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SYNOPSIS

Character recognition‘ is a trivial task for humans, but to structure a
computer program that doesj, character recognition is extremely difficult,
Recognizing patterns is just one of those things a human does well and
computers don’t. The main reason for this is that it accommodates many
sources of variability. Noise for example, consists of random changes to a
pattern, particularly near the edges, which may be interpreted as a
completely different character by a computer program. Another source of

confusion is the high level of abstraction.

There exist several different techniques for recognizing
handwritten English upperc@se alphabets and Digits. One distinguishes
characters by the number of loops in a character and the direction of their
concavities. Another commbn technique uses a neural network to
recognize the characters. The objective of this project is to investigate how
good neural networks solves the handwritten character recognition

problem,

The sole aim of this project is to create an easy to use environment
in which the user can draw (characters and then let the program try to
interpret the characters. It also demonstrates how effective the
Backpropagation algorithm is used to recognize the characters. The
proposed project is divided intp three phases.

The three phases are

1) Data capture phase
2) Feature extraction phase

3) Training and Recognition phase



Data capture phase:

In the data capture s*age inputs are given to the system by means

of drawing a picture frame \*fith the help of a mouse.The picture frame is
divided into 30x30 grid of pixels,

Feature extraction phase:

This process is nécessary because not all information of the
bitmap character can be used as a input to the neural network. Typically
the dimension of the area of the bitmap character may be 30x30
pixels.This would mean that if every pixel information was input to the
neural network,900 input nodes would be reguired. This is computationally
not feasible in a PC environment.

Some features can be extracted from the bitmap character. One
simple feature extraction method used in the project, associates each pixel
of the bitmap to one node in the neural networl input grid. The number of
pixels associated to each cell is then normalized as a proportion of the
maximum number of pixels in all the cells. The input pattern is normalized
from a resolution of 30x30 to 6x6 grid of pixels. This will determine the

size of the neural network.
Training and Recognition phase: -

The input patterns are then propagated through the network and
trained. The character that is closely related to the stored character is

recognized.

The conventional backpropagation algorithm is replaced by the
fastlearning backpropagation algorithm due to its inherent disadvantages
such as local minima, network paralysis and slow convergence. The

proposed Backpropagation algorithm is implemented in Turbo C++ 3.0.
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Introduction




INTRODUCTION

1.1 The current status (4f the problem taken up

Handwritten character r#cognition systems have been proposed and
implemented in a number ofi different ways. However for the recognition
of unconsidered handwritterjl characters, no simple scheme is likely to
achieve high recognition and reliability rates, In order to maximize the
performanée of unconstrained handwritten character recognition, the

following approach is considered in this project. That is to design a feature

extractor that does not miss important features while minimizing the

number of meaningless pixels.

This scheme involves a feature extraction method associates each pixel
of the bitmap to one node in tjhe neural network input grid. The number of
pixels associates to each cell is the normalized as a proportion of the
maximum number of pixels in all the cells and a classification stage for
recognizing characters with a simple feedforward backpropagation

network trained with the backpropagation algorithm .

The neural networks designed implemented and tested for recognition
of handwritten characters is multi-layer perceptron (MLP) networks is
based on the backpropagation network and apply the backpropagation
algorithm.

The conventional backprq;pagation algorithm a simple supervised
learning algorithm has a number of limitations such as performance
dependence on constant factorsj (learning rate, momentum factor) and slow
convergence.An efficient fast léamMg algorithm has been incorporated to

overcome these problems.



1.2

Relevance and Importance of the topic

The constant development of computer tools leads to a requirement of
easier interfaces between the man and the computer. Handwritten

Character Recognition may for instance be applied to Zip-Code

recognition, automatic printed form acquisition, or checks reading. The
importance of these applicdtions has led to intense research for several

years in the field of Off-Line handwritten character recognition,

For some years, Artiﬁcid,l Neural Networks, and especially Multilayer
Perceptrons, have shown good capabilities in performing classification
tasks. This is due to the - non-linearity’s that are included in these
connectionist systems, and to the discriminate training phase that they are
submitted to. However, their performance is strongly affected by the
quality of the representation of the characters. This may require a large
number of parameters to represent the character, which then results in
difficulty in establishing the rules for recognition. In other words the
MLPs become difficult to train. Moreover, the greater the size of the
network, the greater is the computation time. This can greatly restrict their

practical use,

So, it is niecessary to perform efficient features extraction on the one
hand, and to optimize the laybut of the artificial neural network on the
other hand.

There are four interesting jand recent applications/products that use
character recognition tecMologﬁes in order to show the usefulness of such

technologies,



Real Time Character Recoé‘nition in Palm Top Computing Devices

3Com Palm Pilot uses a Graffiti-based writing pad for touch screen
input in place of a keyboard. Each character is input as a continuous
stroke. A stroke is completed when the user lifis up the pen from the
scratch pad. Metz gives a réview of the various features of 3Com Palm
Pilot III. Since the introducti?on of Palm Pilot III, many other similar palm
top computing devices have appeared in the market. Of these are those
that run on Microsoft Whlddws CE Operating System for example Nino
by Philips and the Aero series by Compaq. All these devices have real

time handwritten character recognition capability.
Light Pen OCR Dictionary

A Canadian company hasicome up with mobile scanners that ére able
to recognize printed characters and words, search up their meaning and
even read the meaning out. These devices also come with the ability to
translate words from one language to another. A point to note is that
Quicktionary still uses OCR and not ICR technologies as it could not
recognize hand written charagters. However, the interesting point to note
is that it manages to recognize printed words and also to pronoun them
and even translate them to a different language. Many other technologies
such as natural language and voice pfocessing must have been used

together with OCR to come up with such a unique product.
Mail-sorting Machine

Baéically modern mail sorting machines are quite commonly used in
Post Offices around the world that handle large volume of mail daily.
Sorting mail manually is tedious and error prone. Mail sorter machine uses
ICR technologies to recognize handwritten postal code and sort the mail
according based on the postal code recognized. The marvelous aspect of

mail sorting machine is that they are very fast. A mail-sorting machine



with a sort speed of 30,000-%0,000 letters and postcards per hour has been

developed by Hitachi.

Form Processing

\
Electronic form proceting basically uses ICR technologies to

recognize handwritten characters in pre-designed forms. The recognized
characters can then be direjct]y entered into a database. This increases
productivity by cutting down, on manual keyboard entry. Garris mentioned
that the National Institute of Standards and Technology (NIST) has
developed a standard reference form-based handprint recognition system
for evaluating optical character recognition. NIST is making this
recognition system freely available to the general public.
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LITERATURE SURVEY

An introduc':tio! to Neural networks is given in the book
titled ¢ Neural networks in gomputer Intelligence’ authored by LiMin
Fu.lt is a pleasant introduction to a student who is interested in projects
dealing with neural networks.; The book gives an insight into the concept
of a biological neuron and the similarity with the artificial neuron
simulated in the computer. The various computational models and types of
neural networks are discussed|in detail. The book gives an overview of the
different training algorithms used to train the computational models. The
book gives us sufficient information to decide on which computational
model and training algorithm should be implemented in view of the

problem at hand. For the implementation of the project, the classification

computational model is selected to recognize the various hand written

characters.

The two popular training techniques, the supervisory method and

the unsupervised method of \ training have been discussed. They differ
depending on the input and ouftput patterns present to them. The book also
discusses about the back pro;Pagation algorithm that is used to, train the
given neural network. The bopk also gives an idea about the construction
of a neural network, and the selection of the number of nodes in each

layer.

For the project at hanql, the implementation of the supervised form
of training using the back propagation algorithm was found as the best

solution to solve the problem.



Automatic recognition| of hand written character is one of t he
benchmarks in pattern recognition research detailed insight in the

recognition of hand written characters is authored by N.K.Bose and

P.Liang namely ‘Neural network Fundamentals with Graphs algorithms
and applications’. The book mainly deals with the different applicative
prospects of neural networks. It describes how the concept of a neural
network can be used to solve difficult problems by giving many instances

from real life situations.

In the context of hand written character recognition, the book
describes that there are two algorithms to solve the hand written
recognition problem. They are the | backpropagation algorithm and the
growth algorithm. It looks into the advantages and disadvantages and
compares them from the implementation point of view. It narrates the
typical method of constructing a neural network for recognition of hand
written characters. It tells about the number of layers and the number of
" neurons in each layer to be selek:ted based on the problem or the number of

characters the neural network has to be trained to identify,

The second edition of the book’ Neural networks and fuzzy logic
by Dr.Valluru B.Rao and Hayagriva V. Rao serves as a guide into the
implementation of the project}. It firstly introduces a beginner into the
concept of neural networks and fuzzy logic. It mainly concentrates on
solving problems using C++ having an object-oriented concept. It
describes the construction of neural networks and the application of neural
networks to pattern recognition, which is of interest to the project. It gives
us an insight to programming demonstrating a C++ implementation of a

back propagation simulator.



The book also sﬂeys the problems of the conventional
backpropagation algorithm anli looks into certain modifications leading to
an algorithm having better efficiency and training speeds. The
conventional backpropagation| training algorithm is replaced by the fast

learning algorithm eradicating the problems such as slow convergence and

local minima. The fast learning algorithm restores the problem of local
minima by adding a momentuﬂn term thereby preventing the network from
settling in any local mmlma This algorithm greatly reduces the time

required to train a neural network.

Websites give us various feature extraction methods and the
preprocessing phases in detail discussing their advantages and

disadvantages from the problem point of view.



e
Rt NN

Proposed
Line of
Attack




PROPOSED LINE OF ATTACK

Creating software that can recognize handwritten characters
(English  Uppercase Alphabets &  Digits) using feed forward

backpropagation neural network.

The project work comprises of three phases, they are

1. Data Capture

2. Feature Extraction

3. Training & Recognition,
Data Capture phase

Inputs are given to the jsystem by means of drawing into a
picture_frame with the help of @ mouse. The picture frame is divided into
30 X 30 grid of pixels . The 4rawing in the picture frame will be then

scanned by the system.

The input pattern to the system must be digitized into a rectangular
picture_frame array P={p=(i, j) X 1<=i<=n, 1<=j=m; n, m belongs to N}.
The pattern is a binary picture, i.e., the points on the pattern assume the
value of one while the other points of the frame take the value of zero. For

our recognition system the picture_frame is a 30 x 30 array,




Feature Extraction

This process is necess 1 because not all information of the bitmap
character can be used as i.pput to the neural network. Typically the
dimension of the area of a sclzgregated character may be 30 by 30 pixels.
This would mean that if every pixel information was input into the neural
network, 900 input nodes would be required. This is computationally not
feasible in a PC environment. Thus we go for the feature extraction stage

which normalizes the given input pattern into a pattern of lower resolution.

This reduces the number of ijnput neurons to the neural network In this
project the input pattern is normalized from a resolution of 30x30 to a
resolution of 6x6 grid of pixels. This facilitates design of a neural network

with 36 input nodes.

Training & Recognition-

The training anc# recognition phase is the most trivial phase
in the implementation of a mneural network. There are different
computational models in n¢?ural networks. The project uses the
classification computational model in identifying the hand written
characters. The neural networh<s designed, implemented and tested for
recognition of handwritten chajracters, is a feedforward network trained

using the Backpropagation algotithm,
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DETAILS OF THE PROPOSED METHODOLOGY

Introduction to Artificia! Neural Networks
Modeling of Human Recognition by Machine

One of the main differences between the way human beings perceive

the world and how the machine does it is that human beings are less

‘exact’ than a machine.

To enable the machine to simulate human cognitive behavior, soft
computing is introduced. Soft| computing attempts to remove the rigidity

of traditional computing, Currently the main areas in soft computing are:
1) Fuzzy Logic
2) Néural network
3) Genetic Algorithm

All of these are inspired by related characteristics found in human

being and other biological orgaﬁisms.

Fuzzy logic is motivated by the way human beings describe the world.
The attributes that human beings assign to an entity are normally discrete
while a more continuous treatment would have been more accurate. For
example, words like cold warm and hot are used to describe temperature.
The measure of temperature should have been continuous with a range
from a fixed minimum to a fixed maximum. However, human beings are
more comfortable with working with finite discrete classes than with a
continuous infinite quantum. Fuzzy logic introduces discrete fuzziness
into computer by making it work and reason with fuzzy components. A
temperate of 35.7° C would be considered as 25% cold, 75% warm and 10
% hot.

1o




Neural network is motivated by the findings of the working of neurons
in the human brain. It is believed that knowledge is stored in the brain’s
neurons as complex and intricate network of connections (synapses)

between neurons, As more knowledge is acquired, the arrancement of the

synapses changes. A single piece of information is stored by not a single
neuron but by probably thousands of them, each with a small contri ibution.
This makes it possible for a brain tumor paticnt to continuc to function

even after a brain surgery that removes some part of his brain.

Implementation of neural computing in computer is by the uce of data

Y

structure that simulates the petwork of neurons. The synapses are

simulated as small weights in 2D arrays. The effect of training is to alter
the content of such arrays of weights so that it will eventually reflact the

: i feb Ses e aly fe te A we
characteristics of the trained mput patterns. This approach i3 in contrast

with tradition:

knowledge database file, Information retrieval in & database approach is
based on record searching. The system can only retrieve data that has been
previously stored. In the neural network approach the systez-- can
approximate a result even when%t e input is not one of those trained. This
is a typical human characterlstm\ and is very useful for pattern rec ocrmtion

where it is not possible to train au variations of the input.

Genetic algorithm takes the ‘machine one step further. Inspired by the

Darwinian evolution process, a faopulation of structures is maintained. As

but there will also be a ¢ "ﬁge m the data structure to best facilitate the

learning process.

11




Neural Network

Modeling of the Brain’s Neurorfl
\

|
Since its introduction in tl*e 60’s, the basis for modeling the brain’s

a8 AL e A a s

Ui i
v

neurons in a computer smmlﬁtioﬁ has not changed sionif-amtle The
below figure shows the structure of biological neurons and the Table

shows how each of the neuron’s components are being modeled in a

computer,

dendrite

Figure : Neuron

Generally spoken, there afe many different types of neural nets, but
they all have nearly the same components. If one wants to simulate the
human brain using a neural net, itiis obvicusly that some drastic

simplifications have to be made:

First of all, it is impossible to "copy” the true paralle] processing of
all neural cells. Although there are computers that have the ability of
paralle] processing, the large numﬂzer of processors that would be
necessary to realize it can't be aﬁcﬁrded by today's hardware. Another
limitation is that a computer's internal structure can't change while

performing any tasks.

12




The following figure shows an idealized neuron of a neural net.

weights | activation

—_—p - function weights
input G S —#
from L e output ot
other ’ BT L — T function nezrnir‘
neurons R ! o

Structure of a neuron in a neural network

An artificial neuron looks similar to g biological neural cell. And it
works in the same way. Information (called the input) is sent to the neuron
on its incoming weights. This idput is processed by a propagation function

that adds up the values of all incoming weights.

The resulting value is compared with a certain threshold value by the }
neuron's activation function. If the input exceeds the threshold value, the
neuron will be activated, otherwise it will be inhibited. If activated, the
neuron sends an output on its dutgoing weights to all connected neurons

and so on.

In a neural net, the neurons) are grouped in layers, called neuron
layers. Usually each neuron of one layer is connected to all neurons of the
preceding and the following layer (except the input layer and the output
layer of the net). The information given to a neural net is propagated Iz yer-
by-layer from input layer to output layer through none, one or more
hidden layers. Depending on the learning algorithm, it is also possible that
information is propagated backwards through the net.



The following figure shows a n#ural net with three neuron layers.

1
i
input values !
!

- input neuron layer |
VSN 1

GhEe j
- weight matrix ;

. hldden neuron layer

outpu? values

Neural net with three neuron layers

Note that this is not the general structure of a neural net. For example,
some neural net types have no hidden layers or the ncurons in a layer are
arranged as a matrix. What's common to all neural net tvpes is the
preseﬁce of at least one weight matrix, the connections between two

neuron layers.
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Table : Computer modeling of neurons
Use of Neura! Network for Pattern Classification

One of the primary uses of neural network is for the purposc of input
classification and approximation. This makes it quite suitable for the

purpose of pattern classification.

There are many neural network models that can be used for this
purpose. Some of these are the simple single layer perceptron network,
multi-layer perceptron network with back propagation, counter

.

propagation network, neo-cognitive network, Hop ficld’s network and

ART]1 (Adaptive Resonance Theory 1).

15



Single Layer Perceptron

The Perceptron was ﬁrsﬁ introduced by F. Rosenblatt in 1958.
It is a very simple neural net typ% with two neuron layers that accepts only
binary input and output values (0 or 1). The learning process is supervised
and the net is able to solve basic logical operations like AND or OR. It is
also used for pattern classification purposes. More complicated logical

operations (like the XOR problem) cannot be solved by a Per ceptron.

P o Perceﬁtron chare.ctemst;cs e
fsample structure input values
; %
i ! AL ;
? i /(J input layer :
-~/
§ / weight matrix
| \t
g output layer :
! !
! ' |
|
b b Output values ;
Type  [Feedforward i e
ineuron layers {1 input layer 1 output layer
Input value types? inary | o
ractivation E?hard limiter
function ' ¥
" " - o ATy 4l e e, e e m;..;ﬁ.».»..«.yﬁ
learning method iSupervised - )
llearning Hebb learning rule
lalgorithm
; inly used in  jiSimple logical operations »
i ipattern classification b
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Multi-Layer-Perceptron |

The Multi-Layer-Perceptron V\Tas first introduced by M. M insky and

S. Papert in 1969. It is an extebded Perceptron and has one ore more
hidden neuron layers between i#s input and output layers. Due to its
extended structure, a Multi-Lajzer-Perceptron is able to solve every logical

operation, including the XOR droblem.

Multi-Layer-Perceptron characteristics
isample f; input values
istructure 1 :
| I :
Z § X _ ;
i { ) ) input layer
|
| j : ‘
) ! _ weight matrix 1
f: [ hidden layer
i
| j t | |
: i ‘ ' weight matrix 2
! ; ‘
! :
: ) output layer
i
] o Ouputvalues
‘Type e Feedforward e ]
fgueuron layers {1 input layer i
( i1 or more hidden layers ;
e onl L OULPUL layer s s e
finput value /Binary :
itypes b |
factivation thard timiter / sigmoid
‘function i o _— i}
llearning method!{Supervised
§§learning ’E delta learning rule ;
f{__ggrithm flbackpropagat_,on (mostly used) e e ]
gg;nainly used in jcomplex logical operations i
i ; j:patteyn classification ] B
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The Feed Forward and Back prépagation Network

The feed forward and back ‘propagation network is one of the most
popular neural networks currentliy being used for implementing pattern
recognition systems. It is one of the simplest and yet yields surprising

good results.

The only problem is that network training would normally be quite

long with no promise that the network can be trained at all.

Network Training

The training for a neural network effectively alters the weights in the

weight matrix. Network training can be supervised or unsupervised.

A supervised network makes use of training input/output pairs. An
input vector is matched with a desired output vector. During training, the
weights in the weight matrix are changed to minimize the network training

error (the difference between the desired output and the actual output).

Unsupervised training does not make use of any desired outputs for
comparison. Learning is accomplished based on observations of responses
to input. It can be said that changes in the weights can be made to improve
on the classification of input pattems into classes which has gradually

evolved as training progressed.

The multi-layer back propag#tion method uses supervised training. A
self -organizing map network pses unsupervised learning while the
counter propagation network uses a combination of supervised and

unsupervised training.



Back propagation Network I+plementation

Back propagation Neural Network Theory

The Back propagation Niét was first introduced by G.F. Hinton, E.
Rumelhart and R.J. Williams m 1986 and is one of the most powerful
neural net types. It is a supervised algorithm that learns by first computing
the output using feed forward network, then calculating the error signal

and propagating the error backwards through  the network.

It has the same structure as the Multi-Layer-Perceptron and uses the
back propagation-learning algorithm. The back propagation network is
probably the most well known and widely used among the current types of

neural network systems available,

The back propagation network is a multiplayer feed forward network
with a different transfer function in the artificial neuron and more
powerful learning rule. The learning rule is known as back proﬁagation,
which is a kind of gradient descent technique with backward error

propagation, as shown in figure .

19
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Figure . The backpropagation network
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The back propagation network in essence learns a mapping
from a set input patterns to aiset of input patterns .the network can be
designed and trained to accmj*nplish a wide variety of mappings. This
ability comes from the nodes 14‘ the hidden layer or layers or layers of the
network which learn to responh to features found in the input patterns.
The features recognized or extrﬁcted by the hidden units correspond to the
correlation of activity among different input units. As the network is
trained with different examples, the network has the ability to generalize
over similar features found in different patterns. The key issue is that the
hidden units must be trained to extract a sufficient set of general features
applicable to both seen and unseen instance. To achieve this goal, at first,
the network must not be trained to extract a sufficient set of general

features applicable to both seen and unseen instances.

Benefits/Advantages of Backpropagation

Backpropagation is a supervised learning algorithm that can be
applied to multilayer feedforward networks. The standard algorithm is
straightforward and easy to understand. The various enhancements that
have been introduced over time aim to increase the efficiency of the

standard algorithm.,
Limitations of Back propagation

The conventional back propagation algorithm is a simple algorithm
which is found to satisfactorily for simple applications. The convergence
is based on the initial random weight of the network and various constant
parameters like léaming rate and momentum factor. A wrong choice for
the parameters lead to slow convergence, stuck at local minimum. Even a
slight variation in the parametets affects the performance. The limitations

of the conventional algorithm are as follows.

21



Network Paralysis

During the training process lthe weights in the network get adjusted to
large values. As a result the neurons operate at large values of out, in a
region where the derivative of ﬁhe squashing function becomes small. The
error signal sent back is probortional to the derivative and training

becomes virtually standstill. This is called as network paralysis.

Local Minima

Back propagation is gradient descent technique which constantly
adjust its weights towards a minimum. The error surface of = network is
highly convoluted-full of hills, valley, folds and gullies. The network can
get trapped in a local minima (shallow valley), and mayv not be able to

escape.

Step Size
A proper step size is to be selected. A smaller step size leads to slower

convergence and a large value leads to paralysis or continuous instability,

Temporal Instability
During the process of learning to recognize the input, the network
may forget the previously learned one. This is termed as Temporal

Instability.



Approaches to Handwriting kecognition

In a typical OCR application for printed fonts, the traditional
approach is the use of image processing techniques using character models
for matching and probing inJ;co the input characters afier the input
characters have been segregateh. However, this approach is sensitive to
the size of the fonts and the font type. Although much research has been
done on omni font recognition, the task has been uphill. For handwritten

input, the task becomes even more formidable.

Soft computing has been adopted into the process of character
recognition for its ability to create input output mapping with good
approximation. The alternative for input/output mapping may be the use of

a lookup table that is totally rigid with no room for input variations.

Figure shows the processes used by many character recognition
systems. It shows how neural network has been incorporated into
character recognition system together with the traditional tasks of
segregating the visual inputs into the character components and feature

extraction.

Input Image TN

¥

Character Segregation k‘ Image Processing

¥

Fesature Extraction

¥

Network Training

JL

Neural Network

Classification of Extracted
Festure

Figure : Processes in Character Recognition
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9

Handwritten Character Recegpnition System

The project work comprises of three phases , they are
Data capture phase
Feature Extraction phase

Training & Recognition phase.

Data Capture phase

Inputs to the neural network are given by means of drawing into a
picture frame with the help of a mouse. The picture frame is divided into
30 X 30 grid of pixels. The drawing in the picture frame will be scanned

by the system.

The input pattern of the system must be digitized into a rectangular
picture frame array P={p=(i, j) / 1<=i<=n, I<=j=m; n, m belongs to N }.
The pattern is a binary picture, i.e., the points on the pattern assume the
value of one while the other points of the frame take the value of zero. For

our recognition system the picture_frame is 30 x 30 array.
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Feature Extraction

This process is necessary because nct all information of the
segregated bitmap character can%be used as input to the neural network.
Typically the dimension of the alirea of a segregated character may be 30
by 30 pixels. This would mean ithat if every pixe! information was input
into the neural network, 900 input nodes would be required. This is

computationally not feasible in a PC environment.

Thus some features must be extracted from the segregated character.
One simple feature extraction method used in this project, associates each
pixel of the bitmap to one node in the neural network input grid. The
number of pixels associated to each cell is then normalized as a proportion

of the maximum number of pixels in all the cells.

Figure shows the feature extraction process. The first diagram on
the right shows the number of pixels in each corresponding cell. The
second diagram on the right is the normalized results after dividing by the

largest number of pixels.
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Training and Recognition phas}e
Construction of Neural Networki
Input layer

As already mentioned, %ach character is represented by 6 x 6
pixels, forming an array of 36 input stimuli. Even though the resolution
seem, it should be more than aidequate to learn the program 36 distinct
characters (0-9 & A-Z).

Hidden layer

There doesn’t seem to exist a good rule for selecting the number of
hidden units needed to perform back propagate successfully. Instead the
user has to experiment with hidden number of units to see what gives the

most satisfactory result and best speed.

The program uses only one hidden layer since any advantage using
more hidden layers could not be observed with the learning and test-data

in this project.
Output layer

Since we are particularly interested in the categorization of the
characters, we use grandmother cells where one and only one output unit
responds to a certain character. We are only interested in digits & upper-
case letters and use 36 response units , one for each character. The output
unit with highest activity will be selected as the character best matching

the input data.
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Training neural network

Building a neuron network for any but the most trivial application
requires that several network aré built, each of different complexity, or
stopped at different points during|training, or simply started from different
random weight configuration. Ealbh network should be saved, tested and

analyzed and the most appropriate finally chosen.

When to stop training:
When one or more of the following criteria have been satisfied:
% The average error per pattern for the latest cycle is less than the error

tolerance specified by the user.

++ The maximum cycle count specified by the user is exceeded.
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CONVENTIONAL BACKPROPAGATION ALGORITHM

Learning algorithms |are procedures used for modifying
synaptic weights in an orderly fas%hion. Learning in Neural Network may
be classified as supervised / unsbpervised. Supervised learning assumes
the availability of a teacher who classifies the training patterns into output
class, whereas an unsupervised learning does not have pattern
classification information. The network architecture and the learning
algorithms are linked. The commonly used supervised learning algorithm
for feed forward network has certain limitations. To overcome these
limitations, certain learning algorithms are proposed.

The popular and commonly used learning algorithm for multilayer
feed forward network is Backpropagation Algorithm. This is a gradient

descent technique with backward error propagation.

Target Output >
Actual Outpu
?}i?g}j{rr O O ................. O Ba(ikward
T Proggr;iion
HopEN | O O O |
LAYER DI

INPUT O O ................. Q

LAYER

Input
Figure: Backpropagation Network




Backpropagation Algorithm
Step 1 : Weight Initialization

Set all weights and node threshplds to small random numbers. The node
threshold is negative of the weight from bias unit ( whosc activation level
is fixed at 1)

Step 2 : Calculation of Activation

2a. The activation level of an input unit is determined by the instance
presented to the network.
2b. The activation level of a neuron in hidden / output layer,
Qj is given by
Oj = F(X W;0i-6;)
Where Wj;is the weight ffom an input O,
0; is the node threshold,
and F is the sigmoid function.
Fl@=1/1+¢*

Step 3 : Weight Training

3a.  Start at the output units and work backward to the hidden layer
recursively. Adjust weights by
Wi (t+1) = Wi (6) + AW
Where Wj; (t) is the weight from unit / to unit j at time ¢
And AW;iis the weight update.

3b.  The weight update is computed by
AW;i=1d;0;

where n is the learning rate.



3c. The error gradient is calculated as :

For output units :

6%=Oy(1 - O(Tj- Oy

where T; is the desired (target) output activation and O; is the

actual output activation at output unit /.

8" =051 - 0) Z6 Wi

where 8y is the error gradient at unit & to which a connection points from

hidden unit ;.

3d. Repeat step 2 until convergence.
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Enhancing the Backpropagation Algorithm
Due to the above limitations of conventional Backpropagation
algorithm we add some new features to the simulator : a term called

Momentum, and the capability of adding noise to the inputs during

simulation. There are many variations of the algorithm that try to alleviate
two problems with back propagéltion. First like other neural networks there
is strong possibility that the solution found with back propagation is not a
global error minimum, but a local one. You may need to shake the weights
a little by some means to get out of the local minimum and possibly arrive
at a lower minimum. The second problem with back propagation is speed.
The algorithm is very slow at learning. There are many proposals for
speeding up the search process. Neural networks are inherently parallel
processing architectures and are suited for simulation on parallel
processing hardware. While there are a few plug-in neural net or digital
signal processing boards available in the market, the low-cost simulation
platform of choice remains the personal computer. Speed enhancements to
the training algorithm are therefore very necessary. -
Adding the Momentum term

A simple change to the training law that sometimes results in much
faster training is the addition of a momentum term. The training law for
back propagation as implemented in the simulator is
Weight change = Beta * output, error * input
Now we add a term to the-weight change equation as follows
Weight change =  Beta * output error * input + Alpha *
previous_weight change

Beta — Learning Parameter , Alpha — Momentum Parameter

The second term in this equation is the momentum term. The weight
change in the absence of error , would be constant multiple by the
previous weight change. In other words the weight change continues in the
direction it was heading. The momentum term is an attempt to try to keep
the weight change process moving and thereby not get stuck in local

minimas.



Adding Noise During Training ‘

Another approach to breaking out of local minima as well aé to
enhance generalization abilityiis to introduce some noise in the inputs
during training. A random number is added to each input component of
the input vector as it is applied to the network. This is scaled by an overall
noise factor NF, which has a 0 to 1 range. You can add as much noise to
the simulation as you want, or not any at all, by choosing NF = 0. when
you are close to a solution and have reached a satisfactory minimum, you
don’t want noise at that time to interfere with convergence to the
minimum. We implement a npise factor that decreases with number of

cycles.

The noise factor is reduced at regular intervals. The new noise
factor is updated with the network class function called set NF(float).
There is a member variable in the network class called NF that holds the
current value for the noise factor. The noise is added to the inputs in the

input_layer member function calc_out().
Another reason for using noise is to prevent memorization by the

network. You are effectively presenting a different input pattern with each

cycle so it becomes hard for the network to memorize patterns.
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RESULTS

The project was successfully implemented to identify all the
handwritten digits with an error tolerance of 0.001. The neural network
was constructed and the backpropagation algorithm was used as the
training algorithm to train the given neural network. The input to the
neural network was normalized from 30x30 grid of pixels to 6x6 grid of
pixels. This reduces the number of neurons or input nodes of the neural

network

The project identifies handwritten alphabets to a certain extent.
Some problems that came across is in the identification of the ambiguous
digits 3 and 8 that at times look correspondingly the same. Digits like 0
and alphabet O posed a specific iproblem in recognition. The same was for
the digit 8 and alphabet B and the digit 2 and alphabet Z.The above
problems have been incorporated into the recognition system due to the

feature extraction method used.
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CONCLUSION

The project deals: with the identification of hand written
characters using feed forward backpropagation neural network .A Neural
network of the classification model trained using the Backpropagation
algorithm seems to be well suited for handwritten character recognition.
Many of the problems that arise when using Backpropagation to
recognize characters can easily be eliminated or reduced by adding

routines that scales, centers the given input pattern.

Several preprocessing techniques such as character thinning,
scaling and centering can be incorporated into the project, which would
enhance the accuracy of identification of the given hand written

characters.

Other problem such as noise and the problem of separating
characters exists and there is not much one can do about those problems
except improving the quality of the equipment used ~ when
scanning/reading characters or using a database or artificial intelligence

to give more accurate interpretations.

Detection of network paralysis poses a particular challenge while
using the conventional backpropagation algorithm. The conventional
backpropagation training algorithm is replaced by the fast learning back
propagation training algorithm due to its inherent disadvantages such as

network paralysis, local minima and slow convergence.
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The project can be extendq‘ed to convert handwritten material directly
into electronic format .It can alsjb be upgraded to allow easy conversion of
printed material such as textbooks to electronic format. The project can
also be used for signature verification, authentication and for automatic
mail sorting facilities in the post offices and for form processing where a

large number of a forms should be handled.
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Main program for handwrittén character recognition:
1

#include<graphics.h>
#include<iostream.h>
#include<conio.h>
#include<dos.h>
#include<stdlib.h>
#include<stdio.h>
#include<string h>
#include<fstream.h>
#include<alloc.h>
#include<dir.h>

#include "Graphics.cpp"
#include "Button.cpp”
#include "Mouse.cpp”
#include "backprop.cpp”

#define INPUT_FILE "input.dat"  // WRITE

#define FEATURE_FILE "features.dat” // APPEND
class Main

{

Mouse ms;

Graphics g;

Button bDraw,bClear,bIdentify,bTrain,bHelp,bExit;
int biDraw;
public:

void start();

void process();

void end();

2

void Main::start()

blDraw = 0;

g.initGraphics();
g.drawRect(10,10,getmaxx()-10, getmaxy()-10);
g.drawRect(20,20,getmaxx()-20,380);
g.drawRect(40,390,590,440);

ms.initMouse();
ms.showMouse();

bDraw.setPos(50,400,130,430);
bDraw.setText("Draw");
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bDraw.add();

bClear.setPos(140,400,220,430);
bClear.setText("Clear"); ‘
bClear.add();

bldentify.setPos(230,400,310,430);
bldentify.setText("Identify");
bldentify.add();

bTrain.setPos(320,400,400,43 0);
bTrain.setText("Train");
bTrain.add();

bHelp.setPos(410,400,490,430);
bHelp.setText("Help");
bHelp.add();

bExit.setPos(500,400,580,430);
bEXxit.setText("Exit");
bExit.add();

}

void Main::process()
{

int xpos,ypos;

int trainFlag;

while(1)

{

ms.getPos();

XpOs = mS.X;

ypos = ms.y;

if{lms.button == 1)

{
if(bExit.ptInRect(xpos,ypos))
{

ms.hideMouse();

bEXxit.click();

ms.showMouse();

end();

exit(0);
}
else if(bDraw.ptInRect(xpos,ypos))
{

blDraw = 1;

ms.hideMouse();
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bDraw.click();
g.drawGrid();
ms.showMouse();

1
i

else if{bClear.ptinRect{xpos,ypos))
{
3
ms.hideMouse();
bClear.click();
g.clearGrid();
ms.showMouse();
}
else if{bldentify.ptInRect(xpos,ypos))
f
1
ms.hideMouse();
bldentify.click();
g.convert(INPUT_FILE);
g.initValues();
/* g.thinning();
g.clearGrid();
g fillGrid();
g.drawString("After thinning and noise removal",360, 1 50);
getch();*/
g.fExtract(TEST FILE,0);
trainFlag = 0;
g.clrscr(25,25,getmaxx()-25,375);
BPNetwork bp;
bp.BPProcess(trainFlag);
ms.showMouse();

]
f

else if{bTrain.ptInRect(xpos,ypos))

ms.hideMouse();
bTrain.click();

g.convert(INPUT _FILE);
g.initValues();

/* g.thinning();
g.clearGrid();
g fillGrid();

g.drawString("After thinning and noise removal”",360,150):
getch();*/

g.clrscr(360,25,getmaxx()-25,375);

g.getTarget(); // only when train the network

g fExtract(FEATURE_FILE,1);
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trainFlag = 1; ‘
g.clrscr(25,25,getmaxx()-25,375);

BPNetwork bp;
bp.BPProcess(trainFlag);

ms.showMouse();

else if(bHelp.ptInRect(xpos,ypos))
{

ms.hideMouse();

bHelp.click();

ms.showMouse();

}

else if{g.ptInGrid(xpos,ypos) && blDraw)
{

ms.hideMouse();

g.fillRect(xpos,ypos);

ms.showMouse();

¥
}
¥
}
void Main::end()
{

g.closeGraphics();
}

int main()

{

Main m;
m.start();
m.process();
m.end();

return 0;

}
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Header file for graphical usér interface prograny:
!

#define chk_arr 8
#define TRAIN 1
#define TEST 0
class Graphics

{

int gd,gm;

int pic_array[50][50];
intt pics[S0][50];
int *mark_fil[110];
int *mark del[610];

int values[8][8];

int del _count;
int fil_count;
int read flag;

int del_size,fil size;
float target[36];

public:
Graphics(){ gd =DETECT;del size=600;fil_size=100;}
void initGraphics();
void closeGraphics();
void drawRect(int Lint t,int r,int b);
void fillRect(int xpos,int ypos);
void clrscr(int Lint t,int r,int b);
void clearGrid();
void drawGrid(); ‘
void drawString(char *string,int x,int y);
int ptInGrid(int x,int y);
void convert(char* filename);
void thinning();
void fExtract(char *filename,int mode);
void setWindow(int L int t,int r,int b,int clip);
void setFont(int,int,int);
void getTarget();
void initValues();
int validrange(int,int,int,int);
int readvalues(int,int,int,int);
int compare(int,int,int{{{8]);
int neighbours(int,int);
int connectivity();
void bigholes(int,int,int);



3

void holes();
void delfill();
void removestrays();

void updowndelete();

void thinem();
void fillGrid();
void saveresult();
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C++ Program for implemed}ting Graphical User Interface

#include "Graphics.h"

#define GLEFT 50
#define GTOP 50
#define GRIGHT 350
#define GBOTTOM 350
#define GRAY 8

void Graphics::initValues()

{

read_flag = 1;

for(int i=0;i<36;i++)
target[i]=0.0;

}

void Graphics::initGraphics()

{
initgraph(&gd,&gm,"");
}

void Graphics::closeGraphics()
{
closegraph();

void Graphics::drawRect(int Lint t,int r,int b)

{

rectangle(l,t,r,b);

void Graphics::drawGrid()

{

/* grid size : 30%30 */
clrscr(25,25,getmaxx()-25,375);
setWindow(0,0,getmaxx(),getmaxy(),1);

int row,col;

int i,j;

for(i=0;i<30;i++)

for(j=0;j<30;j++)
pic_array[i][j}=0;

settextjustify(0,0);
setcolor(GRAY);

for(col = GLEFT;col<GRIGHT;col+=10)
{
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\
for(row = GTOP;r0w<GBOTT10M;row+=1 0)
{ i

rectangle(col,row,col+110,1'ow+1 0);
} :

ietcolor(WHITE); |

Efoid Graphics::ﬁllRect(int xposLint ypos)
/{/if(getpixe](xpos+5,ypos+5) == BLACK)
/s/e{tﬁllstyle(_ SOLID FILL,WHITE);
floodfill(xpos,ypos,GRAY);

;{{“}else i getpixel(xpos+5,ypos+5) == WHITE)

setfillstyle(SOLID Fil.L,BLACK);
floodfill(xpos,ypos,GRAY);

#/

3

void Graphics::clearGrid()

{

int row,col;
setfillstyle(SOLID_FILL,BLACK);

for(col = GLEFT;col<GRIGHT;col+=10)

{

for(row = GTOP;row<GBOTTOM;row+=10)

{

if{getpixel(col+5,row+5) == WHITE)
floodfill(col+5,row+5,GRAY);

}

}

3
int Graphics::ptInGrid(int x,int y)

{
iflx >=GLEFT && x <=GRIGHT && y >=GTOP && y
<=GBOTTOM)

return 1;
else
return 0;
}
void Graphics::convert(char *filename)
{

int row,col;
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int i,j;

ofstream of{ filename, jos::app);
for(row = GTOP;row<GBOT'ITOM;row+=] 0)

for(col = GLEFT:col<GRIGHTcol+=10)

{
iflgetpixel(coH5,row+5) == WHITE)
{

pic_array[i][j] = 1;
/* make 8 directions to 1 */

/* if(pic_array[i}[j-1] == 0)
* pic_array[i] [-1]=1;
iflpic_array[i][j+1] == 0)
pic_array[i][j+1] = 1; // right
if(pic_array[i-1][j] = 0)
pic_array[i-1]{j] = 1; // top
iflpic_array[i+1][j] == 0)
pic_array[i+1][j] = 1;*/

/* pic_array[i-1][j-1] = 1;
pic_array[i+1][j-1]=1;
pic_array[i-1][j+1] = 1;
pic_array[i+1][j+1] = 1;*/

of<<" 1 ";

else

pic_array[i][j] = 0;
0k<"0 ";

}

jtts

3

it+;

J=0;

of<<"\n";

}

of.close();

}

void Graphics::fExtract(char *filename,int mode)

{

int flag=0;
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for(int i=0;i<30;i++)
{
for(int j=0;j<30;j++)

i{f(pic_array[i][i] ==1)

flag =1;
break;

}

}

if(!flag)

{

cout<<"no pattern is present";
exit(0);

}

int row,col;

row = GTOP;
col = GLEFT;
int count = 0;
int pass=0;
int cnt = 0;

ofstream of;
/* extract into 6*6 array */

/*while(1)

{

count = 0;

ifl(row >= GBOTTOM && col >= GRIGHT))
{

cout<<"end";

break;
3
iflrtow >= GBOTTOM) /I reset row
{
// of<<"\n";

if{pass == 5)

break;
pass++;
row = GTOP;

49



col = GLEFT +((pass*5)*10); // reset col
} B

else
col = GLEFT;

for(int i=1;i<=5;i++)
{

for(int j=1;j<=5;j++)

if{getpixel(col+5,row+5) == WHITE)
count++;
col+=10;
}
row+=10;
col = GLEFT +{(pass*5)*10); // reset col

of<<count<<"";

¥/

int pixarr[10][10]={0};
float cntarr[10][10]={0};

int r,c;
r=c=0;

while(1)

{

count = 0;

if{(row >= GBOTTOM && col >= GRIGHT))
{

break;
}
iflcol >= GRIGHT) // reset row
{
r+=1;
if{l pass == 53)
break;
cnt=0;
passt++;
col = GLEFT;
}

row = GTOP +((pass*5)*10);// reset col

for(int i=1;i<=5;i++)
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{
col = GLEFT +((cnt*5)*10); / reset col
for(int j=1;j<=5;j++) :

iflgetpixel(col+5,row+5) == Wi(HITE)
count++; :

col+=10;

}

row+=10;

}

cnt++;

/lpixarr(r][c] = count*1.0f:

pixarr[r][c] = count;

cH+;

}

float max = pixarr[0][0];

for(i=0;i<6;i++)

{
for(int j=0,j<6;j++)

iflpixarr[i][j] > max)
max = pixarr{i][j];

}

}

iflrnode == 1)
of.open(filename, ios::app):

else

of.open(filename, ios::out);
for(i=0;i<6;i++)
{

for(int j=0;j<6;j++)

cntarr[i][j] = ((pixarr[i][j])*1.0£)/ (max*1 .0f);
of<<cntarr[i][j]<<" ";
/Mprintf{of,"%f ", pixarr{i][j]);
}

0f<<"\n";
/Mprintflof,"%c","\n');

}

iflmode == 1)

{

for(i=0;i<36;i++)
of<<target[i]<<" ";
0f<<"\n";

}
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of.close();
/fclose(of);
}

void Graphics::clrscr(int Lint t,int r,int b)
{ |
setfillstyle(SOLID_FILL,BLACK);
bar(Lt,r,b);
//bar(25,25,getmaxx()-25,375);

void Graphics::drawString(charz string[150],int x,int y)
{

settextjustify(LEFT_TEXT,TOP_TEXT);
outtextxy(x,y,string);

void Graphics::setWindow(int Lint t,int r,int b,int clip)

{
setviewport(L,t,r,b,clip);

void Graphics::getTarget()
{

char temp;

drawString("Enter the Label",450,1 50);

drawRect(450,200,550,170);

gotoxy(60,12);

cin>>temp;

ifltemp >='0"' && temp <="'9")
target[temp-48]=1.0;

else if{temp >='A' && temp <='Z))
target[temp-55]=1.0;

else

{
cout<<"Invalid character(only digits and capital letters are
recognized by this system";

exit(1);
}
void Graphics::thinning()
{

register int i

del_count =-1;

fil count=-1;

for(i=0;i<del_size;i++)
mark_del[i]=(int*)farmalloc(2*sizeof( int));

for(i=0;i<fil_size;i++)
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mark_fil[i]=(int*)farmalloc(2*sizeof{(int));
holes(); |
delfill();
removestrays();
updowndelete();
thinem();
for(i=0;i<del_size;i++)
farfree(mark_del[i]);
for(i=0;i<fil_size;i++)
farfree(mark_fil[i]);
saveresult();

}

void Graphics::saveresult()

{

ofstream ofs("thinning.dat",ios::out);

for(int i=0;i<30;i++)

{

for(int j=0;j<30;j++)
ofs<<pic_array[i][j]<<"":

ofs<<"\n";

}

ofs.close();

}

int Graphics::validrange(int Sy,int sx,int uy,int ux)

{

/* check if the reading range of values is valid */

if{(sx >= 0 ) && (sy >=0) && ((sx+ux)< 30) && ((sy+uy) < 30))
return 1;

return O;

}

int Graphics::readvalues(int Sy,int sx,int uy,int ux)

{

/* read a (uy-ux) x (ux-sx) matrix from pic_array to values */

int flag=0;

register int i,j;

if{validrange(sy,sx,uy,ux))

{

flag= 1,
for(i=sy;i<(sy+uy);i++)
for(j=sx;j<(sx+tux);j++)
if(read_flag)
values[i-sy][j-sx]=pic_array[i][j];
else
values[i-sy][j-sx]=t_pics[i][j];

return flag;
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}

int Graphics::compare(int ry,in¢ rx,int mat[][chk_arr])

{

/* used for comparing ry x rx ehements of values with mat */
register int ij; 1

int tflag=1, ‘

for(i=0;i<ry;i++)

for(j=0;j<rx;j++)

if((mat[i][j] = -1) && (mat{i][j] != values[i][j]))

{
flag=0;
break;
!
s
return flag;
}
int Graphics::neighbours(int y,int x)
{
/* finds the no. of neighbours of pixel y,x */
int nb=0;

register int ij;
readvalues(y-1,x-1,3,3);
for(i=0;i<3;i++)
for(j=0;j<3;j++)

iflvalues[i][j] == 1) nb++;
nb -= values[1][1];
return nb;

}

int Graphics::connectivity()
{

/* computer the connectivity of the center pixel of values */
int conn=0;

int mat[10];

int 1;
mat[4]=1-values[0][0];
mat[3]=1-values[0][1];
mat[2]=1-values[0][2];
mat[5]=1-values[1][0];
mat[0}=1-values[1][1];
mat[1]=1-values[1][2];
mat[6]=1-values[2][0];
mat[7]=1-values[2][1];
mat[8]=1-values[2][2];
mat[9]=mat[1];

for(i=1;i<=7;i+=2)
conn+=mat(i] - (mat[i] * mat[i+1] * mat[i+2]);
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return conn;

} ;
void Graphics::bigholes(int y,int x,int type)
( !
int fill flag=1;
inti 1[7][chk arr]={ {-1, 1,1,1,1, 1,-1},
{-1,1,1,1,1,1,-1},
{-1,1,1,1,1,1,-1},
{1,1,1,0,1,1,1},
{-1,1,1,1,1,1,-1},
{-1,1,1,1,1,1,-1},
{-1,-1,1,1,1,-1,-1}
55
int i 2[8][chk_arr]={ {-1,-1,1,1,1,-1,-1},
{-1,1,1,1,1,1,-1},
{-1,1,1,1,1,1,-1},
{1,1,1,0,1,1,1},
{1,1,1,0,1,1,1},
{'191915131719'1}5
{-1,1,1,1,1,1,-1},
{-1,-1,1,1,1,-1,-1}
|5
inti 3[7][chk_arr]={ {-1,-1,1,1,1,1,-1, l},

iflreadvalues(y-3,x-3,7,7))
iflcompare(7,7,i_1))
fill flag=0;

if(readvalues(y-3,x-3,8,7))
iflcompare(8,7,i_2))
fill flag=0;
if(readvalues(y-3,x-3,7,8))
iflcompare(7,8,i_3))
fill flag=0;
if{(fill_flag)
switch(type)

case 1: mark_fil[++fil icount][0]=y;
mark_fil[fil_count][1]=x;break;
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case 2:
mark_fil[++fil count}{0]=y;
mark_filffil count][1]=x;
mark_fil[-++fil count}[0]=y+1;
mark_fil[fil count][1]=x;
break; |

case 3: ‘

mark_fil[fil count][1]=x;
mark_fil[++fil count][0]=y;
mark_fil[fil_count][1]=x+1;
break;

mark_ﬁ‘i[w%ﬁl_count] [0]=y;

oot

}

void Graphics::holes()

{
/* used to find holes */

register int i,j;
int h1[3}{chk_arr]= { {-1,1,-1},

int h2[3][chk arr] = { {-1,1,1,-1},
{1,0,0,1},
{-1,1,1,-1},
|5
int h3[4][chk arr] = { {-1,1,-1},
{1,0,1},
{1,0,1},
{-1,1,-1}
|5
for(i=0;i<30;i++)
for(j=0;j<30;j++)
if(pic_array[i][j] == 0)
{
if(readvalues(i-1,j-1,3,3))
iflcompare(3,3,h1))
iflpic_array[i-1][j-1] == 0)
{

mark_del[++del_count][0]=i-1;
mark del[del count][1]=j;
mark_del[++del count][0]=i;
mark_del[del count]{1]=j-1;



else if(pic_array[i-1][j+1] == Q)

{
mark_dél[++del _count][0]=i-1;
mark_del[del_count][1]=j;
mark_del[++del_count][0]=1;
mark_del{del count][1]=j+1;

}

else if(pic_array[i+1][j+1] == 0)
{

mark_del[++del_count][0]=i;
mark_del[del_count][1]=j+1;
mark_del[++del_count][0]=i+1;
mark_del[del count][1]=j;

}
else if(pic_array[i+1][j-1] == 0)
{
mark_del[++del_count][0]=i;
mark_del[del_count][1]=j-1;
mark_del[++del _count][0]=i+1;
mark_del[del _count][1]=j;
}
else
bigholes(i,j,1);
if(readvalues(i-1,j-1,3,4))
if(compare(3,4,h2))
if(pic_array[i-1][j-1] == 0)
{

mark_del{++del count][0] =i-1;
mark del[del count][1]=j;
mark_del[-++del count][0]=i;
mark_del[del count][1]=j-1;
¥

else if(pic_array[i-1][j+2] == 0)
{
mark_del[++del count]{0] =1i-1;
rhark_del[del_count]{1] =j+1;
mark_del[++del_count][0]=i;
mark_del[del count][1]=j+2;
}

else if(pic_array[i+1][j+2] == 0)
{
mark_del[{++del_count][0] = i;
mark_del[del count][1]=j+2;
mark del[++del count][0]=i+1;
mark del[del count][1]=j+1;

}



else if(pic_array[i+1][j-1] == 0) |

mark_del[++del_count][0] = i;
mark_del[del_count][1]=j-1; |
mark_del[++del_count] [0]—1+1
mark_del[del_count][1]=j;

}

else

bigholes(i,j,2);

if(readvalues(i-1,j-1,4,3))
if(compare(4,3,h3))
if(pic_array[i-1][j-1] == 0)
{

mark_del[++del_count][0] = i-1;
mark_del[del count][1] =j;
mark_del[++del_count][0]=i;
mark_del[del_count][1]}=j-1;

}

else if(pic_array[i-1][j+1] == 0)
{

mark_del[++del_count] [0] =1i-1;
mark_del[del_count] [11=j;
ma.rk_del[++del_count][0]=i;
mark_del[del count][] I=+1;

}

else if(pic_array[i+2][j+1] == ()

mark__del[++delmcount] [0] =i+1;
mark_del[del_pount] [1]=j+1;
mark_del [++del_count] [0]=1+2;
mark_del[del_count] [1]=j;

!

else if(pic_array[i+2][j-1] == 0)

{ _
mark_del[++del_count][0] = i+1;
mark_del[del_count][1]=j-1;
mark _del [++del_count][0]=i+2;
mark_del[del_count] [1}=;

}

else

}

bigholes(i,j,3);
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}
void Graphics::delfill()

{

/* deletes and fills marked elements */

int i;

for(l—O i<=del_count;i++) ‘
pic_array[mark_del[i][1]}[mark _del[i}{0]]=0

for(i=0;i<=fil_count;i++)
pic_array[mark_fil[i][1]][mark fil[i][0]]=1

}

void Graphics::removestrays()

{

/* remove isolated pixels */

register int i,j;
for(i=0;i<30;i++)
for(j=0;j<30;j++)
if(pic_array[i][j]==1)
if(neighbours(i,j) < 3)
if(connectivity() < 2)
pic_array[i][j]=0;
}

void Graphics::updowndelete()

{

/* acute angle emphasis*/

register int i,j;
int del=0,any_del=0;

int d1[5]}{chk_arr]={ {1,1,0,1,1},
{1,1,0,1,1},
{1,1,1,1,1},
{1,1,1,1,1},
{_151’ >15-1}
35
int d2[5)[chk_arr]={ {1,0,0,1,1},
{1,1,0,1,1},
{L,LL,1,1,1},
{1,1,1,1,1},
{-1,1,1,1,-1}
3
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int d3[5][chk_arr]={ {1,1,0,0,1},
{1,1,0,1,1},
{1,1,1,1,1},
(L1113,
{-1,1,1,1,-1}
¥
int d4[5]{chk_arr]={ {1,0,0,1,1},
{1,0,0,1,1},
- A{1,1,1,1,13,
{1,1,1,1,1},
{-1,1,1,1,-1}
1

int d5{5][chk _arr]={ {1,1,0,0,1},
{1,1,0,0,1},
{1,1,1,1,1},
{1,1,1,1,1},
{-1,1,1,1,-1}
b
int ul[S}[chk arr]=
{L,1,L,1,1},
{1,1,1,1,1},

(1,1,0,1,1},
(1,1,0,1,1}

{{-L,L,L1,-1},
1,1

5
int u2[S][chk_arr|=

)_.\._n._n._ﬁ,.,\,\

—~—
P N N I N Rt et

int u3[5][chk_arr]

——
PN SN (B

int u4[5]{chk_arr

bkt e,



int uS[5][chk_arr]={ {-1,1,1,1,-1},
{1,1,1,1,1},
{1,1,1,1,1},
{1,1,0,0,1},
{1,1,0,0,1}
|5

del_count=-1;

fil count=-1;

for(i=0;i<30;i++)

for(j=0;j<30;j++)
if(pic_array[i][jl==1)

if(readvalues(i-2,j-2,5,5))

{
del=0;
if(compare(5,5,d1)) del=1;
if(compare(5,5,d2)) del=1;
if(compare(5,5,d3)) del=1;
if(compare(5,5,d4)) del=1;
if(compare(5,5,d3)) del=1;

if(compare(5,5,ul)) del=1;
if(compare(5,5,u2)) del=1;
if(compare(5,5,u3)) del=1;
if(compare(5,5,u4)) del=1;
if(compare(5,5,u5)) del=1;

if(del)

{
any del = 1;
mark_del[++del_count][0] = j;
mark_del{del count][1]=1i;

}

}
delfill();

if(any_del)
for(i=0;i<30;i++)
for(j=0;j<30;j++)
if(pic_array[i][jl == 1)
if(readvalues(i-2,j-2,5,5))
{
del=0;
any_del=0;

if(compare(5,5,d1)) del = 1
if(compare(5,5,d2)) del = 1
if(compare(5,5,d3)) del = 1
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if(compare(5,5,ul)) del = 1;
if(compare(5,5,u2)) del = 1;

if(compare(5,5,u3)) del = 1;
if(del)

{

any del =1,
mark_del[++del_count][0]=j;
mark_del[del_count][1]=i;

¥

}
delfill();

if(any del)
for(i=0;i<30;i++)
for(j=0;j<30;j++)
if(pic_array[i][j] == 1)
if(readvalues(i-2,j-2,5,5))

{

del=0;

any del=0;
if(compare(5,5,d1)) del = 1;
if(compare(5,5,ul)) del = 1;

if(del)

{

any del=1;
mark_del[++del_count][0]=j;
mark_del[del count][1]=i;

}

}

delfill();

}

void Graphics::thinem()

{

register int i,j;

int no_del=0;

int m1{3][{chk_arr] = { {-1,0,-1}
{-1,1,1},

{-1,1,1}

¥
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int m2{3][chk_arr] = { {-1,-1,-1},
{0,1,1},
{-1,-1,-1}
}
int m3[3][chk_arr] = { {-1,1,-1},
{-1,1,-1},
{-1,0,-1}
IR
int m4[3][chk _arr] = { {-1,-1,-1},
{1,1,0},
{-1,-1,-1}

del count=-1;
while('no_del)

no _del =1;
for(i=0;i<30;i++)
for(j=0;j<30;j++)
t_pics[i][j] = pic_array[i][j};

for(i=0;i<30;i++)
for(j=0;j<30;j++)
if(pic_array[i}{j] == 1)
if(readvalues(i-1,j-1,3,3))
if(compare(3,3,m1))
{
read_flag=0;
if(neighbours(i,}) >1)
if(connectivity() == 1)

{
no_del=0;
mark_del[++del_count]{0]=j;
mark_del[del count]{1]}=i;
t_pics[i]{j] = 0;

}

read flag=1;

for(=0;j<30;j++)
for(i=29;1>=0;1--)
if(pic_array[i][j] == 1)
if(readvalues(i-1,j-1,3,3))
if(compare(3,3,m2))
{
read flag=0;
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if(neighbours(i,j) >1)
if(connectivity() == 1)

1

no_del=0;
mark_del[++del_count][0]=j;
mark_del[del_count][1]=i;
t_pics[i}{j] = 0;

}

read flag=1;
}

for(i=29;i>=0;i--)
for(j=29;j>=0,j--)
if(pic_array[i][j] == 1)
if(readvalues(i-1,j-1,3,3))
if(compare(3,3,m3))
{
read_flag=0;
if(neighbours(i,j) >1)
if(connectivity() == 1)

no_del=0;
mark_del[++del_count][0]=j;
mark_del[del_count][1]=i;
t_pics[il[j] = 0;

}

read flag =1;

for(j=29;j>=0;j--)
for(i=0,i<30;i++)
if(pic_array[i][j] == 1)
if(readvalues(i-1,j-1,3,3))
if(compare(3,3,m4))
{
read flag=0;
if(neighbours(i,j) >1)
if(connectivity() == 1)

no_del=0;
mark_del[++del_count][0]=j;
mark_del[del count][1]=i;
t pics[i][j] = 0;

}

read flag = 1;
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delfill();

}

}

void Graphics::fillGrid()
{

int row,col;

int 1,j;

i=j=0;

for(row = GTOP;row<GBOTTOM;row+=10)

{
for(col = GLEFT;col<GRIGHT;col+=10)

{
if(pic_array[i][j]==1)

{
setfillstyle(SOLID_FILL,WHITE);
floodfill(col+5,row+5,GRAY);
}
else
{
setfillstyle(SOLID FILL,BLACK);
floodfill(col+5,row+5,GRAY);
}
j+t;
}
i++;
=05
}
}

void Graphics::setFont(int i,int j,int k)
{ ‘

settextstyle(i,j,k);

}
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