IMPLEMENTATION OF DISTRIBUTED ASSOCIATION
RULE MINING ALGORITHM

Thesis submitted in partial fulfillment of the requirements for the award of the Degree of

MASTER OF ENGINEERING IN COMPUTER SCIENCE AND ENGINEERING
OF BHARATHIAR UNIVERSITY

By
A.SAMPATH KUMAR
(Reg.No.0037K0008)

Under the Guidance of
Mr. K. RBASKARAN B.E., M.S.
Asst. Professor
Dept. of CS&E, KCT

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University)
COIMBATORE - 641 006

2000 - 2001

CERTIFICATE

Department of Computer Science and Engineering
Certified that this is a bonafide report

of
the thesis work done by

A.SAMPATH KUMAR
(Reg.No.0037K0008)
at
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006

During the year — 2000 - 2001

NN S 0 '
! g{ L -_-:::‘.-;‘.‘.J.::...:......_'.&._:_-_:_7}___._j P
uide ’ Head of the Depaﬁment/
Mr.K.R.BASKARAN B.E., M.S. Prof. S.THANGASAMY PhD.

Computer Science and Engineering Department
K.C.T., Coimbatore.

Place : Coimbatore

Date : 20-12-2001

Submitted for Viva — Voce examination held at

Kumaraguru College of technology on el bl

Internal examiner) ' External Examiner

CERTIFICATE

This is to certify that this thesis work entitled “IMPLEMENTATION OF

DISTRIBUTED ASSOCIATION RULE MINING ALGORITHM” being
submitted by A.SAMPATH KUMAR,(Reg No.0037K0008) for the award of degree of

& ENGGr

MASTER OF ENGINEERING IN COMPUTER SCIENCE, is a bonafide work

carried under my guidance. The results embodied in this thesis have not been submitted

to any other university or institute for the award of any degree or diploma.

Mr.K.R.BASKARAN B.E., M.S.
Assistant Professor

Department of Computer Science and Engineering
Kumaraguru College of Technology

Coimbatore.

Dedicated to

My

Beloved Parents

)
O

t
Acknowledgemen

ACKNOWLEDGEMENT

The author wishes to take this opportunity to offer a respectful note
of thanks to Dr. K KX.PADMANABAN, Ph.D., principal of the college,

for the excellent facilities made available to accomplish this project work.

The author would like to deem it a privilege to record his sincere
thanks to Prof.S.THANGASAMY, Ph.D., Head of the Department of
Computer Science Engineering for his valuable suggestions and

motivations during the entire period of this course.

The author would like to express his heartfelt gratitude to his guide
Mr. K.R.BASKARAN B.E., MLS. for his valuable guidance, suggestions,

and consistent encouragement, which lead to the successful completion of

the project.

The author would like to express his heartfelt gratitude to his co
guide Mr. A. MUTHUKUMAR M.Sc.,M.C.A.,M.Phil. for his valuable

guidance, suggestions, and consistent encouragement, which lead to the

successful completion of the project.

A.SAMPATH KUMAR

Synopsis

SYNOPSIS

Data mining is the search for relationships and global patterns that exist
in large databases but are hidden among the vast amount of data. These
relationships represent valuable knowledge about the database and the
objects in the database. It is a powerful new technology with vast potential

to help companies focus on their data warehouses.

Each data mining application is supported by a set of algorithmic
approaches used to extract the relevant relationships from the data. In the
project [have implemented the Apriori algorithm for mining the database.
The Apriori algorithm searches association rules in the database given a
minimum support value. The user has to specify the minimum support

value for finding the associative relationships.

I have implemented the project on distributed databases. A
distributed database is a collection of data which belong logically to the
same system but are spread over different sites in a network. This greatly
reduces the time taken to mine large and voluminous data located 1n a
single database. The project makes use of two database servers and one
client machine. The client machine provides user control over the mining
algorithms running in the two database servers. The mining algorithms
have been implemented using Java which focuses on the remote method

invocation concept.

Contents

CONTENTS

. INTRODUCTION

fom—

1.1 THE CURRENT STATUS OF THE PROBLEM TAKEN UP

1.2 RELEVANCE AND IMPORTANCE OF THE TOPIC 9
2. LITERATURE SURVEY i0
3. PROPOSED LINE OF ATTACK 17
4. DETAILS OF THE PROPOSED METHODOLOGY 18

29

5. RESULTS OBTAINED

6. CONCLUSIONS AND FUTURE OUTLOOK 36

7. REFERENCES 57

APPENDICES

Introduction

1. INTRODUCTION

Data Mining

Data mining is a process of inferring, mining or extracting
knowledge from huge amount of data. With an enormous amount of data
stored in databases and data warehouses, it is increasingly important to
develop powerful tools for analysis of such data and mining interesting
knowledge from it. There are many other terms carrying similar or slightly
different meanings to data mining such as knowledge mining from the
database, knowledge extraction or data/pattern analysis. Data mining
techniques are the result of a long process of research and product

development.

This evolution began when business data was first stored on
computers, continued with improvements in data access, and more
recently, generated technologies that allow uscrs to navigate through their
data in real time. Data mining takes this evolutionary process beyond
retrospective data access and navigation to prospective and proactive
information delivery. Data mining is ready for application in the business
community because it is supported by three technologies that are now

sufficiently mature:
Massive data collection
Powerful multiprocessor computers

Data mining algorithms

Continuous innovations in computer processing power, disk
storage, and statistical software are dramatically increasing the accuracy of

analysis while driving down the cost.

ARCHITECTURE OF A TYPICAL DATA MINING

Output

User Input

Graphical user interface

7 X

Pattern evaluation

\ A

Data mining engine

: v L Knowledge-base
Database or data warehouse
server

Data

Warehouse

Fieure: architecture of a typical data mining system

Database, data warehouse, or other information repository: This is
one or a set of database, data warehouse, spreadsheets , or other kinds of

information repositories. Data cleaning and data integration techniques

may be performed on the data.

Database or data warehouse server: The database or data warehouse

server is responsible for fetching the relevant data, based on the user’s

data mining request.

Knowledge base: This is the domain knowiedge that is used to guide the
search, or evaluate the interestingness of resulting pattems. Such
knowledge can include concept hierarchies, used to organize attributes or
attribute values into different levels of abstraction. Knowledge such as
user beliefs, which can be used to asses a pattern’s interestingness based

on its unexpectedness , may also be included.

Data mining engine: This is essential to the data mining system and
ideally consists of a set of functional modules for task such as

characterization, association ,classification, cluster analysis, and evolution

and deviation analysis.

Pattern evaluation module : This component typically employs
interestingness measures and interacts with the data mining modules so as
to focus the search toward interesting patterns. [t may use interestingness

threshold to filter out discovered patterns.

Graphical user interface: This module communicates between users and
the data mining system. allowing the user to interact with system by
specifying a data mining query or task, providing information to help
focus the search, and performing of exploratory data mining based on the

intermediate data mining result.
Data mining consists of five major elements:

Extract, transform, and load transaction data onto the data warehouse

system.

Store and manage the data in 2 multidimensional database system.

Provide Gaita access to business analysts and information technology

professionals.
Analyze the data by application software.

Present the data in a useful format, such as a graph or table.

Data Mining Approaches

Artificial neural metworks: Non-linear predictive models that learn

through training and resemble biological neural networks in structure.

Genetic algorithms: Optimization techniques that use processes such as
genetic combination, mutation, and natural selection in a design based on

the concepts of natural evolution.

Decision trees: Tree-shaped structures that represent sets of decisions.
These decisions generate rules for the classification of a dataset. Specific
decision tree methods include Classification and Regression Trees
(CART) and Chi Square Automatic Interaction Detection (CHAID) .
CART and CHAID are decision tree techniques used for classification of a
dataset. They provide a set of rules that you can apply to a new
(unclassified) dataset to predict which records will have a given outcome.
CART segments a dataset by creating 2-way splits while CHAID

segments using chi square tests to create multi-way splits.

Nearest neighbor method: A technique that classifies each record in a
dataset based on a combination of the classes of the & record(s) most
similar to it in a historical dataset (where £ 1). Sometimes called the -

nearest neighbor technique.

Rule induction: The extraction of useful if-then rules from data based on

statistical significance.

Data visualization: The visual interpretation of complex relationships in

multidimensional data. Graphics tools are used to illustrate data

relationships.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DDBMSs)

A distributed database is a collection of data which are
distributed over different computer of a computer network. Each site of
the network has autonomous processing capability and can perform iocal
application. Each site also participates in the execution of at least one
global application, which requires accessing data at retrieval sites using a

comntunication subsystem.

A distributed database management systemn supports the creation
and maintenance of distributed databases. The software components which

are typically necessary for building a distributed database in this case are:

]. The database management component (DB)

2. The data communication component (DC)

3. The data dictionary (DD), which is extended to represent information
about the distribution of data in the network.

4. The distributed database component (DDB)

The access to a remote database by an application can be
performed by which the application requires the execution of an auxiliary
program at a remote site. The auxiliary program, written by the auxiliary

programimer, accesses the remote database and retumns the result to the

requesting application.

DBMS 1

Application [¢
program 2 Sie 2
Site |
Site 2
Auxiliary :
program |4 DBMS 2
DATABASE
o

Remote access via a auxiliary program

Fig: Type of access to a distributed database

1-request for execution of auxiliary program
2-Global result

3-databaase access primitives and results

An important property of DDBMSs is whether they are
homogeneous or heterogeneous. Homogeneous DDBMS refers to a
DDBMS with the same DBMS at each site, even if the computers and the
operating systems are not same. Heterogeneous uses different DBMS.
Heterogeneous DDBMSs add the problem of translating between different
data models of the different local DBMSS to the complexity of
homogeneous DDBMSs .The problems of heterogeneous DDBMSs are
very hard.

1.1 THE CURRENT STATUS OF THE PROBLEM TAKEN UP

1.

L¥S]

Incomplete data

Some data may be missing (e.g., some fields may be left blank in a user
profile, or perhaps the manufacturer has only very limited test data to
report). The question 1s what to do about such situations. Sometimes the
fact that data is missing 1s itself a valuable piece of information (e.g.
surgical information for a patient who has never had surgery, discase
information for a patient who has never been sick). At other times, the
missing data constitutes a genuine problem (e.g., missing diagnostic

information after a test has been performed).

Noisy data

The fields may contain incorrectly entered information. How does this

affect the certainty factor or confidence level of the results?

Temporal data

Since databases grow rapidly, how can data be incrementally added to our
results? Is current data "worth more" than data from, say, a year ago? Data
1s also subject to change. What effect should this have in the knowledge
discovery process? Can results be "undone”, or must the entire knowledge

discovery process start from scratch to pick up changes?
An extremely large amount of data

Some datasets can grow significantly over time. How should such datasets
be processed? One option is to perform paralle] processing, whereby n
processors each process approximately 1/n'th of the data in approximately
1/n'th of the time. Another option is to avoid processing the entire dataset,
and simply sample the data. Even though this may result in a loss of
information or in a reduced confidence level, perhaps the accuracy vs.

efficiency trade-off warrants such an approach.

5. Non-textuz! Jdata

There are muny types of data that need to be manipulated, including image
data, muiimedia data (video, sound), spatial data in Geographic

Informatioa Systems, and user-defined data types.
6. Controversial data

There are privacy issues to be considered. Probing databases for personal
information (espectally medical information} may violate privacy laws.
For example, using data mining techniques to create mailing lists of
potential customers 1s controversial. Even probing government databases
for instances of fraud or criminal intent has privacy implications.

Similarly. probing medical databases "in the interest of science" while
trying to 1solate common characteristics among affected individuals (for a

cure to a disease) can be controversial,

1.2 RELEVANCE AND IMPORTANCE OF THE TOPIC

Data Mining Rules
Data mining Rules include the following-.

1) Classification rule
2) Association rule

3) Sequential Analysis

The classification-rule learning involves finding rules that partition
given data into predefined classes. In the data mining domain where
millions of records and a large number of attributes are involved, the
execution time of existing algorithms can become prohibitive, particulariy

in interactive applications.

An association rule is a rule which implies certain association
relationships among a set of objects in a database. In this process we
discover a set of association rules at multiple levels of abstraction from the

relevant set(s) of data in a database.

In sequential Analysis, we seek to discover patfterns that occur in
sequence. The input data is a set of sequences, called data-sequences. Each
data sequence is a ordered list of transactions (or itern sets), where each
transaction is a sets of items (literals). Typically there is a transaction-time
associated with each transaction. A sequential pattern also consists of a list
of sets of items, The problem is to find all sequential patterns with a user-
specified minimum support, where the support of a sequential pattern is

the percentage of data sequences that contain the pattern.

POTENTIAL APPLICATIONS

Data mining has many and varied fields of application some of which are listed below.

e Retail/Marketing
1. Identify buying patterns from customers
2. Find associations among customer demographic characteristics

Predict response to mailing campaigns

LS

4. Market basket analysis
+ Banking

1. Detect patterns of fraudulent credit card use

b

Identify ‘loyal' customers

LS)

Predict customers likely to change their credit card affiliation

Literature
survey

2. LITERATURE SURVEY

KDD PROCESS (from 7.2)

The term Knowledge Discovery in Databases or KDD for short, refers to
the broad process of finding knowledge in data, and emphasizes the "high-
level" application of particular data mining methods. It is of interest to
researchers in machine learning, pattern recognition, databases, statistics,
artificial intelligence, knowledge acquisition for expert systems, and data

visualizaton.

GOAL OF KDD PROCESS

The unifving goal of the KDD process is to extract knowledge from data
in the context of large databases. It does this by using data mining
methods (algorithms) to extract (identify) what 1s deemed knowledge.
according to the specifications -of measures and thresholds, using 2
database along with any required preprocessing, sub sampling, and

transformations of that database.

AN OUTLINE OF THE STEPS OF THE KDD PROCESS

{ Interpretation/ 'Knowledge

Evaluation

(Data Mining]

[Transformation L \\ 81 = :

, AN /'3": Pattems :

i' Preprocessing] \\\ : '

S s 4 Transformed! :
clection] Data :

\
/,_»_;ir Preprocessed
Data

...

1. Developing an understanding of
1. the application domain
2. the relevant prior knowledge
3. the goals of the end-user

Creating a target data set: selecting a data set, or focusing on a

2.
subset of variables, or data samples, on which discovery is to be
performed.

3. Data cleaning and preprocessing.

1. Removal of noise or outliers.

2. Collecting necessary information to model or account

for noise.

3. Strategies for handling missing data fields.

4. Accounting for time sequence information
4.Data reduction and projection.
5.Choosing the data mining task.
6.Choosing the data mining algornithm(s).
7.Data mining.
8.Interpreting mined patterns.

9.Consolidating discovered knowledge.

WHY DISTRIBUTED DATA BASE (from 7.1.2)

There are several reasons why distributed databases were developed.

Organizational and economic reasons:

A distributed database approach naturally fits more to the
structure of the problem. The organizational and economic motivations are
probably the most important reason for the development for distributed

database.

Interconnection of existing database:
For performing global applications from the existing database, the

distributed database is created bottom-up from the existing database.

Incremental growth: for adding new relatively autonomous organizational

units (new warehouses),the distributed database supports a smooth

incremental growth with a minimum degree of impact on the already

existing exists.
Reduced communication overhead

In geographically distributed database, many applications
are local; clearly reduce the communication overhead with respect to a
centralized database. The maximization of locality of applications is on ¢

of the primary objectives in distributed database.

Performance considerations

Distributed databases have the advantage of decomposing
data reflects application dependent criteria which maximize application
locality; the load is shared between different processors in a mult-
processor environment is minimized. The oad is shared between different
processors, and critical bottlenecks, such as the communication network

itself or common services of the whole system are avoided.

Reliability and Availability

The distributed database approach, especially with
redundant data, can be used also in order to obtain higher reliability and

availability.
DATA MINING VERSUS QUERY TOOLS(from 7.1.1)

Firstly it is important to realize that query tools and data mining tools arc

complementary. A data mining tool does not replace a query tool, but 1t

does give the user a lot of additional possibilities. Suppose that you have a
large file containing millions of record that describe your customer’s
purchase over the last ten year. There 1s a wealth of potentially useful
knowledge in such a file, most of which can be found by firing normal
queries at the database, such as who bought which product on what data?’,
‘hat 1s the average turnover in a certain sales region in July?” and so on.
There 1s. however, knowledge hidden in your database that is much harder
to find using SQL. Example would be the answers to questions such as’
what is an optional segmentation of my clients ?’(that 1s how do I find the
most important different customer profiles ?77),or ‘What are the most
tmportant trends in customer behavior?’. Of course, these questions could
be answered using SQL .You could try to guess for yourself some
defining criteria for customer profiles and query the database to see
whether they work or not. In a process of trial and error, one could
graduallv develop intuitions about what the important distinguishing
attributes are. Processing in such a way, it could take days or months to
find an optimal segmentation for a large database, while a machine -
learning algorithm like a neural network or a genetic algorithm could
find the answer automatically in a much shorter times, sometimes even in
minutes or a couple of hours. Once the data mining tool has found a
segmentation, you can be use your query environment again to query and

analyze the profiles found

One could say that if vou know exactly what you are looking for, use
SQL; but if you know only vaguely what you are looking for, turn to data
mining. Generally there are far more occasion when your initial approach
is vague than times when you know precisely what you are looking for, it

is this that has motivated the recent surge of interest in data mining.

It is clear that KDD is not an activity that stands on its own: a good

foundation in terms of data warehouse is a necessary condition of its

effective implementation Noisy and incomplete data, and legal and
privacy issues, constitute important problems. One must pay attention to
the process of data cleaning- remove duplicate records, correct
typographical errors in strings, and missing information, and so on. In
KDD too, the old ‘garbage in, garbage out’ rule still holds. To implement
KDD in an organization is to start a process of permanent refinement and
dealing of data. The real aim should be ultimately to create of data. The

real aim should be ultimately to create a self-learning organization.

e

Proposed
Line of
Attack

3. PROPOSED LINE OF ATTACK

The project implements an important associative form of data
mining technique. It employs the basic Apriori algorithm in mining a
given database. The Apriori algorithm searches for association patterns or
relationships in the database. The project also aims at implementing the

above data mining methodology on a distributed database.

The problem of mining association rules in the project has been

proposed to be reduced to two sub problems. They are,

(1) Finding all large itemsets for a given minimum support threshold

from a given database, and
(2) Generating the association rules from the large itemsets found.

The project is demonstrated using a client machine and two servers with
the client machine as the user interface and the server as the database. The
data in the database is stored as a flat file and retrieved from them using

the Apriort algorithm for extraction of associative rules.

Proposed
Methodology

4. DETAILS OF PROPOSED METHODOLOGY

Algorithm for Mining Association Rules

Let [= il; i2; : : :; be a set of items. Let DB be a database of
transactions, where each transaction T consists of a set of items such that
T c L. Given an itemset X fi [, a transaction T contains X if and only it X
 T. An association rule is an implication of the form X => Y, where X <
I, Y fiTland X\ Y = ;. The association rule X => Y holds in DB with
confidence ¢ if the probability of a transaction in DB which contains X
also contains Y is ¢. The association rule X => Y has support s in DB if
the probability of a transaction in DB contains both X and Y is s. The task
of mining association rules is to find all the association rules whose
support is larger than a minimum support threshold and whose confidence

is larger than a minimum confidence threshold.

For an itemset X, its support is the percentage of transactions in
DB which contains X, and its support count, denoted by X:sup. is the
number of transactions in DB containing X. An itemset X is large (or more
precisely, frequently occurring) if its support is no less than the minimum
support threshold. An itemset of size k is called a k-itemset. It has been

shown that the problem of mining association rules can be reduced to two

subproblems :

(1) find all large itemsets for a given minimum support threshold, and

(2) generate the association rules from the large itemsets found.

Distributed Algorithm for Mining Association Rules

We examine the mining of association rules in a distributed
environment. Let DB be a database with D transactions. Assume that there
are n sites St; S2; : 1 :; Sn in a distributed system and the database DB is
partitioned over the n sites into {DB1;DB2; : : ;;DBng, respectively. Let
the size of the partitions DBi be Di, fori=1;:: :; n. Let X:sup and X:sup1
be the support counts of an itemset X in DB and DB1, respectively. X:sup
is called the global support count, and X:supi the local support count of X
at site Si. For a given minimum support threshold s, X is globally large 1f
X:sup fi s fi D; correspondingly, X is Jocally large at site S1, if X:supt {i s
fi Di. In the following, L denotes the globally large itemsets in DB, and
L{k) the globally large k-itemsets in L. The essential task of a distnibuted

association rule mining algorithm is to find the globally large itemsets L.

The algorithm 1s an adaptation of the Aprion algonthm in the
distributed case. At each iteration, it generates the candidate sets at every
site by applying the Apriori gen function on the set of large itemsets found
at the previous iteration. Every site then computes the local support counts
of all these candidate sets and broadcasts them to all the other sites.
Subsequently, all the sites can find the globally large itemsets for that

iteration, and then proceed to the next iteration.

Techniques for Distributed Data Mining

Generation of Candidate Sets

It is important to observe some interesting properties related to
large itemsets in distributed environments since such properties may
substantially reduce the number of messages to be passed across network
at mining association rules. There is an important relationship between
large itemsets and the sites in a distributed database: every globally large
itemsets must be locally large at some site(s). If an itemset X 1s both
globally large and locally large at a site Si, X is called gl-large at site Si.
The set of gl-large itemsets at a site will form a basis for the site to

generate its own candidate sets.

Two monotonic properties can be easily observed from the locally large
and gl-large itemsets. First, if an itemset X is locally large at a site Si |
then all of its subsets are also locally large at site Si. Secondly, if an
itemset X is gl-large at a site Si, then all of its subsets are also gl-large at
site Si. Notice that a similar relationship exists among the large itemsets in
the centralized case. At each iteration (the k-th iteration), the gl-large k-

itemsets can be computed at each site St according to the following

procedure.

1. Candidate sets generation: Generate the candidate sets CGi(k) based
on the gl-large itemsets found at site Si at the (k - 1)-st iteration using

the formula, CGi(k) = Apriori gen (GLi(kfil)).

2. Local pruning: For each X 2 CGi(k), scan the partition DB1 to
compute the local support count X:supi. If X is not locally large at site Si,

it is excluded from the candidate sets LLi(k). (Note: This pruning only

removes N from the candidate set at site Si. X could still be a candidatc

set at some other site.)

3. Support count exchange: Broadcast the candidate sets in LLi(k) to
other sites to collect support counts. Compute their global support counts

and find all the gl-large k-itemsets 1n site Si.

4.Broadcast mining results: Broadcast the computed gl-large k-itemsets

to all the other sites.

For clanty. the notations used so far are listed in the Table .

D number of transactions in DB

s support threshold minsup

L(k) globally large k-itemsets

CAk) candidate sets generated from L{k)
X:sup global support count of X

Di number of transactions in DBi GLi(k)
gl-large k-itemsets at St

CGik) candidate sets generated from GLi(kfil)
LLi(k) locally large k-itemsets in CGi(k)
X:supi local support count of X at Si

Table : Notation Table.

Global Pruning of Candidate Sets

The local pruning at a site Si uses only the local support counts
found in DBi to prune a candidate set. In fact, the local support counts
from other sites can also be used for pruning. A global pruning technigue

is developed to facilitate such pruning and is outlined as follows.

At the end of each iteration, all the local support and global
support counts of a candidate set X are available. These local support
counts can be broadcoasted together with the global support counts after a
candidate set is found to be globally large. Using this information, some
global pruning can be performed on the candidate sets at the subsequent
iteration. Assume that the local support count of every candidate itemset is
broadcasted to all the sites after it is found to be globally large at the end
of an iteration. Suppose X is a size-k candidate itemset at the k-th
iteration. Therefore, the local support counts of all the size-(k-1) subsets of

X are available at every site.

Count Polling

The local support count of every candidate itemset 1s broadcasted from
every site to every other site. Therefore, the number of messages required
for count exchange for each candidate itemset is O(n2), where n is the
number of partitions.In our method, if a candidate itemset X is locally
large at a site Si, Si needs O(n) messages to collect all the support counts
for X. In general, few candidate itemsets are locally large at all the sites.
To ensure that DM requires only O(n} messages for every candidate
itemset in all the cases, a count polling technique is introduced.At the k-th
iteration, after the pruning phase, (both local and global pruning), has been
completed, DM uses the following procedure at each site Si to do the

count polling.

1. Send candidate sets to polling sites: At site Si ,for every polling site Sj ,
find all the candidate itemsets in LLi(k) whose polling site is Sj and store
them in LLi;j(k) (i.e., candidates are being put into groups by their polling
sites). The local support counts of the candidate itemsets are also stored in
the corresponding set LLi;j(k). Send each LLi;jj(k) to the corresponding

polling site Sj .

2. Poll and collect support counts: If Si is a polling site, Si receives all
LLj;i(k) sent to it from the other sites. For every candidate itemset X re-
ceived, Si tinds the list of originating sites from which X is being sent. Si
then broadcasts the polling requests to the other sites not on the list to

collect the support counts.

3.Compute gl-large itemsets: Si receives the support counts from the other
sites, computes the global support counts for its candidates, and finds the
gllarge itemsets. Eventually, Si broadcasts the gilarge itemsets together

with their global support counts to all the sites.

3. Remote site: return support counts to polling site .When Si receives
polling requests from the other sites, it acts as a remote site. For each
candidate set Y it receives from a polling site, it retnieves Y:supi from the

hash tree Ti(k) and returns it to the polling site.

4. Polling site: recetve support counts and find large itemsets . As a
polling stte, S1 receives the local support counts for the candidate sets in
LPi(k). Following that, it computes the global support counts of all these
candidate sets and find out the globally large itemsets among them. These
globally large k-itemsets are stored in the set Gi(k). Finally, Si broadcasts

theset Gi(k) to all the other sites.

5.Home sife: receive large itemsets . As a home" site, Si receives the sets
of globally large k-1temsets Gi(k) from all the polling sites. By taking the
union of Gi(k), (i=1; :: :; n), St finds out the set Lk of all the size-k large
itemsets. Further, Si finds out from Lk the set GLi(k) of gllarge itemsets
for each site by using the site list in X:large sites. The sets GLi(k)} will be

used for candidate set generation at the next iteration.

Apriori Algorithm: Basic Apriori Algorithm

.Apriori algorithm generate the candidate itemsets to be counted in
the pass by using only the itemsets found large in the previous pass-
without the transaction in the database. Apriori beats AIS and SETM by

more than an order of magnitude for datasets.

The key idea of Apriori algorithm lies in the “downward-closed”
property of support which means if an itemset has minimum support, then
all its subsets also have minimum support is called frequent itemset having
k item can be generated by joining frequent itemsets having k-1 items, and
deleting those that contain any subset that 1s not frequent.

Apriori is an influential algorithm for mining frequent itemset for
Boolean association rules. The name of the algorithm is based on the fact
that the algorithm uses prior knowledge of frequent itemset properties, as
we shall see below. Apriori employs an interactive approach known as a
level-wise search, here k-itemset are used to explore(k+1)-itemset.
Starting by finding all frequent 1-itemsets(items with 1 item) denoted as
L, , we then consider 2-itemsets say L,, and so forth. The finding of each
L requires one full scan of the database. So during each iteration only
candidates found to be frequent in the previous iteration are used to
generate a new candidate set during the next iteration. The algorithm

terminates when there are no frequent k-itemsets.

To improve the efficiency of the level-wise generation of frequent
in itemsets, an important property called the Apriori property, presented
below, is used to reduce the search space. In order to use the Apriori
property, ail nonempty subsets of a frequent itemset must also be frequent.
This property is based on the following observation. By definition ,if an
itemset [does not satisfy the minimum support threshold ,min_sup, then I

is not frequent, that is, P()<min_sup. If an item A is added to the itemset

I, then resulting itemset I{i.e., 1w A) cannot occur more frequently than 1.

Therefore. 1w A 1s not frequent either , that is, P(I ' A)<min_sup.

Ttus property belongs to a special category of properties called
anti-monotone in the sense that if a set cannot pass a test, all of its subsets
will fail the same test as well. It is called anti-monotone because the

property is monotonic in the context of failing a test.
Notation is given below
k-itemset An rtemset having k itemsets

Ly Set of frequent k-itemset(those with

minimum support)

Cy Set of candidate k-itemset(potentially

frequent itemset)

Algorithm: Apriori. Find frequent itemsets using an iteractive level-wise

approach base on candidate generation

Input: Database D, of transaction; minimum support threshold, min_sup.
Output: L,- frequent itemsets in D.

Method:

L;=find_frequent_I-itemset(D);

fo l‘(k=2 ;L].;.] i@;k'H‘)
!

Ck=appriori_gen(Li.;,min_sup),
for each transaction teD

{

// scan D for counts

C=subset(Cy,t);// get the subset of t that are candidates
for each candidate ceC,

c.count++;

}

Li={ce Cy | c.count Smin_sup}

}

return L = Ly;

procedure apriori_gen(L.:frequent(k-1)- itemsets; min_sup: mimmum
support threshold)
for each itemsets /) € Ly

for each itemset /12 Ly

{
lf(l'][l]:l[[l] N 1][2]=[|[2} FAVINRIVAN f1{k—2]:]1[1{—2] Al f1 [k—l]:

1 [k-1]) then

c=l < I // join step: generate candidates

if has_infrequent_subset(c, Ly_;)then

delete c; //prune step: remove unfruitful
candidate
else add ¢ to Cy;
t
return Cy;

procedure has_infrequent_subset(c.candidate k-ttemset; |
:frequent(k-1)-itemset);
//has prior knowledge

for each (k-1)-subset s of ¢

if s= L., then
return TRUE;
return FALSE;

Apriori —gen function takes as argument Ly, and returns a superset of the

set of all frequent k-itemset. It consists join step and prune step.

“The Join step

To find L, a set of candidate k-itemset i1s generated by joining Ly
with itself. This set of candidates 1s denoted Cy. Let /; and I, be
itemsets in L. The notation /i[j] refers to the jth item in (e.g., /;[k-2]
refers to the second to the last item in /;). By convention, Apriori
assumes that items within a transaction or itemset are sorted In
lexicographic order . The join, Ly.;<> Li.;, 15 performed, where members
of Ly, are joinable if their first(k-2)items are in common. That 1s, member
and of Ly, are joined if(/h{1]1=0[1] ACH[2]=012]) Ao oAl L[K2]= 1 [k-
2N A(4 [k-1]= 1) [k-1]). The condition simply ensures that no duplicated
are generated. The resulting itemset formed by joining and s /i[1] /;{2]
o HIk-2] 1 [k-1]

The Prune step

Ck is a superset of Lk, that 1s its member may or may not be
frequent but all of the frequent k itemset are included in Ck.A scan of the
database to determine the count of each candidate in Ck would result in
the determination of Lk .To reduce the size of Ck,the Aprion properties is
used as follows. Any k-1 itemset that is not frequent cannot be a subset of
frequent k itemset.Hence if any k-1 subset of candidate k itemset is not in
Lk-1.Then the candidate cannot be frequent either and so can be removed
from Ck.This subset testing can be done by maintaining a hash tree of a

frequent patterns.

The Apriori Algorithm — Example

Database D

TID

ltems

100
200
300
400

134
235
1235
25

L;

itemset| sup

{13}
{2 3}
{2 5}
{3 5}

N W N NC

Cs

{2 35)

{123}

{13 5}

CI[L;
ite{r?}set su2p. itemset|sup.
ScanD; {2} | 3 {;} §
—>| (3 3] 2l
| 1 {3t | 3
(51 {50 [3
C; ¢
itemset| sup it;m ;}Gt
a2y | 1 Scan D 13)
(13| 2 {1 5
{15y | 1| *——— {2 3}
23 | 2 9
{2 5}Z 3 {3 5}
38712
Scan D itemseti sup
{235} 2

=

¢3 .
e o Dl B @15 Al

£:%vjdk1.2.2\bin\server2>java Hainmenu
Server started

Algorithn aprisri starting now.....

Inpgt gnnfiguration: 4 items, 7 transactions,C1{I-candidate-1temset): [1, 27, 3,
, 1

How ;eading transactiens, increment counters of itemsel

Traverse 1-candidate hashtree ...

In main

didate sets prepared and has been sent to (thers

filgorithm apriori starting now.....

Input configuration: 6 items, 7 transactions,f2(2-candidate-itemsetd:> []

Config File : Cjdki.2. Z\binserver2\iconfig. ot

Transaction File - C:ydk1.2 2binmserverZitransa.bd

Server Started | _

Algorithm apriori starting now....

Ci{1-candidate-itemsef): [1, 2, 3, 4, 9, 6] .

Now reading transactions, increment counters of itemset
;rra\rerse 1-¢andidate hashtree ...

nmaln

[

ndidate sets prepared and has been sentto Others
arithm apriort starting now.....
{(Z-candidate-itemsef): {}

oIyt ISy
PIST 609 LILT I e LI LT

@Data mining Server A M=l E3
Set configfile
Set transactiontile
Run
PrintReport
Exit

Iaput configuration: § items, 7 transactions,£2(2- candldatenxtemset); [1

F:\jdk1.%\bin\server1>java Mainmenu
Server started

filgorithm apricri starting now

Input configuration:z § items, 7 transactions,Ci{i-cardidate-itemset): {1,

4, 5]
sz reading transactions, increment counters of itemsel
Traverse f-candidate hashtree ...

andidate sets prepared and has been sent to Others

filgorithm apriori starting now

Input configuration: 5 items, 7 transactions,C2(2-candidate-itemset): []

2, 13,

Set confi gf e
Set transactmnﬁle

PrmtReport
Exit

Config File : Fidkl .4ibinserver? lconﬂﬁ.m

Transaction File : Fjdk1.sihinserveritransa.bd

Server Started)

Algurlthm apriori starting now....

CT{1-candidate-itemsef): [1, 2, 3, 4, 9] .

Naw reading transactions, increment counters of itemset
lTraverse 1-candidate hashiree ..

h main

ndidate sets prepared and has been sentto Others
arithm aprior starting now....

5
i
K]
2
1
c
A ,)
(Z-candidate-itermnsef): []

Mo O LI =0

|
c

Both candidatei and candidate? are empty

F:\jdk1.4\bin\renull>
F:\jdk1.4\kin\nznuldexec

F:\jdk1.4\bin\renul>java Clieatmenu 192 168.1.% 1922 _168.1_2
rl s F192.168. 1.1/ 1largeServer

rmizfA192.168.1.2/ largeServert

after

after getting remote objects

k =1

In apriori Test hefor call CreatCandidate

In apriori Test

IF QAR B n

2

In apriori Test befor call Creatlandidate
In apriori Test i

Both candiadatel and candidate? are empty

@Dala mining Chent M= E

Apriori Pracess| Help

A T

L. Set Minimum Suports.
PrintRepaort

Exit

e g iy 53

Minimum Support

Enter Minimum Support Value:]T OI<|

L1 =rmiff192.168.1.14

L2 =rmisi182168.1.24

e1r getting rernote object
priori Test

didate11

argeServer
arjeServer
s

oot 1]
1] -‘—h%%

=
Lo

ndidate12

I OO e L) (T2 42 LI

<]
galae

)5 R P00 ORI = h— ()
w

=

o

oo

rf est

Q) =<
D —
[p%]
=

|«

Conclusion

6. CONCLUSION

Here, we proposed and implemented an efficient and effective
distributed algorithm DM for mining association rules. Some interesting
properties between locally and globally large itemsets are observed, which
leads to an effective technique for the reduction of candidate sets in the
discovery of large itemsets. Two powerful pruning techniques, local and
global pruning, are proposed. Furthermore, the optimization of the
communications among the participating sites is performed in DM using
the polling sites. The result shows the high performance of DM at mining

association rules.

Recently, there have been interesting studies on the mining of
generalized association rules, multiple level association rules, quantitative
association rules , etc. Extensions of our method to the mining of these
kinds of rules in a distributed or parallel system are interesting issues for
future research. Also, parallel and distributed data mining of other kinds of
rules, such as characteristic rules , classification rules, clustering , etc. is

an important direction for future studies.

References

7. REFERENCES

7.1 Reference book
7.1.1 Jiawei Han, Micheline Kamber. “Data Mining: Concepts and

Techniques; Harcourt India private limited, 2001.

7.1.2 Stefano ceri, Giuseppe pelagatti Distributed Databases principles

and systems”

7.2 Journals

7.2.1 R. Agrawal, T. Imielinski, A. Swami: “Database Mining: A
Performance Perspective”, [EEE Transactions on Knowledge and Data
Engineering, Special issue on Learning and Discovery in Knowledge-

Based Databases, Vol. 5, No. 6, December 1993, 914-925.

7.2.2 Rakesh Agrawal and Ramakrishnan Srikant. "Fast algorithms for

mining association rules in large databases” In Proc. of the VLDB

Conference, Santiago, Chile, September 1994,

7.3 Websites

7.3.1 IBM Corp., (1995) "Data mining - an IBM overview",
http://ibm.com. IBM's view of data mining - explains the data mining

techniques in some detail, June 25, 200!

7.3.2 Analysis of Data Mining Algorithms by Karuna Pande Joshi,

www.more.net/ karuna. July 5. 2001

7.3.3 The Parallel Computer Centre, nor of The Queen's University of

Belfast. “What is data mining “, www.qub.ac.uk July 19. 200!

7

A
P
p
en
d
1
X

CLIENT PROGRAM

import java.lo.*;

import java.util.*;
import java.rmi.*;
import java.rmi.server.*;
import java.lang.*;
import java.awt.*;
import javax.swing.*;
import java.awt.event.®;

public class aprioriTest extends JDialog
{

public Vector Lul;

public Hashtable c;

public Hashtable candl,cand2,cand3;
public largeIntf lint1;

public largeIntf] lint2;

RCanvas rc ;
String s ="";

int minsup = 2;

public aprioriTest(String args{],int mins)

{

super();

minsup = mins;

setSize(500,500);

setVisible(true),

getContentPane().setLayout{new BorderLayout());

rc = new RCanvas(};

JScrollPane js;

Js = new

JScrollPane(rc,JScrollPane. VERTICAL_SCROLLBAR_ALWAYS,JScrollPane.
HORIZONTAL_SCROLLBAR_ALWAYS)
getContentPane().add(js,BorderLayout. CENTER);

//getContentPane().add(rc);
try
{

DatalnputStream ds = new DatalnputStream(Systent.in);

I = new Vector();
ul = new Vector();

cand] =new Hashtable();
cand?2 =new Hashtable();

candl.put("k1",new Integer(0));
cand2.put("k2",new Integer(1));

Stning urll = "rmi://"+args[0]+"/largeServer”;
String url2 = "mni://"+args[1]+"/largeServerl";

rc.printStr.addElement("URL1 = "+urll);
rc.printStr.addElement("URL2 = "+url2);
rc.repaint(};

System.out.println(urll);
System.out.prntln(url2);

lint1 = (largeIntf)Naming.lookup(urll);
System.out.println("after");
lint2 = (largeIntf1)Naming.lookup(url2);

System.out.printin("after getting remote objects");
re.printStr.addElement("after getting remote objects™);
rc.repaint();

}

catch(Exception e)

{

System.err.println("Exception occured in binding"+e);

//System.exit(0);

}

/* String url = "rmi:\\"+args[2]+"/largeServer3",;
lint3 =(largeIntf)Naming.lookup(url);*/

i

public boolean FindCompleteCand()

{

// Compute C from candl,cand2,cand3;

Enumeration enumrl,enumr?2;
String key1,key2;

Integer valuel,value2;
Hashtable temp;

if(cand1.isEmpty() && cand2.isEmpty())
return false;

#/if (candl.isEmpty()&& cand1==null)
/freturn false;

enumrl = candl.keys();

/f enumr3 = cand3.keys();
temp = new Hashtable();

while(enumrl.hasMoreElements())

{

keyl = (String)enumrl.nextElement();
valuel = (Integer)candl.get(keyl);

enumr2 = cand2.keys();

while(enumr2.hasMoreElements())
{
key2 = (String)enumr2.nextElement();
value? = (Integer)cand2.get(key2);
i Systemn.out.printin("k1 = "+keyl+"k2 =" +key2);
ifikeyl.equals(key2))
{
i System.out.println("keyl = "+keyl+"key2 = "+tkey2);
1
System.out.printin("k"+key2+"v1"+valuel+"v2="+value2);
temp.put(key2,new
Integer(valuel.intValue()+value2.intValue(}));
break;
}
L
}

enumrl = candl.keys();
while(enumrl.hasMoreElements())
{
keyl = (String)enumr!.nextElement();
valuel =(Integer)candl.get(keyl);
if(!temp.containsKey(keyl))
temp.put(keyl,valuel);

1
1

enumr? = cand2.keys();
while{enumr2.hasMoreElements())

!
keyv2 = (String)enumr2.nextElement();
value2 =(Integer)cand?2.get(key2);
1f{'temp.containsKey(key2))
temp.put(key2,value2);
}
* enumrl = temp.keys();

enumr2 = cand3.keys();

while(enumri.hasMoreElements())

f
1

kevl = (String)enumrl.nextElement();
valuel = temp.get(keyl),

while(enumr2.hasMoreElements())

[
1
key2 = (String)enumr2.nextElement();

value2 = cand3.get{key2);

if(enumrl.containsKey(key2))

{
c.put(key2,valuel+value);
j
else
2
c.put(keyl,valuel);
c.put(key?,value2);
}
}
3
¢ = temp;

// Display the whole candidate set
// System.out.printin{" The whole candidate set”);
re.prntStr.addElement("The whole candidate set”);

rc.repaint();
Enumeration e = c.keys();
while(e.hasMoreElements())

{
keyl = (String)e.nextElement();

valuel =(Integer) é.get(keyl);
I/ System.out.println(keyl+" "+valuel);
rc.repaint();

h

S — -

/{ For temporary use

] mmmm e m e e

femm e e -/
retuin true;

}

public boolean GetCandidateSets(int k)

{

String keyl;

Integer valuel;

Enumeration e;

try
{

System.out.println("In apriori Test befor call CreatCandidate");

1/ if(!cand1.isEmpty())
cand] = lint1.CreateCandidateSet(k,l,ul);
I if(!cand2.1sEmpty())
cand2 = lint2.CreateCandidateSet(k,l,ul);
System.out.println("In apriori Test");
re.printStr.addElement("In aprion Test");
rc.repaint(};
// listing of candidate sets in cand2
I System.out.printIn("Candidate"+k+"1");
rc.printStr.addElement("Candidate"+k+"1");
rc.repaint();
if((cand1.isEmpty()|| cand1==new Hashtable(0)) && (cand2.isEmpty()||
cand2==new Hashtable(0)))
{
Systen.out.println("Both candidatel and candidate2 are empty");
re.printStr.addElement("Both candidatel and candidate2 are empty");

re.repaint(};
return false;

}
ificand 1.isEmpty()|| cand1==new Hashtable(0))
{
Systeni.out.printin("Empty candidate set1");
}
else
{

e = candl.keys(),

while(e.hasMoreElements())
{
keyl = (String)e.nextElement();
valuel =(Integer) candl.get(keyl),
// Svstem.out.println(keyl+" "+valuel);
s = keyl+" "+valuel;
rc.printStr.addElement(s);
rc.repaint();
}
}

// listing of candidate sets in cand2
//System.out.printIn("Candidate"+k+"2");
s = "Candidate"+k+"2";
rc.printStr.addElement(s);
rc.repaint();

if(cand2.isEmpty()|| cand2==new Hashtable(0})
{

}

else

{
e = cand2.keys();

System.out.printIn("Empty candidate set2");

while(e.hasMoreElements())

keyl = (String)e.nextElement();
valuel =(Integer) cand2.get(keyl);
System.out.println(keyl+" "+valuel);
s = keyl+" "+valuel;
rc.printStr.addElement(s);
rc.repaint();
}
}

}

catch(Exception ex)

{

System.out.printIn("Exception occurred in GetCandidateSet"+ex);
System.exit(0);

}

/f cand3 = lint3.CreateCandidateSet(k,1);*/
return true;

}

public void FindLargeltemSet()

{

// if candidate items in ¢ exceeeds the minimum support, and pruning test is
completed,prepare 1

Enumeration e = c.keys();

String str=new String();

I=new Vector();

//l.clear();
while(e.hasMoreElements())

{

str = (String)e.nextElement();
Integer it = (Integer) c.get(str);
if((it.intValue()) >= minsup)
{
l.addElement(str);
ul.addElement(str);
1
}
System.out.println(" The large Union set is"+ul});
s = "The large item set is : "+];
rc.printStr.addElement(s);
rc.repaint();

System.out.printIn{" The large Union set is"+ul);
s = "The large Union set is : "+ul;
rc.printStr.addElement(s);

rc.repaint();

}

public void printLargeltemset()

{

System.out.printIn("Printing large item set...");

for(int i=0;i<lLsize();1++)
System.out.printin{ul.elementAt(1));

}

public void aprioriProcess()

i

it k=0:
if(lint] '=null && lint2 != null)
{
while(truc)
{
Kk+—+;
System.out.println("k = "+k);
S = "k = "+k;

rc.printStr.addElement(s);
rc.repaint();
if(GetCandidateSets(k))

{

// Create the complete candidate set from candl,cand2 and cand3
if(FindCompleteCand())

{
rc.priniStr.addElement("printing large & union item sets"),
rc.repaint();
FindLargeltemSet();

}

}

else
break;

b
}
else
{

System.err.printin("null in main");
//System.exit(0);
1

}
}

SERVER PROGRAM

import java.io.*;

import java.rmi.*;
import java.rmi.server.*;
import java.lang.*;
import java.util.*;

public class largeImpl1 extends UnicastRemoteObject implements largelntfl

{

private final int HT=1; // state of tree node (hash table or
private final int IL=2; // itemset list)

int N; // total item #

int M; // total transaction #

RCanvas rc = new RCanvas();
String tempstring = new String();

/I Vector largeitemset=new Vector();
Vector candidate=new Vector();
/1 int minsup;
String fullitemset;
String configfile="config.txt";
String transafile="transa.txt";
Hashtable cand] = new Hashtable();
Hashtable cand2=new Hashtable(};

public largelmpl1(String sconfig,String stransa) throws RemoteException
{

configfile=sconfig;

transafile=stransa;

tempstring = "Config File : "+configfile;
rc.printStr.addElement(tempstring);

rc.repaint();

tempstring = "Transaction File : "+transafile;
re.printStr.addElement(tempstring);

rc.repaint();

fsmmmmaaes - - -- -

// Class Name : candidateelement

// Purpose : object that will be stored in Vector candidate
/! include 2 item

1/ - a hach tree and a candidate list

class candidateelement {
hashtreenode htroot;
Vector candlist;

}

1!

// Class Name : hashtreenode
// Purpose :node of hash tree

S ——
class hashtreenode {
int nodeattr; // IL or HT
int depth;
Hashtable ht;
Vector itemsetlist;

public void hashtreenode() {
nodeattr=HT;
ht=new Hashtable();
itemsetlist=new Vector();
depth=0;

t

public void hashtreenode(int 1} {
nodeattr=i;
ht=new Hashtable();
itemsetlist=new Vector();
depth=0;
}
b

/- —

// Class Name : itemsetnode

// Purpose : node of itemset (value,counter pair)

/-

class itemsetnode {
String itemset;
int counter;

public itemsetnode(String s1,int 1) {

itemset=new String(s1);
counter=il;

}

public itemsetnode() {
itemset=new String();
counter=0;

}

public String toString() {
String tmp=new String();
tmp=tmp.concat("<\""}),
tmp=tmp.concat(itemset);
tmp=tmp.concat("\",");
tmp=tmp.concat(Integer.toString(counter));
tmp=tmp.concat(">");
return tmp;

Hmmmmm e -—-- - ---

i
1
4
i
7
i

Method Name: getconfig
Purpose : open file config.txt
: get the total number of items of transaction file

- and the total number of transactions
: and minsup

public void getconfig() throws IOException {

I

I
/f

FileInputStream file_in;

DatalnputStreamn data_in;

BufferedReader br =new BufferedReader(new InputStreamReader(System.in));
String oneline=new String();

int i=0;

try {
file_in = new FileInputStream(configfile);

data_in = new DatalnputStream(file in);

oneline=data_in.readLine();

N=Integer.valueOf{oneline).intValue();

oneline=data_in.readLine();

M-=Integer.valueOf{oneline).intValue();

oneline=data_in.readLine();
minsup=Integer.valueOf{oneline).intValue();

System.out.print("\nInput configuration: "+N+" items, "-+M+" transactions,");
System.out.println("minsup = "+minsup+"%");
System.out.printin();

} catch (IOException e) {

Qyvcterm At nrntlnia)-

/-~ mmmmmmmm e oo

// Method Name: getitemat

/{ Purpose : get an item from an itemset

1 : get the total number of items of transaction file

// Parameter :inti:i-th item ; itemset : string itemset

// Return :int: the item at i-th in the itemset

Jfmmm e - -
public int getitemat(int 1,String itemset) {

String strl=new String(itemset),
StringTokenizer st=new StringTokenizer(itemset);
int j;

if (i > st.countTokens())
System.out.println{"eRRor! in getitemat, !!!");

for (j=17<=1;j++)
strl=st.nextToken(};

return(Integer.valueOf(strl).intValue());

¥ R

/{ Method Name: 1tesetsize

// Purpose : get item number of an itemset

/{ Parameter :itemset : string itemset

// Return : int : the number of item of the itemset

/ -

public int itemsetsize(String itemset) {

StringTokenizer st=new StringTokenizer(itemset);
return st.countTokens();

}

e - -- - - -—-

// Method Name: gensubset

// Purpose : generate all subset given an itemset

// Parameter : itemset

// Return : a string contains all subset deliminated by ","

/ ce.g. "12,13,23"is subset of "1 2 3"

I - - -
public String gensubset(String itemset) {

int len=itemsetsize(itemset);
int1,j;

String strl;

String str2=new String();
String str3=mew String();

if (len==1)
return null;
for (i=1;1<=len;1++) {
StringTokenizer st=new StringTokenizer(itemset);
strl=new String();
for j=13<1++) {
strl=strl.concat(st.nextToken());
strl=strl.concat(" ");
H
str2=st.nextToken();
for (j=i+1;j<=leny++) {
strl=strl.concat(st.nextToken());
strl=strl.concat(" ");
3
if (i'=1)
str3=str3.concat(",");
str3=str3.concat(strl.trim(});

}

return str3;

} //end public String gensubset(String itemset)

N —— SRS

// Method Name: createcandidate

// Purpose : generate candidate n-itemset

/{ Parameter :int n : n-itemset

/{ Return : Vector ; candidate is stored in a Vector

Vi - -
public Vector createcandidate(int n,Vector 1) {

Vector tempcandlist=new Vector();
Vector In_1=new Vector();

int 1,},lengthl;

String cand1=new String();

String cand2=new String();

String newcand=new String();

//Svstem.out.println("Generatinge "+n+"-candidate item set ...

if (n=1)
for (i=1:1<=N;1++)
tempeandlist.addElement((new Integer(i)).toString(}));

else {
// In_1=(Vector)largeitemset.elementAt(n-2);

//System.out.printin("the value of 1 "+1);
In_1=1;
lengthl=In_1.size();
for (i=0;1<lengthl;i++) {
cand1=(String)In_1.elementAt(1);
for j=1+1;<lengthl;j++) {
cand2=(Stning)ln_1.elementAt(j);
newcand=new String();
if (n==2) {
newcand=candl.concat(" "),
newcand=newcand.concat(cand2}),
tempcandlist.addElement(newcand.trim());
}
else |
int ¢,11,12;
boolean same=true;

for (c=1;c<=n-2;c++) {

i1=getitemat(c,candl);

12=getitemat(c,cand2);

if (il'=12) {
same=false;
break;

}

else {
newcand=newcand.concat(" ");
newcand=newcand.concat(Integer.toString(il));

}

}

if (same) {
1l1=getitemat(n-1,candl);
i2=getitemat(n-1,cand2);
newcand=newcand.concat(" ");
newcand=newcand.concat(Integer.toString(il));
newcand=newcand.concat(" ");
newcand=newcand.concat(Integer.toString(12));
tempcandlist.addElement(newcand.tnm());

}

} /fend if n==2 else
} /fend for j

} //end for 1
} /lend 1f n==1 else

if (n<=2)
return tempcandlist;

Vector newcandlist=new Vector();
for (int ¢=0; c<tempcandlist.size(); c++) {
String ¢1=(String)tempcandlist.elementAt(c};
String subset=gensubset(cl);
StringTokenizer stsubset=new StringTokenizer(subset,",");
boolean fake=faise;
while (stsubset.hasMoreTokens(}))
if ('In_1.contains(stsubset.nextToken())) {
fake=true;
break;
}
if ('fake)
newcandlist.addElement(c1);

}

return newcandlist;

} //end public createcandidate(int n)

I - —————— -
// Method Name: createcandidatehashtre

// Purpose : generate candidate hash tree

// Parameter :intn: n-itemset

// Return : hashtreenode : root of the hashtree

Jfamrmmmmm e e
public hashtreenode createcandidatehashtree(int n) {

int i,lenl;
hashtreenode htn=new hashtreenode();

//System.out.println("Generating candidate "+n+"-itemset hashtree");

if (n==1)
htn.nodeattr=IL,;
else

htn.nodeattr=HT;

len1=((candidateelement)candidate.element At(n-1)).candlist.size();
for (i=1;i<=lenl;i++) {
String candl=new String();
cand 1=(String)((candidateelement)candidate.elementAt(n-
1)).candlist.elementAt(i-1);

genhash(1.htn.candl);
!
)

return hin;

} //end public createcandidatechashtree(int n)

O —
// Method Name: genhash

// Purpose : called by createcandidatehashtree

" : recursively generate hash tree node

// Parameter : hinfis a hashtreenode (when other method call this method.it

//1s the root}

/" : cand : candidate itemset string

i :int i : recursive depth,from i-th item, recursive
// Return

J e e e

public void genhash(int i, hashtreenode htnf, String cand) {

int n=itemsetsize(cand);
if (i==n) {
htnf.nodeattr=IL;
hinf.depth=n;
itemsetnode isn=new itemsetnode(cand,0});
if (htnf.itemsetlist=null)
hinf.itemsetlist=new Vector();
htnf.itemsetlist.addElement(isn);
}
else {
if (htnf ht=mnull)
htnf ht=new Hashtable(HT);
if (htnf ht.containsKey(Integer.toString(getitemat(i,cand)))} {
hinf=(hashtreenode)htnf.ht. get(Integer.toString(getitemat(i,cand)));
genhash(i+1,htnf,cand);
b
else {
hashtreenode htn=new hashtreenode();
htnf ht.put(Integer.toString(getitemat(i,cand)),htn);
if (==n-1) {
htn.nodeattr=IL;
//Vector isl=new Vector(};
//htn.itemsetlist=isl;
genhash(i+1,htn,cand);
}

else {

htn.nodeattr=HT;
/fHashtable ht=new Hashtable();
/fhtn.ht=ht;
genhash(i+1,htn,cand);

}

}
}

} //end public void genhash(int i, hashtreenode htnf, String cand)

7/ S O
// Method Name: transatraverse
// Purpose : read each transaction, traverse hashtree,

// Incrment approporiate 1temset counter.

// Parameter : intn: n-itemset

// Return

e -- -

public void transatraverse(int n,Hashtable cand1) {

FileInputStream file in;
DatalnputStream data_in;
String oneline=new String();
int 1=0,j=0,len=0;
String transa;
hashtreenode htn=new hashtreenode();
StringTokenizer st;
String str0;
int numRead=0;
/! Hashtable candl =new Hashtable();

System.out.println("Traverse "+n+"-candidate hashtree ... ");
tempstring = "Traverse "+n+"-candidate hashtree ... ";
rc.printStr.addElement({tempstring);

rc.repaint();

htn=({candidateelement)candidate.clementAt{n-1)).htroot;
try {

file_in = new FileInputStream(transafile);

data_in = new DatalnputStream(file_in);

while (true) {
i if(cand1.1sEmpty())
i System.out.println("Empty candl in while");
/' candl.clear(};
transa=new String();

oneline=data_in.readLine(),
numRead++;
if ((oneline==null)||(humRead > M))
break;
st=new StringTokenizer(oneline.trim());
i=0;
while ((st.hasMoreTokens()) && j <N) {
J*
strO=st.nextToken();
i=Integer.valueOf{str0).intValue();
if (1'=0) {
transa=transa.concat(" ");
transa=transa.concat(Integer.toString()));
len++;
|
;
transa=transa.trim();
i/ Svstem.out.printin("Before Transatrahash”);

transatrahash(0,htn,transa,candl);
1/ System.out.printin("After Transatrahash"},
//printhashtree(htn,transa,0);
}
} catch (IOException €) {
System.out.println("Exception in Transatraverse : "+e.getMessage());

}

1/ System.out.printin("Before returning");

1/ memmmmmmmmmsmmemomooeeee -

// Method Name: transatrahash

// Purpose : called by transatraverse

i : recursively traverse hash tree

// Parameter : htnf is a hashtreenode (when other method call this method,it

//is the root)

7 : cand : candidate itemset string

/! - int 1 : recursive depth,from i-th item, recursive
// Return

/ e e

public void transatrahash(int i,hashtreenode hinf,String transa,Hashtable cand])

{

String stris=new String();
Vector itemsetlist=new Vector();

int j,lastpos,len,d;

itemsetnode tmpnode=new itemsetnode();

if (htnf nodeattr==IL) {
itemsetlist=(Vector)htnf.itemsetlist;

len=1temsetlist.size(};
//System.out.println("Item List");
for (j=0;j<len;++) {
tmpnode=(itemsetnode)itemsetlist.element At();
d=getitemat(htnf.depth,tmpnode.itemset),
lastpos=transa.indexOf(Integer.toString(d));
if (lastpos!=-1)
((itemsetnode)(itemsetlist.element At()))).counter++;

}

for(j=0;j<len;j++)
{

Integer value = new
Integer(((itemsetnode)itemsetlist.elementAt(j)).counter);
String key = ((itemsetnode)itemsetlist.elementAt(j)).1temset;

candl.put(key,value);
}
}
else /HT
for (int b=i+1;b<=itemsetsize(transa);b++)

if (htnf.ht.containsKey(Integer.toString(getitemat(b, transa))))

transatrahash(i,(hashtreenode)htnf.ht. get(Inte ger.toString(getitemat(b,transa)})
Jtransa,candl);

} // public transatrahash(int ii,hashtreenode htnf,String transa)

// Method Name: CreateCandidateSet()

// Purpose : main processing method

/! Parameters :

// Return :Hashtable

S emm e -

public Hashtable CreateCandidateSet(int k,Vector 1,Vector ul} throws
RemoteException,IOException

{

candidateelement cande;
LTnclifaladm ~amdidatal — manr Hacliahlal)

System.out.printin();

System.out.println(" Algorithm apriori starting now.....");
System.out.println();

if(LisEmptv())

{

rc.printStr.addElement(” Algorithm aprion starting now.....");
rc.repaint();

}
getconfig();

fullitemset=new String();
fullitemset=fullitemset.concat("1"}),
for (int {=2;i<=N;i++) {
fullitemset=fullitemset.concat(" ");
fullitemset=fullitemset.concat((new Integer(1)).toString());

;

tempstring = "large Union item set”;
rc.printStr.addElement(tempstring),
rc.repaint();

if(!ul.isEmpty())

{
tempstring ="Item ";
rc.printStr.addElement(tempstring);
rc.repaint();
tempstring ="----—---=cw==-o- “
rc.printStr.addElement(tempstring);
rc.repaint(};
for(int it=0;1t<ul.size();it++)
{
tempstring =(String)ul.elementAt(it);;
rc.printStr.addElement(tempstring);
- re.repaint();
}
}
else
{

rc.printStr.addElement("Empty”);
rc.repaint(});

cande=new candidateelement();
cande.candlist=createcandidate(k,l);

* System.out.println("C"+k+"("+k+"-candidate-itemset): "+cande.candlist),
tempstring = "C"+k+"("+k+"-candidate-itemset): "+cande.candlist;

rc.printStr.addElement(tempstring);
rc.repaint();*/

if (cande.candlist.isEmpty(})
return (new Hashtable(0));

cande.htroot=null;
candidate.addElement(cande};

((candidateelement)candidate.elementAt(k-
1)).htroot=createcandidatehashtree(k);

System.out.println("Now reading transactions, increment counters of
itemset");

rc.printStr.addElement("Now reading transactions, mcrement counters of
itemset");
rc.repaint(};

transatraverse(k,candl);
System.out.printIn("In main");
re.printStr.addElement("In main");
rc.repaint();

if(cand1.isEmpty())
{

System.out.println("Empty"),
rc.printStr.addElement("Empty");
rc.repaint();

}

else
{
Enumeration e;
tempstring ="Item "+ "Frequency";
rc.printStr.addElement(tempstring);
re.repaint(};

tempstring ="-------- =rommommmmeee-
IC. prmtStr addElement(tempstrmg)

re.repaint();

rc.printStr.addElement("");
rc.repaint();

e =candl.keys();
while{e.hasMoreElements())
{

String str = (String)e.nextElement();

Integer valuel = (Integer)candl .get(str),

candidatel.put(str,valuel);
Syvstem.out.printin(str+" "+ valuel);
tempstring =str+" "+ valuel;
rc.printStr.addElement(tempstring);
rc.repaint();

rc.printStr.addElement("");
rc.repaint();

}

System.out.printin("Candidate sets prepared and has been sent to Others™);
rc.printStr.addElement("Candidate sets prepared and has been sent to
Others™);
rc.repaint();

cand] .clear(),
return candidatel;

t
}
import java.io.*;
import java.rmi.*,
import java.rmi.server.*;
import java.lang.*;
import java.util.*;

public class largelmpl] extends UnicastRemoteObject implements largelntfl

{

private final int HT=1; // state of tree node (hash table or
private final int IL=2; // itemset list)

int N; // total item #
int M; // total transaction #

RCanvas rc = new RCanvas();
String tempstring = new String();

// Vector largeitemset=new Vector(),
Vector candidate=new Vector();
// int minsup;
String fullitemset;
String configfile="config.txt";
String transafile="transa.txt";
Hashtable candl = new Hashtable();
Hashtable cand2=new Hashtable();

public largeImpl1(String sconfig,String stransa) throws RemoteException
{
configfile=sconfig;
transafile=stransa;
tempstring = "Config File : "+configfile;
rc.printStr.addElement(tempstring);
rc.repaint();
tempstring = "Transaction File : "+transafile;
re.printStr.addElement(tempstring);
rc.repaint();
!
A e
/1 Class Name : candidateclement
// Purpose : object that will be stored in Vector candidate
/" : include 2 item
i : a hash tree and a candidate hist
i - -- e
class candidateelement {
hashtreenode htroot;
Vector candlist;

}

! --- e
/I Class Name : hashtreenode
// Purpose :node of hash tree
e - - —
class hashtreenode {
int nodeattr; // IL or HT
int depth;

Vector iiemsetlist;

public voud hashtreenode() {
nodeatt=HT;
ht=new Hashtable();
itemsetlist=new Vector();
depth={:

}

public void hashtreenode(int 1) {
nodeattr=i;
ht=new Hashtable();
itemsetlist=new Vector();
depth=0:
}
}

e e e
/f Class Name : itemsetnode
// Purpose : node of itemset (value,counter pair)
[rmmmmm e memmmean
class itemsetnode {
String itemset;
Int counter;

public itemsetnode(String sl,int i1} {
itemset=new String(sl);
counter=il;

}

public itemsetnode() {
itemset=new String();
counter=0;

}

public String toString() {
String tmp=new String();
tmp=tmp.concat("<\"");
tmp=tmp.concat(itemset);
tmp=tmp.concat("\","};
tmp=tmp.concat(Integer.toString(counter});
tmp=tmp.concat(">");
return tmp,

ffrmmmmm e T CRTE -- -
// Method Name: getconfig
// Purpose : open file config.txt

i - get the total number of items of transaction file
/! : and the total number of transactions

/! : and minsup

Jfmmm e e e

public void getconfig() throws IOException {

FilelnputStream file_in;

DatalnputStream data_in;

BufferedReader br =new BufferedReader(new InputStreamReader(System.in));
String oneline=new String();

nt 1=0;

try {
file in = new FileInputStream(configfile);

data_in = new DatalnputStream(file_in);

oneline=data_in.readLine();
N=Integer.valueOf{oneline).intValue();
oneline=data_in.readLine();
M-=Integer.valueOf(oneline).intValue();
oneline=data_in.readLine();
// minsup=Integer.valueOf{oneline).intValue();
System.out.print("\nInput configuration: "+N+" items, "+M+" transactions,");
// System.out.println("minsup = "+minsup+"%");
/- System.out.printin();
} catch (IOException €) {
System.out.printin(e);
}
}

e

/I Method Name: getitemat

// Purpose : get an item from an itemset

7 : get the total number of items of transaction file

// Parameter :inti :i-th item ; itemset : string itemset

// Return :int: the item at i-th in the itemset

Jfemmm e e oo ---
public int getitemat(int 1,String itemset) {

Ctrine strl=new Strinefitemset):

StringTokenizer st=new StringTokenizer(itemset);
int J;

if (i > st.countTokens())
System.out.printin("eRRor! in getitemat, H!");

for j=1y<=13++)
stri=st.nextToken();

return(Integer.valueOf{strl).intValue());

}

// Method Name: itesetsize

// Purpose : get item number of an itemset

// Parameter : itemset : string itemset

// Return :int : the number of item of the itemset

/- e

public int itemsetsize(String itemset) {

StringTokenizer st=new StringTokenizer(itemset);
return st.countTokens();

}

// Method Name: gensubset

// Purpose : generate all subset given an itemset

// Parameter : itemset

// Return : astning contains all subset deliminated by ","

/f ce.g."12,13,23"is subsetof "1 2 3"

Jfmm e -- ---
public String gensubset(String itemset) {

int len=itemsetsize(itemset);
int 1,];

String strl;

String str2=new String();
String str3=new String();

if (len==1)
return null;
for (1i=1;1<=len;i++) {
StringTokenizer st=new StringTokenizer(itemset);
strl=new String();
for (j=1;j<i;j++) {
strl=strl.concat(st.nextToken());
strl=strl.concat(" ");

}

str2=st.nextToken();

for (j=i+1;j<=len;j++) {
strl=strl.concat(st.nextToken());
stri=strl.concat(" ");

}

if (it=1)
str3=str3.concat(",");

str3=str3.concat(strl.trim());

}

return str3;

} /fend public String gensubset(String itemset)

// Method Name: createcandidate
// Purpose : generate candidate n-itemset
// Parameter : int n : n-itemset
// Return : Vector : candidate is stored in a Vector
7 S —— S —-
public Vector createcandidate(int n,Vector 1} {

Vector tempcandiist=new Vector();
Vector In_1=new Vector();

int 1,j,lengthl;

String candl=new String();

String cand2=new String();

String newcand=new String();

//System.out.println("Generating "+n+"-candidate item set");
if (n==1)
for (i=1;1<=N;i++)
tempcandlist.addElement((new Integer(i)).toString());

else {
// In_1=(Vector)largeitemset.elementAt(n-2});

//System.out.println("the value of | "+1);
In 1=1;
length1=In_1.size();
for (i=0;i<lengthl;i++) {
cand1=(String)In_1.elementAt(1);
for (j=i+1;j<lengthl;j++) {
cand2=(String)in_1.elementAt(j);

newcand=new String(};
N SO

newcand=candl.concat(" ");
newcand=newcand.concat(cand2);
tempcandlist.addElement(newcand.trim());

}

else {
int c.11.12;
boolean same=true;

for (c=1;c<=n-2;c++) {

11=getitemat(c,candl);

12=getitemat(c,cand2);
if (11'=12) §
same=false;

break;

1
3

clse |
newcand=newcand.concat(" ");
newcand=newcand.concat(Integer.toString(il));
j
}
if (same) {
11=getitemat(n-1,candl);
12=getitemat(n-1,cand2};
newcand=newcand.concat(" ");
newcand=newcand.concat(Integer.toString(11));
newcand=newcand.concat(" "),
newcand=newcand.concat(Integer.toString(12));
tempcandlist.addElement(newcand.trim());
}
} /fend if n=2 else
} //end for)
} //end for 1
} //end if n==1 else

if (n<=2)
return tempcandlist;

Vector newcandlist=new Vector(};
for (int c=0; c<tempcandlist.size(); ct++) { ~
String ¢1=(String)tempcandlist.elementAt(c);
String subset=gensubset(cl);
StringTokenizer stsubset=new StringTokenizer(subset,".");
boolean fake=false;
while (stsubset.hasMoreTokens())
if (!ln_1.contains(stsubset.nextToken())) {
fake=true;

break;

}
if (!fake)
newcandlist.addElement(cl);

}

return newcandlist;

} //end public createcandidate(int n)

// Method Name: createcandidatehashtre

// Purpose : generate candidate hash tree

// Parameter :int n : n-itemset

// Return : hashtreenode : root of the hashtree

USSR S
public hashtreenode createcandidatehashtree(int n) {

int 1,lenl;
hashtreenode htn=new hashtreenode();

//System.out.printIn("Generating candidate "+n+"-itemset hashtree ...");

if (n=1)
htn.nodeattr=IL;
else

htn.nodeattr=HT;

len1=((candidateelement)candidate.elementAt(n-1)).candlist.size();
for (i=1;i<=lenl;i++) {
String candl=new String();
cand 1=(String)((candidateelement)candidate.elementAt(n-
1)).candlist.elementAt(i-1);
genhash(1,htn,candl);

}

return htn;

} /lend public createcandidatehashtree(int n)

[/ ammmmmm e -

/I Method Name: genhash

// Purpose : called by createcandidatehashtree

1/ : recursively generate hash tree node

// Parameter : htnfis a hashtreenode (when other method call this method, it

//1s the root)
17 - cand - eandidate itemset string

1 1nt i : recursive depth,from i-th item, recursive
/' Retum
i e e wmmmmmmmememne oo
public void genhash(int i, hashtreenode htnf, String cand) {

int n=itemsetsize(cand);
if (i=m) {
htnf.nodeattr=IL;
htnf.depth=n;
itemsetnode isn=new itemsetnode(cand,0);
if (htnf.itemsetlist==null)
htnf.itemsetlist=new Vector();
hinf.atemsetlist.addElement(isn);
}
else {
if (htnf ht==null)
htnf.ht=new Hashtable(HT);
if (htnf.ht.containsKey(Integer.toString(getitemat(i,cand)))) {
htnf=(hashtreenode)htnf ht.get(Integer.toString(getitemat(i,cand)));
genhash(i+1,htnf,cand);
}
else {
hashtreenode htn=new hashtreenode();
htnf ht.put(Integer.toString(getitemat(i,cand)),htn);
if (i=n-1) {
htn.nodeattr=IL;
/fVector :sl=new Vector();
//htn.itemsetlist=isl;
genhash(i+1,htn,cand);
}
else {
htn.nodeattr=HT;
//Hashtable ht=new Hashtable();
//htn.ht=ht;
genhash{i+1,htn,cand);
}
}

}
} //end public void genhash(int i, hashtreenode htnf, String cand)

// Method Name: transatraverse
// Purpose :read each transaction, traverse hashtree,
/" incrment approporiate itemset counter.

{/ Parameter :int n : n-itemset
// Return
S — -- -

public void transatraverse(int n,Hashtable cand?l) {

FileInputStream file in;
DatalnputStreamn data_in;
String oneline=new String();
int i=0,j=0,len=0,
String transa;
hashtreenode hin=new hashtreenode(};
StringTokenizer st;
String str0;
int numRead=0;
// Hashtable cand1 =new Hashtable();

System.out.println("Traverse "+n+"-candidate hashtree ... ");
tempstring = "Traverse "+n+"-candidate hashtree ... ";
rc.printStr.addElement(tempstring);

rc.repaint();

htn=({candidateelement)candidate.elementAt(n-1}).htroot;
try {

file_in = new FilelnputStream(transafile);

data_in = new DatalnputStream(file_in);

while (true } {
I if(cand1.isEmpty())
/" System.out.println("Empty cand! in while");
/I candl.clear();
transa=new String();
oneline=data_in.readLine();
numRead++;
if ((oneline==null){|(numRead > M))
break;
st=new StringTokenizer(oneline.trim());
J=0;
while ((st.hasMoreTokens()) && j <N) {
it
strQ=st.nextToken(),
i=Integer.valueOf(str0).intValue();
if (i'=0) {
transa=transa.concat(" ");
transa=transa.concat(Integer.toSiring(j));
len++;

}

cande.htroot=null;
candidate.addElement(cande);

((candidateelement)candidate.element At(k-
1)).htroot=createcandidatehashtree(k);

System.out.println("Now reading transactions, increment counters of
itemset");

rc.printStr.addElement("Now reading transactions, increment counters of
itemset");
rc.repaint();

transatraverse(k,candl);
System.out.println("In main");
rc.printStr.addElement("In main"),
rc.repaint(};

if(candl.isEmpty())

{

System.out.printin("Empty"),
re.printStr.addElement("Empty");
rc.repaint();

}

else
{
Enumeration ¢;
tempstring ="Item "+ "Frequency”;
rc.printStr.addElement(tempstring);
rc.repaint();
tempstring ="---=--== —=mm-mmmesnoe- ;
rc.printStr.addElement(tempstring);
rc.repaint();

rc.printStr.addElement(n n);
rc.repaint();

e = candl.keys();
while(e.hasMoreElements(})

{

String str = (String)e.nextElement();

Integer valuel = (Integer)cand!.get(str);

for(j=0;j<len;j++)
{
Integer value = new
Integer(((itemsetnode)itemsetlist.elementAt(j)).counter);
String key = ((itemsetnode)itemsetlist.elementAt(j}).itemset;

cand1.put(key,value);

}
1
else /HT
for (int b=1+1;b<=itemsetsize(transa);b++) -
if (htnf.ht.containsKey(Integer.toString(getitemat(b,transa))))

transatrahash(i,(hashtreenode)htnf ht.get(Integer.toString(getitemat(b, transa)))
Jtransa,candl); :

} // public transatrahash(int ii,hashtreenode htnf,String transa)

/t - e mmr oo
/{ Method Name: CreateCandidateSet()
// Purpose : main processing method
// Parameters :
// Return :Hashtable
I - -
public Hashtable CreateCandidateSet(int k,Vector 1,Vector ul) throws
RemoteException,IOException
{
candidateelement cande;
Hashtable candidatel = new Hashtable();

System.out.printin();

System.out.printIn("Algorithm apriori starting now.....");
System.out.printin();

if{LisEmpty(})

{

rc.printStr.addElement(" Algorithm apriori starting now.....");
rc.repaint();

}

getconfig();

fullitemset=new String();
fullitemset=fullitemset.concat("1");

P S .. T U T TR T 1

fullitemset=fullitemset.concat(" ");
fullitemset=fullitemset.concat({new Integer(i)).toString());

}

tempstning = "large Union item set";
rc.printStr.addElement(tempstring);
rc.repaint();

if(lulisEmpty(}))
{

tempstring ="Item ";
rc.printStr.addElement(tempstring);
IC. repaint()

tempstring ="-------------—-—
re.printStr. addElement(tempstnng),
rc.repaint();

for(int 11=0;1t<ul.size();it++)

{

tempstring =(Stringjul.elementAt(1t);;
rc.printStr.addElement(tempstring);
rc.repaint();

}
}
else
{
rc.printStr.addElement("Empty");
rc.repaint();
j

cande=new candidateelement();
cande.candlist=createcandidate(k,l);

/* Systemn.out.println{"C"+k+"("+k+"-candidate-itemset): "+cande.candlist);
tempstring = "C"+k+"("+k+"-candidate-itemset): "+cande.candlist;
rc.printStr.addElement(tempstring);

rc.repaint();*/

if (cande.candlist.isEmpty())
return (new Hashtable(0));

candidatel.put(str,valuel);
Sxstem.out.println(str+" "+ valuel);
tempstring =str+" "+ valuel;
re.printStr.addElement(tempstring);
rc.repaint();

rc.printStr.addElement("");
rc.repaint();

}

System.out.println("Candidate sets prepared and has been sent to Others”);
rc.printSwr.addElement("Candidate sets prepared and has been sent to
Others™),
rc.repaint();

candl.clear();
retumn candidatel;

;
}

