creagx operating system

PROJECT WORK
Done by

KIRON .K. ABRAHAM

S. SATHISH KUMAR

D. SENTHIL KUMAR

H. THIRUKKUMARAN
. () K. VINOD KUMAR

Under the guidance of i
Mrs. R. KALAISELVI B.E. Vasx

BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE

Of the Bharathiar University, Coimbatore

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE 641 006
MARCH-2002

CERTIFICATE

Department of Computer Science and Engineering
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE 0641 006

This is to certify that the Project Report entitled

creagx operating system

is the bonafide record of work done by

KIRON .K. ABRAHAM (9827K0184)
S. SATHISH KUMAR (9827K0212)
D.SENTHIL KUMAR (9827K0215)
H. THIRUKKUMARAN (9827K0221)
K. VINOD KUMAR (9827K0224)

In the partial fulfillment of the requirements for the degree of
BACHELOR OF ENGINEERING
In
COMPUTER SCIENCE
Of the Bharathiar University. Coimbatore

I\Lf "! T :
Mrs. R. Kalaise i - Dr. S. Thangasamy

Project Guide Head of the Department

Submitted for the Viva Voce held on

Internal Examiner External Examincr

o
7

making the dusk a dawn. ..

creagx operating system

7 > A dedication. ..

to our beloved parents, brothers and sisters
for the unconditional love and affection

to Kumaraguru College of Technology
for opening the doors of technical

education

to all our honourable teachers

for the knowledge acquired

to our respected guide
for her intuition, advice and inspiration

to all our friends and loved ones
for their unfailing support and care.

o ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We hereby express our sincere gratitude to our beloved principal.
Dr. K. K Padmanabhan for providing all the facilities needec for tae
completion of this project.

We are extremely grateful to our Head of the Departmeni,
Dr. S. Thangasamy Ph.D. for being the comer stone of our project. His
valuable advices and supervision only brought this project into exisience.

We extend our heartfelt thanks to our Assistant Professor,

Mrs. S. Devaki M. S., for providing us the complete utilization o1 the
computer science laboratory whenever needed. Also, she helped us with
some valuable suggestions, which actually made our project worth 1ts salt.

Our project Guide, Mrs. R. Kalaiselvi, needs to be expressed a nuge
lump of thanks for the strain she had to take in helping us. She was always
beside us providing quick personal and bookish references during the
developing stages of this project. Without her strong support and
cooperation, the project would have remained a dream.

We extend a very special gratitude to Mr. Shoban Jeyaraj of Think
Business Networks (TBN), Coimbatore for providing us the required utilities
and tools for framing the project in a very standard way. Even in his tight
schedule, he was kind enough to allocate a few hours for discusstons
regarding our project.

In addition, we are grateful to all the teaching as well as non-teaching
staffs of the Department of Computer Science and Engineering who have
helped us in one context or other.

Finally, we quote a note of thanks to all our friends for their eternal

ingpiration and encouragement.

*

L J

SYNOPSIS

SYNOPSIS

‘creagx' operating system blooms in the world of many
familiar operating systems. But, most of them either deliberateiv or
accidentally missed some interesting features. This operating svstem is a
joint venture to highlight these limitations. 'creagx' operating system is
developed right from the scratch and hence it does not require any software
substratum. The main feature of this operating system tis the utilization o<
Processor Sertal Number (PSN), which is an enhanced architecture for the
Pentium III processor. 'creagx' 1s a 16bit operating system with open source
code. In effect, our operating system concentrates on

*» Ending software piracy to some extend:
< Designing a processor specific operating system.
* A unique FAT relocation.

The File Allocation Table entry is stored in inner to out fashion on the
disk where as the file storage is performed from the outer to the inrer track.
‘creagx’, although Pentium III specific, works on all the X86 processcrs.
Slight enhancements are also performed in the booting process. Device
drivers for most of the prevailing devices are implemented. A complete ser
of command is provided in this operating system. Also, utilities are provided
to enhance the operating system standards. A well-formulated help is also
available.

The ‘creagx' operating system 1s completely done using
Net Wide Assembler (NASM), which is provided by Mr. Rob Anderton.
The complete source code is kept open welcoming any further
enhancements. For enhancing reliability, each phase of the project is verifiec

using sophisticated tools.

g

*e

*

INDEX

INDEX
ACKNOWLEDGEMENT

SYNOPSIS

1. INTRODUCTION
1.1 EXISTING OPERATING SYSTEMS
1.2 'creagx' AND ITS ADVANTAGES

2. SYSTEM REQUIREMENTS
2.1 PRODUCT DEFINITION
2.2 PROJECT PLAN

3. SOFTWARE REQUIREMENT SPECIFICATION
3.1 PRODUCT OVERVIEW
3.2 FUNCTIONAL REQUIREMENTS

4. DESIGN DOCUMENT

5. PRODUCT TESTING
5.1 OBJECTIVES OF TESTING
5.2 UNIT AND INTEGRATION TESTING
5.3 TEST RESULTS

6. FUTURE ENHANCEMENT

7. CONCLUSION
BIBLIOGRAPHY
APPENDIX

10

18

18

18

19

L X 2

INIRODUCTION

1. INTRODUCTION

Operating Systems, as H.M Dietel states, are primanly resource managers. it
forms a bridge between the user and the hafdware. Today's world has a wide exhibition
of operating systems; each one having a fair coliection of features. However, all of them
appear to share some limitations. In the efforts to point out these drawbacks, bloomec

'creagx’ operating system.

1.1 EXISTING OPERATING SYSTEMS

Existing operating systems all concentrate on the variety of applications. The
existing software scenario demands a lot of authentication factors to be implemented. The
e-commerce and e-business are right at the throne of the current markct.

The well prevailing operating systems provide no software authentication
facilities or security features. The applications through internet depend on the [P address
to some extent. But, each time you are logging in, the [P address will be changed. Hence.
the reliability of the authentication feature using IP address is worth questiening.

[t will be extremely useful if you can utilize the hardware feature of a system for
implementing the security concepts. Indeed, there is an architecture in Pentium III which
remained 1n dusk for the developers. This feature 1s called the Processor Serial Number.
Since no operating system utilized it, the Intel Corporation neglected this architecture in

their advanced processor, the Pentium IV,

1.2. 'creagx' AND ITS ADVANTAGES

'creagx’ provides an access to the Processor Serial Number, which can oe utilized
to end software piracy. Also small tokens of improvements are umplemented in each

phase of development. The key features of 'creagx’ are explained below.

The PSN Utility:

'‘creagx’ is designed specifically for Pentium III processor, but it will work on ail
processors belonging to the x86 family. Processor Serial Number is made accessible 1n
this operating system, thereby opening the possibility of a hardware oriented sccurity
feature. We have used the Processor Serial Number (PSN), which 1s a specific leature of
Pentium III processor as a utility accounting for its processor specific structure.

Unique Booting:

Any operating system on booting, checks the word aa55h at the location 07DFED.
This 16-bit word is the boot signature. The signature is used by BIOS to ensure that the
sector contains a valuable boot record. All the operating systems do not mask this
signature and as a result on continuous improper shut down, the signature gets corrupted
and the operating system asks the user regarding the iocation of its primary file.

'creagx’ operating system masks the signature bit thereby avoiding the corruption
of the boot signature. Hence, on any number of improper shutdowns, the booting

proceeds normally.

Unique File Structure:

'creagx’ senses the need for altering the ordinary file storage system. in order to
avoid the relocation of the set of files on each FAT entry, the FAT is organized to exist
from the inner track of the disk to the outer. The storage of files is performed in the
opposite direction. If the difference between the FAT and the stored files is reduced to a
singte track, the user is warned regarding low disk space and for safety measures. the file
1s discarded.

Adding to these features, small tokens of innovations are implemented n
areas like display of prompt, file creation and commands. The open source code s

another distinctive feature of ‘creagx’ operating systen.

oo SYSTEM REQUIREMENIS

2. SYSTEM REQUIREMENTS

'‘creagx’ operating system has been designed from the scratch itself. Hence, 1t does
not need any substratum for development. This operating system is developed in Net
Wide Assembler (NASM). The assembler is composed by Mr. Rob Anderton. The basic
assembly language programming knowledge is the key resource required 1o work in
NASM. It resembles the TURBO C assembler in many respects thereby making the

working easy. In addition, it provides a well-documented help for quick reference.

2.1 PRODUCT DEFINITION

‘creagx' is a 16-bit operating system. It coins the basics of all operating systems
with innovative ideas and utilization. Each phase of the product is developed keeping an
eye on enhancing the processor architecture usability. The security features are aiso
implemented up to a desired extend. 'creagx’ 1s not meant for competing with the existing
systems; it just points out some common limitations.

The structure of the operating system 1s very important in this context. A diagram

showing the complete structure of the operating system 1s given.

THE CREAGX STRUCTURE

Each sector and track is expected to have a certain set of codings or programs.
The values vary for a given head, track and sector. The contents and the specifications
are tabulated for easy understanding. A clear idea regarding the working of the operating

system can be obtained from this table.

TABLE SHOWING creagXx STRUCTURE

CYLINDER HEAD SECTOR CONTENT
NUMBER NUMBER | NUMBER
0 0 I BOOT RECORD & LOADER
0 0 2 KEYBOARD ISR(INT 20h)
| 0 0 3 PRINTER ISR(INT 17h)
| 0 0 5 COM PORT(INT 14h)
i 0 0 g . DISK DRIVER
| 0 0 A USER VERIFICATION PGM.
| 0 0 B | USER/ PASSWORD RECORDS
0 1 1 FAT DESCRIPTION
0 1 2 . FILE RECORDS
0 { 3 FILE RECORDS
0 1 4 |
77 1 1-18 | FILE STORAGE
78 1 1-18 SOURCE CODE
78 0 118 HELP AND PSN
79 1 118 COMMANDS
79 0 118

COMMAND INTERPRETER

2.2 PROJECT PLAN

Booting, as expected is the preliminary phase of operating system
execution. As per the previous diagram, the tracks and sectors arc allocated. The boot
signature aa55 at 07DFEh is preserved without use in any execution, adding to the safewy
of the MBR file. The loader program loads the MBR initially and from there MBR starts
its execution. The MBR will first check the FDD for the ‘creagx’ file and on obtaining 1
the booting 1s triggered.

‘creagx' supports multi-user facilities along with security measures like
user name and password. The details regarding the user will be stored for future
references. Attributes are provided to each file. The user can thus access the permitted
file. Avery simple format is used for providing permissions.

The storage of files in 'creagx' is unique. FAT entries are stored from inner
to outer track. File storage is done in the reversed direction. To have a complete
command over the files, a sophisticated set of commands is implemented. Whatever the
command is, the execution is compietely based on the permissions allowed.

'creagx’ also contains a detailed sct of device drivers. All of them arc
written in assembly code. These device drivers enhance the usability of the operating
system. The drivers include the programs for timer, keyboard, monitor, hard disk, floppy
drive etc. any references to these devices while using creagx operating system will call

these procedures written for device drivers.

'creagx’ is also rich in utilities. A utility specifically designed for detecting
the Processor Serial Number is added. The PSN is a 96-bit number provided to cach
Pentium il processor. A vﬁse utilization of this utility can reduce software piracy.

A completely formulated help 1s the facility provided for quick references
for the end user. All the commands are explained in the help. The heip also provides the
complete documentation of the project thereby joining hands with the users Jor further

enhancement.

% SOFTWARE REQUIREMENT

SPECIFICATION

3. SOFTWARE REQUIREMENT SPECIFICATION

Software Requirement Specification aims at providing the tlecnmical

A

specification of requirements of a project in a consistent and unambiguous manner. As
‘creagx' is developed from the basic steps. it docs not require the existence of any
supporting software except the assembler NASM. The operating system 1s completely
developed in Netwide Assembler and hence the specification of NASM is worth

mentioning,.

3.1 PRODUCT OVERVIEW

The operating system starts by executing the master boot record. The first
creagx file will search the Master Boot Record and loads it in the first sector. Then the
booting proceeds and the user is welcomed into the operating system with a user name
and password authentication.

After booting, the operating system halts for the user interaction by
displaying the prompt. Now the user can perform any operation he wants and he can
interact with the operating system with a set of commands. The commands are framed n
simple words for easy recollection. Any verification of the command can be viewed
referring to the help file.

'creagx' operating system adds attractive features to the basics of the
existing operating systems. the unique booting procedure and file system makes the
product distinct in nature. The coding used for the various phases of the product can be
found in the appendix provided. Utilities like PSN retrieval, editors ctc. arc implemented
to standardize the operating system up to a desired extend. The common perpheral

devices are also recognized by our operating system accounting for stress frec work:ng.

3.2 FUNCTIONAL REQUIREMENTS

The requirements for each phase are described below.

PHASE PURPOSE SOFTWARE
REQUIREMENTS
BOOTING Loads loader in the sector2. NASM
|
FILE SYSTEM 1) Maintains FAT entries. NASM, DDD
11) File storage and retrieval.
DEVICE DRIVERS | i) Interrupt Service Routines. NASM
11} Interfaces peripherals.
COMMAND 1) Interprets commands. ! NASM, DDD
INTERPRETER it) Executes commands.
COMMAND SET |1} Gets the user inputs. NASM
1) Processes Commands.
it1) Provides output.
UTILITIES Supporting programs for ‘creagx’ NASM
HELP 1) About 'creagx' and PSN DDD

11) Source code details

NASM-IDE:
NASM-IDE is a DOS based system providing a front-end to the Netwide

Assembler (NASM). It is developed by Mr.Rob Anderton. NASM-IDE has been
designed to provide an interface which should be as easy to use as possible for beginners
and experts alike, especially those who are familiar with Borland development products.
Features of NASM-IDE 2.0 include:

- protected mode operation using FPK-Pascal and FreeVision

- further enhancements to the syntax highlighting editor

- keyboard macros

- user defined tools

- large file editing

The NASM 1s used in ali the modules and hence 1t is the most important tooi

utilized 1n our product.

DDD:
DDD stands for Dobaish Disk Doctor. This utility proved 1o be very

helpful in checking the disk storage. The utility provides option to view the sector details
of the hard disks and the floppy disks available to the system. We can also change the
entries of the boot record using this utility. In the left, we have the offset address. To the
next, we have the hex codes of the record. The ASCII equivalents are displayed in the
right most part of the utility. The details of the track, head and sector are displayed at the
bottom.

Partition tables can be viewed by using this utility.In addition, facilities are provided for

saving the altered sector details.

_ % DESIGN DOCUMENT

4. DESIGN DOCUMENT

The development of the 'creagx’ operating system is partitioned 1110 a se:
of modules, which are mutually dependent. The different modules in the course of the
project are:

1. Booting
11, File System

11l. Device Drivers

1v. Command Interpreter
v. Command Set

vi. Utilities

vil. Help

i) Booting:

'creagx' operating system has a very unique booting procedure. As in the
case of any other operating system, the master boot record is of most significance in tzis
operating system. The Master Boot Record is the sector at cylinder 0, head 0, secto~ 1 of
a hard disk. At the completion of Power On Self Test (POST). INT19 is calied. Usualiv
INT 19 tries to read a boot sector from the first floppy drive. 1f a boot sector 1s found on
the floppy disk then that boot sector is read into memory at location 0000:7C00 and INT
19 jumps to memory location 0000:7C00.

The small program in the boot sector must locate the first part of the

operating system's kemel loader program and read that into memory.

Summary of booting:

1) Loads Sector 1, Track 0, Head 0 of the boot drive (A or ') to
absolute address 07C0O0h-G7DFFh

2) Checks the 16-bit word at absolute address C7DFEh for AAS5h.
This is the boot signature and is used by the BIOS to ensure that the

sector contains a value boot sector.

3) If this signature is not present, the BIOS will display a message like

"Operating System Not Found"

4) Loads DL with Q0h if the boot sector was loaded from drive A,80h 1f
the boot sector was loaded from drive C This way, the boot sector

can determine which drive 1t was booted from.

5) Jumps to 0000:7C00h, which is the start of the boot sector -

e
%
6) Load the creagx first file of the operating system. X'

Booting also initializes all the device drivers and updates the micrrupt
vector table. This module is developed using Netwide assembler. The signature bit s
always protected from access and corruption. Hence the preliminary process of booting

works smoothly always in this operating system.

it) File System:

The file system is a simple linked list. The entries in the FAT arc tabulated

below.
FAT ENTRY SPECIFICATIONS
| —— —
!
‘I FILE NAME The file name can extend up to 33 characicrs
| ATTRIBUTES Attributes contain the following ortions.
‘ “AF | HF [SF]LF EO [WO RC
| |] |
|‘ AF - ASCIIFILE
‘I HF - HIDDENFILE
S.F - SYSTEM FILE
1 LF - INACCESSIBLE FILE
| E.O - EXECUTEONLY
W.0O - WRITE ONLY
RO - READONLY
Last bit reserved for future usc.
START TRACK,HEAD Contains the starting track, head anc sector.
AND SECTOR
END TRACK,HEAD AND Contains the ending track, head and secior.
SECTOR

SIZE OF FILE
DATE OF CREATION

DATE LAST USED

DATE LAST MODIFIED

Specifies the file size.
Specifies the date of creation of the file or directory.

Specifies the date on which the file or directery was
previously accessed.

Specifies the date on which the file or directory s modified.

As it is already stated, the file system is different in this operating system comparcc 0

the usual structure we observe in the prevailing ones. The FAT entry 1s stored from mner

10 outer track. To avoid the relocation of files stored on the addition of each AT eniry.

the file storage starts from the outer most tracks to the inner track. When the difference
between the tracks is reduced to one, the user will be warned on the low disk space and
the file is neglected. This avoids the stealing of CPU cycles for file relocation after cach

FAT entry.

ifi) Device Drivers:

Device drivers are program that links the vanous peripherals ¢ the
system. The purpose of device drivers is to interface all the common devices 10 the
operating system with all the extended services. It allocates the resources for ali these
devices. The device drivers are triggered by interrupts, procedures or programs.

'creagx' operating system implements the following device drivers.

Keyboard :

This device driver interfaces kevboards. It 1s implemented as software
mterrupt 20h. Any keyboard service is satisfied using this device driver. Sensitive keys
like ALT, Control, Left and Right Shifts, Insert, Caps are all displayed on use to enhance
usability.

COM port:

COM port 1s implemented as an Intcrrupt Service Routine. It provides the
modem status as well as the port status. The familiar interrupt 14h is used for the
execution of this device driver program. It also detects 2 modem connected.

Disk:

This device driver is executed as a separate program. This program
includes provisions to display the drive details. A special factlity is implemented in this
device driver. Provisions to detect whether the current disk 1s changed or not are
provided. Although this device driver is designed for floppy disk drive. errors regarding
the hard disks are also detected and displayed.

Printer:

This device driver shows the status of the printer. All sorts of errors

T
1 -

regarding the printer like paper out, printer off line etc.. are identified and displayvec.

interrupt used for printer is INT 17h.

iv) Command Interpreter:

The commands are typed after the display of the prompt. Each command
has a key word for its recognition which 1s explained in the next module. The user typed
in words are checked for these keywords and it is checked whether it is directed o ary
command. In effect, the initial function of the command interpreter s o recognize the
key words of the commands. As the keywords are detected, the next step is iae location
of this command on the disk.

As the command is located, the program for the exccution of the command
is loaded. The memeory allocation and other resource allocations are performied by this
module. After loading the program in memory, the subsequent step 1s the executior o the
loaded program. The program does the specified task for the user. But, the work ¢f the
command interpreter is not yet over. It has to return the control back to the program that
triggers the command, 1.e, the interpreter should gain the control back.

As the operating system is not supporting GUI. there should be some
provision to distinguish between the line that is already having been processed and the
line that the interpreter is currently processing. With reference to the traffic signals, w¢
have represented the current line under processing with a green colour with a biinking
cursor. The line of command after execution is represented using the red colour. This
means that as the current command completes 1ts execuiion, the letterings wil: change o

red colour and immediately a new blinking, green cursor appears in the next lire.

v) Command Set:

The user can communicate with the system using the command interpreter

that provides various commands under the following category:
» File commands:
create
This command 1s used to create files. As the user tynes in liis
command, the user will be asked to give a file name, along with the attributes. ~he
attributes witl also be displayed in order so that the user can type in 1 or O for these

attributes. The attributes are, ASCII file, Hidden file, System file, Inaccessibie fiic.

Execute only, Write only and Read only. A valuc of | indicates that the atiribute s
satisfied.
delete
Delete is performed to crase a file from the disk. For this
purpose both the file name and the user name are compared. The
sccurity of a file is ensured by the fact that a different user cannot delete
your file.
view
This command is used to view the file record and the
data. To enhance security, this command is also executed after checking
the user name and the file name.
print
This command is used to print the specified file of the
logged in user.
e User commands:
list
This command is used to list the files of the current user,
Rather than specifying the file name only,the FAT entries of the
specified file is also displayed on execution of this command.
encrypt
This command encrypts the data of a given fiie of the
current user. The encryption key is obtained by referring to the memory
based on the user name we are logging n. this means that the encryption
key 1s unique.
decrypt
Decryption of an encrypted file of the logged in user 1s
performed by this command. This command alse refers the memory for

the decryption key. This key 1s also unique in nature.

15

e Disk commands
capacity
This command specifies the size of the floppy drive. It s

capable of recognizing all types of floppy drives.

e Device commands

stat
This gives the current status of the floppy disk. It detects

the read and write errors for the operation last performed.

vi) Utilities:
‘creagx’ provides two basic utilities. They are the disk viewer and the

editor.

¢ Disk Viewer:

The disk viewer is the utility by which we can view the dctails of the
floppy disk sector by sector. The head number, track number and sector number arc
displayed for quick reference. On reaching the formatted part of the tloppy. the
division symbol is displayed. The division symbol is having an ASCI value of Fo.

We can scroll between the sectors by using the arrow keys.

e Editor:

The editor we have implemented is like any other editer we came
across in any assembler. We can change the text details using this editor. Arny
modifications of the data as well as any text file can be saved and the information can

be viewed using the disk viewer utility.

vii) Help:

A detailed help file is provided for all the commands in this operating
system. Any references regarding the commands can be satisfied using this hely filz.
Basically, the help of 'creagx’ operating system is classified mnto three.

s About 'creagx’
e About PSN
o Complete Source Code
Also, the help file contains information regarding shortcut keys. Any sor
of a technical query regarding the operating system will also be managed by the help. The
source code is kept open welcoming any enhancements. Each and every module 1s
explained with sufficient documentation. The dectails about the Pentium I PSM

architecture is also provided to the user enabling its wise use in networking,

*

PRODUCT TESTING

5. PRODUCT TESTING

Any product before completion needs to be tesied for the purpose o
enhancing reliability. Testing, is defined as a measure to reduce risks and loss
associated to an acceptable level. This product, being an operating system. the nced for
testing and debugging is optimum. A variety of testing techniques and strategics arc
developed for the software products. But each product should follow the srinciple

Too little testing is a crime; too much testing is a sin’".

5.1 OBJECTIVES OF TESTING:

1) Investigate structural properties of source code.

2) Exercise the code with nominal inputs.

3} Determine the execution time of each unit of the product.

4) Determine the breaking point of the product.

5) Check the program throughput, response time and device utilization.
6) Determine the optimum traverse path for execution.

7} Detect missing paths, computational and domain errors.

8) Check the validity at each stage of development of the product.

9) Check the overall validity of final products against needs and requirements

2.2 UNIT AND INTEGRATED TESTING:

Among the wide range of testing strategies available. unit and integration testing are
the most prevailing.

The basic structure of testing 1s as follows:
Coding and Debugging =2 Unit testing = Integration testing

Unit testing comprises the set of tests performed by an individual
programmer prior to the integration of the unit into a large system. Unit lesting
includes the application of functional tests, performance tests. stress tests and finaliy

structure tests.

18

Integration testing includes bottom up, top down and sandwitch strategies.
As far as 'creagx’ operating system 1s concerned, the bottom up strategy 15 adoptedc.
Each unit of the operating system is lested, then each subsystem is tested and “nalty

the complete product 1s exposed to testing.

5.2 TEST RESULTS :

The test results for the tests performed for cach module 15 described

below.
i) Booting:

On booting, by executing the CPUID instruction, the PSN is tested. The
loading of the Interrupt Service Routines and the updation of the Interrupt Vector
Table needs to be verified. The verification is performed using the Dobaish Disk

Doctor.

ii) File System:

The initial phase of testing needs to be focussed on searching of the
specified files by the user. Again testing is to be performed whether the module s
integrated with the command system completely. The checking 1s alsc nerformed to

ensure whether the file storage is performed precisely.

iii) Device Drivers:
The first criteria for checking is that whether the error messages are

displayed for any errors on the flopy disk. Testing 1s also performed to veriiy the

status of the COM por as well as modem.

iv) Command Interpreter:
The command needs to be identified properly. This is the basic area that
needs to be tested in a command interpreter. Testing is also performed to ensure the

correct display style of the prompt.

v) Command Set:

The integration of the command set with the file system is worth testing.
Also the verification is performed to know whether the correct search routing :s
employed. Another matter of concern is whether the called command »rovides the

specific purpose.

vi) Utilities:

The disk viewer is checked to verify its capacity to display the complete
sectors. The updation process of the editor is also verified using the disk viewer. Tesls
are performed to check its integration with the file scarch routine inorder w account

for the reliability of the utility.

v) Help:
A verification is performed to know whether the help covers the complete

operating system features.

[EN]
f)

_% TUTURE ENHANCEMENTS

6. FUTURE ENHANCEMENTS

‘creagx’ currently is framed in a very basic implementation medel, il &
present, does not support Graphical User Interface. As the need of upgrading uscr
facilities goes on increasing day by day, ‘creagx’ needs to have a GUIT version developed
in the near future.

This 'creagx’operating system is a 16-bit operating system. The current
utilities and applications require atleast a 32-bit operating sysiem for smooth exccuticn.
Hence, the upgradation of 'creagx' to 32-bit is another area of serious concern.

As the current version of this operating system works on the floppy dis«.
the next version of this operating system needs to be designed in such a way thet 1t adapts
itseif to hard disks.

The 'creagx' operating system specifies the Processor Senal Number
(PSN) utility. Since this facility can be used to distinguish between individual systems,
online checking for detecting software piracy can be performed on developing
corresponding applications. ‘creagx’ operating system would like te have such an
application developed under it.

As the 'creagx’ operating system likes to grow to new heights, the
suggestions from the users need to be given sufficient importance. For the same reason
the complete source code of the operating system is provided in the help. This open
source code might thereby trigger the development of a new, better, sophisticated version

of 'creagx’ operating system.

*

CONCLUSION

7. CONCLUSION

‘creagx’ operating system is a joint venturc to highlight thosc aspects of
operating systems which the prevailing systems failed to represent. The impicmentation

ol each module is done after thorough testing to avoid malfunctioning.

As we have already specified, ‘creagx’ operating system 1s not designed for
competing with the existing systems. It is a blend of unique characteristics with the basics
of operating systems. The highlight of 'creagx’ operating system is the recognition of PSN
architecture of the Pentium III processor. Although the architecture 1s not present in the
latest Pentium IV processor, we expect ‘creagx’ to provide the inspiration o bring that

architecture back to existence.

This page is a termination only for the premier version of ‘creagx’
operating system. It certainly does not put a full stop to the enhancement works

undergoing to affix the product to a more sophisticated software world.

b
12

BIBLIOGRAPHY

BIBLIOGRAPHY

OPERATING SYSTEM DESIGN AND IMPLEMENTATION
- ANDREW S. TANENBAUM.

ADVANCED MICROPROCESSORS AND IBM-PC ASSEMBLY
LANGUAGE PROGRAMMING
' - K. UDAYAKUMAR AND
B. S. UMASHANKER.

DOS 5. A DEVELOPER GUIDE
- AL WILLIAMS.

BIOS INTERRUPTS USING C/C++
-TAYLOR BILLY.

PENTIUM II INSTRUCTION SET AND USER MANUAL
-INTEL CORPORATIONS.

OPERATING SYSTEM CONCEPTS
-H.M DEITEL.

APPENDIX

APPENDIX

SOURCE CODE

“THIS PROGRAM IS THE MASTER BOOT RECORD FOR CREAGX OPERATINCG
SYSTEM

[SECTION .text] s this 1s the code segment
%umacre setcurpos 2 :macro 1o set cursor

mov ah,2

mov bh,0

mov ¢h, %1
mov dl,%2
int 10h
%endmacro
%macro clrscr 0 :macro to clear screen
mov ¢x,2000
label mov ah,14
mov al,"’
xor bh,bh
it 10h
loop label
seteurpos 0,0
%%sendmacro
start: ;start of mam program
clrscr
mov ax,100h
mov es,ax
mov di,0
mov &h,2
mov al,2
mov ch,0
mov cl,2
mov dh,0
mov dl.0
mov bx,0
int 13k
;**************************initiaiise vt
mov ax,0000
mov es,ax
mov di,128
mov BYTE [es:di],00
ine di
mov BYTE [es:di1],00
inc di
mov BYTE [es:di],00

mc di

mov BYTE [es:d1],01h

mov ax,200h

mov es,ax

mov di,0

mov ah,2

mov al.1

mov ch,0

mov cl.4

mov dh,0

mov dl,0

mov bx.,0

it 13h
’N**hc**********************lnIuahse i\‘:t
mov ax,0000

mov €s,ax

mov di,92

mov BYTE [es:di].00
me di

mov BYTE [es:di],00
me di

mov BYTE [es:d1],00
inc di

mov BYTE [es:di],02h

mov ax,300h

mov €s,ax

mov di1,0

mov ah,2

mov al,2

mov ch,0

mov cl,5

mov dh,0

mov dl0

mov bx,0

int 13h

mov ax,0000

mov es,ax

mov di,&0

mov BYTE [es:di],00
inc di

mov BYTE [es:di],00
ine di

mov BYTE [es:di],00

alise 1vt

e di

mov BYTE [es:d1].03h
.**************************************#*********$*
mov ax,400h

mov es,ax

mov di,0

mov ah,2

mov al,3

mov ¢h,0

mov cl.7

mov dh,0

mov dl.O

mov bx,0

int 13h
;**************************hnﬁahsein
mov ax,0000

mov es,ax

mov di,76

mov BYTE [es:di],00
inc di

mov BYTE [es:di1],00
inc di

mov BYTE [es:di},00
inc ds

mov BYTE [es:di],04h
:***
mov ax,1000h

Mmov es,ax

mov bx,0

mov ah,2

mov al,1

mov ¢h,0

mov cl,10

mov dh,0

mov dl,0

mt 13h

mov ax, 1 000h

mov €s,ax

mov ds,ax

mov ss,ax

mov di,0

jmp 1000h:0000
:***
times 510-($-58) db 0

dw Oxaad5

‘THIS PROGRAM DISPLAYS THE PROCESSOR SERIAL NUMBER
[BITS 32] ;this program uses the 32-bit addressing mode
[SECTION .text] :thisis the code segment
vemacro cpuid ¢ ;this is the macro to define the cpuid
db Ox0f,0xa2
%endmacro
%%macro dispchar 0 ;this is the macro to display the character
mov ah, 14
mov bh,0
int 10h
%endmacro
proc: :this procedure is to convert the bin to ascii
push ax
shr al,4
cmp al9
jle near ndeci
sub al,9
add al,64
dispchar
JImp near next
ndect add al,48
dispchar
next pop ax
and al, 15
cmp-al,f
1le near deci
sub al,9
add al,64
dispchar

jmp near pover

deci add al,48
dispchar

pover ret

start: : this is the start of the program
mov ax,1010h
mov €s,ax
mov ds,ax
mov di,0
mov eax, |
cpuid
mov DWORD [es:di],eax
inc di
mov eax,3
cpuid
mov DWORD [es:di],edx
inc di
mov DWORD [es:di],ecx
mov di1,0
mov ax,1010h
mov es,ax
mov ¢x,12
disppsn
mov BYTE al,[es:di]
call proc
inc di
loop disppsn

THIS PROGRAM IS THE KEYBOARD DRIVER FOR CREAGX OPERATING
SYSTEM

[BITS 16] : 16 BIT ADDRESSING MODE

[ORG 0X0000] - ADDRESS OF THE PROGRAM IN RAM

[SECTION .text]

28

%macro dispnum 0
cmp al, 47
jng num]
cmp 21,58
jni numl
push ax
mov ah, 14
xor bh,bh
int 10h
nop ax
numl nop

%endmacro

Y%macro dispsletter O
cmp al,96
jng letter
cmp al, 123
jnl letter
push ax
mov ah,14
xor bh,bh
int 10h
pop ax
letter nop

Ysendmacro

%macro dispcletter 0
cmp al,64
jng letterl
cmp al,91
jni letterd
push ax
mov ah,14
xor bh,bh
int 10h
pop ax
letter! nop

%endmacro

%macro otherkeys 0
cmp ah, 1
je near exit
cmp ah,77
jne near lbll
mnceursor
ibll cmp ah.75

jne near Ibl2
deccursor
Ibl2 cmp ah.14
jne near 1bl3
deccursor
erasechar
deccursor
Ib13 emp ah,83
jne near [bl4
erasechar
deccursor
1bl4 cmp ah,28
jne near bl
mcrow
tbl5 cmp ah,71
Jne near 1bl6
mov ah,3
mov bh,0
int 10h
mov dl,7
mov ah,?2
mov bh,0
int 10h
ibl6 cmp ah,57
jne near Ibl7
mov ah, 14
mov bh,0
int 10h
Ibl7 cmp ah,15
jne near lblend
mov ah,3
mov bh,0
int 10h
add dl.8
mov ah,2
mov bh,0
int 10h
Ibiend nop

%endmacro

Y%omacro incrow O
mov ah,3
mov bh,0
int 10h
ine dh

mov di,7
mov ah,2
mov bh,0
int 10h

%eendmacro

“emacro erasechar 0
mov ah,14

mov al,32

mov bh,0

int 10h
%endmacro

%%Imacro inccursor 0

mov ah,3

mov bh,0

int 10h
nc dl
mov ah,2

mov bh,0

int 10h
%endmacro

%macro deccursor 0

mov ah,3

mov bh,0

int 10h
dec dl

mov ah,?
mov bh,0

int 10h
%endmacro

Y%emacro writestring 4

geteursor
mov bp,%!1
mov ah,13h
mov al,1
mov bh,0
mov bl,i4
mov ¢x,%?2
mov dh,%3
mov dl,%4

;macro to write the string

:move function number to ah
:move write mode to al
;move vdu page no to bh
:move attribute to bl
;move the stringiength to cx as parameter?
;move row to dh reg
;move col to dl reg

i

int 10h ;call the interrupt
setcursor
%endmacro

%macro shiftstatus 0
getcursor
mov ah,2
mov bh,0
mov dh,24
mov dl,0
int 10h
mov ah,9
mov al,20h
mov bh,0
mov bl,0
mov ¢x,80
int 10h
setcursor
mov ah,2
int 16h
mov BYTE [shift],al
and al, 1
cmp al, 1
Jne near labell
writestring rshift,6,24,5
labell mov al,[shift]
and al,2
cmp al,2
jne near label2
writestring lshift,6,24,12
label2 mov al,[shift]
and al,4
cmp al,4
jne near label3
writestring cirl,4,24,18
labei3 mov al,[shift]
and al.8
cmp al,&
jne near label4
writestring alt,3,24,23
labeld mov al,[shift]
and al, 16
cmp al,16
jne near label5
writestring scroll,6,24,55

(9]
I~

labe!5 mov al,[shift]

and al,32

cmp al,32

ine near label6

writestring num,3,24,34
label6 mov al,[shiit]

and al,64

cmp al, 64

jne near label?

writestring caps,4,24,39
label7 mov al,[shift]

and al, 128

cmp al, 128

jne near labelend

writestring insert,6,24,45
labelend nop
%endmacro

%macro getcursor O
mov ah,3
mov bh,0
int 10h
mov BYTE [row],dh
mov BYTE [col],dl
%endmacro

Yemacro setcursor 0
mov ah,2
mov bh,0
mov dh,[row]
mov dl,{col]
int 10h
%sendmacro

start pusha
mov ax,100h
mov es,ax
mov ds,ax
xor ah,ah
int 16h
dispnum
dispsletter
dispcletter
otherkeys
shiftstatus

exit popa

Led
|

iret
[SECTION .data]
rshift db 'RSHIFT
Ishift db 'LSHIFT"
ctrl db 'CTRL'
alt db'ALT
scroll db 'SCROLL!
num db 'NUM'
caps db'CAPS'
insert db 'INSERT!

[SECTION .bss]
shift resb 1
row resb 1
col resb 1

;THIS PROGRAM IS THE DISK DRIVER FOR THE CREAGX OPERATING

SYSTEM

2

[ORG 0X0000]
[SECTION .text]
jmp near start

Yemacro writestring 4
mov ax,%]1
mov bp,ax
mov ah,13h
mov al,l
mov bh,0
mov bl,14
mov cx,%2
mov dh,%?3
mov dl,%4
int 10h

Yeendmacro

start

mov BYTE [stat],ah

pusha

mov ax.400h
mov ds,ax
mov es,ax

mov BYTE ah,[stat]

cmp ah,0
je near errQ

;code starts from label start
;macro to write the string

;move function number to ah

;move write mode to al

;move vdu page no to bh

;move attribute to bi

;move the stringlength to cx as parameter?
;move row to dh reg

;move col to dl reg

;call the interrupt

;start of code for exection

;compare the value of ah against the error code

cmp ah, |
je near errl

cmp ah,2
je near err2

cmp ah,3
je near err3

cmp ah.4
je near errd

cmp ah,5
je near err3

cmp 2h,0
je near errd

cmp ah,7
Je near err?

cmp ah,8
je near err8

cmp ah,9
je near err9

cmp ah,10
J€ near erra

cmp ah,l1]
je near errb

cmp ah,12
je near errc

cmp ah, 13
je near errd

cmp ah,14
J¢ near erre

cmp ah,i5
je near errf

cmp ah. 10
je near errl{

cmp ah,17
je near errl |

cmp ah,32
je near err20

cmp ah,04
je near crrd()

emp ah, 128
je near err80

cmp ah, 170
Je near erraa

cmp ah,137
Je near errbb

cmp ah,204
€ near errce

cmp ah,224
je near errel)

cmp ah,253
je near errff
jmp near exit

errQ mov si, error() .display the crror message
writestring error0.8.1.0
jmp near exit

errl mov si. errorl
writestring error!,24,2.0
1mp near exit

err2 mov si, error?
writestring error?,22,3.0
Jmp near exit

err3 mov si, error3
writestring error3.19.4,0
jmp near exit

errd mov si, errord
writestring error4,10,5.0
Jjmp near exil

SIT3 mov 81, Irord
writestring error5,12,6,0
jmp near exit

erré mov si, errord
writestring error6.19.7,0
Jmp near exit

err? mov si, error’
writestring error7,19,8,0
jmp near exit

err8 mov si, errors
writestring error8.11,9,0

Jmp near exit

errS mov si, error9

writestring ¢mor9,17,10,0

jmp near exit

erra mov si, errora
writestring errora, 15,11,0
Jmp near exit

errb mov si, errorb
writestring errorb,14,12.0
imp near exit

errc Mmaov sl. errore
writestring errorc,20,13,0
Jmp near exit

errd mov si, arrord
writestring errord,35,14,0
Jjmp near exit

erre mov §i, errore
writestring errore,34,13.0

jmp near exit

arrf mov si, errorf

L)

writestring errorf,34,10,0
jmp near exit

err] 0 mov si, errori0
writestring error1 0,35.17.0
jmp near exit

crrl i mov si. crrorl |
writestring error] 1.24,18.0
jmp near exti

err2() mov s1, error2
writestring errer20,17,19.0
jmp near exit

err40 mov si, error40
writestring error40,21,20,0
jmp near exit

err80 mov si. error&0
writestring error80,23,21.0
jmp near exit

erraa Mmov si, erroraa
writestring erroraa,15,22,0
jmp near exit

errbb mov si, errorbb
writestring errorbb,15,23,0
jmp near exit

eITCC Mmov si, €1Torce
writestring errorce,11,24,0
jmp near exit

erre0 mov si, errore0
writestring errore0,20,1,30

jmp near exit

errff mov si, ervorff
writestring errorff,22,2,30

¢xit popa
iret

[SECTION .datal

o
P

error0) db 'no errord’

errorl db 'invalid function requests’

error2 db 'address mark not found$’

error3 db 'diskwrite protectedd’

errord db 'sector not found$'

errors db 'reset failegS’

error6 db 'floppy disk removedS’

error? db 'bad paramcter table$'

crror8 db DMA failured’

error9 db 'DMA crossed 64 kbS'

errora db 'bad sector flag$’

errorb db 'bad track flag$’

errorc db ‘'media type not found$'

errord db 'invalid number of sectors on formaty’
errore db 'control data address mark detecteds’
errorf db 'DMA arbitration level out of ranged’
errorl 0 db 'uncorrectable CRC or ECC data error$
errorl 1 db 'ECC corrected data errord’

error20 db 'controller failed$’

error40 db 'seek operation failedS’

crror80 db 'drive failed to respond$’

erroraa db 'drive not readyS'

errorbb db 'undefined error®'

errorcc db "write faultd’

errore() db 'status register errorS'
errorff db 'sense operation failedS’
[section .bss]

stat resb 1

‘" THIS PROGRAM GIVES ABOUT THE CHANGE IN DISK

[BITS 16] ;16 BIT ADDRESSING MODE
[ORG 0X0100] : ADDRESS OF THE PROGRAM IN RAM
[SECTION .text]
%emacro writestring 4 :macro to write the string
mov ax,%! ;move the offset value to bp thru ax
mov bp,ax
mov ah,13h :move function number to ah
mov al,1 :move write mode to al
mov bh,0 :move vdu page no to bh
mov bl,14 :move attribute 1o bi
mov ¢X,%2 :move the stringlength to ¢x as parameter?
mov dh,%3 ;move row to dh reg

mov d1,%4 :move col to dl reg

int 10h :call the interrupt
%endmacro

mov ah,10h
mov di,0
int 13h

cmp ah,0

je near mess
Jmp nmess

mess writestring message.31.10,10
jmp exit
nmess writestring nmessage, 33,1110
exit xor ah.,ah
int 16h
mov ax,$4c
it 21h

[SECTION .data]
message db "THE DISK IN DRIVE 15 NOT CHANGED'
nmessage db 'THE DISK IN THE DRIVE IS CHANGED'

- THIS IS THE SAMPLE PROGRAM TO READ THE DISK
[ORG 0X0100]

[BITS 106]

[SECTION .text]

mov ax,1000h
mov es,ax
mov bx,0
mov ah,2
mov al,l
mov ¢h,0
mov cl. 1
mov dh,0
mov dl.0
mnt 13h
mov ¢1,0
mov ah,14
mov bh,0
mov ¢cx.,512

40

label mov BYTE al,[es:di]
inc di
mt 10h
loop label

xor ah.ah
int 16h

-THIS PROGRAM REPORTS THE DRIVE TYPE
[BITS 16] . 16 BIT ADDRESSING MODE
[ORG 0X0100] . ADDRESS OF THE PROGRAM IN RAM

>

[SECTION .text]
%macro writestring 4 :macro to write the string
mov ax,%1 :move the offset value to bp thru ax
mov bp,ax
mov ah,13h anove function number o ah
mov al,l :move write mode to al
mov bh,0 :move vdu page no to bh
mov bl, 14 :move attribute to bl
mov ¢x,%?2 :move the stringlength to ¢x as parameter2
mov dh,%3 .move row to dh reg
mov dl, %4 :move col te dl reg
int 10h :call the mterrupt
thendmacro
push es
mov ah,8
mov dl,0
int 13h

cmp bl, 1
je near disk!
cmp bl,2
je near disk2
cmp bl,3
je near disk3
cmp bl,4
je near disk4
jmp exit

disk! pop es
writestring mess, 19,1010

41

writestring dtypel. 20,1 1,10
jmp exit

disk2 pop es

writestring mess,19,10.10
writestring dtype2.20,1 1,10
Jjmp exit

disk3 pop cs

writestring mess, 19,10,10
writestring dtype3,20.11.10
jmp exit

disk4 pop es
writestring mess, 19,10,10
writestring dtype4,20,11.10

exit xor ah,ah
int 16h
mov ax,$4c
int 21h

[SECTION .data]

mess db 'THE DRIVE TYPE IS’
dtypel db '360kb ,40 track,5.25 inch’
dtype2 db '1.2MB ,80 track,5.25 mch’
dtype3 db '720kb ,80 track.3.5 inch’
dtype4 db '1.44MB.80 track,3.5 inch’

-THIS PROGRAM IS THE PRINTER DRIVER FOR CREAGX OPERATING
SYSTEM

[BITS 16] : 16 BIT ADDRESSING MODE

;JORG 0X0100] ; ADDRESS OF THE PROGRAM IN RAM

[SECTION .text]

Y%smacro writestring 4 :macro to write the string
mov ax,%l :move the offset value to bp thru ax
mov bp,ax
mov ah,13h ;move function number to ah
mov al.] :move write mode to al
mov bh,0 ;move vdu page no to bh
mov bl 14 ;move attribute to bl
mov ¢x,%2 :move the stringlength 1o cx as parameter2
mov dh,%3 ;move row to dh reg
mov dl.%4 :move co! to dl reg

int 10h .call the interrupt

Ysendmacro

mov BYTE [shift].ah

pusha

mov ax,200h
MoV €s.,ax
mov ds.ax

mov BYTE ah,[shift]
and alh,!
cmp ah,]
jne near {abell
writestring errl,17,17,20
labell mov ah,[shift]
and ah,8
cmp ah,8
jne near label2
writestring err2,24,18.20
label2 mov ah,[shift]
and ah,16
cmp ah, 16
jne near label3
writestring err3,16,19,20
label3 mov ah,[shift]
and ah,32
cmp ah,32
jne near label4
writestring err4,9.20.20
labeld mov ah.[shift]
and ah,64
cmp ah,64
Jne near label3
writestring err5,19,21,20
label5 mov ah,{shift]
and ah,128
cmp ah, 128
Jne near labelend

labelend nop

¢xit popa
iret
[SECTION .data]
errl db ‘printer timed cut$’

err2 db 'i/o error or printer ofts’
err3 db 'printer selectedy’

errd db 'paper outd'

errS db 'printer acknowledges’
err6 ¢b ‘printer not busy$'
[SECTION .bss]

shift resb |

“THIS PROGRAM IS THE COMMAND INTERPRETER FOR THE CREAT N

[ORG 0X0100]

[BITS 16]

[SECTION .text]
jmp start

%macro setcurpos 2
mov ah,2
mov bh,0
mov dh,%]1
mov dl.%2
int 10h

Yeendmacro

%macro dispchr O
mov ah,14
xor bh,bh
mt 10h

Yeendmacro

Yemacro keypress 0
xor ah,ah
int 16h

%endmacro

%macro readcreate 0

mov ax,8000h

mov €s,ax

mov di.0

xor bhx.bx

mov ah,2

mov al.4

mov ch,l

mov cl, i

mov dh,0

mov dl,0

int 13h

mov ax,8000h

mov es8.ax

mov ds,ax

call 8000h:0000

44

%sendmacro
dispchar:
cmp al.47
jng numl
cmp al, 38
jnl numl
mov ah,id
xor bhh,bh
it 10h
numl ret
displetter:
cmp al.96
Jng letter
cmp al, 123
jnl letter
mov ah,14
xor bh,bh
int 10h
letter ret
dispcaps:
cmp al,64
Jng letter!
cmp al, 91
nl letterl
mov ah,i14
xor bh.bh
int 10h
letter] ret

%macre clrscr 0
mov ¢x,2000
label mov ah,14
mov al,""
xor bh,bh
int 10h
loop label
setcurpos 0,0

%endmacro

%macro getcursor (0
mov ah,3
xor bh,bh
int 10h

Ysendmacro

%rmacro inccur 0
mov ah,2

xor bh,bh

add dl,1
int 10h
%sendmacro
Ymacro deccur 0
mov ah.2
xor bh,bh
sub dl.i
mt 10h
Y%endmacro
“omacro exit 0
mov ah.S4c
mt 21h
%endmacro
Y%macro incline O
mov ah 3
xor bh.bh
1t 10h
mov ah,02
xor bh,bh
xor dl,dl
int 10h

mov si,prompt

char lodsh

cmp al,'$’

je keey

mov ah,9

xor bh,bh

mov bl.4

mov ¢X,1

it 10h

geteursor

inccur

jmp char

keey hit

xor dl.dl

add dh, !

mov ah,2

xor bh,bh

mt 10h

calt wrtprompt
%endmacro

%macro dispdate 0

setcurpos 24,69

40

mov ah.4
mt Sla
push dx

and dl,240
rol d1.4
add d1,48
mov al.dl
dispchr

pop dx

and dl,15
add di,48
mov al.dl
dispchr

mov al,45
dispchr
push dx

and dh.240
rol dh,4
add dh,48
mov al,dh
dispchr

pop dx

and dh,15
add dh,48
mov al,dh
dispchr

mov al.453
dispehr

push cx

and ch,240
rol ¢ch.4
add ch,48
mov al,ch
dispchr

pop cx

and ch.15
add ch.48
mov al,ch
dispchr

push cx

and ¢1.240
rol el 4
add ¢l.48
mov al.cl

dispchr

pop ¢cx

and ¢l,15
add cl,48
mov al,cl
dispchr
Yeendmacro

wrtprompt:
mov sl,prompt
chr lodsb
cmp al,'s’
je key
mov ah,9
xor bh,bh
mov bl 138
mov ¢x.1
it 10h
getcursor
inccur
Jjmp chr
key hlt
ret

.end of procedure

keycheck:
getcursor
cmp dl.7
jg me
setcurpos dh,d
mov al,8

a3

cr

del

enc

call dispchar
me nop
ret

push ds

push es

push si

push di

mov ax.1000h
mov es,.ax
mov di,0

mov sl,create
mov ¢x.6

mov al.[ds:s1]
mov [es:di].al
inc di

inc si

loop cr

mov 81,View
mov ¢x,4

mov al,[ds:si]
mov [es:di].al
inc di
Ine st
loop vie

mov si,delete
mov ¢x,3

mov al,[ds:si]
mov [es:di].al
inc di
INc si
loop del
mov si.encrypt
mov ¢x,4

mov ai,[ds:si]
mov [es:di],al
mc di
e st
loop enc
mov si.decrypt
mov ¢x,4

decr mov al,[ds:s1]
mov [es:di].al
inc di
inc sl
loop decr
mov slatiribute
mov cx.4

allr - mov al,[ds:si]
mov {es:di).al
inc di
Inc si
loop attr
maov si,print
mov ¢x.5

pri mov al,[ds:s1]
mov [es:di],al
inc di
ine si
loop pri

mov di.0
clrser

dispdate
setcurpos 0,0
call wrtprompt
mov ¢x,0

stroke nop

nextiine mov ax,2000h
mov es,ax
keypress
cmp ah, i
je near ext
mov BYTE [es:di],al
me di
inc cx
call displetter
call dispchar
call dispcaps
cmp al, 13
je near kin
Jmp near stroke

kin

mov di0
mov ax,1000h
mov ds,ax
mov s1,0
mov ¢cx.0
repe cmpsb
cmp cx.0

je near cc
mov di.0
mov $1.0
mov cx,4
repe cmpsb
cmp cx,0

jc near cqual

mov di.0
mov s1,10
mov ¢x.4
repe cmpsb
cmp cx.0

je near equal

mov di1,0
mov 51,13
mov ¢x,4
repe cmpsh
cmp cox.C

je near equal

mov di,0
mov si,17
mov cx.4
repe cmpsb
cmp cx,0

je near equal

mov di,0
mov s1,21
mov ¢x,4
repe cmpsb
cmp ¢x,0

je near equal

mov di1,0
mov s1.25
mov ¢x.5

repe cmpsb
cmp cx,0
Je near equal

pop di
pop sl
pop ¢S
pop ds
mcline
push ds
push es
push si
push di
mov di,0
mov ¢x,0
jmp near nextline
equal mov ai,49
dispchr
jmp bye
cC readcreate
ext nop
bye keypress
exit
retf

[SECTION .data]

prompt DB 'CREAGX>Y
create db 'create’

view db 'view'

delete db 'del’
encrypt db 'encr
decrypt db 'decr’
attribute db 'atty’
print db 'print’

t

[SECTION .bss]
command resb 20

:THIS PROGRAM IS THE HANDLER FOR SERIAL PORT AND MODEM LINE
;JORG 0X0000] : ADDRESS OF THE PROGRAM IN RAM

[SECTION .text]

“%macro writestring 4 .macro to write the string

mov ax.%]1 :move the offsct valuc to bp thru ax
mov bp,ax

mov ah,13h :move function number to ah

mov al,l :move write mode to i

mov bh.0 :move vdu page no to bh

mov bl, 14 ‘move attribute to bl

mov ¢x, %2 move the stringlength to on ws parameter?
mov dh, %3 :move row 1o dhreg

mov dl. %4 :move col to dlreg

mt 10h .call the interrupt

vhendmacro

Ysmacro portstatus O
and ah,1
cmp ah, 1
jne near labell
mov sl,portstat0
writestring portstat0,13,16,20
labell mov BYTE ah.[pshift]
and ah,2
cmp ah,?
Jne near label2
mov si,portstat!
writestring portstat1,22,17,20
label2 mov BYTE ah,[pshift]
and ah,4
cmp ah.4
jne near label3
mov si,portstat2
writestring portstat2.2{,18,20
label3 mov BYTE ah,[pshift]
and ah,8
cmp ah,8
jne near label4
mov si,portstat3
writestring portstat3,22,19.20
labeld mov BYTE ah,[pshift]
and ah,16
cmp ah, 10
jne near label5
mov si,portstatd
writestring portstatd,14.20.20
label5 mov BYTE ah,[pshift]
and ah,32
cmp ah,32

in¢ near label6

maov si,portstats

writestring portstat3.31.21.20
labelo mov BYTE ah.[pshift]

and ah,64

cmp ah,04

jne near label7

mov si,poristato

label7 mov BYTE ah.[pshift]
and ah,128
cmp ah, 128
Jne near labelend
mov si,poristat?
writestring portstat7,14,23.20
labelend nop
%endmacro

Yemacre modemstatus 0
and al, 1
cmp al.l
Jne near mlabell
mov si,modemstat()
writestring modemstat0,23,1,20

mlabell mov BYTE al.imshift]
and al,2
cmp al.2
Jnie near miabel2
mov si,modemstat]
writestring modemstat1,24.2,20

mlabel2 mov BYTE al [mshift]
and al,4
cmp al.4
Jne near mlabel3
mov si,modemstat?
writestring modemstat2,27,3.20

mlabel3 mov BYTE al,[mshift]
and al,8
cmp al,8
Jne near miabel4
mov si,modemstat?
writestring modemstat3,30,4,20

mlabeld mov BYTE al,[mshift]
and al.16
cmp al, 10
ine near mlabel3
mov si,modemstatd
writestring modemstatd. 13.5.20
miabels mov BYTE al [mshift]
and al, 32
cmp al,32
Jne near mlabeld
mov sl,modemstatd
writestring modemstat5,14,6.20

mlabelé mov BYTE al.[mshift]
and al,64
cmp al,64
jne near mlabel7
mov si,modemstattd
writestring modemstat6,23.7.20

mlabel7 mov BYTE al,fmshift]

and al, 128

cmp al, 128

jne near miabelend

mov si.modemstat?

writestring modemstat7,26,8,20
mlabelend nop
“sendmacro

mov BYTE [pshift],ah
mov BYTE [mshift],al
pusha

mov ax,300h
mov es,ax
mov ds.ax

mov ah.[pshift]

portstatus

mov al,[mshift]

modemstatus
exit popa

iret

53

[SECTION .data]

portstat) db 'data is ready’

portstat] db ‘overrun error detected’
portsiat2 db 'parity error detected’

portsiat3 db ‘framing error detected’
portstatd db 'break detected’

portstatd db 'transnut holding register empty’
portstaté db 'transmit shift register empty’
portstat? db 'time-out error’

modemstat0 db 'change m clear to send'
modemstat] db 'change in data set ready’
modemstat2 db ‘trailing edge ring dctector
modemstat3 db ‘change in receive line signal detect’
modemstatd db 'clear to send’

modemstat5 db 'data set ready’

modemstat6 db 'ring indicator detected’
modemstat? db 'receive hine signal detect’

[SECTION .bss]
pshift resb 1
mshifi resb 1

THIS iS THE CREATE COMMAND FOR THE CREAGX OPERATING SYSTEM

[BITS 16] ;16 BIT ADDRESSING MODE
[ORG 0X0100] . ADDRESS OF THE PROGRAM IN RAM
[SECTION .text]
Y%emacro writestring 4 :macro to write the string
mov ax.%] ;the offset vaiuc to bp thru ax
mov bp,ax
mov ah,13h ;:move function number to ah
mov al,1 :move write modce o al
mov bh.0 :move vdu page no to bh
mov bl.14 :move atiribute to b
mov ¢x, %2 :move the stringlength 1o ¢x as parameter?
mov dh,%3 (move row to dh reg
mov dl,%4 ;move col to d]
int 10h :call the mterrupt
Yeendmacro

Yemacro keypress () MACRO TO GET A KEYPRESS
xor ah,zh
int 16h

36

Yeendmacro
% macro dispchar O
mov ah,14
xor bh,bh
int 10h
%endmacro
push ds
push ¢s
push di
push si

push ds
push es
push di
push si

push ds
push es
push di
push s1

push ds

push es

push di

push si -

mov ax.4000h

mov es,ax

mov di1,0

mov ¢x.13

mov si,username
uname mov BYTE al,[ds:si]

mov BYTE [es:di],al

inc di

Ine s

loop uname
-—---READING DATE FROM SYSTEMccccmmcoe e

mov ax,250h

mov es.ax

mov d1.0

mov ah.4

int $la

push dx

and di, 240

rol dl.4

add d1,48

mov al,dl

mov BYTE [es:di}.al
inc di

dispchar

nop dx

and dl,15

add d1,48

mov al,dl

mov BYTE [es:di},al
ine di

mov BYTE {es:di].'-'
inc di

dispchar

mov al.45

dispchar

push dx

and dh,240

rol dh.4

add dh,48

mov al,dh

mov BYTE {es:di],al
inc di

dispchar

pop dx

and dh,15

add dh,48

mov al,dh

mov BYTE {es:di}.al
inc di

mov BYTE [es:di],’-
inc di

dispchar

mov al,45

dispchar

push cx

and ¢ch,240

rol ch.4

add ch,48

mov al,ch

mov BYTE [es:di],al
me di

dispchar

pop cx

and ch,15

add ch,48&

mov al,ch

mov BYTE [es:di].al

R

inc di

dispchar

push cx

and ¢l,240

rol cl.4

add cl,48

mov al,c!

mov BYTE [cs:dil.al
in¢ di

dispchar

pop cx

and ¢i,15

add cl,48

mov al,cl

mov BYTE [es:di].al

dispchar
(mmmmm GET FILENAME FROM USER---------mmmmmmmmme o
pop si
pop di
pop es
pop ds
writestring message,34.8,10
writestring filename.31.10.10
mov ax,10G0h
mov ds,ax
mov s1,0
mov ¢x,0
labell keypress
cmp al,13
je lend
dispchar
mov BYTE [ds:si}.al
nc si
nc cx
cmp ¢x,33
jg lend
jmp labell
lend mov ax,si
mov ¢x,33
sub cx,ax
mov al,"’
fillzero nop
mov BYTE [ds:si],al
inc si
loopnz fillzero

pop si

pop di

pop ¢s

pop ds

mov ax.700h

MOV Cs.ax

mov di.0

xor bx,bx

mov ah,2

mov al,

mov ch,(

mov cl.]

mov dh.1

mov dl,0

int 13h

mov di,010ah

mov BYTE al,[es:di]
mov BYTE [maxtrack],al
mov di1,010ch

mov BYTE al.jes:di]
mov BYTE [maxhead].al
mov di.010¢ch

mov BYTE al,[es:di]
mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead],
mov BYTE [cursect},2

nextsector
mov ax,100h
mov es,ax
mov bx,0
mov ah,2
mov al, 1
mov ch,[curtrack]
mov cl,[cursect]
mov dh.[curhead]
mov dl.0
mt 13h
push ds
push es
push di
push si

mov ax.100h

O

mov ds.ax
mov ax,1000h
mov €s,ax

mov s1,0
mov d1,0
cmpnext nop
:comparing filename
ne sl
nc st
mov di.0

mov ¢x.33
repe cmpsb
cmp ¢x,0

jne nequal
jmp near exit3

nequal cmp s1,445
jge near npres
mov ax,s!
mov bl, 102
div bi
nc al
mov b 102
mul bl
mov si,ax
jmp near cmpnext
[mmmmmmmmmmenmnon display record-------------

pop si

nop di

pop es

pop ds

mov BYTE al,[cursect]
cmp al, 18

jl near incsect

mov BYTE [cursect], |
mov BYTE al,[curhead]
cmp al,l

1 near inchead

mov BYTE [curhead].0
mov BYTE al,[curtrack]
inc al

mov BYTE [curtrack],al
jmp near next

inchcad mov BYTE [curhead], !
Jjmp near next]
incsect mov BYTE al [cursect]
inc al
mov BYTE [cursect],al
next nop
nextl mov BYTE al,[curtrack]
mov BYTE ah.[maxtrack]
cmp al,ah
jl near nextsector
mov BYTE al [curhead]
mov BYTE ah,fmaxhcad]
cmp al,ah
Jl near nextsector
mov BYTE al,[cursect]

mov BYTE ah,[maxsect]
cmp al,ah
jle near nextsector

pop si

pop di

pop €s

pop ds

mov ax,1000h

mov ds,ax

mov $1,33

mov BYTE [ds:si],'#'

inc si

writestring permission,41.12,10

mov BYTE [ds:s1],0

IN¢ sl

writestring ronly,9.13,16
keypress

dispchar

mev BYTE [ds:si],al

inc s

writestring wonly,10,14,16
keypress

dispchar

mov BYTE [ds:si],al

inc si

writestring xonly,15,15,16
Keypress

dispchar

mov BYTE {ds:si].al

Inc s1

writestring access, 12,1610
keypress

dispchar

mov BYTE [ds:s1],al

nc si

writestring system, 11,1716
keypress

dispchar

mov BYTE [ds:si].al

me i

writestring hidden.11,18.16
keypress

dispchar

mov BYTE [ds:si].al

inc si

writestring ascii, 10,1916
keypress

dispchar

mov BYTE [ds:si],al

inc sl

mov si,34

mov BYTE al,[ds:si]

and al, 1

sal al,7

mov BYTE [ds:si],al

Inc sl

mov BYTE al,[ds:s1]
and al,1

sal al,6

mov BYTE [ds:si],al
e s

mov BYTE al,[ds:s1]
and al,]

sal al,5

mov BYTE [ds:si].al
ine s

mov BYTE al.[ds:s1]
and al, 1
sal al 4
mov BYTE [ds:si].al

(13

Inc si

mov BYTE al.[ds:s1]
and al,1

sal al,3

mov BYTE [ds:si].al
ne si

mov BYTE al,[ds:si]
and al,1

sal al,2

mov BYTE [ds:si}.al
inc si

mov BYTE al,[ds:s!]
and zl,1

sal al,1

mov BYTE {[ds:sij,al
inc si

mov BYTE al,[ds:si]
and al, 1

mov BYTE {ds:si].al
mov si,34
mov ¢cx,7
mov BYTE al,[ds:si]
nc si

addagain nop
mov BYTE bl,[ds:si]
mne sl
add al,bl
loop addagain
mov si,34
mov BYTE [ds:si],al
ne si
mov BYTE [ds:si],'$'
mov si,0

mov ax,2000h

mov €s,ax

mov d1,0

mov BYTE [es:di],#'

=

me di

mov BYTE [es:d1],#

inc di

mov 51,0

mov ¢x,33
writefname

mov BYTE al.[ds:si]

mov BYTE [cs:di],al

ine si

me di

loop writefname

mov BYTE [es:di],'#

inc di

push ds

push si

mov ax,4000h

mov ds,ax

mov s1,0

mov ¢cx,13
writeuname

mov BYTE al,[ds:si]

mov BYTE [es:di],al

ne sl

inc di

ioop writcuname

mov BYTE [es:di],'#
ine di
mov ax,250h UNITTALIZING DATE SEGMENT
mov ds,ax
mov 51,0
mov ¢x,10

writedate
mov BYTE al,[ds:si]
mov BYTE [es:dij,al
IMC si
in¢ di
loop writedate
mov BYTE [es:di],’#'
mc dr
mov si,0
mov ¢x,)

writedate]
mov BYTE al,[ds:si]
mov BYTE [es:di],al
nc si

mc di

loop writedatel

mov BYTE [es:di],'#
inc di

mov si,0

mov ¢x,10

writedate?

mov BYTE al,[ds:si]
mov BYTE [es:di].al
e si

me di

loop writcdate

mov BYTE [es:di1],'#
inc di

mov BYTE [es:di].'
ine di

mov BYTE [es:di].'#'
ine di

mov BYTE [es:di],'0’
inc di

mov BYTE [es:di],'#'
inc di

mov BYTE [es:di},'0’
ine di

mov BYTE [es:di].'#
ine di

mov BYTE [es:d1],’0'
e di

mov BYTE [es:di],'#'
e di

mov BYTE {es:di],'(V
inc di

mov BYTE [es:di],'#
inc di

mov BYTE [es:di],'0
inc di

mov BYTE [es:di1],'#'
inc di

mov BYTE [es:di],'l’
inc di

mov BYTE [es:d1],2'
inc di

mov BYTE |es:di],”3'
inc di

mov BYTE [es:di],'4'
inc di

66

mov BYTE [es:di].'s’
inc di
mov BYTE [es:di],’#'
e di
pop s
pop ds
mov si,34
mov BYTE al.[ds:si]
mov BYTE [es:di].al
me di
mov cx.dl
mov di,0

userdisp
mov BYTE al.[es:di]
inc di
dispchar
loop userdisp

searchagain
mov ax,300h ‘READING THE NEXT FILE ENTRY SECTOR
mov es.ax
mov di,0
xor bx,bx
mov ah.2
mov al,1
mov ch,0
mov cl. 1
mov dh,!
mov dl,0
int 13h
mov di,010ah
mov BYTE ch,[es:d1]}
mov di,010ch
mov BYTE dh,[es:d1]}
mov di1,010eh
mov BYTE cl,{es:di]
mov ax,300Ch
mov €s,ax
mov di,0
xor bx,bx
mov al,]
mov ah,02
mov dL0
int 13h
mov di,0
mov ¢x,512

next3 mov BYTE al,[es:di]
cmp al,255
je writeentry
e di
loopnz next3
Jmp nospace
writeentry
cmp di,408
ine proceed
push di
mov di,510
mov BYTE [es:di].'#
inc di
mov BYTE [es:d1],'#'
pop di
proceed mov ax,2000h
mov ds,ax
mov ¢x,102
mov si,0
writerecord
mov BYTE al.[ds:si]
mov BYTE [es:di],al
e di
inc si
loopnz writerecord
cmp di,510
Je endofsect
mov BYTE [es:di],255
endofsect nop

mov ax,500h :READING THE NEXT FILE ENTRY SECTOR
mov es,ax

mov di,0

mov di,010zh

mov BYTE ch,[es:di]

mov di,010ch

mov BYTE dh,[es:di]

mov d1,010eh

mov BYTE cl,[es:di]

mov ax,3G00h WRITING THE UPDATED BUFFER TO FILE RECORD
mov es,ax ENTRIES SECTOR

mov di,0

mov di,0

xor bx,bx

mov al, 1

mov an.03

O

mov d,0
int 13h

Jmp exitl
nospace mov ax,500h
mov es,ax
mov di,0
mov di,010ah
mov BYTE ah.[es:di]
mov di1,010ch
mov BYTE ch,[es:d1]
mov di,010eh
mov BYTE dh,[es:di]
mov di.0122h
mov BYTE al.[es:di)
mov di,0124h
mov BYTE cl,[es:di]
mov di,0126h
mov BYTE dl,[es:di]
cmp dh,dl
Jne skiphead
cmp ch.cl
jne skiptrack
sub al.ah
cmp al,]
je diskfull
skiphead nop
skiptrack nop
mov di,010ah
mov BYTE ah,[es:di]
mov d1,010¢h
mov BYTE ch,[es:di]
mov d1,010eh
mov BYTE dh,[es:di]
cmp dh,18
1 nextsect
cmp ch.l
1! nexthead
mov dh,!
mov ch,0
inc ah
1mp updatefile
nextsect
inc dh
jmp updatefile
nexthead

na

mov cl, 1

mov dh,1
updatefile
mov di,010ah
mov BYTE [es:di],ab
mov di,010ch
mov BYTE [es:di],ch
mov di,010ch
mov BYTE [es:di],dh
(e UPDATING FILE ENTRY SECTOR

mov di,0

xor bx.bx

mov ah,3

mov al,1

mov ¢h,0

mov cl,]

mov dh,1

mov dl,0

mt 13h

jmp searchagain

.

1skfull
pop sl
pop di
pop es
pop ds

writestring fullalert,36,22.10
keypress
jmp bye
exitl pop si
pop di
pop es
pop ds
writestring success,39,22,10
Jmp bye
exit3
pop si
pop di
pop es
pop ds

pop si

pop di

pop es

pop ds

writestring changefilename,40.22.10
bye

keypress

:mov ax.Sde

ant 21h

retl

[SECTION .dala]
message db 'THIS COMMAND CREATES ONLY FILES..
filename db 'FILENAME (33 CHARACTERS ONLY) ¢
permission db 'PERMISSIONS PRESS | FOR TRUE 0 FOR FALSE ~
ronly db 'READ ONLY"
wonly db "WRITE ONLY"
xonly db 'EXECUTABLE ONLY"
access db 'INACCESSIBLE’
system db 'SYSTEM FILE'
hidden db '"HIDDEN FILE'
ascin db 'ASCII FILE'
usemarne db 'anon
fullalert db 'SORRY DISK IS FULL...
success db 'FILE SUCCESSFULLY CREATED..
changefilename db 'FILE ALREADY PRESENT CHANGE THE FILENAME
[section .bss]
maxtrack resb 1
maxhead resb |
maxsect resb |
curtrack resb 1
curhead resb 1
cursect resb |

;WORKING PROGRAM WHICH DELETES USER SPECIFIED FILE ...
forg Ox0100]
[section .text]

%macro writestring 4 ;macro to write the string
mov ax, %1 ithe offset value to bp thru ax
mov bp,ax
mov ah,13h :move function number to ah
mov al,l :move wrile mode to al
mov bh,0 :move vdu page no to bh
mov bl,14 :move attribute to bl
mov ¢x,%2 ;move the stringlength 1o ¢x as parameterZ

mov dh,%3 ;move row 1o dh reg

mov dl,%4 :move col to di
int 10h .call the interrupt
%endmacro
push es
push ds
push si
push di

push es
push ds
push s1
push di
mov ax,000h
mov €s,ax
mov di,0
mov cx,13
mov si,username
name mov BYTE al,[ds:si]
mov BYTE [es:di],al
ine si
inc di
loopnz name

mov ax, | 0Oh

MoV ¢8§,ax
mov di,0

getkey xor ah.ah
int 16h

cmp al, 13

je endofstr

mov [es:di],al

inc di

mov ah,14

mov bh,0

int 10h

Jmp getkey
endofstr mov ax,33

mov ¢x,di

sub ax.cx

MoV ¢X.ax
fillspace mov al,20h

mov [es:di},al

e di

loop fillspace

mov ax,12h
MOV £5,aX
mov di1,0

xor bx,bx
mov ah,2
mov al,1

mov ch.0
mov cl.]

mov dh. i
mov dl,0

mt 13h

mov d1,0
mov di,010ah
mov BYTE al.[es:di]

mov BYTE [maxtrack],al
mov di,010ch
mov BYTE al,[es:di]

mov BYTE [maxhead},al
mov di,010ch
mov BYTE al.[es:d:]

mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead],]
mov BYTE [cursect].2
pop di
pop si
pop ds
pop es
nextsector push es
push ds
push s1
push di
mov ax.i00h
mov €s,ax
mov bx.0
mov ah,2
mov al, !
mov ch,[curtrack]
mov cl,[cursect]
mov dh,[curhead]
mov d1L0
int 13h

mov ax,300h

mov f5,ax

mov si,0

mov BYTE al,[curtrack]
mov BYTE [fs:sil,al

Inc si

mov BYTE al,[curhead]
mov BYTE [fs:sil.al

ne si

mov BYTE al,jcursect]

mov BYTE {fs:si1],al

mov ax,100h

mov ds,ax

mov ax,10h

MoV es,ax

mov 51,0

mov di.0

cmpnext

Inc st

nc si
:comparing file name
mov di.0
mov ¢X,33
repe cmpsb
cmp ¢x,0
jne nequal
.comparing user name
Ing st
mov ax,600h
mov es,ax
mov di,0
mov ¢x,13
repe cmpsb
cmp cx,0
je key

nequal
cmp s1,445
ige npres
mov ax.s!
mov bl,102
div bl

mnc al

mov bl,102
mul bl

mov si,ax
jmp cmpnext

key
mov ax,100h
mov ds,ax
mov ax.sl
mov bl,102
div bl
mul bl

jmmmm s mmmmm e roll back to start of record and display 1t
mov si,ax
mov ¢cx,102
push es
push di
mov ax,20h
mov es,ax
mov di.0

disprec mov al,[ds:si]
mov ah,14
mov bh.0
int 10h
mov [es:di],al
inc di
ine st
loop disprec
pop di
pop es
Jmp near exit
jmmmm e m e display record

mov BYTE al,[cursect]
cmp al,18

jl near incsect

mov BYTE [cursect].!

mov BYTE al,[curhead]
cmp al,!
il near inchead
mov BYTE [curhead],0
mov BYTE al.[curtrack]
inc al
mov BYTE |curtrack].al
Jmp near next
inchead mov BYTE [curhcad].
jmp ncar nextl
incsect mov BYTE al,[cursect]
inc al
mov BYTE [cursect],al
next nop
nextl mov BYTE al,[curtrack]
mov BYTE ah,[maxtrack]
cmp al,ah
jl near nextsector
mov BYTE al,[curhead]
mov BYTE ah,[maxhead]
cmp al,ah
jl near nextsector
mov BYTE al,[cursect]
mov BYTE ah,[maxsect]
cmp al,ah
ile near nextsector

mov ax,20h

mov es,ax

mov di,¢

cmp BYTE [es:di),'#
jne near exit2

:DELETION OF RECORD ENTRY BEGINS...... ...
delete mov ax,100h
mov ds,ax
mov ax,10h
mov es,ax
mov s1,0
mov di1,0
cmpnextl nc si
e s
mov di,0
mov ¢x,33
repe cmpsb

cmp ¢x,0
jne nequall
:comparing user name
Inc si
mov ax.600h
mov es,ax
mov di,0
mov cx. 13
repe empsb
cmp cx.0
je keyl
ncquall

MoV ax.sl

mov b, 102

div bl

inc al

mov bl,102

mul bl

mov si,ax

jmp cmpnextl

kevl mov ax,si
mov bl, 102
div bl
mui bl
mov si,ax
mov ¢x,102
delrec mov BYTE [ds:si],"”
mne sl
loopnz delrec
mov ax,300h
mov f5,ax
mov s1,0

mov ax,100h
mov es,ax
mov di.0
mov bx,0
mov ah.3
mov al, 1

mov ch,[fs:s1]
Inc si

mov dh,[fs:si]
Inc si

mov cl,[fs:s1]
mov di,0

int 13h
[END OF DELETION-—-----~-------

pop di

pop st

pop ds

pop es

writestring message2.12,20,10

jmp bye
exit2 pop di

nop sl

pop ds

pop es

writestring message1,16.20,10
bye xor ah,ah

int 16h

:mov ax,54c

ant 21h

retf

)

[section .data]
username db 'anon
messagel db 'FILE NOT PRESENT
message2 db 'FILE DELETED’
[section .bss]

maxtrack resb 1

maxhead resb 1

maxscct resb |

curirack resb 1

curhead resb 1

cursect resb 1

‘PROGRAM TO LIST FILES OF THE CURRENT USER
[org 0x0100]
[section .text]
Jmp near start
Y% macro scrollwindow O
mov ah,06h
mov al.0
mov bh,0
mov ¢h,0
mov ¢l.0
mov dh,25
mov dl,79
mt 10h

3

Ypendmacro

%hmacro writestring 4 :macro 1o write the string
mov ax,%] :the offset value 1o bp thru ax
mov bp.ax
mov ah,13h :move function number to zh
mov al.] ‘move write mode 1o al
mov bh,0 :move vdu page no to bh
mov bl.14 move attribute to bl
mov cx, %2 ‘move the stringlength to ¢x as parameter2
mov dh.%3 ;move row 1o dh reg
mov dl,%4 :move col to dl
int 10h .call the interrupt

Yeendmacro

%emacro incline
call inccursor
mov ah.3
xor bh,bh
it 10h
mov ah,02
xor bh,bh
xor dl,dl
int 10h

Seendmacro

%macro keypress 0

xor ah,ah

int 16h

Yeendmacro

inceursor: : MACRQO TO INCREMENT ROW IN THE CURRENT COLUMN

mov ah.3
mov bh,0
mt 10h
xor dl,dl
cmp dh,24
add dh.1
jl near pro
keypress
scrollwindow
pro mov ah,2
mov bh,0
int 10h
rcl

start:

push es

push ds

push si

push di

writestring title,25,1.25
incline
mov ax,00h
mov €s,ax
mov di,0
mov ¢x,13
MoV si,username
name mov BYTE al.[dss1]
mov BYTE {es:di].al
Inc sl
e di
loopnz name

mov ax,!12h

MoV €s,ax

mov di.0

xor bx,bx

mov ah,2

mov al,!

mov ¢h.0

mov ¢l]

mov dh, 1

mov dL0

int 13h

mov di,0t0ah

mov BYTE al,[es:di]
mov BYTE [maxtrack],al
mov d1,010ch

mov BYTE al,[es:d1]
mov BYTE [maxhead],al
mov di1,010eh

mov BYTE al,{es:d1]
mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead], !
mov BYTE [cursect],2
pop di

pop sl

pop ds

nop es

nextsector push es
push ds
push s!
push di
mov ax,100b

bl

mov €s,ax
mov bx,0
mov ah,2
mov al,l
mov ch,{curtrack]
mov ¢l,[cursect]
mov dh,[curhead]
mov dl,0
mt 13h
mov ax,100h
mov ds,ax
mov ax,60h
mov es,ax
mov 81,0
mov di,0
cmpnext
mov 2X,s
add ax,36
mov sl,ax
mov di1,0
mov cx,13
repe cmpsb
cmp ¢x.0
jne nequal
jmp key

nequal
cmp s1,445
jge near npres
mov ax,sl
mov b, 102
div bl
inc al
mov bl,102
mul bl
MoV si,ax
jmp cmpnext

key
mov ax,100h
mov ds.ax
MoV ax,si
mov bl, 102
div bl

L roll back to start of record and display 1t
mov si,ax

mov cx.102

push es

push di

mov ax,20h

mov €s,ax

mov di,2

disprec mov al,{ds:s1]

mov ah,14

mov bh,0

int 10h

mov [es:di],al

inc di

inc si

loop disprec

pop di

pop es

ancling

incline

jmp near cmpnext
e e display record

mov BYTE al,[cursect]
cmp al, 18
jl near incsect
mov BYTE [cursect],1
mov BYTE al,[curhead]
cmp al, 1
jl near inchead
mov BYTE [curhead],0
mov BYTE al,[curtrack]
inc al
mov BYTE {curtrack],al
jmp near next

inchead mov BYTE [curhead], !
jmp near nextl

incsect mov BYTE al,[cursect]

inc al
mov BYTE [cursect].al
next nop
nextl mov BYTE al,[curtrack]
mov BYTE ah,{maxtrack]
cmp al.ah
1l near nextsector
mov BYTE al,{curhead]
mov BYTE ah,[maxhead]
cmp al,ah
jl near nextsector
mov BYTE al,[cursect]
mov BYTE ah,[maxsect]
cmp al,ah
jle near nextsector
writestring message,25,24,25
keypress
mov ax.54c¢
int 21h
[section .data]
usermame db 'anon
title db 'FILE LIST OF CURRENT USER'
message db 'PRESS ANY KEY TO CONTINUE
[section .bss]
maxtrack resb 1
maxhead resb 1
maxsect resb |
curtrack resb 1
curhead resb 1
cursect resb 1

:WORKING PROGRAM TO ENCRYPT A FILE

[org 0x0100]
[section .text]

%macro writestring 4 ;macro to write the siring
mov ax,%!1 ;the offset value to bp thru ax
mov bp,ax
mov ah,13h :move function number to ah
mov al,l :move write mode to al
mov bh,0 ;move vdu page no to bh
mov bl 14 smove attribute to bl
mov ¢x,%2 ;move the stringlength (o ¢x as parameter?2
mov dh, %3 :move row 1o dh reg
mov dl,%4 ;move col to di

int 10h ;call the interrupt
Y%endmacro

push es
push ds
push si
push di
push €s
push ds
push s1
push di
mov ax,60h
mov es,ax
mov di,0
mov cx, 13
mov sl,username
name mov BYTE al,[ds:s1]
mov BYTE [es:di],al
e si
inc di
loopnz name
mov ax,70h JINITIALISING BUFFER WITH USER ENCRYPTION KEY
mov fs,ax
mov di,0
mov BYTE [fs:di},3

mov ax,10h
nov €s,ax
mov di1,0
getkey xor ah,ah
int 16h
cmp ai, 13
je endofstr
mov [es:di],al
inc di
mov ah,14
mov bh,0
int 10h
Jmp getkey

endofstr mov ax.33
mov cx,di
sub ax.cx
mov ¢x,ax

fillspace mov al,20h
mov [es:di],al

in¢ di
loop fillspace
mov ax,12h
Mov es,ax
mov di,0
xor bx,bx
mov ah,2
mov al.l
mov ch.0
mov cl,!
mov dh.l
mov dl,0
int 13h
mov di1,0
mov d1,010ah
mov BYTE al,[es:di]
mov BYTE [maxtrack],al
mov di,010ch
mov BYTE al,{es:d1]
mov BYTE [maxhead],al
mov d1,010eh
mov BYTE al,[es:di]
mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead],1
mov BYTE [cursect],2
pop di
pop si
pop ds
pop es
nextsector push es
push ds
push si
push di
mov ax,100h
mov es.ax
mov bx,0
mov ah,2
mov al,l
mov ch,[curtrack]
mov cl,[cursect]
mov dh,[curhead]
mov dl.0
int 13h

mov ax,100h

mov ds,ax

mov ax,10h

mov es,ax

mov si,0

mov di,0

cmpnext

e si

ine s
mov di.0
mov ¢x,33
repe cmpsh
cmp ¢x.0
jne nequal
;comparing user name
Inc si
mov ax,60h
mov €s,ax
mov di1,0

mov ¢x,13
repe cmpsb
cmp cx,0

je

nequal

key

cmp 1,445

jge npres

mov ax,si
mov bl, 102

div bl
mc al

mov bl,102

mul bl

mMov si,ax
imp cmpnext

kevy

mov ax, 1 00h

mov ds,ax
mov ax,si
mov bl,102
div bl

mul bl

roll back to start of record and display it

86

mov sl1,ax
mov ¢x,102
nush es
push di
mov ax,20h
mov €§,ax
mov di.0

disprec mov al|ds:si]
mov ah, 14
mov bh,0
it 10h
mov [es:dil.al
ine di
ing sl
loop disprec
pop di
pop €s
jmp near exit

npres
pop di
pop sl
pop ds
pop es

mov BYTE al,{cursect]
cmp al,18
jl near incsect
mov BYTE [cursect],]
mov BYTE al,[curhead]
cmp al,]
jl near inchead
mov BYTE [curhead],0
mov BYTE al,{curtrack]
inc al
mov BYTE [curtrack],al
Jmp near next

inchead mov BYTE [curhead].!
jmp near nextl

incsect mov BYTE al.[cursect]
inc al
mov BYTE [cursect],al

next nop

nextl mov BYTE al,[curtrack]
mov BYTE ah,[maxtrack]

cmp al,ah

11 near nextsector
mov BYTE al jcurhead]
mov BYTE ah,[maxhead]

cmp al,ah

J} near nextsector
mov BYTE al,[cursect]
mov BYTE ah,[maxsect]

cmp al,ah

ile near nextsector

mov ax,20h
mov €s,ax
mov di,d

emp BYTE [es:di),'%

jne near exit2

mov di,83

:INITIALISE FOR READ FILE

mov BYTE ch,[es:di]

mc di
inc di

mov BYTE dh,[es:di]

me di
mc di

mov BYTE cl.[es:di]

mov d1,93

mov BYTE ah,[es:d:]

mov di,&7

mov BYTE al,[es:di]

cmp ah,al

1 sect

sub ah,al
inc ah
mov al,ah
mov ah,2
mov bx,ax
mov ax,2000h
mov €s.ax
mov 2x,bx
xor bx,bx
mt 13h
jmp dic

FILE LOCATED IN DIFFERENT TRACKS OR HEADS

58

sect mov ah,18
sub ah,al
inc ah
mov al,ah
mov ah,2
mov bx,ax
mov ax,2000h
mov es.ax
mov ax.bx
xor bx.bx
it 13h
R READ FIRST PART FULLY & PERFORM ENCRYPTION
mov 51,0
mov di,0
mov ¢x,1024
mov BYTE dh,[fs:s1]
disp2 mov BYTE al,[es:di]
add al.dh
mov BYTE [es:di],al
e di
loop disp2
mov ax.20h
MoV €8.8X
mov di1,0
mov d1,83 JINITIALISE FOR WRITING ENCRYPTED DATA TO FILE
mov BYTE ch,[es:di]
nc di
inc di
mov BYTE dh,{es:di]
ine di
nc di
mov BYTE ci,[es:di]
mov d1,93
mov BYTE ah,[es:di}
mov di, 87
mov BYTE al,[es:d1]
mov ah,l8
sub ah,al
inc ah
mov al,ah
mov ah,3
mov bx,ax
mov ax,2000h
mov di,0
MoV €S,aX

89

mov ax,bx
xor bx,bx
it 13h
mov ax,20h INITIALISE FOR THE SECOND PART OF FILE
moV €s,ax
mov di,89
mov BYTE ch.[es:di]
e di
ne di
mov BYTE dh,|es:di]
mov cl,]
inc di
e di
mov BYTE al,[les:di]
mov ah,2
mov bx,ax
mov ax,2001h
mov es,ax
mov ax,bx
xor bx.bx
int 13h
jmmmmmmmaae READ THE CONTENTS & PERFORM ENCRYPTION
mov si,0
mov BYTE dh,[{s:s1]
mov di.0

displ mov BYTE al,[es:di]
cmp al,255
1€ outloop
add al,dh
mov BYTE [es:d1},al
e di
jmp displ
outloop
mov ax,20h INITIALISE FOR THE SECOND PART OF FILE
mov es,ax
mov d1,89
mov BYTE ch,[es:di]
inc di
inc di
mov BYTE dh,[es:d1]
mov cl, 1
me di
inc di
mov BYTE al[es:di]

mov ah,3

mov bx,ax
mov ax,2001h
mov es,ax
mov ax,bx
xor bx,bx

int 13h

jmp exit]

fmmmmmmmmaan READ THE CONTENTS & PERFORM ENCRYPTION
dic mov di1,0
mov §1,0
mov BYTE dh,[fs:di]
disp mov BYTE al,[es:di}
cmp al,255
j€ loopout
add al.dh
mov BYTE [es:di}.al
me di
Jjmp disp
loopout mov ax,20h
MoV 5,4X
mov di,0
mov di,83 JANITIALISE TO WRITE ENCRYPTED DATA TOLLE
mov BYTE ch,[es:di]
ine di
inc di
mov BYTE dh,[es:di]
inc di
inc di
mov BYTE cl,[es:di]
mov d1,93
mov BYTE ah,[es:di}
mov d1,87
mov BYTE al,[es:di]
sub ah,al
inc ah
mov al,zh
mov ah,3
mov bx,ax
mov ax,2000h
mov di
mov €s,ax
mov ax,bx
xor bx,bx
int 13h

91

jmp exitl

exit2 pop di
pop s
pop ds
pop ¢s
writestring nofile,17,20,10
jmp bye
exit] popdi
pop si
pop ds
nop es
writestring success.35.20.10
bye xor ah,ah
mt 16h
:mov ax,54c
;int 21h
retf

1

[section .data]

username db 'anon

nofile db 'FILE NOT FOUND...
success db 'ENCRYPTION SUCCESSFULLY COMPLETED..
[section .bss]

maxtrack resh 1

maxhead resb 1

maxsect resb 1

curtrack resb 1

curhead resb 1

cursect resb 1

;WORKING PROGRAM TO DECRYPT A FILE
lorg 0x0100]
[section .text]

Yemacro writestring 4 ;macro 1o write the string

mov ax,%] the offset valuc 1o bp thru ax

mov bp,ax

mov ah,13h ;move function number 1o ah

mov al, 1 ;move write mode to al

mov bh,0 ;move vdu page no to bh

mov bl, 14 :move attribute to bl

mov cx,%2 ;move the stringlength to ¢x as parameterZ
mov dh.%3 ;move row to dh reg
mov dl,%4 :move col to d]

07

int 10h ;call the interrupt
Y%endmacro

push es
push ds
push s
push di
push es
push ds
push si
push di
mov ax,60h
MoV €$,ax
mov di,0
mov cx,13
MoV §1,UsSername
name mov BYTE al,[ds:s1]
mov BYTE [es:di],al
Ine si
e di
loopnz name
mov ax.70h INITIALISING BUFFER WITH USER DECRYPTION KEY
mov fs,ax
mov d1,0
mov BYTE [fs:di1],3

mov ax, 1 0h
MoV es,ax
mov di0
getkey xor ah,ah
int 16h
cmp al,13
je endofstr
mov [es:di],al
inc di
mov ah,14
mov bh,0
int 10h
jmp getkey

endofstr mov ax.33
mov ¢x,di
sub ax.cx
mov ¢x.ax

fillspace mov al,20h
mov [es:di],al

inc di
loop fillspace
mov ax,12h
mov es,ax
mov di.0
xor by, bx
mov ah,2
mov al. |
mov ¢ch,0
mov cl,]
mov dh, 1
mov ¢l,0
mt 13h
mov d1,0
mov di1,010ah
mov BYTE al,[es:di]
mov BYTE [maxtrack],al
mov di,010ch
mov BYTE al,[es:di]
mov BYTE [maxhead],al
mov di,010eh
mov BYTE al,[es:di]
mov BYTE [maxsect},al
mov BYTE [curtrack],0
mov BYTE [curhead],]
mov BYTE [cursect],2
pop di
pop sI
pop ds
pop es
nextsector push es
push ds
push si
push di
mov ax,100h
mov €s,ax
mov bx.0
mov ah,2
mov al, |
mov ch,[curtrack]
mov cl,[cursect]
mov dh.[curhead]
mov dl,0
it 13h

04

mov ax,100h

mov ds,ax

mov ax,10h

mov es,ax

mov si,0

mov di.0

cmpnext

Ine sl

me s
mov di.0
mov ¢x,33
repc cmpsb
cmp ¢x,0)
Jne nequal
;comparing user name
inc si
mov ax,60h
mov es,ax
mov di,0
mov ¢x,13
repe cmpsb
emp ex,0)
je key

nequal
cmp si,445
jge npres
Mmov ax,si
mov b1, 102
div bl
inc al
mov bi, 102
mul bl
MoV §1.aX
Jmp cmpnext

key
mov ax, 1 00h
mov ds.ax
Moy ax.sl
mov bl,102
div bl
mul bl
jrmmmmmm s roll back to start of record and display 1t

mov si,ax
mov ¢x,102
push es
push di
mov ax,20h
mov €s,ax
mov di.0

disprec mov al.[ds:si]
mov ah.14
mov bh,0
int 10h
mov [es:di],al
inc di
Inc sl
loop disprec
pop di
pop €s
jmp near exit

mov BYTE al jcursect]
cmp al, 18
jl near incsect
mov BYTE [cursect],1
mov BYTE al,[curhead]
cmp al,1
jinear inchead
mov BYTE [curhead],0
mov BYTE al,[curtrack]
inc al
mov BYTE [curtrack],al
Jmp near next

inchead mov BYTE [curhead],1
jmp near nextl

mesect mov BYTE al,[cursect]
inc al
mov BYTE [cursect],al

next nop

nexti mov BYTE al,[curtrack]
mov BYTE ah,[maxtrack]

96

cmp al,ah

jl near nextsector
mov BYTE al,[curhead]
mov BYTE ah,[maxhead]

cmp al,ah

jl near nextsector
mov BYTE al [cursect|
mov BYTE ah,[maxscct]

cmp al,ah

Jle near nextsector

exit

mov ax,20h
mov es,ax
mov di,0

cmp BYTE [es:di],'+#

jne near exit2

mov 1,83

:INITIALISE FOR READ FILE

mov BYTE ch,[es:di]

me di
e di

mov BYTE dh,[es:di]

mc di
inc di

mov BYTE cl.[es:di]

mov di,93

mov BYTE ah,[es:di]

mov di,87

mov BYTE al,[es:di}

cmp ah,al

1 sect.
sub ah,al
inc ah
mov al,ah
mov ah,2
mov bx,ax
mov ax,2000h
mov es,ax
mov ax.bx
xor bx,bx
int 13h
jmp dic

FILE LOCATED IN DIFFERENT TRACKS OR HEADS

sect mov ah,18
sub ah,al
inc ah
mov al,ah
mov ah,2
mov bx,ax
mov ax,2000h
mov €s.ax
mov ax,bx
x0T bx.bx
mt 13h
S — READ FIRST PART FULLY & PERFORM DECRYPTION
mov s1,0
mov di,0
mov ¢x, 1024
mov BYTE dh,[{s:si]
disp2 mov BYTE al,[es:di]
sub al,dh
mov BYTE [es:di],al
e di
loop disp2
mov ax,20h
mov es,ax
mov di,0
mov di,83 JINITTALISE FOR WRITING ENCRYPTED DATA TO FIL=
mov BYTE ch.[es:di]
e di
ine di
mov BYTE dh.[es:di]
inc di
inc di
mov BYTE cl,[es:di]
mov di,93
mov BYTE ah,[es:di]
mov di,87
mov BYTE al,[es:d:]
mov ah,18
sub ah,al
inc ah
mov al,ah
mov ah,3
mov bx,ax
mov ax,2000h
mov di,0
mov es,ax

mov ax,bx
xor bx,bx
int 13h
mov ax.20h INITIALISE FOR THE SECOND PART OF FILE
Mov €s,ax
mov di.89
mov BYTE ch.[es:di]
mnc di
nc di
mov BYTE dh.[es:di]
mov ¢l,1
inc di
inc di
mov BYTE al [es:di]
mov anh,?2
mov bx,ax
mov ax,2001h
mov es,ax
mov ax,bx
XOr bx,bx
int 12h
jmmmmmm READ THE CONTENTS & PERFORM DECRYPTION
mov s1,0
mov BYTE dh.[fs:s1]
mov di,0

displ mov BYTE al,[es:di]
cmp al,235
e outloop
sub al,dh
mov BYTE [es:di},al
inc di
jmp displ
outloop
mov ax,20h INITIALISE FOR THE SECOND PART OF FILE
mov es,ax
mov di,89
mov BYTE ch,[es:di]
inc di
inc di
mov BYTE dh,[es:di]
mov cl. 1
inc di
me di
mov BYTE al,[es:di]

00

mov ah,3
mov bx,ax
mov ax,2001h
mov ¢s,ax
mov ax,bx
xor bx.bx

int 13h

jmp exitl

fmmmmmm s READ THE CONTENTS & PERFORM DECRYPTION
dic mov d1,0
mov si,0
mov BYTE dh,[fs:di]
disp mov BYTE al,[es:di]
cmp al, 253
je loopout
sub al.dh
mov BYTE [es:di],al
me di
Jmp disp
loopout mov ax.20h
mov es,ax
mov d1,0
mov di,83 {INITIALISE TO WRITE ENCRYPTED DATA TO FILE
mov BYTE ch,[es:di]
in¢ di
ine di
mov BYTE dh,[es:di]
e di
inc di
mov BYTE cl,[es:di]
mov di,93
mov BYTE ah,[es:di}
mov di,87
mov BYTE al,[es:di]
sub ah.al
inc ah
mov al,ah
mov ah,3
mov bx,ax
mov ax,2000h
mov di,0
mov es,ax
mov ax,hx
xor bx,bx
mnt 13h

101}

Jmp exit!

exit2 pop di
pop si
pop ds
pop €s
writestring nofile.17,20.10
jmp bye
exitl pop di
pop sl
pop ds
DOp €s
writestring success,35,20,10
bye xor ah,ah
int 16h
:mov ax.S4c
:int 21h
retf

[section .data]

username db 'anon

nofile db 'FILE NOT FOUND...!
success db DECRYPTION SUCCESSFULLY COMPLETED..
[section .bss)

maxtrack resb 1

maxhead resb |

maxsect resb |

curtrack resb |

curhead resb 1

cursect resb 1

;PROGRAM TO PRINT USER SPECIFIED FILE
[org 0x0100]
[section .texi]
%emacro writestring 4 ;macro to write the string

mov ax,%]1 ;the offset value to bp thru ax

mov bp,ax

mov ah,13h :move function number to ah

mov al,l ‘move write mode to al

mov bh.0 :move vdu page no to bh

mov bl 14 .move attribute to bl

mov cx,%?2 ;move the stringlength to ex as paramcter?
mov dh,%:3 ;move row o dh reg

101

mov dl.%4 ‘move col to dl
int 10h ;call the interrupt

Yeendmacro

“%macro dispchar O

mov ah,14

mov bh,0

it 10h

Yeendmacro

push es

push ds

push si

push di

push es

push ds

push si

push di

mov ax,00h
mov €s,ax
mov d1,0
mov ¢x,13
mov si,username
name mov BYTE al,[ds:si]
mov BYTE [es:di].al
Inc s1
mc d
loopnz name

mov ax.10h

mov es,ax

mov di,0
getkey xor ah,ah

int 16h

cmp al,13

ie endofstr

mov [es:di],al

mc di

mov ah,14

mov bh,0

it 10h

jmp getkey

endofstr mov ax,33
mov cx,d1
sub ax,cx
mov ¢x,ax

fillspace mov al.20h
mov [es:dil.al
inc di
loop fillspace
mov ax,12h
mov €8,ax
mov di,
xor bx,bx
mov ah,2
mov al,1
mov ch,0
mov ¢l,1
mov dh,!
mov di,0
int 13h
mov di.0
mov di,010ah
mov BYTE al,{es:di]
mov BYTE [maxtrack],al
mov di,010ch
mov BYTE al,[es:di]
mov BYTE [maxhead].al
mov d1,010¢h
mov BYTE al,[es:di]
mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead]. 1
mov BYTE [cursect].2
pop di
pop sl
pop ds
pop es
nexisector push es
push ds
push si
push di
mov ax,100h
mov €s,ax
mov bx,0
mov ah,2
mov al, 1
mov ch,[curtrack]
mov cl,[cursect]
mov dh,[curhead]

R

mov dl.0
int 13h

mov ax,100h
mov ds.ax
mov ax.10h
MOV Cs.ax

mov s1,0
mov di.0
cmpnext
11C §1
ine sl
mov di,0
mov cx,33
repe cmpsb
cmp ex.0
Jne nequal
;COMPpAaring User name
ine si
mov ax,60h
mov es,ax
mov di.0
mov cx.13
repe cmpsb
cmp ex,0
je key
nequal
cmp s1,443
jge npres
mov ax,si
mov bl,102
div bl
inc al
mov k1102
mul bl

mov si,ax
Jmp cmpnext

key
mov ax,100h
mov ds,ax
mov ax,sl
mov bl, 102

L

(4

div bl
mul bl

jmmmermmmmmmmomomosnoos roll back to start of record and display 1l

mov si,ax
mov ¢x. 102
push es
push di
mov ax.20h
MoV s.ax
mov di1,9

disprec mov al,[ds:si]
mov ah,14
mov bh,0
int 10h
mov [es:di].al
e dt
Inc sl
loop disprec
pop di
pop es
Jmp near exit
mov ¢x, 102
mov di,0
cdisp mov al.[es:d1]
mov ah,i4
;. mov bh,0
.t 10h
. e dl
loop cdisp
. jmp exit
npres

mov BYTE al. [curscct]
cmp al,18

3l near incsect

mov BYTE [cursect], 1
mov BYTE al,[curhead]
cmp al,l

jl near inchead

display record

mov BYTE [curhead},0
mov BYTE al,[curtrack]
in¢ al
mov BYTE [curtrack],al
jmp near next

inchcad mov BYTE [curhead]. 1
jmp near nextl

incscet mov BYTE al [cursect |
e al
mov BYTE [cursect].al

next nop

nextl mov BYTE al,[curtrack]
mov BYTE ah,[maxtrack]
cmp al,ah
1 near nextsector
mov BYTE al,[curhead]
mov BYTE ah,[maxhead]
cmp al,ah
i near nextsecior
mov BYTE al,[cursect]
mov BYTE ah,[maxsect]
cmp al,ah
jle near nextsector

exit

mov ax,20h

MoV es,ax

mov di,0

cmp BYTE [es:di].'#
jne near exitl

mov di,83 INITIALISE FOR READ FILE
mov BYTE ch.[es:di]
e di

e di

mov BYTE dh,[es:di]
inc di

inc di

mov BYTE cl,{es:di]
mov di,93

mov BYTE ah,[es:di]
mov di,87

mov BYTE al,[es:di]
cmp ah.al

11 sect

sub ah,al

mc ah

mov al.ah
mov ah,2
mov bx,ax
mov ax,2000h
mov €s,ax
mov ax.bx
xor bx.bx

int 13h

jmp dic
mmmmwmmemcemmmsssnnoes FILE LOCATED IN DIFFERENT TRACKS OR HEADS

sect mov ah,18
sub ah,al
inc ah
mov al,ah
mov ah,2
mMov Bx,ax
mov ax,2000h
mov es,ax
mov ax,bx
xor bx,bx
int 13h
T READ FIRST PART FULLY

mov di,0

mov ¢x.1024

mov ah, 14

maov bh,0

disp2 mov BYTE al,[es:di]
inc di
int 10h
loop disp2

xor ah,ah

int 16h

(mmemmmmmmmmmmmnmomommmooes DISPLAY IT

mov ax,3000h :INITIALISE FOR THE SECOND PART OF FILE
mov es,ax

mov d1,89

mov BYTE ch,[es:d1]

inc di

inc di

mov BYTE dh.[es:di]

mov ¢l 1
inc di
e di
mov BYTE al,[es:di1]
mov ah,2
mov bx,ax
mov ax,2001h
mov s.,ax
mov ax.bx
xor by bx
it 13h
R DISPLAY THE CONTENTS
mov di,0
mov ah,14
mov bh,0
dispi mov BYTE al,[es:di]
cmp al,255
je outloop
e di
mt 10h
jmp displ
outlioop jmp exitl

S DISPLAYFIRST PART

mov ah.01
mov dx.0
mt 17h

dic mov di,0
mov ¢x.,0
disp mov BYTE al,[es:di]
cmp al,255
je loopout
inc di
inc cx
mov ah,00
mov dx,0
int 17h
jmp disp
loopout nop

mov dx,0
mov ax.cx
mov bl,80

div bl

sub bl,ah

mov cl bl

:mov al.cl

;dispchar

pchar mov al,20h
mov ah,00
mov dx,0
it 17h
loop pchar

pop di

pop si

pop ds

pop €s

writestring message2,19,20,10

jmp bye
exitl pop di

pop sl

pop ds

pop es

writestring messagel,16,20.10
bve xorah,ah

int 16h

:mov ax,S4c

ant 21h

2

[section .data]
username db 'anon
messagel db 'FILE NOT PRESENT"
message2 db 'PRINT JOB COMPLETED'
[section .bss]

maxtrack resb 1

maxhead resb 1

maxsect resb |

curtrack resb 1

curhead resb]

cursect resb |

1

;PROGRAM TO VIEW THE CONTENTS OF A FILE. ..

lorg 0x0100]
[section .text]
“omacro writestring 4 ,;macro to write the string

mov ax,%! :the offset value to bp thru ax

mov bp.ax

mov ah.13h ‘move function number to ah

mov al, | ‘move write mode to al

mov bh,0 :move vdu page no te b

mov bl 14 :move attribute to bl

mov ¢x.%2 -move the stringlength 1o cx as parameter?
mov dh, %3 :move row o dh reg

mov d1,%4 :move col to dl

int 10h .call the interrupt

Ypendmacro
Yomacro keypress O
xor ah.ah
int 16h
Y%endmacro
push es
push ds
push si
push di
push cs
push ds
push si
push di

mov ax.60h
MOV €8,aX
mov di,0
mov ¢x,13
MoV §i,Username
name mov BYTE al,[ds:si]
mov BYTE {es:di],al
inc si
inc di
loopnz name

mov ax,10h
mov @s,ax
mov di,0
getkey xor azh.ah
it 16h
cmp al, 13
je endofstr
mov [es:dij.al
me di
mov ah, 14
mov bh.0

it 10h
jmp getkey
endofsty mov ax,3
mov cx.,di
sub ax.cx
MoV CX,ax
fillspace mov al,20h
mov {es:di].al
inc di
loop fillspace

-
2

mov ax,!2h
MoV €s,ax
mov di,0
xor bx,bx
mov ah.2
mov al, 1
mov ¢ch.,0
mov cl,1
mov dh, 1
mov dl,0
int 13h
mov di,010zah
mov BYTE al,[es:di]
mov BYTE [maxtrack].al
mov di,01Gch
mov BYTE al,[es:di]
mov BYTE {maxhead].al
mov di,010eh
mov BYTE al,{es:di]
mov BYTE [maxsect],al
mov BYTE [curtrack],0
mov BYTE [curhead],]
mov BYTE [cursect],2
pop di
pop st
pop ds
nop es
nexisector push es
push ds
push s1
push di
mov ax,100h
mov es,ax

mov bx.0

mov ah,2

mov al,l

mov ch,[curtrack]
mov cl,[cursect]
mov dh.[curhead]
mov dl.0

mt 13h

mov ax.100h
mov ds.ax
mov ax,10h
mov es,ax
mov s1,0
mov di1,0

cmpnext Inc sl

Ine si

" mov di,.0
mov ¢x,33
repe cmpsb
cmp ¢x,0
Jne negual
,comparing user name
Ing s
mov ax,60h
mov €s.ax
mov dr,0
mov cx, 13
repe cmpsb
cmp ¢x,0
je key

nequal

key

cmp s1,445
Jge npres
MoV ax,si
mov b1, 102
div bl

inc al

mov bl. 102
mul bl

mov si,ax
Jmp cmpnext

mov ax,100h
mov ds,ax
mov ax,sl
mov bl 102
div bl
mul bl
jmmmmmmmmrmmm oo mmnesos roll back to start of record and displav 1t

mov §i,ax

mov ¢x. 102

push es

push di

mov ax.20h

mov ©8.ax

mov di,0

disprec mov al,{ds:si]
mov ah,14
mov bh,0
int 10h
mov [es:di],al
inc di
inc s
loop disprec
pop di
pop €s
Jmp near exit
e e L display record

mov BYTE al,[cursect]
cmp al, 18

1! near incsect

mov BYTE [cursect].]
mov BYTE al.fcurhead]
c¢mp al.l

J1 near inchead

mov BYTE [curhead],0
mov BYTE al,[curtrack]
ine al

mov BYTE [curtrack].al
jmp near next

inchead mov BYTE [curhead].]
jmp near nextl

incsect mov BYTE al,[cursect]
inc al
mov BYTE |cursect}.al

next nop

nextl mov BYTE al,[curtrack]
mov BYTE ah,[maxtrack]
cmp al,ah
J} near nextsector
mov BYTE al.{curhead]
mov BYTE ah,[maxhead]
cmp al,ah
1l near nextsector
mov BYTE al,[cursect]
mov BYTE ah,[maxsect]
cmp al,ah
Jle near nextsector

exit

mov ax,20h

mov es,ax

mov di,0

cmp BYTE [es:di],'#'
Jne near exit2

mov di,83 JINITIALISE FOR READ FILE
mov BYTE ch,[es:di]
inc di

inc di

mov BYTE dh.[es:d1]
inc di

mne di

mov BYTE cl,[es:di]
mov d1,93

mov BYTE ah,[es:di]
mov d1,87

mov BYTE al,[es:d1]
cmp ah,al

]l sect
sub ah,al
inc ah
mov al,ah

rmov ah,?

mov bx,ax

mov ax,2000h

mov es,ax

mov ax,bx

xor bx,bx

mi 13h

Jmp dic

OIS FILE LOCATED IN DIFFERENT TRACKS OR HEADS

sect mov ah.18
sub ah,al
mc ah
mov al,ah
mov ah,2
mov bx,ax
mov ax,2000h
MoV €5,aX
mov ax.bx
xor bx.bx
mt 13h
e READ FIRST PART FULLY

mov di.0

mov cx,1024

mov ah,14

mov bh,0

disp2 mov BYTE al,[es:di]
e di
int 10h
ioop disp2

xor ah,ah

int 16h

Jemmm i mmmm oo DISPLAY (T
mov ax,20h INITIALISE FOR THE SECOND PART OF FILE
mov es,ax

mov d1,89

mov BYTE ch,[es:di}

e di

nc di

mov BYTE dh,[es:di]

mov cl,1

ine di

me di

mov BYTE al[es:d1]

:mov ax,S4c
ant 21h
retf

[section .data]
username db 'anon
nofile db 'FILE NOT FOUND..’

success db 'PRESS ANY KEY TO CONTINUE.L

[section .bss)
maxtrack resb 1
maxhead resb |
maxsect resb 1
curtrack resb 1
curhead resb |
cursect resb 1

“THIS IS THE DISKVIEWER UTILITY FOR THE CREAGX OPERATING SYSTEM
[ORG 0X0100]
[SECTION .text]
jmp startofdisp
Yamacro exit 0
mov ax,d4c
int 21h
Yeendmacro
Somacro c¢lrser O
mov ¢x,2000
label mov ah,14
mov al,”’
xot bh,bh
nt 10h
loop label
setcursor 0.0
Yeendmacro
%emacro setcursor 2
mov ah,2
mov bh.0
mov dh,%1
mov dl,%?2
int 10h
%endmacro
%macro dispchar O
mov ah,14
xor bh,bh

mt 10h
%endmacro
%macro keypress 0
xor ah,ah
it 16h
Y%%endmacro
Ypmacro print_at 3
mov ax, %1
mov bp.ax
mov ai,13h
mov al,l
mov bh,0
mov bl,%35
mov ¢x,%2
mov dh,%?3
mov dl,%4
int 10h
“eendmacro

%macro mcline {)
push cx
mov ah,3
mov bh,0
int 10h
add dh.1
mov dl,10
mov ah,2
mov bh,0
int 10h
pop cx

Y%%endmacro

procascii2bin:
push ax
shr al,4
cmp al,9
Jle near ndect
sub al,%
add al,64
dispchar
jmp near next
ndect add al.48
dispchar
next pop ax
and al, 15
cmp al,y

:macro to write the string
smove the ofTset value to bp thru ax

;move function number o ah
qmove write mode to al
;move vdu page no 1o bh
;move attribute to bl
:move the stringlength to ¢x as parameter?
;move row to dh reg
:move col to dl reg
.call the interrupt

dec al
mov [unit],al
cmp al,0

jg near dispchs

mov al 18

mov [unit],al

mov al[side]

cmp al.}

je near prevhead

mov al.l

mov [side].al

mov al.{track]

dec al

mov [track},al

cmp al,0

jg near dispchs

mov al,79

mov [track],al

jmp near dispchs
prevhead dec al

mov [sidej,al

dispchs setcursor 2,10
mov al [track]
call procasciiZbin
setcursor 2,42
mov al,[side]
call procasciiZbin
setcursor 2,77
mov al,[unit]
call procasci2bin
jmp near chschange
over exit
[SECTION .data}
wmess db "WELCOME TO CREAGX DISK VIEWER'
cylinder db 'CYLINDER’
head db 'HEAD'
sector db 'SECTOR'
[SECTION .bss]
track resb 1
side resb 1
unit resh 1

