32010
10.3. BLOCK DIAGRAM OF TMS 32010

10.4. INSTRUCTION SET OF TMS 32010

34
34
34
35
35
36
37
37
37
39
44
99
111
112
113
113
114
115

117

INTRODUCTION

Humans communicate with the external world by

processing signals.For example,
1. wvision is through the processing of light.
2. hearing is through the processing of sound.

Signal processing is concerned with

1. representation,
2. transformation and
3. manipulation

of signals and the information they contain.Signals are
represented mathematically as a function of time with one or
more independent variables.For example, a speech signal 1s
represented mathematically as a function of time and a
photographic image is represented as an brighteness fuction

of two spatial variables.

With the advent of computers, miracles are being
achieved in the computational speed.Then came the idea of
processing signals through computers. Since the
breakthroughs are in the digital computers, there came the
idea of representing and processing signals digitally.This

led to the development of digital signal processing.

o
.

The digital signal processing involves highly
sophisticated digital systems capable of performing complex
tasks which are too dificult or/and too expensive to perform
using analog circuitry.In particular digital signal

processing allows programmable operations.

This project incorporates TIMS 32010, the specialized
digital processor developed for signal processing functions
to implement digital filters.Here real time signals are

captured and filtered for specified frequency bands.

Signals arise in almost every field of science and
engineering eg. acoustics, biomedical engineering,
communication, control systems, radar physics, seismology,
telemetfy etc. this general class of signals can be

classified in to namely continuousand descrete time signals.

A continous signal is one that is defined at each and
every instant of time . Descreate time signal on the other
hand is one that is defined at descrete intervals of
time.this descrete time signal can be used to simulate
analog signal or to realize signal transforms that cannot be

implemented with continous time hardware.

Filtering is a process by which the frecquency spectrum

of a signal can be modified,reducedor manipulated according

3
to some desired specifications. A filtering action may
remove signal noise,seperate two distinct signals purposely
mixed, resolve signals into their frequency components,

demodulate signals, bandlimit signals.

A digital filter is a digital system that can be used
to filter descrete time signals. It can be implemented by
means of software or by means of dedicated hardware. In our
project we use both dedicated hardware,software and realize

IIR digital filters.

The hardware contains a specialized signal processor
TM$32010 equipped with an A/D and a D/A converters.This
hardware can be fixed into a P.C slot that it is easy to
program the chip by a cross assembler.This chip employs the
Harvard architecture wherein there is a seperate data memory
and a program memory. This enables manipulation of
vast,real-time signals.Operations like shifts are easily

done with arithmatic instructions in a single cycle.

[Sa"

2. DIGITAL SIGNAL PROCESSING
2.1 FROM ANALOG TO DIGITAL

Fig l.a shows a simple first-order RC filter. The
simple differential equation describing this circuit as 1its

input and output voltages 1is

v (t) + RC.dv (t)/dt =V gt) ------ > (1)
0 0 i

where vO0(t) and vi(t) are analogue output and input
voltage waveforms. In the analogue world both input and
output voltages are continous-time waveforms and the
complexity of the solution would depend on the input voltage

function Vi(t), the soluton can be obtained using

(i) Standard mathematical techniques which solve the
differential equation and obtain the output
waveform in closed form.

(ii) Numerical techniques which calculate the

approximate output waveform in a digital computer.

The second method above provides the basis for digital
filtering techniques. Consider that the imput and output
voltages are sampled with a sampling interval T such that
vi{(nT) and vO(nT) represents the values of vi(t) and vO{t)}

at time t = nT.

[f T is sufficiently small then the derivative

dv0(t)/dt at time t = NT can be approximated by

dv (nT)/dt

(v (aT) - v ((o-1)T))/T -~--- > (2)
Q @] O

substituting this in equation (1) we obtain

v (nT) + RC.v (nT)/T - RC.v ((n-1)T)/T = vy (nT) ---> (3a)
o] o o i
Equation (3a) is a linear differnce equation that
approximates the differential equation (1). Equation (3a)
can be rewritten as
v (nT) = v (nT)/(1+RC/T) + (RC/T)v ((n-1)T)/(1+RC/T) (3b)
o] i o
This is now a recursion formula in which the present
input sample and the previous output sample are used to
calculate the present output sample. The notation can be
simplified to

vi(n=b v(n+a v ------ > (4a)
o o i 1 o

where b = 1/(1 + RC/T) and a = (RC/T)/ (1 + RC/T)
o} 1

The signal-flow diagram for this filter is shown in Fig.lb.

(9o]

The block labelled 'D' represents a delay equal to one
samling period T. In digital filter notations & delay of n
sampling periods is usually denoted by (2 #% (-n)).
Therefore a delay of one samling period can be represented

by (Z ** (-1)).

It is important to note that a common element in all
filter structures is the concept of storage.ln the analogue
RC filter (Fig.la) the storage is present in the form of a
capacitor and in its digital equivalent (Fig.1lb) the storage
takes the form of a delay stage.In fact the storage element
is the essential ingredient for any filter, whether anmalogue
or digital. This is because filters are used to operate oOn
the signal "changes" and as such they need to have some
knowledge of the history of the signal to allow them to

perform their function.

An important characteristic feature of any filter is
its so called "impulse respome”. this 1is defined as the
output waveform of the filter wben a unity impulse is
applied to the input. Using equation (4a) and assuming a

unity impulse as the input waveform, 1.e.

v (0) = 1

v (n) = 0 for n > O

~.1

then the output sequence would be

b, ab, (a KX 2YD e ,{(a ** n)b ,...
o 1l o 1 0 1 e}

or in short

v (n) = (a ** n)b

It should be noted that the above impulse response has,
in theory, infinite length.This is due to the recursive
nature of tbis particular filter structure. Tbis type of
filter is often referred to as an "infinite-impulse-

response" (IIR) filter.

An alternative way of looking at the filter in this is

to use equation (4a) in successive substitutions ; i.e.

v (n) bv (n) +av (n-1)
0 o i 1 o

bv (n) + a [bv (n-1)+ awv (n-2)]
o i 1 o i 1l o

=bv(n) +abyv (n-1) + a *2 [b v (n-2) + a v (n-3)1]
o i 1 o 1 o i 1 o

L

=bv (n)+abuv(n-1) +a*2Zbuv (n-2) + a **3 b v (n-3)
o i 1 oi 1 o i 1 o i

The above equation expresses the output waveform as a
linear combination of input samples only,but this involves
an infinite number of input samples. Notice also that the
coefficients b0 and al have positive values less than unity
(R and C are assumed to be finite and non-zero). IThis means
that in equation (4b) the coefficients decrease for older
input samples. It may therefore be reasonable to assume that
these coefficients approximate to zero beyond a certain
point. In this only a finite number of terms would be
involved in equation (4b) or, in other words, the infinite
impulse response is approximated by a finite impulse
response since it decades rapidly to zero. This modified
filter with its finite duration impulse response falls in

the category of FIR (Finite-Impulse Response) filters.
2.2 DIGITAL FILTER CLASSIFICATIONS

Linear difference equations, similar to equations (4a)
and (4b) are the basis for the theory of filters.the general

difference equation can be expressed as

y(n)+ a y(o-m) = b x(n-k) ------- >(5)
m k

9
where the = and y sequences are the input and output of the

filter and am's and bk's are the coefficients of the filter.

As mentioned,the notaion z is often used to denote a
delay equal to one sampling peorid.lIn the theory of the
discrete-time signals,the concept of z has been developed
further and is refrred to as the z-transform.This is a
discrete-time version of the well known laplace transform
(sometimes referred to as the s-transform) which 1is mainly
used for dealing with continuous signals.In the s-domain a
delay of T seconds corresponds to (e**.st) .Therefore the
two variables s and z are related by

-1 -st
z = @ @ e-——==- > (6)
where T is the sampling period.

in the s-domain,the spectrum of a signal with a
bandwidh B and sampled at a frequency fs is periodic,with a
period equal to fs.This is depicted in pic2.This periodicity
in the spectrum of a sampled signal is the basic reason
behind the nyquist criterion which requires a minimum
sampling frequency of twice the signal bandwidh(i.e.fs min =

2xB) in order to avoid aliasing effects.

Equation (6) allows a mapping between the WO

domains.Part of the imaginary axis between -fs/2 to +fs/2,1in

19

o—{ 1 o)
R
v, I c—— IVO
O —C

{(a) Analogue RC filter

vl(nT) - -+ — vo(nT)

(b) Discrete-time version of (a)

Fig.1 Anaiogue RC filter and its discrete-time equivalent.

amplitude

WMB/{M%A

frequency

Fig2 Spectrumofa sampled signal. B is the bandwidth of the signal and f, is the

sampling frequency.

1
the s-plane is mapped onto a circle is a consequence of the
periodic nature of the spectrum.As sbown in fig.3,the left-
hand half of the s-plane(between -fs/Z and +fs/2) is mapped

onto the outside of the circle.

As in the analogue design(s-domain)where a pole in the
wrong place,i.e.in the right-half plane,indicates
instability,in the case of discrete-time signals(z-domain) a
pole outside the unit circle causes instabilities.In both

cases zeros can be anywhere.

Using the z-transform notation,the general linear

equation(5) can be expressed as

Y(z)(1+ az =X(z) bz = ---m-ooee- > (7)

where X(z) and Y(z) are the z-transforms of the input
and output waveforms.The discrete-time(or digital) transfer

function of the general filvgr is thus given by

4.
i2

In terms of realization,digital filters are classified
into nonrecursive and recursive types.The nonrecursive
structure contains only feed-forward paths and as such all
the am terms (equation(8)) are zero.This means that for the
nonrecursive filters the output is the sum of a number of
linearly weighted present and last samples of the input
signal,as shown in fig.4.Referring to equation (&),for the
nonrecursive filters the transfer function has only zeros

and,as such ,is always stable.

In the recursive filters,on the other hand,some or all
of the am terms are non-zero,resulting in the presence of
both poles and zeros in the transfer function.Fig.ba shows
the general recursive filter structure.Fig.5b shows an
alternative structure for the same transfer function with a

reduced number of delay stages.

Digital filters are classified in terms of their
impules responses.In this classification ,those filters with
a finite duration impulse response are referred to as FIR
filiters and those with an infinite duration impulse
response are called IIR filiters.The simplest FIR filter
realization is in the nonrecursive form.For example in
Fig.4,if a unit impulse is clocked through the filiter,the

sequence,

)
3

input

z-plane

s-plane

Fig.3 Relationship between the s

output

-domain and the z-domain.

Fig.4 Nonrecursive digital filter structure.

output

Fig.5a Recursive (lIR) digital tilter structure.

output

Fig.5b Alternative recursive (lIR) digital filter structure with reduced number of delay stages

" e
.;{}

bO,bl,b2, bn,0,0,0,0,0,.0.n-- 0,0,0 -w--=- >G

will be output.Notice that the response consists of a

sequence of samples corresponding to the coefficients
followed by zeros,i.e.the nonrecursive structure is an FIR
filiter.On the other hand,the impulse response of the
recursive structure(Figs.%a,5b),because of the feedfack
paths,is infinite in duration,making the configuration an

IIR filter

Digital filiter design methods can be divided into two

categories:
(a) Design techniques suitable for FIR filiters
(b) Design techniques suitable for IIR filiters

In both cases the requirements is simply the choice of
filiter coefficients in such a way that the specification

for required transfer function is met.
2.3 COMPARISION BETWEEN FIR AND IIR FILTERS

FIR filters,because of their finite-impulse
response,have no counterparts among analogue filters and as
such can implement transfer functions which cannot be

realized in the analogue world.One such property is the

« -

[
A

excellent linear-phase characteristic,which can easily be
realized with FIR filters.Since a linear-phase response
corresponds to only a fixied delay,attention can be focussed
on approximating the desired magnitude response without
concern for the phase.The design techniques for FIR filters
are generally simpler that those for IIR filters and,as
there are no feedfack paths in an FIR filter.the stability
of the filter is guaranteed. Also FIR filters have been
employed in,and algorithms eveloped for.,adaptive
processing,while the use of IIR filters in these types of

systems is not common.

IIR filters,on the other hand,have infinite impulse
response and thus their design can be closely related to
anologue filter design. IIR filters in general require fewer
stages compare to FIR filters, but their stability is not
unconditional and great care should be taken to ensure
stability. Further more, IIR filters donot generally result
in linear face charecteristics, which is important 1in many

applications.

2.4 BASIC DESIGN PARAMETERS
For convenience, in digital filter design the frequency
axis is usually normalized with respect to the sampling

frequency Fs. For example for a filter with an actual pass

L7
band cutoff frequency of 20KHz, a stop band cutoff frequency

of 30KHz and a sampling frequency of 100KHz we have
The normalized pass band cutofi frequency Fpb=20/100=0.2
The normalized stop band cutoff frequency Fsb=30/100=0.3

As shown fig 6. the useful frequency axis (normalized)
extends from 0.0 to 0.5, because the Nyquist sampling
theorem requires a signal to be sampled at more than twice
its highest frequency. This means that the ratio of the
frequecy of any component in the signal to the sampling

frequency must always be less than 0.5.

Reffering to fig 6., the pass band and stop band

ripples are usually expresed in dBs ie,

Pass band ripple (dB)=20log (1+d)
i0 1

Stop band ripple (dB)=20log (d)
10 2

The parameters Fsb Fpb, d and the sampling frequency
define the basic specificaion of a filter prior to its

design.
2.6 I1IR FILTER DESIGN TECHNIQUES

The probelm of designing recurssive filter is one of

determining the feed forward and feed back coefficients. The

design techniques for IIR filters can be categorized into
two basic groups
1. Indirect approaches

2. Direct approaches
2.7 INDIRECT APPROACHES FOR THE DESIGN OF IIR FILTERS

As mentioned eairlier, digital recurssive filters are
colsely related to conventional anologue filters. In the
indirect method this similarity is exploited and the digital
filter coefficients are determined from a suitable analogue
filer, using some form of transformation technique in other
words indirect apprach uses the wealth knowledge already
available on anologue filters (such as Butterworth,
Chebyshev and Elliptic filters) and develops a corresponding
recurssive digital filter. This method involves the

following two steps

k. The determination of a suitable analogue filter
transrfer funcion H(s)

2. Transformation digitization of this amalogue
filter some of the most popular design techniques
falling into the direct catogory are

a. Impulse-invariant transformation
b. Billnear z-transform

c. Matched z-transform

ko
[

These three techniques can be employed toO derive
recurssive digital filters from conventional analogue filter
structures. Before discussing these three techniques, the
basic characteristics of the common analogue filters, from
which IIR filters are derived, will be briefly reveiwed. The
starting point in the indirect IIR design techniques is

often one of the following analogue filters types

2.7.1 Butterworth filters These filters are characterised by
the property that their magnitude characteristic is
maximally flat at the origin of the s-plane. Butterworth
filters are specified their magnitude-square function i.e.,
2 Z2n
|H(s)| = 1/(1+(s/sc) —------ 510

The pole locations in the s-plane are equally spaced
around a circle of radius we (sc=jwc). These filters have a
monotonically decreasing amplitude fuction with a roll-off

of approximately 6n dB/decade. Fig 7. shows the overall

amplidue response of this type of filter.

2.7.2 Chebyshev filter

In this types of filters the peak magnitude of the
approximation error is minimized over a prescribed band of
frequency and also equiripple over tae band. Chebyshev

filters are specified by the magnitude-square function

1
1
1
1
1
1
1
]
1
4
]
1
J

IVANVARNANYAW

0 E
IRVERVEVAVE
A RS R R R CEEEEEEE
—
£, 8f
pb sb

Fig.6 Specification parameters for a low pass tilter. Similar parameters exist for high pass
and band pass fiiters.

amplitude
4
|
[}
-3 dB point
— P
\
|
§
X N=1
]
X n=2
X n=4
1 n:8 >
=5 >
c frequency

Fig. 7 Frequency response of the Butterworth filter.

| AT

|

2 2 2
|[H(s)| =1/(1+(E Cn (s/sc¢c))) -=----- >11

where Cn(s) is a Chebishev polynomial oif order n. The
parameter [is used to specily a magnitude [unction with
equal reppile in the pass band and monotony decade. Fig 8.
shows the magnitude-square transfer fuction for the
Chebyshev filter (type 1) where the amplitude of the repple
is given by

2
d=1~-(1/ 1+E)

The poles of the Chebyshev filter lie on en ellipse
determined from the parameters E,n and sc. Chebyshev [ilters
of type 2, on the othér hand, have monotony behavior in the
pass band (Maximally flat around wo) and exhibit equirable

“behavior in the stop band.
Having decided the type and the specification of the
analogue filter that satisfies the requirment, the next step

in the indirect design method is to use one of the three

following techniques to o¢btain the corresponding digital

filter.,
2.8 IMPULSE INVARIANT TRANSFORMATION

One of the most common techniques for driving a digital

filter from a analogue [ilter is the impulse-invariant

[QW)
2

transformation. As the name suggests,this technique consists
of using a sampled version of the impulse response of the
anaogue filter as the impulse response of the digital
filter; i.e, the transformation does not change the impulse
response of the analogue filter. Fig.16 illustrates the
relationship between the analogue and resulting digital
responses of a typical low-pass filter obtained via the
impulse-invariant method. The important point to note here
is that sampling the analogue signal response results in the
frequency response of the resulting digital filter being
periodic, with a period equal to the sampling frequency Fs.
This means that the digital filter will have a frequency
response similar to a repetitive version of that of the
analogue filiter.1f the frequency rtesponse of the analogue
filter does not decay to near zero beyond fs/2 then serious
alising would occur and the digital response would be
corrupted.This alising problem means that this design
technique is not suitable for high pass filters.However,for
low-pass and band-pass filters the proplem can be avoided by
choosing a sampling frequency high enough to ensure that the
magnitude of the analogue filter response is negligible

beyond fs/2.

To demonstrate hoe the impulse-invariant transformation

is used to digitize an analogue filter,consider the simple

| B

o

1+€

.

c frequenc?

Fig.@ Frequency response of the Chebyshev filter (type I).

4 4 [Hfies
(Y F [Hg)
/_\: ' >
N time frequency
(a) analogue impulse response {b) analogue transfer function
'y 4 ;
h ())
I I . % |
Ty ¥ time fs
(c) digital impulse response (d) digital transfer function

Fig.Q The impulse invariance transformation relationship between analogue and digital
impulse and frequency respones.

LN
W

case of an analogue filter with an impulse response
ha(t),i,e.a simple RC filter (the s-domain transfer function
of this filter is A/s+a).We start by sampling the impulse
response of this analogue filter with a sampling intreval T
to obtain the corresponding impulse response for the digital

filter,i.e

- kT
h (kT)=Ae e >(12)
The z-transform of equation (12) is
- kT -k
H(Z)= A e z e > (13)

As equation (13) is a geometric series,the result of

the summation would be
-1 - T
Hd{z) = A/(1-Z e) > (14)

Equation (14) provide the z-domain transfer function of
the resulting digital filter.To determine the filter
coefficient(bk’'s and am's) equation (l4) can be compared
with equation (8).For this simple example it can be seen
that we have

- T
al=e and b0 = A.

o
S8

The impulse responses were used to arrive at the z-domain

]
transfer function. It is more convenient to perform the
impulse invariant transformation directly from the s-domain

to the z-domain. It can be seen that the required mapping

is of the form

S + a 1 - ekt z-1 (15)

As a second example, consider the two-pole analogue

filter specified by

(s + 3)(s + 1) (16)

T
4]
—
I

s + 1 8 + 3 (17)

Using equation (15), the digital transfer function would be

(e=T - e=3T)z~1

Halz) =
1t - (e-T « e-3T)z“‘1 + e-4T z2-2

(18)

Comparing eguation {(18) with {8)

bg = O by = e’ T - e-31

aq = -(e~T + e-3T) ap = e 4T, {(19)

2.9 The billinear z-transformation
Another indirect design method commonly used for recursive
filters is the bilinear z-transformation. The major
characterisc of this transformation is that it avoids the
aliasing problem which was inherent in the impulse-invariant
transformation. Given as analogue transfer function H(s),
let us rename the variable S to S, to indicate the reference
to the analogue world; i.e. H(S) ='H(Sa). Now let us define
a new variable Sy related to S, by the mapping

2 547
S = j--- tan (---) (20)
T 2]
where T is the sampling period.
Since the analogue frequency variable y is related to the s-
plane variable by s, = jw,, we can also express the above

mapping as

W, = --- tan (--=-) (21)

where wy is defined as sy = jwy.

Starting from an analogue transfer function H (jwg)}, Fig. 10
illustrates the effect of this mapping on this transfer
function. It can be seen from this diagram that the
bilinear transformation compresses the entire analogue
frequency range (w; = 0 ---->) into a finite range equal
to half the sampling frequency. This means that the
spectral folding problem is completely eliminated and
aliasing is therefore avoided. This compression of analogue

frequency axis is usually referred to as frequency warping.

[

(AN

|Ced H

Fig. 10 Graphical illustration of the bilinear z-transform.

[]
&

The price that is paid for this advantage is a distorted
digital frequency scale resulting from this frequency
warping. It can be seen from Fig. 10 that, due to the non-
linear mapping, the specification of the resulting filter,
such as the cut-off frequency, would be somewhat different
from the starting analogue filter. This distortion can be
taken into account in the course of digital filter design.
For example, the cut-off frequency of the origional analogue
filters are modified slightly so that, after mapping, the

resulting filter has the desired cut-off

Returning to the transformation equation (20), we can

rewrite it as

) 1 - -5aT
a
6 = oo mmmemeoaC (22)
a T 1 + e’SdT
and remembering that z-1 = e'SgT we can write
2 1 -zt
§ = cce mmmmm—— - (23)
R & 1+ 271

Equation (23) provides the means for bilinear transformation
directly from the S-domain to the Z-domain, suitable for

digital filter implementation.

Gy
V'S

3. AN EXAMPLE DESIGHN

Filter spectiocn

low pass BUTTERWORTH 0 -->10khz pass band

order 2
sampling rate 100khz

transition band l10khz to 20khz

stop-band attenuation -10dB (starting at 20khz)

Design

Digital filter cut-off frequency = wcd= 2%¥3,141*10000
start of digital filter stop band = wsd=2*3.141*20000.

since the sampling rate is 100khz,the sampling period

would be
T o= (10 ** (=-5))

therefore

wedT = 0.2(22/7) and wsdT = 0.4(22/7)

using equation (), we can calculate the

corresponding
analogue filter fregquencies, i.e.
analogue filter cut-off frequency (wca)
wca = (2/T) tan (0.1 * 3.14) = 0.6498 * 10 ** 35

start of analogue filter step band {(wsa)

wsa = (2/T) tan (0.2 * 3.14) = 1.4531 % 10 ** 5
A second order butterworth filter with a cut-off at

wea = 0.650 * 10 ** 5 has two equally spaced poles on
a circle of radius wca given by

sl,s2 = -0.6458 * 10 ** 5(0.7071 + Or - 0.70713}

—0.4595{(1.0 + or — j) * 10 ** 5

and the transfer function is given by

sls2 4,223 * 10 ** 8
H(s) = -—=—=--———w—-om———- T Rt b et
(s - sl)(s - s2} s**2+0.919*%10%*5+4,223*10**5
Now we apply the Dbilinear z—transforations by
substituting for s in the above transfer function from
‘eguation{). This gives the digital filter transfer
function
0.0675 + 0.1349%z**(-1) + 0.0675*%z%*(-2)
H(Z) = —————mmm e mem o e e (a)

1 - 1.1430%z**(~-1) + 0.4128*%z**(-2)

The digital filter coefficients can be obtained by

comparing equation (a) with (8), giving

b0 = 0.0675 al = -1.,143
bl = 0.1349 a2 = 0.4128
h2 = 0.0675

These coefficient values are then expressed in @ format,

with a number of bits governed by the required accuracy.

31

4 TMS32010 DETAILS AND INSTRUCTION SET SUMMARY

4.1 DESCRIPTION :

The TMS 32010 is a 16/32 bit single-chip digital signal
processor that combines the flexibility of a high speed
controller with the numerical capability of an array
processor, thereby offering an inexpensive alternative to
multichip bit-slice processor. The highly paralleled
architecture and efficient instruction set, provide speed
and flexibility capable of executing 6.4 MIFS {Million
lustruction Per Second). The TMS 32010 optimizes speed by
implementing functions in hardware that other processors
implement through microcode or software.This hardware-
intensive approach provides the design engineer with

processing power previously unavailable on a single chip.

The TMS 32010 is the first digital signal processor in
the TMS 32010 family, was introduced in 1983 by TEXAS
instruments, its powerful instruction set, 1inherent
flexibility, high-speed number-crunching capabilities, and
innovative architecture have made this high-performance,
cost-effective processor the ideal solution to many
telecommunications, computer, 2 mmcrcial, industrial, and

iniitary applications.

i

4.2 KEY FEATURES OF TMS32010/C10 ;

A simple block diagram showing the under mentioned

keyfeatures of TMS 32010 is given in figure 1.

4.2.1 KEY FEATURES :

Instruction cycle timing
-160 ns (TMS532010-25/C10-25 }
-200 ns (TMS32010/C10G)
-280 ns (TMS32010-14)

b

144 Words of on-chip Data RAM

%

1.5K Words of on-chip program ROM

* External Memory Expansion up to &4k Words
at Full speed

16 x 16 Bit Multiplier with 32-Bit product

* On-chip clock oscillator

Single 5-v Supply

4.2.2 ARCHITECTURE :

A detailed Architectural block diagram cf TMS32010 1s
illustrated in figure 2. The TMS32010 utilizes a modified
Harvard architecture for speed and flexibility. In & strict
Harvard architecture, program and data memory are in two

seperate spaces, permitting a full overlap of Iinstruction

Ca>
G

fetch and execution. The TMS320 family's modification
of the harvard architecture allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. The modification permits coefficients stored in
program memory to be read into the RAM, eliminating the need
for a separate coefficient ROM. It also makes available
immediate instructions and subroutines based on computed

values.
4.2.3 32-bit ALU/ACCUMULATOR :

The TMS32010 contains a 32-bit ALU and accumulator for
support of double-precision, two's complement arthimetic.
The ALU is a geﬁeral purpose arithmetic unit that operates
on 16-bit words taken form the data RAM or derived from
immediate inmstructioms. In addition to the usual arithmetic
instructions, the ALU can perform boolean operations,
providing the big manipulation ability required of a high-
speed controller. The accumulator stores the output from
the ALU and is often an input to the ALU. 1t operates with
a2 32-bit wordlength. The accumulator is divided into a
high-order word (bits 31 through 16) and a low-order word
(bits 15 through 0). Instructions are provided for storing

the high-and low-order accumulator words in memory.

Cad

4.2.4 SHIFTERS:

Two shifters are available for manipulating data. The
ALU parallel shifter performs a left-shift of 0 to 16 places
on data memory words loaded into the ALU. This shifter
extends the high-order bit of the data word and zero-shift
of 0, 1 or 4 places on the entire accumulator and places the
resulting high-order accumulator bits into data RAM. Both

shifters are useful for scaling and bit extraction.
4.2.5 16 % 16-BIT PARALLEL MULTIPLIER :

The multiplier performs a 16 x 16-bit two's complement
multiplication with a 32-bit result in a single instruction
cycle. The multplier consists of three units: the T-
register, P-register, and multiplietr array. The 16-bit T-
register temporarily stores the multiplicand; the P-register
stores the 32-bit product. Multiplier values either come
from the data memory or are derived immediately form the
MPYK (multiply immediate) instruction word. The fast on-chip
multiplier‘allows the device to perform fundamental

operations such as convolution, correlation, and filtering.
4.2.6 DATA AND PROGRAM MEMORY :

Since the TMS32010 device use a Harvard architecture,

data and program memory reside in two separate spaces. This

first-generatiuon device has 144 words of on-chip data RAM

and 1.5 k words of on-chip program ROM.
4.2.7 PROGRAM MEMORY EXPANSION :

THE TMS32010 device is capable of executing up toO 4k
words of external memory at full speed for those
applications requiring the external program memory space.
This allows for external RAM-based systems to provide

multiple functionality.

The TMS32010/C10 offers two modes of operation defined
by the state of the MC/MP pin the microcomputer mode (MC/MP
= 1) or the microprocessor mode (MC/MP = o). In the
microcomputer mode, oon-chip ROM iS mapped into the memory
space with upto 4k words of memory available. In the

microporcessor mode all &4k words of memory are external.
4.2.8 INTERRUPTS AND SUBROUTINES :

The TMS32010 contains a four-level hardware stack for
saving the contents of the program counter during interrupts
and subroutine calls. Instructions are .pg available for
saving the device's complete context. PUSH and POP
instructions permit a level of nesting restricted only by
the amount of available RAM. The interrupts used in these

devices are maskable.

Cio
T

INPUT OUTPUT :

The 16-bit parallel data bus can be utilised to perform
1/0 functions in two cycles. The I/0 ports are addressed by
the three LSBs on the address lines. In addition, a
polling input for bit test and jump operations (B10) and an

interrupt pin (INT) have been incorporated for multitasking.
4.3 INSTRUCTION SET :

A Comprehensive instruction set supports botb numeric
intensive operations, such as signal processing, and general
purpose operations, such as high-speed control. The
TMS32010 feature a powerful count of 60 instructions. the
instructions, permitting execution rates of more than six
million instructions per second. Only infrequently used
branch and 1/0 instructions are multicycle. Instructions
that shift data as part of an arithmetic operation execute
in a single cycle and are useful for scaling data in paralel

with other operations.

Three main addressing modes are available with the
instruction set: direct, indirect, and immediate

addressing.

Caz
~d

4.3.1 DIRECT ADDRESSING :

In direct addressing, seven bits of the instruction
word concatenated with the l-bit data page pointer form the
data memory address. This implements a paging scheme in
which the first page contains 128 words, and the second page

contains 16 words.
4.3.2 INDIRECT ADDRESSING :

Indirect addressing forms the data memory address from
the least-significant eight bits of one of the two auxiliary
registers. ARO and AR1. The auxiliary register pointer
(ARP) selegts the current auxiliary register. The
auxiliary registers can be automatically incremented or
decremented and the ARP changed in parallel with the
execution of any indirect instruction to permit single-cycle
manipulation of data tables. Indirect addressing can be
used with all instructions requiring data operands, except

for the immediate operand instructions.

4.3.4 IMMEDIATE ADDRESSING :

Immediate instructions derive data from part of the
instruction word rather than from the data RAM. Some useful

immediate instructions are multiply immediate (MPYK), load

€D
[V

accumulator immediate (LACK), and load auxiliary register

immediate (LARK).

The following tables include the symbols and
abbrevatrions that are used in the instruction set summary
and in the instruction descriptions, the complete
instruction set summary, and a description of each

instruction.

S
)

SYSTEN FLOW CHRR’E

start

|

¥
read choice

/

=17

=2?

choice

MISCELL

=37

choice

L —-

FILTER

15
choice

ESC

end

. %
i 4
| i
; CAPTURE E
'
!
|
}
'
read choice
is
=1?
CHOICE
| l
1OFF-LINE l OH-LINE
= St
FILE
NANE . GEl
! FILE
HAKE
1 !
GET DaT4
aND GET Dala
STORE DISPLAY
STORE
L i l
» i o

FILTER

| g ——— -

read choice

t

I

!

j
SELECT
FILIER

!'
i
1

Leap

FILTER

I 3

GET DRIA
FILTER

¥

{ RETURN AN
|

I |
(R SRR

i
Pen

o1
g

/ read choice/

1?

is

=2?

ADDNCISE

choice

15

choice

=47

is

ESC

choice

¥

RETURN

ADDMOISE !

xm

X
=t
Mmime—

GET DATA
ADDRANDOM
MOISE

Y

' RETURN }

N

[

#include<dos.h>

#include<dir.h>

#include<stdlib.h>

#include<ctype.h>

#include<math.h>

#include<stdio.h>

#include<string.h>

#include<graphics.h>

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CNTL

CNT2

STLEN

DBKCOL
HLP_CENTREX
HLP_CENTREY
HLP_VERT
HLP_ HORIZ
HLP_BKCOL
HLP_BORD
MESG_GENTREX
MESG_CENTREY
MESG_BKCOL
MESG_BORD
MESG_TEXT_CO
ENTER

ESC

0x307
0x306
40

0

325
235
176
352

325
300

15
L 0
/181

283

[F 8

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

char

DOWN
RIGHT
LEFT
HI_FILL
HI_TEXT
HI_BORD
BK_FILL
BK_TEXT
BK_BORD
PULL_BO
PULL FI
MAIN_ BO
MAIN FI

DISP_BO

SIGNAL_

mes[5][4][9

15104
15360
18432
20480
19712
19200
12
10
14

X_COL
LL_COL 1
X_COL 7
LL_COL
X BK_COL 1

COL 15

“"MISCELL","DISPLAY","FILTER"

]= '"CAPTURE",

”ONLINE” "OFFLINE” e

ADDNQISE", ”LOADFILE” ”ASSEMBLE” "OSSHELL'™,
”REALTIME” ”RECORDED” LT

I.FI]_” ||"‘12|| II'FI3I‘| rr
char fil[3])[13]= "rl.bin","iil.bin","" ;
char message|35];
char esh[30}= "xasm320" ,

char

car,file[13];

™
&

fpos_t point[50];
struct viewporttype viewsets;
unsigned hlp flag=1,1,],k,
left,top,right,count,bottom,orig,buf[4096];
int de1=700,func_pointer,menu_ptr,xpointer,yppinter;
int d_x=350,d_y=175,d_v=200,d_h=400,step=l;
int far *mem_pointer = (int far *)0xd0000400;
int far *pptr = (int far *}(Oxd0000000;
long number=0;
struct textsettingstype t;
FILE *hlpptr;
struct aZla-
int ad :12;

bits;

IDT 'IIR1'
YOl EQU 0
yll EQU 1
Y21 EQU 2
BO1 EQU 3
B11 EQU &4
B21 EQU 5
All EQU 6
A21 EQU 7
XN EQU 8
XTEMP EQU 9
YN EQU 10
YTEMP EQU 11
OFF EQU 12
ADD EQU 13
ONE EQU 14

DST EQU 15

AORG O

B START

DATA O
DATA O

DATA O

1~
-1

COEF

P

START

LOP1

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

LDPK
LACK
SACL
LACK
SACL
LARK
LARK
LAC

MAR

TBLR
ADD

BANZ

>3D5
>7AB-
>3D5
>3A24

>B685

o O ©

>300
>200

>1

ONE
2

DST

0,0
1,COEF-2
DST, 0

L
% 0

N

KD

HERE

NEXT

LARK
LARK

BIOZ

IN

LAC

SUB

SACL

LT

MPY

ZALH

APAC

SACH

MPY

ZALH

LTA

MPY

ADD

APAC

SACH

MPY

PAC

LT

MPY

AR, 11
AR1,255
NEXT
HERE
XN, 03
XN, 0
OFF, 0

XTEMP

XTEMP
BO1

Y21

Y01, 1
B11
Y1l
Y01
All

YO1,15

Y21,0

AZ1

XTEMP

BZ21

SN
.

APAC
SACH
LAC
ADD
SACL
LARP
LAC
TBLW
ADD
SACL
BANZ

END

Y11,0
Y01,0
OFF, 0

YTEMP

ADD, 0

o’
-
—_

ONE, 0
ADD, 0

HERE

N
o

¥

YOi

Yii

Y21

BO1

B11i

B21

ALl

AZ21

XN

XTEMP

YN

YYEMP

ADD

DST

1DT

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQuU

EQU

EQU

EQU

EQU

EGU

ey

EQU

COUNT £QU

AORG

DATA

DATA

DATA

"IIRZC

O

10

11

12

13

14

i5

16

START

COEF

START

Lor1

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

LDPK
LACK
SACL
LACK
SACL
LARK
LARK
LAC

HAR

TBLR

ADD

>800

>200

>1

-
=

[N Y

LooP

HERE

NEXT

BANZ
LARK
LARK

BIOZ

IN
LAC
SUB

SACL

LT
HPY
ZALH
APAC
SACH
HPY
ZALH
LTA

HPY

APAC
SACH
HPY
PAC

LT

LOP1
ARO, 11
ARY, 255
NEXT
HERE
XN, 03
XN, O
OFF,0

XTEHP

XTEMP
BC1

Y21

¥Y01,1
B11
Yi1
Y01
A1l

Y01,15

YZ21,0

A21

XTERP

[|

(]

MPY

APAC

SACH

LAC

SACL

LARP

LAC

TBLW

ADD

SACL

BANZ

LAC

SUB

SACL

BNZ

END

B21

Yii,0
Y01,0
OFF,0

YTEMP

ONE, G
ADD,O
HERE
COURT, O
ONE,O
COUNT
LOOP

[|

*» IDT “IIR3°
Y01 EQU 0
Yit EQUY 1
Y21 EQU 2
BO1 EQU 3
Bi1 EQU 4
B21 EQU 5
A1l EQU B
AZ1 EQU 7
XN EQU 8
XTEMP EQU 8
YN EQU 10
YTEMP EQU 11
OFF EQU 12
ADD EQU 13
ORE EQUy 14
DST EQU 15
COUNT EQU 16
*

AORG O

B START
x

DATA O

DATA O

DATA O

DATA >51C8

DATA

>DCG6F

&N

it

COEF

START

Lor:

LOOFP

HERE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

LDPK
LACK
SACL
LACK
SACL
LARK
LARK
LAC

MAR

TBLR
ADD

BANZ
LARK
LARK

BIOZ

B

>51C8
>124D
>CBZA

0

>80

»200

>1

ORE

DST
6,0
1,COEF-2

DSsST, 0

AR1,255
KREXT

HERE

oy
P
[

s

NEXT

IN
LAC
SUB

SACL

LT
MPY
ZALH
APAC
SACH
MP'Y
ZALH
LTA

HPY

APAC
SACH
HPY
PAC
LT
MPY
APAC
SACH
LAC
ADD
SACL

LARP

XR,03
XN,O
OFF,0

XTEMP

XTEMP
BO1

Y21

Y01,1
B1i1
Yil
YO1
All

Y01,15

¥21,0

A21

XTENMP

B21

¥11,0
Y01,0
OFF,0
YTEHP

[|

by |

LAC
TBL¥
ADD
SACL
BANZ
LAC
suB
SACL
BRZ

ENRD

ADD, O
x,1
ORE, O
ADD,O
HERE
COURNT, O
ORE, O
COUNT

LOOP

[

(@ 5)

X
COUNT
COUNTL
COUNTZ2
ZERO
ONE
TWO
ADPORT
STPORT
ROT

x

START

LoopP

NLOOP

WAIT

ADC

OVER

HERE °

IDT

AORG

EQU
EQU
EQU
EQuU
=GuU
eqy
EQU
EQU
EQU

AORG

ROVM
DINT
LDPK
260

LARK
LARP
SACL
BANZ

ouT

LACK
sSACL
ADD

SaACL

LAC

LAaRK
LARK
LARF
EINT

B1OZ

IN
TBLW
ADD
BANZ
LARP
BANZ

ouT

"ADC1024°

0]
START

143
255

MW~ or

>10

o)

0, COUNT
0

¥ —
LOOP

0,STPORT

ONE
ONE
ONE
TWQ

TWO,ROT
1,COUNT?Z
0, COUNTL
0

ADC
WAIT

ZERO, ADPORT
ZERCG
ONE
WALT
1
NLOGP

GNE ,STPORT

HERE

cn

#include“dsp.h”

/% funetion to set the sample rate of the ADC of VDSP100
input : sample rate in KHZ

x/
sample_rate(long st)
{

int count_1,count_h;

count=6250/st;
count_h=(count>>8)%0x00ff;
count_1=-0x00ff&count;
outport(CNTL, 0x00b6);
outport(CNT2,count_1);

outport(QHTz,connt,h);

/¥

function to explode box

inputs: centre x_poordinate,y_coordinate,horiz_length,
vert_lengthvalues of the box,background colour,border color.
cagtion: graphics screen should be set before using this procedur
x/

explode_box(int centre_x,int centre_y,int vlength,int
hlength, int bk_col,int bor_col)

{
int bcount=0,ratio;
top=centre_y;

left=centre_Xx;

right—-centre_x;

bottom=centre_y;

viength=vlength/2;

hiength=hlength/2;
ratio=ceil((double)hlength/viength);
orig=getcolor();

setcolor(bk _col);
while(top>centre_y-vlengthi!left>centre_x-hlength)
{

becount++;

if(left>centre_x-hlength)

{
left-—;
right++;
}

if(becount==ratio)

{

beount=0;
if(top>centre_y-viength)
{

top--—;

bottomt+;

}

3

rectangle(left,top,right,bottom);

A

x/

3

setcolor(bor_col);

left+=4;

top+=4;

right-=4;

bottom-=4;
rectangle(left——,top——-,right++,bottomt+);
left-=2;

top—=2;

right+=2;

bottom+=2Z;
rectangle(left--,top--,right++,bottom++);

setcolor(orig);

function to shrink box
inputs: cenire x_coordinate,y_coordinate values of the box,
caution: graphics screen should be set before using this

procedure

shrink box(int centre_x, int centre_y,int vlength,int
hlength, int bk_col)

{

int becount=0,ratio;
orig=getcolor();
setcolor(bk _col);

viength=vliength/2;

hlength=hlength/2;
ratio=hliength/viength;
top=centre_y-vlength;
bottom=centre_ytvliength;
left=centre_x—hlength;

right=centre_x+hlength;

while(top<centre_y!!left<centre_x)
{
rectangle(left,top,right,bottom);
becounit++;

if(left<centre_x)

{

left++;

right——;

}

if(bcount==ratio)}

{

bcount=90;

if(top<centre_y)

{

topit;

bottom——;

}

}

o5
}
putpixel(centre_x,centre_vy,DBKCOL);

setcolor{orig);

/¥
function to 1initislie graphics screen
x/

init()

int gd=DETECT, gm;

initgraph(&gd, &gm, "D:\\TC");

/¥
function to explede box with a message
inputs: centre x_coordinate,y_coordinate,
values of the box background colour,border color,

pointer to the message.

cantion: graphics screen should be set before using this
procednre

x/

explode_box _mes(int centre_x,int centre_y,int bk_cocl, int
bor_col,int text_col)

{

int text_count,bcount=0,message_lengih,ratio,
top=centre_y, left=centre_x,right=-centre_x,bottomn—centre_y;

int vlength,hlength,mnes_v_length,mes_h_length,i,j=0;

char =[2];

s[1]1="\0";

crm
[|

message_length=strlen(message);
hiength-message_ length;
if(message_length>S5TLEN)
hlength=STLEN;

viength=1;
if(message_length>STLEN)
vlength—-message_length/STLEN+]1;
mes_v_length=vlength;
mes_h_length=hlength;
viength=(l+viength)*10/2;
hlength=(2+hlength)*13/2;
ratio=hliength/vlength;
orig=getcolor();
setcolor(bk_col);
while(top>centre_vy-vliength| | left>centre_x-hlength)
{

becount++;

if(left>centre_x—hlength)

{
left—;
right++;
}

if(bcount==ratio)

{

beount=0;

LN

oo

if(top>centre_y-viength)

{

top-—;
bottom++;
}

}

rectangle(left,top,right,botton);
}
setcolor(bor_col);
rectangle(1eft——,top——,right++,botton++);
setcolor(text_col);
noveto(left+17,top+7};
for(text_count:D;text_count<nes_y_length;text_count++)
{
for(i=0;i<mes_h_length;i++)
{
s[0}=message[j++]};
outtext(s);
noverel(5,0);
if(j>=message_length)
bresak;
}

noveto(left+15,top+5+(1+text_count)*10);

}

setcolor{orig);

}

/¥
function to shrink box with a message
inputs: centre x_coordinate,y_coordinate,horiz_length,
values of the box background colour,pointer to the message.
caution: graphics screen shouzld be set before using this
procedure

*/

shrink_box_mes(int centre_x,int centre_y,int bk_col)

{

int bcount=0,message_length,ratio,
top=centre_y, left=centre_x,right=centre_x,bottom~-centre_y;

int vlength,hlength;
nessage_length-strlen(message);
hlength—message_length;
if(nessage_length>éTLEH)
hlength=STLEN;

viength=1;
if(message_length>STLEN)
viength=message_length/STLEN+1;
viength=(1+vlength)*10/2;
hlength=(2+hlength)*¥*13/2;
ratio=hlength/vlength;
top=centre_y-viength;
bottom=centre_y+vliength;
left-—centre_x-hlength;

right=-centre_x+hlength;

/¥

function to read

orig=getcolor();

setcolor{bk_col);

while(top(centre_y::1eft<centre_x)

{

rectangle(left,top,right,botton);

becount++;
if(left<centre_x)
{

left++;

right-——;

}
if(beount==ratioc)
{

becount=0;
if(top<centre_y)
{

topt++;

bottom——;

}

3

}

setcolor(orig);

integers in

graphics mode.

[SAN)

D

BN

C3
input size of the integer to be read,x,y position.
caution : this function needs graphies initialization.
* long read_integer(int size,int x,int y)
{
char s[5];

number=0;
count=0;
gettextsettings(&tL);
sf1]="\0";
orig-detpixel(x-(size/2%5),y-5);
setcolor(9);
settextstyle(DEFAULT_FONT,HORIZ_DIR,1);
rectangle(x-(size/2%5),y-5,x+(size/2%25),y+10);
moveto{(x,¥);
while(count<size)
{

car=getch();

if(isdigit(car))

{

sfecountl=car;

s{eount+13="\0";

onttext({st+count);

number—number¥10+car—48;

count++;

}

else

if(car=="\r ")

break;
}
setfilistyle(SOLID_FILL,orig);
setcolor{orig);
moveto(x,y);

outtext(s);

floodfill(x,y,5);
settextstyle(t.font,t _direction,t.charsize);
rectangle(x—-(size/2%5),y-5,x+(s5ize/2%25),y+10);
setcolor(orig);

return{(number);

/¥
Function to load help array with the corresponding page numbers
the array to be loaded is declared globally.

caution : this function needs the help file hlp.dat to load
the page nos.

x/
load_helparray()

{
fpos_t temp=0;

char c;

1=1;
point[0]=0;

if((hlpptr=fopen(" hlp.dat”, " r”))==NULL)

{
strepy(message, "HLP .DAT FILE ROT FOUND");

explode_box_mes{MESG_CENTREX,HESG_CENTREY,
HESG_BECOL,HESG_BORD,HESG_TEXT_COL};

hlp_ flag=0;
getch();
shrink_box_mes(HMESG_CENTREX,MESG_CENTREY, DBECOL);
return{l};
}
fsetpos(hlpptr,0);
while((c=fgetc(hlpptr))!=""")
{
tenpt++;
fsetpos(hipptr,&temp);
if(e==""")
{

point[ii=temp;

i++;
}
}
return(0);
}
/x
This function displays the page specified in 8 window it
of the

requires a key press or amouse click to come out

window

cantion: This function assumes that the global array

o

for help page pointes are allready loaded.

x/
hlp_disp(unsigned pade)

{
long line_step;

char c,t[2];

if(hlp_flag==0) return;

explode_box(HLP_CERTREX,HLP_CEHTREY,
HLPdYERT,HLP_HORIZ,HLPMBKCOL,HLP_BORD);

strepy(message, HELP");

explode,box_nes(HLP_CEKTREX,top+10,
HESG_BKCOL,HESG_BORD,HESG,IEXT_COL};

moveto(left+7,top+23);
settextstyle(DEFAULT_FORT,0,1};
fsetpos(hlpptr,&point[page—l]);
line_step=0;
t[11="\0";
While((c=fgetc(h1pptr))!:'"')
{
if(e=="\n")
{
line_step+=1Z;
noveto{left+7,top+23+1line_step);
}

else

-1

[

if(e=="\t")
{
for(i=0;1i<4;i++)
{
tiol=" ;
onttext(t);
}
}
else
{
t{0]=c;
setcolor(l};
onttext(t};
setcolor(0);
}
}
}
bioskey(0)};

shrink_box{(HLP_CERTREX,HLP_ _CENTREY,
HLP_VERT,HLP_HORIZ ,DBKCOL);

}
/X

function to locad a binary file onto vdsp—100,
starting from the address d000:0000.

input: peointer to the filename that is to be loaded to dsp

x/

load(data)
char *data;
{
FILE %xstream;
count=inp(0x307);
stream=fopen(data, rb");
if(stream==NRULL)
{
strepy(message, "FILE ROT FOUND");

explode_box_nes(HESG*CENTREX,HESG_CEHTREY,
HESGﬂBKCOL,HESG_BORD,HBSG_TEXT_COL);

getch();
Shrink_box_nes(HESG_CEHTREX,HESG,CEHTREY,DBKCOL);
return{1};
}
fread(buf,2,4086,streamn);
for(count=0;count<4086;count++)
{
x(pptr+county=buf{count];
3
felose(stream);

}

/*function to load a binary file from vdsp-100,
starting from the address d000:0000.
the file name is given by the string data¥*/

sdata{data)}

char *data;

{

FILE *strean;

izinport(0x307);
stream—fopen(data, "wb™);
if(stream==KULL)
{

strcpy{messege, "FILE NOT FOUND");

explode_box mes(MESG_CENTREX,MESG_CENTREY,
HESG_BECOL,HESG_BORD,MESG_TEXT_COL);

getch();
shrink box_mes(HESG_CENTREX,MESG_CENTREY,DBECOL);
return{1);
1
for(i=0;1<4096;i++)
{
buf{i}= *(pptr+i);
3
fwrite(buf,2,4098,strean);
feclose(streanm);

3

disp_real()

{

76

explode_box(d_x,d,y,d_y+5,d_h+5,DISP*BOX_BK_COL,4);
while(1)

{

step=1;

load("adc.bin”);

strepy(message, "SAMPLING RATE");

explode_box_nes(HESG"CEHTREI,HESG_CENTREY,
MESG_BECOL,MESG_BORD, MESG_TEXT_COL);

i—read_integer(3,440,300);
if(1==0)1i=100;
shrink box mes(HESG_CENTREX,HMESG_CENTREY,DBEKCOL);
sample_rate(i);
while(((k=bioskey(1))==0)!|(k==F2))
{
i=inp{0x306);
delay(150);
1i=inp{0x307);
for(countZO;count<2048;count++)
{
buf{count]=*(memw_pointer+count);

1

win_sig();
}
k=bioskey(0};

switch(k)

case Fl1: shrink box(d_x,d_v.,d_wv+5,d_h+5,0);
hlp_disp(21);
explode_box(d_x,d_y,d_v+5,d_h+5,DISP_BOX BEK_COL,4);

bresak;

case ESC:shrink box(d_x,d_v,d_v+5,d_h+5,0);

return{t);

add_noise_file(char sourcel})
{
FILE *stream;
stream-fopen(source, "rb+wb");

if{strean=—=RNULL)

strcpy(message, "FILE ROT FOURD");

explode_box_mes(HESG_CENTREX,MESG_CENTREY,
HESG_BECOL ,HESG_BORD ,HESG_TEXT_COL);

geteh();

shrink box mes(MESG_CENTREX,HMESG_CENTREY,DBKCOL);

retuarn(l);

explode_box(d_x,d_y,d_v+5,d_h+5,DISP_BOX_BK_COL,4);

while(1l)

{

i= fread(buf,Z,1024,5trean);
if(i!=1024)

break;
for(countzﬂ;count<1024;count++)
{

buf[count]+=randon(500);

1

win_sig();

k= fwrite(buf,z,1024,strean);

H
shrink_box(d_x,d_y,d,y+5,d#h+5,0);

fclose(strean);

disp_file{char filenamel 1)
{
size_t bytecount;

FILE *stream;

streanzfopen(filenane,"rb“);

if(streanZZHULL)

strcpy(nessage,"FILE NOT FOUND™);

explode_box_nes(HESG,CEHTREX,HESG“CEHTREY,
HESG_BKCOL,HESG_BORD,HESG_TEXT_COL};

getch();
shrink_boxﬁnes(HESG_CENTREX,HESG_CEHTREY,DBKCOL);

return{1};

explode_box(d_x,d_y,d_v+5,d_h+5,DISP_BOX_BK COL,4);

while(eof(streamn})

{
bytecount=fread(buf,2,1024,stream);

if(bytecount!=1024)

break;

win_sig();

1
shrink_box{(d_x,d_v,d_v+5,d_h+5,0);

felose{stream)};

}

capture_file(int showflag)
{
int page;
struct ffblk ff;

FILE *stream;

read_string(file,13);

strepy(message, "NO OF PAGES PLEASE");
explode_box_nes(250,175,HESG_BKCOL,HESG_BORD,HESG_TEXT_COL};

50

page=read_integer(2,400,175);
shrink_box_mes(250,175,DBECOL);
if(page==0)return(2);
number=findfirst(file , &ff,FA_ARCH);
if(number==0)

{

strepy(message, "FILE ALREADY EXISTS!{I™);

explode_box mes{ 250,175, HESG_BECOL,
MESG_BORD,MESG_TEXT_COL);

strepy(message, "PRESS ESC TO CANCEL™ };

explode_box _mes(450, 285, MESG_BKCOL,
HESG_BORD,MESG_TEXT_COL);

while((number-bioskey(1))==0);
if(number!=0)

bioskey(0);

if{number=-=ESC)

{

shrink_box_mes(450,2985,DBKCOL);
strepy(message, "FILE ALREADY EXISTS!!™);
shrink_box_mes(250,175,DBKCOL);

retorn(3);

}

shrink_box_mes(450,295,DBKCOL };
strepy(message, "FILE ALREADY EXISTS!:!");
shrink box_mes(250,175,DBKCOL);

3

CE
-

stream=fopen(file, "wb");
if(stream==NULL)
{
strcpy(nessage,"FILE,CREATIDH ERROR");

explode_box_nes(HESG_CEKTREX,HESG,CEHTREY,
HESG_BKCOL,HESG_BORD,HESG_TEXT_COL);

getch();

shrink_box_nes(HESG_SEHTREX,HESG"CEKTREY,DBKCOL);

return(1);
}
load("adc.bin");
strepy(message, "SAHNPLING RATE™ };

explode_box_nes(HESG_SEHTREX,HESGHCEBTREY,
NESG_PKCOL ,MESG_BORD,HMESG_TEXT_COL);

j=read_integer(3,440,300);
if(i==0) i=100;
Shrink_box_nes(HESG_CERTREX,HESG_CENTREY,DBKCOL);
sanple_raté(i);
if(!showflag)
{
strepy(message, "CAPTURING™) ;

explode_boanes(ZSO,I?S,HESG_BKCOL,
MESG_BORD,HESG_TEXT_COL);

}
if(showf lag)

explode_box(d_x,d,y,d_v+5,dkh+5,DISPHBOX_BK_COL,4);

&.8]
o

strcpy(nessage,"PAGE");

explode_box,nes(HESG_CEHTREX,HESG_CEBTREY,
HESG_BKCOL,HESG_BOBD,HESG_TEXT_COL);

for{k=0;k<page;k++)

{

}

disp_integer(k+1,380,300,5);

i=inp(0x306);

delay(40);

i=inp(0x307);

for(countzﬂ;count<:1024;count++)
{

buf[count]:*(nen_pointer+count);

1

if(shogflag)

win_sig();

fnrite(bnf,Z,1024,5trean);

disp_integer(k+1,380,300,0);

shrink_box.nes(HESG_CEﬁTREX,HESG_CEHTREY,DBKCOL);

if('showfliag)

{ strepy(nessage,"CAPTURIBG“);

shrink_box_mes(250,175,DBKCOL); }

if(showflag)

shrink_box(d_x,d_y,d_y+5,dﬁh+5,0);

fclose(stream);

read_string(char file[l,int size)

{
int x=400,y=1735;

count=1;

gettextsettings(&t);

file[11="\0";
orig=getpixel(x-(size/2%5),¥y-2);
strepy(message, "FILENAME PLEASE “);

explode_box_nes(zﬁﬂ,175,HESG“BKCOL,
KESG_BORD,MESG_TEXT_COL);

setcolor(5);
settextstyle(DEFAULT_FONRT,HORIZ_DIR,1);

rectangle(x-(size/Z*S),y—S,x+(size/2*25},y+10);

moveto(Xx,¥);
while(count<size)

{

car=getch();

if((isascii(car))&&(car!="\b Y&&(car!="\r"))
{

filefcount]=car;

file{count+11="\0";

woveto(x,¥);

cuttext(file);

}
}

XD

[V

couni++;

else
{
if(car=="\r")
break;
if((car=="\b)&&k(count>0))
{
setcolor(0};
moveto(x,¥>;
onttext(file);
count——;
file[count}="\0";
setcolor(5);
noveto(x,¥);

outtext(file);

1

setcolor(DBKCOL);

moveto(x,y);

onttext(file);
rectangle(x—(sizefz*ﬁ),y—5,x+(size/2*25),y+10);
shrink_box—nes(ZSO.175,DBKCOL);

setcolor{orig);

return;

win_sig()
{
float 1i;
if{(number=bioskey(1))==F2)
{
strepy(message, "STEP VALUE");

explode_box_mes(MESG_CENTREX, MESG_CENTREY,
HESG_BECOL ,HESG_BORD,MESG_TEXT_COL);

step=read_integder(3,440,300);
if{step<=0)
step=1;
shrink_box_mes(HESG_CENTREX ,HESG_CENTREY,DBKCOL);
H
J=d_x-d_h/2+5;
for(count=20;j<=d_x+d_h/2-35; count++)
{
jt=step;
bits.ad=buffcount};
i=bits.ad+2048;
i=((ixd_h)/4086)-200;
putpixel(Jj, (int)(d_y+d_v/2-i),5IGNAL_COL);

3

J=d_x-d_h/2+5;

if(step>5)

delay(50);
for(count=20;j<=d_h+d_x/2-35;count++)

{

J+=step;

bits.ad=buficount];

i=bits.ad+2048;

1=((i*d_h)/4086)-200;

putpixel(j,{(int)(d_y+d_v/2-1),DISP_BOX_BEK_COL);
}
}
iir(char filenamef])
{
load(filiename);
sanplie_rate(100);
explode_box(d_x,d_vy,d_v+5,d_h+5,DISP_BOX_BK_COL,4);
while{((i=bioskey(1))==0)}{{(i==F2))
f
i=inp(0x306);
delay(100);

1=inp(0x307);

for(count=0;count<1024;count++)

{

buf[count]=*%(mem_pointer+count);

/¥

x/

@)
-]

3

win_sig();

}

shrink_box(d_x,d_y,d_y+5,d_h+5,0);

}
function to display integers in graphics mnode.

inpat : size of the integer to be read,Xx,y position.
cantion : this function needs graphics initialization.

disp_integer(int size,int x,int y,int col)

{

char s{%];
count=0;
sf0]="0";

orig=getcolor();
setcolor(col);
noveto(X,¥J};
while(size!=0)
{
car-size%10;
size /=10;

s[count++]:car+48;

1
s[count}="\0";
strrev(s);
outtext(s);

return(1);

}

#inciude"hlipl.c”

main_hilt(int xpointer,int ypointer,int
fill _col,int tex_col,int border,char strf})

{
orig=getcolor();

setcolor (border};

rectangle{xpointer,ypointer,
xpointer+8&il ,ypointer+13);

setcolor{fill_col);
outtextxy(xpointer+10,ypointer+3,str);
setfillstyle(SOLID_FILE ,fill col);
floodfill{xpointer+!,ypointer+!,border);
setcolor{tex_col};
outtextxy(xpointer+1i0,ypointer+5,str}j

setcolor{(orig);

pull{int menu_ptr)

{

int loc _menu_ptr,len,xpointer,ypointer;

len=3;
if{menu_ptr==0)
len=2;

if(menu_ptr==2)

[
)

s

len=2;

orig=getcolor();
setcolor{(PULL_BOX_COL);
xpointer=menu_ptri140+50-6;
ypointer=39;

rectangle{xpointer,ypointer,
xpointer+100,ypointer+len¥20+6);

setfillstyle(SOLID FILL,PULL_FILL_COL)j;
floodfil1(xpointer+3,ypointer+3,PULL;BOX_ﬁDL);

xpointer=menu_ptr¥140+60;

for{i=0jz;i<ien;i++)

{

ypointer=i%20+45;

main_hilt{(xpointer,
ypointer,BK_FILL,BK_TEXT,BK_BDRD,mes{menu_ptr+lJ[i});

}

ioc_menu_ptr=0;
xpointer=menu_ptr¥140+560;
ypointer=lcc_mernu_ptr¥20+45;

main_hilt(xpointer,ypointer,
HI_FILL ,HI_TEXT,HI_BORD,mes{menu_ptr+1][Cl);

fflushistdin);
i=bioskey(1l);

while(1!'=ESC)

(‘3 b
AV

switch{i)

case ENTER :while{(i=bioskey(1})1=0)bioskey(0)};
xpointer=menu_ptr¥140+60-56;
ypointer=39;
setfillstyle(EMPTY_FIL1l ,0};
floodfill{xpointer+3,ypointer+3,0)};
setcoclor{0);

rectangle(xpointer,ypointer,
xpointer+100,ypointer+lent20+6);

setcolor(orig);
return{i+(menu_ptr)kd+loc_menu_ptr);
case DOWN :main_hilt{xpocinter,
ypointer,BK_FILL,BK_TEXT,BK_BORD,mes[menu_ptr+l][loc_menu_ptr})
if{loc_menu_ptr{(len—-1)
loc_menu_ptr++;
else
loc_menu_ptr=0;
xpointer=menu_ptr¥i40+60;
ypointer=loc_menu_ptr20+45;

main_hilt(xpointer,ypointer,
HI_FIiti ,HI_TEXT,HI_BORD,mes[menu_ptr+ij{loc_menu_ptr]);

break;

case UP :mmain_hilt{xpointer,ypointer,

$1

BK_FILL,BK_TEXT,BK_SDRD,mES[menu_ptr+l][locﬂmenu_ptr]);
if(loc_menu_ptr>0)
loc_menu_ptr—:;
else
loc_menu_pitr=len—1;
xpointer=menu_ptr¥i40+560;
ypointer=loc_menu_ptrx20+45;

main_ hilt{xpointer,ypointer,
HIdFILL,HI_IEXT,HI_BDRD,mes{menu”ptr+1][loc_menu_ptr]);

break;

case F1 : bioskey(0);

hlp disp{5+(menu_ptr)sd4+loc_menu_ptr};

}
1¥{1'=0) bioskey({0);

i=bioskey(l1l)};

while{{i=bioskey{1))'=0)}bipskey{0);
xpointer=menu_ptr¥l40+60—56;
ypointer=39;
setfTillstyle(EMPTY_FILL,0);
floodfill{xpointer+3,ypointer+3,0);
setcolor (0);

rectangle({xpointer,ypointer,
xpointer+100,ypointer+ien¥20+5);

il

setcolor(origl;

return{0);

}
main{)
{
init{);
load_helparray{);
orig=getcolor{);
/% explodeﬂbox(SZS,175,300,600,1,3);t/

setcolor{MAIN BOX_COL);
rectangle(5%,10,570,35);
setfillstyle(SOLID_FILi ,MAIN_FIitL _COL);
floodfill(&65,19,MAIN_BOX_COL);
for(i=0;3;i<4;1i++)

{

xpointer=i¥180+60;

ypointer=13;

main_hilt(xpointer,ypointer,
BK_FILL,BK_TEXT,BK_BORD,mes[O]{iJ);

3
fflush{stdin};
menu_ptr=0;

xpointer=menu_ptri140+460;

ypointer=15;

main_hilt(xpointer,ypointer,
HI_FILL,HI_TEXT,HI_BURD,mes[O][menu_ptr]);

i=bioskey{1l);
while{i!=ESC)

{

1f{i'=0) bioskey(0O);

switch(1i}

case ENTER : bioskey{0);

func_pointer=pull(menu_ptr);
if(func_pointer:=0)

{

call_func(func_pointer);

H

break;

case RIGHT :main_hilt{xpointer,
ypointer,BK_FILL,BK_IEXT,BK_BURD,meS[O}{menu‘ptr});

if{menu_ptr{3}
menu_ptr++;
else
menu_ptr=0;
xpointer=menu_ptrxl130+560;

ypointer=15;

main_hilt(xpointer,ypointer,
HI FILL ,HI TEXT,HI BORD,mes[O]limenu_ptrl};

break;

case LEFT :@main_hilt{xpointer,ypointer,
BK_FILL ,BK_TEXT,BK_BORD,mes[O][menu_ptrl);

if{menu ptr>0)
menu_ptr——;
else
menu_ptr=3;
xpointer=menu_ptr¥ii0+560;
ypointer=15;

main_hilt(xpointer,ypointer,
HI FILL,HI_TEXT,HI _BORD,mes{Ojimenu_ptrl};

break;
case F1 : hlp disp(menu_ ptr+l);

3}

i=bioskey(1l);

setcolor(orig);

fclose{hlpptr);

call_func{(int func_pointer)

{

int size;

struct ffblk

char ferr;

ff;

switch{func_pointer)

{

case

Case

case

case

S5:

b=

number=3;
while(number==3}
number=capture_file{l);

break;

number=3;
while{number==3)
number=capture file{0);
break;
read string(file,13);
add_noise_file{file};
break;
setcolor (0} ;
read_string{file,13);
size=findfirst{file,&ff ,FA ARCH);
ifi{size==—-1)
{
err=strerror(errno);

strepy(message,err);

[
<

size=strien({err);
meﬁsage[size—1}='\0';

explode_box_mes(HESG_EENTREX,HESG_CENTREY,
MESG_BKCOL,MESG_BDRD,HESG_TEXT_;DL);

getch();

else

{
size=findfir5t(“XASM320.EXE",&ff,FA_ﬁRCH);
if{size==—1)
{
strepy(message, "CAN"T FIND XASM320.EXE™) 3

euplode_pox_pes(NESG_QENTREX,MESG_CENTREY,
MESG“BKCDL,HESGﬂBORD,HESG_IEXT_pGL);

getch{);
shrink_bnxnmes(HESE_QENTREX,MESG_EENTREY,DBKCDL);
}
else
{
strcpy(message,"ASSEHBLING");

explode_box_mes(ZﬁO,175,HESG_BKCOL,
MESG_BORD,MESG_TEXT_COL);

strcat{(esh,” ");
strcat{esh,file);
strcat(esh,”; > err.dat");

system{esh) ;

g
-1

shrinkﬂbox_mes(ZSO,175,DBKCDL);
3}

3

break;

case 7: closegraph{);

system("cz\command.cnm“);
init();
setcolor{MAIN_BOX_COL};
rectangle(55,10,570,35);
setfil15tyle(SDLID_FILL,HAINHFILL_QDL);
floodfill(L5,19, MAIN_BOX_€OL) 3
for(i=0;i<4;i++)
{

xpointer=i%140+60;

ypointer=15;

main_hilt(xpointer,ypointer,BK_FILL,
BK_TEXT,BK_BORD,mes{0l{i1);

3

fflush(stdin};
xpointer=menu_ptr¥i40+60;
ypointer=15;

main"hilt(xpninter,ypointer,HI_FILL,
HI_IEXT,HI_BORD,meS[O]{menu_ptr]);

break;

case P:disp_real();

Case

case

case

break;

10:

13:

14:

setcolor{Q};
readﬂ;tring(file,13);
disp_ file{file);

break;

step=5;
1ir{fi11[01);
getch();
break;
step=5;
iir(fil{13};
getch();

breaks

S A

£

]

‘nuad diay

anit joadsaa Jiayj ul paUIe[dxa ade R3]

‘31 Ul S43}T14 BBAY]} e 3y

'g{eubls

BUIWOD Ul BUIAB}[LS 10} ST UOTIHO STYH]

sH3111d

d173H

431114 |

AVIdS I

ARERIL

3HUN1dUd

o)

™

g

" peied

"B)E4 B(UWUES BY] 104 PBNSE OS[E e NOA

'paunI ned

B4e NOR S15IX8 RPEBUIR 811y ayl 4]

‘NOR A pat jidads

BllJ) B Ul PAI03S SI ejep padniden siyj

' A0} TUOM

By} uo pafe(dsip st paanjded ejep ayj
'BUI TUO elep BUTJANJAED 10j) S1 uorjdo sTyjY

e

JNITT440

d13H

e A it b, b At bbb b e

ANTTHH0 |

INITIND

431714

AYTd3 I

TM3ISIH

3HN LU

o=
wd

*lUGHHA |11d Ul padols ade
juasadd J1 SI6RSSaW BUIUIEM 10 10443 ay]

"RJ0}DBAP

PabBol 8y} Ul 3113 IKI'OZEWSUX Sasinbad 3]

‘weabo.d
Alguasse dsQ ¢ Sajguasse uoljdo sty
g B R
d13H
TI3HSSO | |
ERCERC
3SIONGQY ||
431114 AUIdSIq TI3ISIN | 34N 1492

0z

SIGNAL FREQUENCIES FOR THE OUPUTS

OUTPUT NO FREQUENCY
1. 83 HZ
2. 89 HZ
3. 792 HZ
4. 792 HZ
3. 1.7 KHZ
6. d.9 KHZ
7. 9.3 KHZ

8. 40.9 KHZ

[U UG YOGSV S WIS P VR Sy S
T

AR r T e T 1 T TV e gt T S e T gty T T Ny 8 e g T Ryt T]
ot Sk £ b s 4 AR 43 Aok st B bt g B e g A & e B AL 1 Rk g0 Rk o 8 RRA RS g A i B h 1 St b

o RS "
..a
.\\.(-c.

_Ir Sl ol VWA LA AP LF ol L —

BETTIRTE Y

A A VAL A LAt Bl B

M
i

431114

AUids1da | T133SIW

A AL A A PN S

34N 1d4493J

~ 1

<2

el et e e ey T e e
e T S I T I ST ST

vy aora e el 3% 1 YT T A P ™Y Ve A Y A AR A Sy S T S VT e 1T o e T Y

T e e S T I LT NI I I

[]

Ullddd b _

TH3a1Id

43171d AU1dS I TI139S IH JHN1dUo

LY T T T T] |

13

431114

AUIdS I

T30S IK

AUN1dUI

L f'\'f\

oD

./.. .\.\../.. \\..\/./.
N
il idd 144 L
THILIA
431714 AYUdS I T30S IM J4N 1dUd

|

)

iddd 14 _

TU3 L1714 |

43114

AUIdS IO

T30 IH

FHN LAY

¥
o
]

Cidodd 4ol h

TH3l114d

4314

AUdS 1A

TT3ISIN

3HN 1dYD

(&)
<o
- kvk

Wil 4 F4d I_

THIL1d |

431113 |

AUTdS IO

T130SIH

YN 1dud

i

-

[FoV -.-..I-|_

TH3113

Y3171 |

AUTdsSIa

TI30S1IM

3HN 1dY3

T encluston

poran
iz
ot

CONCLUSION

A software has been developed toO implement three

Butterworth type 1IR filters,
1. A low pass filter with cut-off frequency 5 KHZ.
2. A low pass filter with cut-off fregquency 10 KHZ.
3. A high pass filter with cut-off frequency 10 KHZ.

using TMS32010 assembly language. © language 18 used

to integrate the chip operation under a pc's control.

Apart from this this software ig added with facilities
to display 2 real-time signal,to record a real-time signal
in a file. the sampling rate for any signal processing
operation 1is of user's choice. moreover facilities to add
noise to a recorded file and to assemble a TMS32010 assembly

file are provided.

This project is a Lovel attempt using the TMS3201C chip
for DSP applications.This software can be used tO
demonstrate digital signal processing applications,cdan be
used to demonstrate the advantage of TM532010 chip in signal

processing.

REFERENCES

Alan v. Oppenheim,Ronald W.Schafer , "Descrete-Time

Signal processing',Printice-Hall,1989.

Roman Kue, "Introduction to Digital Procesing',

McGraw Hill, Singapore,198Z2.

John G.Proakis,Dimitris G.Manolakis,"Introduction To
Digital Signal Processing',Macmillan Publishing

Company,New York, 1989.

"Assembly Programming Using TMS 32010", Texas

Instruments, Texas 1939.
"yDSP 100 USER'S MANUAL'™, Vi Microsystems Pvt Ltd.

v"ypSP 100 TECHNICAL REFRENCE ",Vi Microsystems Pvt Ltd.

1t

Gottfried, "Programming Witb C .Schaum's outline

series, Tata Mc Graw Hill,1991.

Ray Duncan, Advanced MSDOS Programming,Microsoft

Edition, 1989.

113

BABIC S8TRUCTURE FOR BECOND ORDER

IIR SYSTEMSG.

b
O——0O-
O—(O——O
|
XINI uz_i T Yini
|
bi /__\ ai
O
|
) Tz'i

N

(O—

TMS32010

[

o

Al1-PAIC]L YopPA1-PAL
At-Pa1de 39Paz
MC-MP O3 38PA4
RSOy 37Pas
INTOs 36 PAs
CLKOUTOe 3sPa7
X1z 34 A8
Xe2-cLKiOs 33PMEN
$160s 32 DPEN
Uss 10 31 PIE
D811 30PUcc
ik 1m PP 29Pas
o1z 28ba10
D111y 27Pa11
D121 26[0D0
D130 16 25{ID1
- msd? 24Ppe
Di5C}1s 22Pb2
prdio 2ep4
béC]en 21PDps
PIN NOMENCLATURE -
NAME 129 PEFINITION
Al1-A0-PAZ-PAD D External address bus. I-0 port address

B1O

CLKOUT

D15-DO

MC AHF

MEN

RS

Ucc and Uss
WE

K1

X2 -CLKIN

HHOHO—C

multiplexed over PARZ-PAD.

External polling input for bit test and
Jump operations .

System clock output., 14 crystal - -CLKIN
frequency .

16-bit Data bus.

Data enable indicates the Processor
accepting input Data on DIS - DO

Interrupt .

Memory mode select pin. High selects
Microcomputer mode . louw selects Micro-
~processor mode .

Memory enable indicates that DiS-D%
will accept external memory instruction

Reset used to initialize the device.
Fouwer and ground pins.

Write enable indicates valid data in.
Crystal input.

Crystal input or external clock input.

SIMPLE BLOCK DIAGRAM

CONTROL MODULE ROM.MODULE
(CLOCK, IMSTRUCTION CINSTRUCTIONSE.
DECODER.FPC & STACKD FROGRAM MEMORY)

PROGRAM _EUS

i
DATA BUS l
. y b
AUXILIARY
REGISTER RAM MODULE ARITHMETIC MODULE
POINTER (DATAADDRESS (MULTIPLIER, SHIFTER
RAM. MUL TIPLEXER) ACCUMULATOR

7,
—— {)

AT

Ll By [
=
ey —J
- [
(—) ‘\
ol T
2 LSE
£ g —— |12 -
gEH @ I LN Mux / 16
BIO 2 12 4
o ' - *
MCoMP) BC <12 INSTRUCTIO!
INT .]
RS e 1e | w! PROGR&
/] . Q ROM
a 1526 2 1€
=
<X
e 4
c s
ALI=AC, | x}* :Tﬁc'l‘,,
FAZ~-FPAD | £ T
‘_\\, /;
FROGRAM BUS
/ 1-
“l1e
16}~ 7L 16
L 2 d ¥ / /
L |AROUE)]
ARE R e P TC1ED
2 [/;,/ e 16/
}muxﬂ 5 SHIFTER MULTIFLIER |
\ ; 0-15)
~ P
18 P
ADDRESS =5 S
i M
DaTe RAM _-'/
b1y »x 16D 1\“;2{/
— . R 7
DaTH | e = RU:_.::'C'\ -
py 2 N
/
[accaiy |
~ 16 y 1138
d v 3P
[SHIFTERCO.1,4> |
i€ P 1€ |-
MOTE . —X_DATE BUS 3 3
QCC,:QCL-_.&'_m.:ulator_ .) , i DF=Data Fage Pointer
ARP=RUxiliary Register Poimter
_ e . 3 PC=Frogram Counter
ARO=Auxiliary Registers F=F Reaister
AR1=Auxiliaruy Reaisteri o L ISYET pigure 2. .

T=T Register

| . 0. 0PCODE INSTRICTION REGISTER
MEMOMIC DESCRIPTION h 3 o
CYCLES WORDS 15 H 13 12 11 10 09 08 07 06 05 04 03 02 01 O

0 Tero 2ccumulator { 1 /R T R I T R | 06 0 9 0 0
1ALH lero accumulator and load

high-order bils 1 i o 1 £ 0 0 1 0 M ¢ D
IAS Tero accumulator and Joad

lew-order bil: with no sign

exlension 1 1 0 1 1 0 0 ¢ 0 1« b)

AXLLIARY REGISTER MO DATA PAGE PQINTER DMSTRICTIONS

NC. . OPCODE INSTRUCTION REGISTER
MEONIC DESCRIPTION o 12
CYCLES WOR DS 15 8 13 12 11 10 09 068 07 06 05 04 02 02 01 00
LAR Load auxiliary register 1 1 0 0 1t 1 1t 0 0 R I« D)
LARK Lead auxiliary register :
1mmediate { | 01 1t 1 0 0 0 R < K >
LARP Load auxiliary register pointer 1 1 6 11 0 1 0 0 0 10 0 0 00 0 &
LDP Load dala memory page poinler 1 1 O A O I <))
LDPK Load dala wemory page potnter
inmediale 1 1 NN S TR D R ¢ 0 0 ¢ 0 0 0 K
MR Modify auxiliary regisler and
pointer 1 1 0+ 1t 0 1 0 0 0 1 < D)
S Store auxiliary register 1 i 0 1 1 0 0 0 R HE i)

118
CNTROL DETRXTION
WO. NO., CPCODE IMSTRUCTION REGISTER
MEMNIC DESCRIPTION o oF
CYCLES WORDS B W13 12 11 10 0908 07 06 05 04 03 O 01
DINT Disable interrupt 1 1 0t £ 4 14 4 1 ¢ 4.0 0 0 ¢ 0 0
EINT Enable interrupt 1 1 VS T S D T R 0 0 0 0 0 1
LST Lead states register 1 1 N D R D R B 1« D
NF Ko operation 1 1 LN RS F R A T R 0 0 0 ¢ 0 o0
POF Pop slack to accumulator 2 1 0 1 1 1 1 4 I N S R
PUSH Push stack from acct;lulalor i i A 0 0 t 1 1
ROV Resel overflow moge 1 1 2 A R R B T 10 0 0 1 0 g
SOV Set overflow mode 1 1 1 T R R I 1 0 0 0 ¢ 0 A
587 Slorg slalus reqister { 1 ¢ 1 1 1 1 1 0 90 1 <]

119

BACH DETRXTIOS
M. ND. PCODE INSTRUCTION REGISTER
MNEMONIC DESCRIPTION o o
CYCLES WORDS 15 4 13 12 11 10 09 08 07 06 05 04 O3 @ 01 00
B Branch untonditionally 2 Fd i1t 1 1 10 0 1 0 0 0 0 0 0 0 O
6 0 0 0 {— - BRANCH ADDRESS——u-———)
BANT Branch on auxiliary register 2 2 1 1 1 40100 0 ¢ 0 0 0 0 0 0
notl zero 0 0 0 0 {(————m———BRANCH ADDRESS————)
BGE! Branch if accusulator)= 0 2 ? f + 1+ 4141401 T 00000 0 O
. 0 0 0 0 {——————BRANCH ADDRESS—mree——
BG1 Branch if accumulator) 0 2 2 1 £ 1 ¢ ¢ ¢ 00 00 00 0 O0 0 O
6 0 0 0 {(—————BRANCH ADDRESS—————————)
BIOZ Branch on BIG = 0 2 2 1 1 4 10 1410 00000 00 O
' 0 ¢ 0 0 {(——————PRANCH ADDRESS———————)
BLE? Branch if accumulater (= 0 z 2 1 ¢ 1 1 0 1 1 ¢ 0 0 0 06 0 0 0
6 0 0 0 {(——— -BRANCH ADDRESS——————————
Bl Branch if accomglator (0 2 Fd N T E N DY ¢ B T 1 0 0 0 0 ¢ ¢ 0 o
¢ 0 0 0 {——— BRANCH ADDRESS—r—)
BNl Branch if accusulator =0 2 F4 t 1+ 1 1 1 14 1 0 ¢ 0 0 0 0 0 0 O
0 0 ¢ 0 (———— DPRANCH ADDRESS————ec .)
BY Branch on overflow 2 Z 11t 0 10 9 0 0 06 0 0 0 0 O
0 0 0 0 {(——~ BRANCH ADDRESS——— .)
Bl Branch if accumylater =0 4 z t 1 1 1 1 1 1 ¢ 0 0 ¢ ¢ 0 0 o
6 0 ¢ 0 (e PRANCH ADDRFSS—o—————)
CALA Call subroutine from 2 i 6 1 1 t 5 ¢ 1 A9 i 0 0 0 1 4 0 0
accumulator,
CALL Call subroutine immedialely 2 2 Tt 11 14 19 0 0 0 0 0 0 0 0 0 0 0
RET Return from subroutline 2 1 0 1 1 1 1 ¢ 1 1 1 0 0 0 1 1 0 9

1 REGIETER, P REGISTER AND MATIPLY INSTRICTIONG

ND. ND. OPCODE INSTRUCTION REGISTER
MEONIC DESCRIPTION oF i 3
CYCLES NORDS 15 14 13 12 19 10 09 08 07 06 05 O4 03 @ 01 00
APAL Add P register Lo accumulator i i 6 1 ¢t 4+ & 1 1 1 1 0 0 0 1t 1 1
LT Lload T register i i 01 1 0 1 0 1 0 1 < b b
LTA LTA combines LT and APAC inlo
one instruclion i 1 01 1+ 0 t 1 0 0 I < D >
LTD LTD cosbines LT, APAC and DMV .
into one iastruction 1 1 o 1 f 0 1 0 1 1 I < 0 »
Y Mulliply vith T register; store
product in P register i 1 6 ¢+ ¢t 0 ¢+ 1 0 1 1 < D >
WYX Multliply T register vilh
imsediale operand; store
producl in P register 1 { t 0 0 <)
PAC Load accusulator froa P
register 1 i ¢ 1 ¢+ ¢+ ¢t ¢+ 9 14 1t ¢ 0 0 1t 1 1 0
SPAC Subtract P register from
accmulator 1 1 [R T T D D T £ 0 0 1 0 0 0 0

e
2%
|

1/0 B0 DATA MEMORY QPERATION
ND. - ND. OPCODE INSTRUCTION REGISTER
MEMONIC DESCRIPTION ° oF oF
CYCLES WORDS 15 4 13 12 91 10 09 08 07 06 05 O4 (3 02 01 W
DOV Copy contents of datla memary
location into nexi localien 1 i 6 ¢+ 1 0 1 0 0 ¢ 1 <])
¥ ln.pul data from port 2 1 0 1 ¢ 0 0 PR I < D >
OUT Dutput data to port 2 - 0t 0 0 1 <(-PA— I <] >
TBLR Table read froa progras
sencory to dala RAM 3 1 0 f 1 0 0 & A 1 < b >
TBLW Table write from data RAN Lo
progran memery 3 1 N S I R T I <« D ?

