Resource Correlator

PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIRMENTS FOR THE
AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING

OF BHARATHIAR UNIVERSITY,

COIMBATORE.
P62
| AN
Submitted By, &'/ %’Q‘\ Ligg, Hy\):’: ’9
\/% T
ArunR,, Nerz 9827K0162
Preethi S., 9827K0198
1998 - 2002 Kavitha B., 9827K0718

Manju Priyadarsini M., 9827K0188

Guided By,

Ms.N.Rajathi,B.E.
* | ok

w

DEPARTMENT OF COMPUTER SCINENCE & ENGINEERING
- KUMARAGURY COLLEGE OF TECHNOLOGY

COIMBATORE - 641006.
MARCH 2002

Tele :+91 44 6212189 hitp://www.rushmorent.com
Corporate Ofice : Murugan am, #.21 {0k #.11), Soth Avenue, Anna Nagar East, Chennai- 600 102, india.

Certlﬁcate ! m X

CONSULTANCY SERVICE
the solution

To whomsoever it may concem

Certified that this product “Resource Correlator 3” is the bonafide
work of

MrR Anm,

Ms. S Preethi,

Ms.B Kavitha

For Rushmore Consultancy Services (P) Ltd

Lsna¥- .
E.\J ot wleal 2 Mool
T Dan’n.2a 29 * 32

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Kumaraguru College of Technology

(Affiliated to Bharathiar University, Coimbatore)

CERTIFICATE

This is to Certify that project report entitled

Resource Correlator

1s a bonafide record of work done by

Arun R., 9827K0162
Preethi S., 9827K0198
Kavitha B., 9827K0718

Manju Priyadarsini M., 9827K0188

in partial fulfillment of the requirements for the award of the Degree of Bachelor of

Engineering in Computer Science and Engineering branch of Bharathiar University,
Coimbatore-641006 during the academic year 2001-2002.

_Nebosstns < I 13)3/{)‘

Project Guide Head of the D\épam(i'[}ent

Submitted for the University Examination held on

. AN O
IO G AN —-
i Pl Ao e
Internal Examiner ! '~ “External Examiner

‘Dedicated to our
Beloved Parents

Acknowledgement

Acknowledgement

We take this opportunity to express our gratitude to all, whose
contribution in this project can never be forgotten.

We are extremely grateful to Dr K.K.Padmanabhan, B.Sc. (Engg),
M.Tech., Ph.D., Principal, Kumaraguru College of Technology for haven
given us a golden opportunity to serve the purpose of our education.

We are deeply obliged to Dr.S.Thangasamy, Ph.D., Professor Head
of Department of Computer Science and Engineering for his valuable
guidance and useful suggestions during the course of this project.

We also extend our heartiest thanks to Mrs.S.Devaki, M.S., Assistant
Professor, Department of Computer Science and Engineering for providing
us her support which really helped us to come out with the project
successfully.

Our heartfelt thanks to our project guide Ms.N.Rajathi, B.E.,
Lecturer, Department of Computer Science and Engineering for her constant
guidance and unfailing interest in aiding us to consummate this project
successfully.

We are indebted to our class advisor Mrs.D.Chandrakala, M.E.,
Lecturer, Department of Computer Science and Engineering for inspiring us
and valuable support given to us throughout our project.

With immense pleasure, we express our heartfelt gratitude to
Mr.R.Rajkumar and Mr.V.Varatharaj Kumar, the Managing Directors,
Rushmore Consultancy Services (P) Ltd., Chennai for providing us the

opportunity to do the project in their organization.

We also take this chance to equally express our gratitude to
Mr.V.Mouralidaran, our project guide at the company for providing
technical guidance and all the others of the organization for their constant
motivation during the course of our project.

‘We extend our thanks and gratitude to all the non-teaching staffs of
Computer Science and Engineering Department, Kumaraguru College of
Technology for their best support and guidance provided to us.

Above all we owe our gratitude to our parents and friends for their
support and God almighty for showering abundant blessings on us.

- Synopsis

Synopsis

Resource Correlator 3 is a product used by MediaSeek Ltd. It is a
system for creating, correlating and managing Educational Resource Data
that is correlated to MediaSeek’s Knowledge Base. It provides users with
the ability to produce Correlation Matching Reports that show the matches
between correlated educational resources and Guiding Documents.

Resource Correlator is a 32-bit Windows application, which is built
on an n-tier methodology in which the different software chores are
separated into software components. It consists of a middle tier, which is
responsible for interaction between the data source and the user Interface
(UI) that the end-user sees when they are interacting with Resource
Correlator.

The middle tier insulates the user interface from changes to the
database-specific information it must process. With this middle tier in place,
there is no requirement for the client side software to deal with ODBC
particulars or any SQL code. This middle data access tier is provided in an
ATL-based DLL called Magnolia.

Resource Correlator is intended to correlate resources in the K-12
education market. The target users of this product include Publishers,
Independent educational consultants, Educators and Classroom teachers. The
important feature, is the ability of other software projects within MediaSeek
to utilize the Magnolia functionality for maintenance of Resource Correlator

client-side data.

(ontents

Contents

[a—y

. Introduction
1.1 Company Profile
1.2 Existing System and its limitations

1.3 Proposed system and its advantages

()

. System Requirement
2.1 Product Definition
2.2 Project Plan
3. Sbftware Requirement Specification
3.1 Hardware Specifications
3.2 Software Specifications
3.3 Functional Specifications
4. Design Document
4.1 Architectural Design Specifications
4.2 Database Structure
4.3 Table Design
5. Product Testing
6. Future Enhancement
7. Conclusion

8. Bibliography

Annexure
1. Source Code

2. User Interface

11
11
20

23
27
28
32
34
35
36

Introduction

Resource Correlator

1. Introduction

This document outlines the functionality of Resource Correlator 3, a system
for creating, correlating and managing Educational Resource Data that is correlated
to Mediaseek’s Knowledge Base. This system will consist of a Client and Internet
browser-based functionality. Once the data is created it is submitted to Mediaseek
for review and posting on Mediaseek’s production database. The Resource
Correlator system is one part of Mediaseek’s Suite of Correlation tools, which also

includes Guiding Document Correlator.

1.1 Comp’any’s Profile:

Rushmore Consultancy services (P) Ltd was conceived by a team of
seasoned and dedicated professionals on June 03, 1999. It provides businesses with
turnkey solutions that include software and services. Since inception, the company
has been specializing in electronic commerce research & development, Internet
Site Development and Custom Designed Business Software on n-tired business
models.

Rushmore Global Services is composed of:

Consulting Services.

Applying proven project methodologies to successfully implement Rushmore

solutions.

Education Services:

Education programs designed to ensure fully enabled and self-sufficient client

sites.

Resource Correlator

Support Services
A range of round the clock support services including preventative maintenance

and instant personal and online access to support analysts.

Rushmore apparently has no compromise on Quality. It has been successful
in delivering one hundred percent quality Software Systems. Effective robust
SoftWare ‘Quality Assurance Plan (SQAP) and Software Configuration
Management Plan (SCMP) are devised for each and every project.

Rushmore’s Technology Solution partners program is aimed at delivering
the product; training, support and marketing resources to bear that will make each
of our partnerships successful. Whether an independent software vendor (ISV),
systems integrator (SI), consultant, application service provider (ASP), value-
added reseller (VAR), or hardware platform vendor, the Rushmore Solution

Partners Program will match your business model and lead to real opportunities.

The strengths of Rushmore include dynamic, knowledgeable employees,
emphasis on quality while still delivering on time and complete range of services

and capabilities.
1.2 Existing system and its limitations:

Resource Correlator 2 was in use for a limited period of time. Very few
users used it. The main disadvantage of the product was that it did not have a
Communication module (middle tier) that acts as an interface between the Client

and the MediaSeek’s database. Hence it required a large amount of Client side

Resource Correlator

coding and it could not provide software reusability for other MediaSeek’s

~ applications.
1.3 Proposed system and its advantages:

Resource Correlator 3 (RCO/3) is an n-tier 32-bit Windows application
written with Microsoft Visual C++ 6.0 . The database back-end 1Is MSDE
(Microsoft Data Engine). MSDE is 100% scalable to Microsoft’s SQL Server 7.0 .
Access to the data stored in the MSDE tables is accomplished through the use of
ActiveX Data Objects (ADO), which has, in turn, been encapsulated in a middle
software tier. This middle data access tier is provided in an ATL-based DLL called

Magnolia.
Resource Correlator 3 provides users with the ability to produce:

* Educational Resource Data (formerly referred to as Resource Keys)
correlated to MediaSeek’s Knowledge Base for use within MediaSeek’s production
database and products that utilize this database.

" Correlation Matching Reports that show the matches between correlated
educational resources and Guiding Documents.

* Resource Summary Reports that show all the information and correlated
knowledge base statements for the components within a given resource.

. Resource-Resource Reports of the matches between components in two
resources

* Guiding Document-Guiding Document Reports of the matches between

elements in two Guiding Documents

System Requirements

Resource Correlator

2. System Requirements

2.1 Product Definition:

Mediaseek’s Resource Correlator Release 3 is built on what is called an 7-
tier methodology (where n is usually 2 or 3). What this means is that different
software chores are separated into software components. This provides software
reusability for other Mediaseek applications that have yet to be developed or
existing applications that are not yet adapted. The middle tier is responsible for
interaction between the data source (usually an ODBC-driven database back end
such as Microsoft® SQL Server 7) and the user interface (UI) that the end-user sees

when they are interacting with Resource Correlator.

Why a Middle Tier?

A muddle tier insulates the user interface from changes to the database-
specific information it must process. What this provides is a way to manage data in
a way that is database product non-specific. But doesn’t a data access standard
such as ODBC or ADO provide this? Yes they do, but for the most primitive types
of database chores. Typically ODBC-based coding requires the embedding of
standard SQL statements. Data is provided to the calling application in terms of
row sets and columns. This places the burden of dealing with both the SQL
necessities and the business logic inherent in the application’s user interface on the

UI developer. This is typically troublesome and error-prone in a development team

environment.

Resource Correlator

Here’s the fundamental view of this approach:

Publisher, Resource, Putdlisher, Resoures,
Component and Component and Oth
Resource clation obi ion obi) er
Corrglation objects Correlation obJects’ Bigchalk.com

Correlator 3 L
User Interface applications

Magnolia data objects and abstraction (MAGNOLIA DLL)

| Microsoft
Data Engine

(SQL Server 7

n-Tier approach
While there’s nothing inherently wrong with the application in question
using ADO (or a different methodology) for accessing the tables stored in the
database, the added benefit in using the Magnolia classes is two-fold: First, there
are business rules built into how the data is maintained within Magnolia. Second, a
different data engine or ODBC-like layer could be put in place without disturbing
the UI codes much at all.

Magnolia Overview:

Magnolia is made up of collections and container objects that adhere to the
business rules of Resource Correlations. Each client side database table 1s wrapped
with a COM object. A Collection object is a collection of containers. The
container objects expose the actual data while the Collection enables the addition,
deletion, and acquisition of container objects. Container objects make up a

collection. They contain the actual data in the underlying tables.

Resource Correlator

Magnolia Classes:

Add.

CPublisher

PublisherN

1 Delete:
PublisherURL.

CResource

— Update

SalesPhone

CComponent B Load

CCorrelation

Sample Magnolia classes

When you define an instance of one of these classes, you have an object.
With a Publisher object, as an example, you can set its properties or use its
methods to perform some sort of action on the object. In the example shown here,

those actions are specific to working with the data source.

ATL & COM:

Magnolia is actually implemented using ATL (ActiveX Template Library).
In the Windows™ operating systems, this is known as COM, which, in turn, was
improved to COM+ with the advent of Windows 2000 technology. COM, or the
Component Object Model, is a way for an object to create instances of itself.
Mégnolia is an ATL version of just such a library. ATL was chosen because it is a
lightweight subset of those features most commonly used by third-party controls

and applications.

Resource Correlator

2.2 Product Plan:

Life Cycle Mode:

The Spiral Model is proposed to be in life cycle mode is followed while
developing the product software. It provides the potential for the rapid
development of incremental version of the software. The software is developed in

the series of incremental releases. The spiral model has six tasks region.

Task Region 1:
> Terminology : Customer Communication
» Milestones : Nov 6™ -9"
» Work Product : The project guide introduces the main concepts of
the project. A preliminary study is made about
Resource Correlator 2 and its limitations.
Enhancements to be introduced in the next version
are studied.
Task Region 2:
| » Terminology : Planning
» Milestones : Nov'10™— 14"
» Work Product : Analysis of the product definition. What function
the product has to perform, Processing environment,
Product features, Programming language and
development tools to be implemented are all decided

in this stage.

Resource Corrclator

Task Region 3:
» Terminology
> Milestones
» Work Product

Technical Risk :

Managerial Risk :

Task Region 4:
» Terminology

> Milestones

> Work Product

. Risk Analysis
. Nov 157 —20"

Since Design Document plays a very important role
inn coding, Preparation of Design Documentation
consumes more time. Coding is based on all the logics,
concepts that can be used. Once the design is made the
coding can be started from scratch without any

confusion.

For every module time limits are set to be fixed for
its completion . The project duration is between Nov 6™ —
Feb 15™ . With in the given time slot for each module it
has to be completed. If there is a delay in any module
then there is a delay in completion of the whole project.
So, the modules have to be completed in the appropriate .

time.

: Engineering.
. SRS Document Nov 25" — 30"

: Based on the needs of the project, the software

requirement specification is prepared. SRS includes
Product Overview, Processing Environment,
Functional Specifications , Performance

requirements, Design guidelines.

Resource Correlator

> Milestones
> Work Product

Task Region 5:

» Terminology :

Milestones
Dec 15%-23™

Dec 24 — Jan ot

Jan 10™ — Jan 16"

Jan 17™ — Jan 28"

. Design Document Dec 1% —Dec 14" .

: Based on the needs of the project ,the Design

document is prepared. Designing plays an
important role during coding. Once the design is
framed well, the programmer can start the coding
very easily. Design document includes
Architectural design overview and Detailed design

Specification.

Construction and Release.
Work Product
Database designing using MS-SQL server 7.0.

Creation of all the tables based on the design
specified.

Front end designing using MDI document of Visual
C++ 6.0. All the required forms are created as per the

specifications in the design document.

Coding for the Communication module is done.

Required header files for the DLL is created using ATL

concepts.

Coding for the Correlation module in
which the coding for the features like search &

advanced search are also done.

Resource Correlator

Jan 29" — Feb 5™

Feb 6™ — Feb 9™
Feb 10" — Feb 12"
Feb 14"
Task Region 6:

» Terminology

> Milestones
» Work Product

Collection of Knowledge Base Statements.
Registration of the various publishers along with

their resources and components is done.
Preparing Test Plan.
Installing Exe file.

Demonstrating the whole project.

: Customer Evaluation

: Feb 15" - 19®

On seeing the execution , the customer gave the
feedback. His feedback was the product works
very well and it can be extended in future for

other MediaSeek’s applications, if time permits.

10

Software Requirement
Specifications

Resource Correlator

‘3. Software Requirements Specification

3.1 Hardware Specifications:

Processor

System RAM
Cache Memory
Floppy Disk Drive
Hard Disk Drive
Keyboard

Mouse

Display Adapter

Monitor

: Pentium III 450 MHz.

: 64 MB.

: 512 KB.

:1.44M.B

: 20 GB.

: Windows Keyboard.

: Microsoft Compatible PS/2 Mouse.

: VGA Card with on-board 8 MB VRAM
supporting a screen resolution of 1024*768 with
16 bit color depth running.

: Color Monitor with refresh rate of 85 Hz.

3.2 Software Specifications:

Operating System
Language Used
RDBMS

: Windows NT /98 / 2000
: Microsoft Visual C++ 6.0
: Microsoft SQL Server 7.0

11

Resource Correlator

Microsoft Visual C++

The Microsoft Visual C++ package is provided along with an Integrated
Development Environment (IDE). This feature of Visual C++ helps the users in
developing complex projects with ease. Developer Studio is used to integrate the
develdpment tools and the Visual C++ Compiler. A complex Application can be
created by scanning through an impressive amount of online help. The Developer
Studio also 'helps the programmer to debug the Application within this

environment itself.

Development Tools:

The Integrated Development Environment includes a number of tools such

as:

> An Integrated Editor offers drag & drop of the user interface controls and the
syntax highlighting features.

> A Resource Editor is used to create Windows resources such as bitmaps,
1cons, dialog boxes, and menus.

> An Integrated Debugger enables to run programs and check for any errors.
As it is a part of the Developer Studio, it is easy to detect and rectify the
bugé.

12

Resource Correlator

Developer Studio Wizards:

Visual C++ provides wizards that work in conjunction with the MFC
application framework and the Active Template Library (ATL) to create starter
programé for the Application Developer. These are collectively known as MFC
AppWizard. There are other wizards that help the Application Developer to add

functionality to the programs.

» MFC AppWizard : It generates a complete suite of source files and
resource files based on classes from the MFC library. There are two versions
of this wizard, one that helps us create an MFC executable program and one
that helps us create an MFC DLL. AppWizard supports three interfaces
namely Single Document Interface (SDI), Multiple Document Interface
(MDI), and Dialog-based Interface.

> The ATL COM AppWizard : It guides the Application Developer through
the tasks associated with creating an Active Template Library (ATL)
application. Depending on the Wizard options you choose, these applications

can be very small and efficient.

» ClassWizard : ClassWizard makes it easier to do certain routine tasks
such as creating new classes, defining message handlers, overriding virtual
functions, and gathering data from controls in a dialog box, form view, or
record view. ClassWizard also makes it easy to add properties, methods, and
events to automation objects. ClassWizard works with programs that use the

Microsoft Foundation Class Library (MFC) or the Active Template Library
(ATL).

13

Resource Correlator

» Custom AppWizard : Using Custom AppWizard, the developers can
create their own project type and add it to the list of types available when
they create projects. Custom AppWizards are useful for creating generic
application project types that can repetitively generate common

functionality—application types that can be used over and over again.
MFC Libraries:

The Microsoft Foundation Class (MFC) library offer classes for managing
windows objects and offers a number of general purpose classes that can be used in
any type of Applications. MFC library represents virtually every Windows API
feature and include sophisticated code that streamlines message processing,

diagnosing and other details that are normal part of Windows Applications.

MFC makes use of the document/view architecture. MFC supports two types
of document/view applications. The first is single-document interface (SDI)
applications, which support just one open document at a time. The second is
multiple-document interface (MDI) applications, which permit the user to have two

or more document open concurrently.

MFC allows you to create full applications, ActiveX controls, and active
documents. The MFC library incorporates a robust architecture. It offers automatic

message handling and dynamic object typing. It allows self-diagnostics.

14

Resource Correlator

Dynamic Link Libraries (DLL):

A dynamic-link library (DLL) is an executable file that acts as a shared
library of functions. Dynamic linking provides a way for a process to call a
function that is not part of its executable code. The executable code for the
function is located in a DLL, which contains one or more functions that are
compiled, linked, and stored separately from the processes that use them. DLLs

also facilitate the sharing of data and resources.

Multiple applications can simultaneously access the contents of a single
copy of a DLL in memory. Many Applications can benefit by being split into a
series of main programs and DLLs. There are several linkage options. An MFC
library DLL can accommodate entire C++ classes. These DLL-resident classes can

be used the same way that statically linked classes are used.

Dynamic linking differs from static linking in that it allows an executable
module (either a .DLL or .EXE file) to include only the information needed at run
time to locate the executable code for a DLL function. DLLs save memory, reduce
swapping, save disk space, upgrade easier, provide after-market support, provide a
mechanism to extend the MFC library classes, support multi-language programs,

and ease the creation of international versions.

DLLs also facilitate the sharing of data and resources. Multiple applications

can simultaneously access the contents of a single copy of a DLL in memory.

15

Resource Correlator

ATL and COM:;

Component Object Model (COM) is the fundamental "object model" on
which ActiveX Controls and OLE is built. COM allows an object to expose its
functionality to other components and to host applications. It defines both how the
object exposes .itself and how this exposure works across processes and across

networks. COM also defines the object's life cycle.

ATL is the Active Template Library, a set of template-based C++ classes
with which you can easily create small, fast Component Object Model (COM)
objects. It has special support for key COM features including: stock
implementations, dual interfaces, standard COM enumerator interfaces, connection

points, tear-off interfaces, and ActiveX controls.

“ATL allows to easily create COM objects, Automation server, and ActiveX
controls. ATL provides built-in support for many of the fundamental COM

Interfaces.

ATL is a fast, easy way to both create a COM component in C++ and
maintain a small footprint. ATL can be used to create a control if all of the built-in
functionality that MFC automatically provides is not needed. ATL code can be
used to create single-threaded objects, apartment-model objects, free-threaded
model objects, or both free-threaded and apartment-model objects. ATL is meant

to be a lightweight alternative to MFC for creating ActiveX controls.

1 £

Resource Correlator

Database Design:

‘Database design is one of the most important steps in the system design
phase of the system development. A good design of the database can reduce
problems like redundancy and anomalies and at the same time enforces integrities
like referential integrity, domain integrity, etc. Data Base Management System
implements normal databases. The concept called Relational Data Base
Management System (RDBMS) is easier to design a database that can enforce all

the securities and integrities, which lead to a secured and consistent database.

Data Base Management Concepts:

Databases are normally implemented by Data Base Management

System(DBMS). DBMS fall into two broad categories.

» Pointer-driven Systems

> Table-driven Systems

Pointer — driven DBMS use techniques such as participating and training.
These are normally host-languages that use high-level language verbs coded within
apblication problems. The designs of database using each system will have a

crucial effect on the performance and flexibility of the end result.

17

Resource Correlator

Table — driven systems are inverted — file systems that allow the user to set
up and maintain database, which may be searched using a wide range of different

keys. These systems are generally straightforward to implement.

The user specifies the records and fields, indicated which of the fields will
be the keys, and supplies these parameters to the DBMS, which will then set up the
database. The effort needed at the design stage is much lesser in this system than

pointer — driven systems.

Relational Database Management System (RDBMS):

In RDBMS the data is organized consisting of the rows and columns. There
is an explicit pointer stored in the rows. Each table has unique name. To i dentify a
particular row in a table, a column or combination of columns are used. This is

called the primary key.

The relational model stores every information in terms of rows and columns
of data and thus the relation is automatically established and so relation is
implicitly understood. The tabular form of representation forms the basis of

implementation of relation in RDBMS.

Microsoft SQL Server 7.0 for Microsoft Windows® 95/98 and Windows NT
Workstation is a fully-featured RDBMS targeted for workstation and mobile

applications. In addition it is perfect for embedded applications because it provides

a fully-featured database engine and core components.

Resource Correlator

Features of RDBMS - Microsoft SQL Server:

Dynamic Locking
Multi-Platform
Data Warehousing

>
>
>
> Parallel database backup and restore
» Added Memory Support

» Microsoft English Query

>

Reliability, Concurrency, Centralized Control

An impbrtant step in the database design is the Normalization process. It is
the process of breaking up of data and storing them in tables in order to reduce
redundancy. Though Normalization reduces redundancy of data, it is desirable to
have some degree of redundancy in some cases. In such cases, we deliberately

_introduce some elements of redundancy for a highly improved performance. This

can be regarded as Denormalization.

After analyzing all the requirements and inputs, the tables of the system are
designed to store the data in a relational manner. Most of the tables in the system
are normalized to the extent possible, but a few tables are denormalized in order to

reduce the query time and access time.

Indexes are formed on the combination of keys normally used in queries.
The Microsoft SQL Server maintains the indexes on primary keys or unique keys

and uses implicitly whenever query is fired.

19

Resource Correlator

33 F unctionél Specifications:

The ‘Resource Correlator’ product comprises of four primary
modules that are combined to form the whole product. The four main modules that

encompass the product are:

> Publisher Registration
> Correlation Services
» Communication Module — Magnolia

> Knowledge Base Maintenance

Resource Correlator

|

y A 4 y A 4

Publisher Correlation Communication KB
Registration Services Module Maintenance

Publisher Registration:

In this module the Publishers or Customers can add or edit the
information regarding their Resources and the corresponding Components.
Publisher refer to an entity (could be a commercial company, non-profit or
independent author) that creates and publishes educational materials. Microsoft

Visual C++ MFC library is used to create the user interface to interact with the

User.

20

Resource Correlator

Correlation Services:

This module enables the user to correlate the components with
the Knowledge Base. The user is prompted to select a component and choose
the Correlation tab So that appropriate Knowledge Base statements are correlated
to the desired Component. It also provides the user with a Search option wherein
the user can look for the available Knowledge Base Statements for a desired

keyword.

Publisher Correlation
Registration Services

Communication
Module

KB
Maintenance

Communication Module:

The Communications module will act as an interface between
the Client and the Databases. It comprises the middle-tier development which is
called Magnolia . This middle tier insulates the user interface from changes to the
database-specific information it must process. This provides software reusability

for other applications. It is developed using the ATL and COM technologies.

21

Resource Correlator

Knowledge Base Maintenance:

This module is used for managing and maintaining Educational
Resource Data that is correlated to MediaSeek’s Knowledge Base. The Knowledge
Base consists of approximately 12,000 statements that describe what students
might learn in the subject areas of English/Language Arts, Mathematics, Science,
‘Social Studies, Technology, and Health/Physical Education. It is built using
Microsoft SQL Server.

22

Design Document

Resource Correlator

4.Design Document

4.1 Architectural Design Specifications:

Structure diagram explains the details about the product structure.

What are the inputs and outputs to the structure, how the product is comprised

into modules and its name is also mentioned.

Resource Correlator 3 consists of five components:

l.

An informational web site through which users will be able to download the
Client and access user account status

Browser-based account status, data and inventory management, and
reporting function through the use of Seagate’s Info Server and Client,

initially available only for internal Mediaseek use.

. The Resource Correlator 3 Client for Windows NT 4.0/98/2000/ME which

has functionality similar to but scaled down from the existing Resource
Correlator 2.x Application.

A Communications module that will act as an interface between the Client
and MediaSeek’s databases.

. A Help and documentation system, including demonstration versions of the

Client and browser functionality.

Resource Correlator 3 System Diagram and functional description is

represented below:

F SIAIUS y 20 UX _

201N0SY MIN _

A
Y

SI2qLIdSqNS SEqRIE(]

Y

Idv ¢

suonestddy
P3SEIPIN

sp10da utjadl J/Li0juaau] Yo2S0IPARY =

1041u00) Luotudauy p JuawWSVUDY DID Y2ISOIPIW =
SUDGLIOSGNG wntwa g Y225Ipapy sHodoy uonepLIo) -
SnJe)S Ble(] 90IN0SIY MIIA =

SNJe}S JUNODJY JIPH/MIIA

JISRURIA JUYUO)) € I0)JB[2.110)) 321N0SNY

Uccmh.(:.:_hﬁ

0JUu] JUNOJOY

UOIB[OII0)) |1

A93TEIPIN

.vc-pccpkq NKV&H‘) |
UONRWLIOJU] =

WO0J"10)B[2.110)9IIN0SIY

aseqeie(]
uononpoig

1

oseqere(g
uone[eLIo))

olrews
BIA 10JB[OLI0))
0} Jorqpasg
el 30IN0SNY nuqng
snotaaid [o1u0) Ajend
peojumo(d < uido]

*

SNJBIS BB 90IN0SIY MIIA =
Jorqpao aseq aSpajmouy]
Funipe
10§ BIep 251059y paaocidde/pannuqns
Apsnoiaaid peojumog =
gjep uqng - .

doyg
J1odar, Areunung 901n0say 2onpold
Ly jusuodwio) ajepLo) u

)oeqpag,] dseq ITpo[mouy =
oseq afpa[mouy Yoieas
eje(Juauodwio)) Npg/Iuyg »
BJE(] 901N0SY JIpF/Iouyg =
20JNOSIY MIU 3JBILD) W
UOIJBULIOJU] ISYSI|GN MIIA =

SMOpUIp 10]
11211 € 10JB[LI0)) IIINOSIY

weiBelq wasAg ¢ 10je}a1109 oo..:o‘muv_

101B[0110)) 92IN0SY

Resource Correlator

MediaSeek’s Data Management Workflow:

This section describes specific features required by MediaSeek Data Manager.

Reference | Action » ; e
1. | Receives notification Via Browser-based Data Manager notified
that new Resource MediaSeek of submission
Data has been Sfunctionality TBD
submitted
2. | Data manager reviews | DM machine Resource Data
submitted data in reviewed by human
Browser-based
functionality
3. | Data manager accepts | DM machine Data flagged as
data accepted
4. | System flags data as MediaSeek system; Data flagged as
accepted status sent to Client accepted
machine during next
connection
5. | Data manager rejects MediaSeek system,; Data flagged as
data status sent to Client unaccepted;
machine during next notification sent to
connection Client user via email
and noted in Account
Status
6. | Accepted data passed | MediaSeek New data added to
to MediaSeek System/Browser Production DB
Production Database (automatic via db
triggers)
7. | Resource Data MediaSeek Data manager notified
Cleanup notification system/Browser by system to do clean
up every XX days
8. | Data manager MediaSeek system; Updates/edits:
performs cleanup browser functionality Publisher names &
contact information
Resource names
Known inaccuracies
9. | Dead link review MediaSeek system & System “automatically”
' WWW does URL link check
every XX days; report
generated to Browser
functionality;
notification sent to
Data Manager
10. | Data manager WwWWwW Human checks dead

coordinates Dead Link
investigation

links; investigates

25

Resource Correlator

Data Management Workflow

Email message

to user

Correlation

DB

A

y

Y

Data status

Browser Functionalit;
User privileges

Data R Quality updated in
Manager > Check browser
(OM) functionality
.................. “
Resource Data Resource Data
unapproved approved
A 4
Y
|]
System performs System notifies DM Production
Dead URL Check @ browser to
and posts report @ perform data cleanup DB
browser @ XX Day intervals

@ XX Day intervals

Y

DM coordinates
manual - URL

DM coordinates

manual data

Staff

1

1

1

1

1

[N
~

MediaSeek b

Data edited using

A 4

Client or Browser

Browser Functionalit

MediaSeek da

Data
Manager
(DM)

Database Structure

dl 1unoosoy

oweN

QweN IosN)
dr oo
HOLVIANIOD

IopI0 Aejdig

IopiQ Aepdsig

uonduosag

art

dNO00T dNo¥dD

usunelS

AdAL Sgd

g3 Arewtd

ar say

LVLS ASVI TAMONI

19p10 Aerdsi(q

QWBN
ar g1
ASVI TAAONM

Iop1) Aejdsig

uonduosa(q

arl

MOO0T AAVID

Ieox Wsukdo)

oweN

dr Teysiqng

ar 1y

AD 410STA

Iop1Q Aepdsig

uonduosag

ari

TIATT HEA

Iop1Qy Aerdsi(q

uonduosag

ari

AdAL VIQAIA

uondrrosa(g
ar'l 1p10” Aeydsi(q
dI0O0T ADV uonduioso(]
ar
AdAL AT
Iop10 Aepdsiq
Q0UISJY
uonduosag
oweN
a1 ey
ar I0D Iop1Q Aepdsiq
ar 3y uonduosag
dINOD ADYNOSTA art
MOOT OSTd

TdN

[rewg

opo)) JeIsod

—

dl unodoy

Anuno)

I 1eystqng

AD

oweN 191§

1l uonensigoy

oweN 19ysIqng

NOILVILSIOAA

Q@ teysiqng

AINIINITIC ACNNANANIN T,

JAHSTITdNd

Resource Correlator

4.2 Table Design:

Table Name : Publisher
Description : This table records all Publisher details. Whenever the Publisher

registers to the Media Seek Ltd. a record is entered here.

Field Name Type Description
Publisher Name Text Name of the Publisher
Street Name Text Publisher’s Street Name
City Text Publisher’s City
State Text Publisher’s State
Postal Code Text Publisher’s Postal Code
Country Text Publisher’s Country
Customer Phone Text Customer’s Phone Number
Fax Text Publisher’s Fax Number
Ordering Phone Text Customer Ordering Ph No.
Email Address Text Publisher’s Email Address
URL Text Publisher’s URL

Table Name : Resource Key
Description : This table has the details of Publisher ID, Resource ID
Name, Copyright Year.

Field Name Type Description
RK ID Number ID of the Resource Key
Publisher ID Number ID of the Publisher
Name Text Name of the Resource
Copyright Year Text Copyright Year of the Resource

28

Resource Correlator

Table Name : Knowledge Base_ Statement

Description : This table has the details of KBS ID, Primary KB and
various Knowledge Base Statements given by the Correlators.

Field Name Type Description
KBS ID Number Reference for KBS
Primary KB Number Reference for Primary KB
Statement Text Knowledgebase Statements

Table Name : Correlator

Description : This table has the details of the Correlator’s ID, User Name
"~ and Name of the Correlator and his Account Number.

Field Name Type Description
CORR_ID Text Reference for the Correlator
User Name Text User name of Correlator

Name Text Name of the Correlator
Account_ID Number | Correlator’s Account Number

29

Resource Correlator

Table Name : Resource Component

Description : This table has the details of RK_ID, Corr_ID, Primary KB,
Name of the Resource, Reference.

Field Name Type Description
RK _ID Number Reference for Resource Key
'CORR_ID Number Reference for Correlation Key
Primary KB Number Reference for the KB
Name Text Name of the Resource
. Reference Text Reference for the Resource

Table Name : Knowledge Base

Description : This table has the details of KB _ID, Name of the various
subjects and the Order in which it has to be displayed.

Field Name Type Description
KB ID Number Reference for KB System
Name Text Name of various Subjects
Display Order Number Order of subjects displayed

30

Resource Correlator

Table Name : Grade Lookup

Description : This table has the details of the LID, Description of the Grades,

Display order .
Field Name Type Description
LID Number Reference ID
Description Text Various Grades
- Display_Order Number Order of Grades displayed

Table Name : Media Type Lookup

Description : This table has the details of the LID, description of various
media and the order in which it has to be displayed.

Field Name Type Description
LID Number Reference ID
Description Text Various Media’s
Display_Order Number Order of Media’s displayed

Table Name : Age Lookup

Description : This table has the details of the LID, Descriptions of various
age groups and the order in which it has to be displayed.

Field Name Type Description

LID Number Reference ID
Description Text Various Age Group’s
Display Order Number Order of Age Group’s

31

Product Testing

Resource Correlator

5. Product Testing

Syétem Testing:

Testing is done for the various test cases that were developed in order to
catch all the problems and exceptions that arise during the real time
implementation of the system. The test cases were developed for unit testing as

well as module testing.

Unit Testing:

In this testing, individual components are tested to ensure that they operate
correctly. Each component is tested independently, without the interference of
other system components. With respect to this project, the individual functions in
the DLL are treated as components and were tested. Also, the various activities

are tested individually.

Module Testing:

A module is a collection of dependent components such as collection of
procedures and functions module encapsulates related components so it can be
tested with other system components. Each of the activities, Publisher
Registration, Correlation Services, Communication Module, Knowledge Base

Maintenance. Thus each module is tested in this stage.

32

Resource Correlator

Sample tests performed on this product are:

1. Type of test : Functional Test

Test Assumption : Correlation selected without component.

Exact Test Stimuli:
If the user chooses the correlation tab without selecting any
Component, the Resource Correlator should display a message box to ask

the user to select any Component before clicking correlation tab.

Expected Outcome:
The Resource Correlator displays the Message Box to indicate

‘the user that no Component is selected for correlation.

2. Type of test : Functional Test
Test Assumption : Adding new entity with any unfilled fields.

Exact Test Stimuli:
If the user chooses to add any new Resource or Component |
with any fields not entered, the Resource Correlator should display a

message hox to intimate the user to enter the field to be entered before

clicking add button.

Expected Outcome:

The Resource Correlator displays the Message Box to indicate

the user to enter the unfilled fields.

33

Future Enhancements

Resource Correlator

6. Future Enhancements

The Resource Correlator can be provided online so i:hat the users
(Educators, Classroom teachers, Students and Publishers themselves) can register
with the Mediaseek to review the Resources and Components pertaining to the
desired Publishers. In addition the users must be granted permission to correlate
any Component with the available Knowledge Base Statements. Report
generation can be included to provide the users to review their Correlation 1n the
future. Additionally, the resources like books, workbooks, videos, CDs and

audiotapes can be made purchasable online.

Conclusion

Resource Correlator

7. Conclusion

The Resource Correlator thus successfully correlated the
Components, of the Resources pertaining to any Publisher, to the relevant
Knowledge Base Statements. And also the user finds appropriate Knowledge

Base Statements for each Component using the additional Search feature.

The Magnolia middle-tier that was developed using the ATL
techriologies acted as the interface between the client and the databases. As
proposed by the functional specifications, it provides software reusability for
other applications that have yet to be developed or existing applications that are
not yet adapted. Also this product is designed in such a way that it can be

enhanced in future with ease.

Bibliography

Resource Correlator

8. Bibliography

VC++ in 21 Days — Nathan Gurewich & Ori Gurewich
TechMedia Publications - Edition 1996.

MFC Programming — Richard M Jones
McGraw Hill International - Editions 1998.

VC++ 6.0 Complete Reference — Chris II Pappas & William H Murray.
Tata McGraw Hill - Edition 1999.

MSDN Library - http://www.Microsoft MSDN.com

Microsoft SQL Server in 21 Days — Rick Sawtell & Richard Waymire
TechMedia Publications - Edition 1998.

Microsoft SQL Server — Ronald R Talmage
Prima Publications - Edition 1999.

ATL Programming in 21 Days — Kenn Scribner
TechMedia Publications.

Annexure

S ample Code

Sample Code

Implementation of Knowledge Base Statement

#include "stdafx.h"

#include "Magnolia.h"
#include "KnowledgeBases.h"
#include "KBStatement.h"

STDMETHODIMP CKBStatement::get knowledgeBase(IDispatch **pVal)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())

return CollectionUtils<CKnowledgeBases>::GetRowByID(this, m_parent,
m_primaryKB, orderByName, pVal);

}
STDMETHODIMP CKBStatement::get kbsType(BSTR *pVal)
{
AFX MANAGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_kbsType);
*pVal = temp.AllocSysString();
return S_OK;
}
STDMETHODIMP CKBStatement::get indexNum(long *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
*pVal =m_indexNum;
return S_OK;
}

STDMETHODIMP CKBStatement::get_statement(BSTR *pVal)
{
AFX_MANAGE _STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_statement);
*pVal = temp.AllocSysString();
return S_OK;

)

bool CKBStatement::Load()
{
try
{
if(!IContainerImpl<CKBStatements, IKBStatement, &IID_IKBStatement,
&LIBID MAGNOLIALib>::Load())

return false;
ADODB:: Recordset *rset = 0;
if(m_parent->get_recordset((IDispatch **)&rset) !=S_OK)
return false;)
ADODB::FieldsPir pFields = rset->GetFields();
ADQODB::Field *pFieldDetail;
_variant t var;
pFieldDetail = pFields->Getltem("KBS_ID");
var = pFieldDetail->GetValue();
if(var.vt = VT NULL)
m_kbsID = var;
else
m_kbsID = 0;

pFieldDetail = pFields->Getltem("KBS_Type");
var = pFieldDetail->GetValue();
if(var.vt I=VT _NULL)
m_kbsType = var;
else
m_kbsType =L"";

pFieldDetail = pFields->Getltem("Index_Num"),
var = pFieldDetail->GetValue();
if(var.vt = VT _NULL)
m_indexNum = var;
else
m_indexNum = 0;

pFieldDetail = pFields->Getltem("Statement");
var = pFieldDetail->GetValue();
if(var.vt I=VT NULL)
m_statement = var;
else
m_statement = L"";
}
_ catch (_com_error &e)
{ v
RecordError(e.Source(), e.Description());
return S_FALSE;

}
return S_OK;

Implementation of Publisher

#include "Magnolia.h"
#include "CollectionImpl.h"
#include "Publisher.h"
#include "ResourceKey.h"
#include "ResourceKeys.h"
#include "ResourceManager.h"

STDMETHODIMP CPublisher::get_publisherTypeLID(long *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
*pVal =m_IPublisherTypeLID;
return S_OK;
}

STDMETHODIMP CPublisher::put_publisherTypeLID(long newVal)
{
AFX MANAGE_ STATE(AfxGetStaticModuleState())
m_sPublisherType= newVal;
return S OK;

}

STDMETHODIMP CPublisher::get _publisherType(BSTR * /*pVal*/)
{

AFX__MANAGE_STATE(AfoetStaticModuleState())

return E NOTIMPL;

}

STDMETHODIMP CPublisher::put_publisherType(BSTR /*newVal*/)
{

AFX_MANAGE_STATE(AfoetStaticModuleState())

return E NOTIMPL;

}

STDMETHODIMP CPublisher::get __publisherName(BSTR *pVal)
{ _
AFX MAN AGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_sPublisherName);

*pVal = temp.AllocSysString();

return S OK;

STDMETHODIMP CPublisher::put_publisherName(BSTR newVal)
{ :
AFX MAN AGE_STATE(AfxGetStaticModuleState())
m_sPublisherName = newVal;
retun S_OK;
} .

STDMETHODIMP CPublisher::get_streetNamel(BSTR *pVal)
{
AFX _MANAGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_sStreetNamel);
*pVal = temp.AllocSysString();
return S_OK;

}

STDMETHODIMP CPublisher::put_streetNamel(BSTR newVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
m_sStreetNamel = newVal;
: return S_OK;
} -
STDMETHODIMP CPublisher::get_streetName2(BSTR *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_sStreetName2); ’
*pVal = temp.AllocSysString();
return S_OK;;
}

STDMETHODIMP CPublisher::put_streetName2(BSTR newVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
m_sStreetName2 = newVal,
return S_OK;

}

STDMETHODIMP CPublisher::get city(BSTR *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_sCity);
*pVal = temp.AllocSysString();
return S_OK;

STDMETHODIMP CPublisher::get_resourceKeys(IDispatch **pVal)
{
AFX MANAGE_STATE(AfxGetStaticModuleState())
CComOpbject<CResourceKeys> *resourceKeys;
if(CComObject<CResourceKeys>::Createlnstance(&resourceKeys) '=S_OK))
return S_FALSE;
resourceKeys->AddRef();
ADOQODB::_Connection *con=0;
m_parent->get_activeConnection((IDispatch **) &con);
iflcon==0)
{
ASSERT(FALSE);
return S_FALSE;

}

resourceKeys->Attach(con, this);
if{m_1PublisherID==0)

{
ASSERT(FALSE);
return S_FALSE;

}

if(IresourceKeys->LoadByID(m_IPublisherID, orderByName))

{
ASSERT(FALSE);
delete resourceKeys;
return S_FALSE;

}

*pVal =resourceKeys;

return S_OK;

}

bool CPublisher::Load()
{
IContamerImp1<CPub11shers [Publisher, &IID_IPublisher,
&LIBID_MAGNOLIALib>::Load();
if(m_parent ==NULL)
return false;
ADODB::_Recordset *rset = 0;
_ if{ m_parent->get_recordset((IDispatch **)&rset) = S_OK)
return false;
try
{

- ADODB::FieldsPtr pFields = rset->GetFields();
ADODB::Field *pFieldDetail;

_variant_t var;
pFieldDetail = pFields->Getltem("Publisher_ID");
var = pFieldDetail->GetValue();
if(var.vt = VT _NULL)
m_1PublisherID = var;
else
m_]PublisherID = 0;

pFieldDetail = pFields->Getltem("Name");
var = pFieldDetail->GetValue();
if(var.vt I= VT _NULL)
m_sPublisherName = var;
else _
m_sPublisherName ="";

pFieldDetail = pFields->Getltem("Publisher_Type");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL)
m_sPublisherType = var;
else
m_sPublisherType ="";

// Street line 1
pFieldDetail = pFields->Getltem("Street Namel");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL) '
m_sStreetNamel = var;
else
m_sStreetNamel ="";

// Street line 2
pFieldDetail = pFields->Getltem("Street Name2");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL)
m_sStreetName2 = var;
else
m_sStreetName2 ="";

/I City
pFieldDetail = pFields->Getltem("City");
var = pFieldDetail->GetValue();
if(var.vt = VT _NULL)
m_sCity = var;

else
m_sCity ="",

// State
pFieldDetail = pFields->Getltem("State");
var = pFieldDetail->GetValue();
if(var.vt I= VT_NULL)
- m_sState = var;
else
m_sState ="";

/I Zip code
pFieldDetail = pFields->Getltem("Postal_Code");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL)
m_sPostalCode = var;
else
m_sPostalCode ="";

// Country
pFieldDetail = pFields->Getltem("Country");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL)
m_sCountry = var;
else
m_sCountry ="";

// Customer service number
pFieldDetail = pFields->Getltem("Cust_Service_Phone");
var = pFieldDetail->GetValue();
if(var.vt I=VT NULL)
m_sCustomerService = var;
else
m_sCustomerService ="";

// EMail address
pFieldDetail = pFields->Getltem("Email");
var = pFieldDetail->GetValue();
if(var.vt I=VT_NULL)
m_sEMail =var;
else
‘m_sEMail ="";

// Ordering phone number
pFieldDetail = pFields->Getltem("Ordering_Phone");
var = pFieldDetail->GetValue();

if(var.vt = VT _NULL)
m_sOrderingPhone = var;
else
m_sOrderingPhone ="";

// Fax number
pFieldDetail = pFields->Getltem("Fax");
var = pFieldDetail->GetValue();
if(var.vt I=VT NULL)
- .m_ sFax = var;
else
m_sFax ="";

// Address indicator (whatever that is...)
pFieldDetail = pFields->Getltem("Address_Indicator");
var = pFieldDetail->GetValue();
if(var.vt I= VT NULL)
’ m_sAddressIndicator = var;
else
m_sAddressIndicator ="";

// Time/date stamp
pFieldDetail = pFields->Getltem("DateStamp");
var = pFieldDetail->GetValue();
if(var.vt I=VT NULL)
m_dtDateStamp = var;
else
m_dtDateStamp = 0;

// Publisher's web page address (URL)
pFieldDetail = pFields->Getltem("URL");
var = pFieldDetail->GetValue();

if(var.vt 1= VT_NULL)

m_sURL = var;
else
m_sURL="";
}
catch (_com_error &e)
{
RecordError(e.Source(), e.Description());
return false;
}

return true;

}

STDMETHODIMP CPublisher: :get fax(BSTR *pVal)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())
CString temp((BSTR)m_sFax);
*pVal = temp. AllocSysString();

return S_OK;
3
STDMETHODIMP CPublisher::put_fax(BSTR newVal)
{

AFX MANAGE_STATE(AfxGetStaticModuleState())
m_sFax =newVal,
return S_OK;

}

bool CPublisher::Export(CResourceManager &rm)

#define CHECK_WRITE(key, value) \
if('rm.WriteData(key, value)) \
return false;

rm.SetSectionName("Entities");
CHECK_WRITE("PUBLISHER", "1");
rm.SetSectionName("PUBLISHER - 1");

CHECK_WRITE("PUBLISHER ID", m_IPublisherID);
CHECK_WRITE("PUBLISHER_TYPE", m_sPublisherType);
CHECK_WRITE("NAME", m_sPublisherName);

CHECK_WRITE("STREET_NAME]1", m_sStreetNamel);
CHECK_WRITE("STREET_NAME2", m_sStreetName?2);
CHECK_WRITE("CITY", m_sCity);

CHECK_WRITE("STATE", m_sState);

CHECK_WRITE("POSTAL _CODE", m_sPostalCode);
CHECK_WRITE("COUNTRY", m_sCountry);

CHECK_WRITE("CUST_SERVICE_PHONE", m_sCustomerService);
CHECK_WRITE("FAX", m_sFax);

CHECK_WRITE("EMAIL", m_sEMail);

CHECK_WRITE("ORDERING_PHONE", m_sOrderingPhone);
CHECK_WRITE("ADDRESS_INDICATOR", m_sAddressIndicator);
CHECK_WRITE("DATESTAMP", m_dtDateStamp);
CHECK_WRITE("URL", m_sURL);

return true;.

Implementation of Correlator

#include "stdafx.h"
#include "Magnolia.h"
#include "Correlator.h"

STDMETHODIMP CCorrelator:: get_userName(BSTR *pVal)
{ o
AFX_MANAGE_STATE(AfoetStaticModuleState())
CString temp((BSTR)m_sUserName);
*pVal = temp.AllocSysString();
return S_OK;

}

STDMETHODIMP CCorrelator:: get_name(BSTR *pVal)
{ '

AF X_MANAGE_STATE(AfxGetStaticModuleState())

CString temp((BSTR)m_sName);

return S_OK;

)

STDMETHODIMP CCorrelator:: get_active(BOOL *pVal)
i
AF X_MANAGE_STATE(AfoetStaticModuleState())
*pVal = m_bActive;
return S OK;;
}

STDMETHODIMP CCorrelator:: get_accountID(long *pVal)

{
AF X_MANAGE_STATE(AfxGetStaticModuleState())
*pVal=m_lAccountID; '
return S_OK;

}

bool CCorrelator:: Load()

{
try
i

if(!IContainerImpl<CCorrelators, ICorrelator, &IID ICorrelator
&LIBID_MAGNOLIALib>: :Load())

return false;
ADODB::_Recordset *rset = 0

>

if(m _parent->get_recordset((IDispatch **)&rset) I=S OK)

return false;

b

ADODB::FieldsPtr pFields = rset->GetFields();
ADODB::Field *pFieldDetail;

_variant t var;
pFieldDetail = pFields->Getltem("Corr_ID");
var = pFieldDetail->GetValue();
if(var.vt I= VT NULL)
m_corrID = var;
else
m_corrlD = 0;

pFieldDetail = pFields->GetItem("UserName");
var = pFieldDetail->GetValue();
if(var.vt 1= VT_NULL)
m_sUserName = var;
else
- m_sUserName = L"";

pFieldDetail = pFields->Getltem("Name");
var = pFieldDetail->GetValue();
if(var.vt I=VT _NULL)
m_sName = var;
else
i m_sName ="";

pFieldDetail = pFields->Getltem("Active");
var = pFieldDetail->GetValue();
if(var.vt I=VT NULL)
m_bActive = (bool)var;
else
m_bActive = 0;

pFieldDetail = pFields->Getltem("Account_ID");
var = pFieldDetail->GetValue();
if(var.vt 1= VT _NULL)

m_lAccountID = var;

else
m_lAccountID = (;
} .
catch (_com_error &e)
{
RecordError(e.Source(), e.Description());
return S FALSE;
}

return S_OK;
I ‘

Implementation of Magnolia

#include "stdafx.h"

#include "Magnolia.h"
#include "Publishers.h"
#include "ResourceKeys.h"
#include "ReferenceTypes.h"
#include "TargetUsers.h"
#include "ages.h"

#include "Grades.h"

#include "Groupings.h"
#include "MediaTypes.h"
#include "ResourceComponents.h"
#include "Correlators.h"
#include "MagnoliaDS.h"
#include "KnowledgeBases.h"

long CMagnoliaDS::m_newID=0;

STDMETHODIMP CMagnoliaDS::Open(BSTR server, BSTR database, BSTR
userName, BSTR password)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())

if(m_connection != NULL)

{
m_connection.Release();
m_connection = NULL;

}

Im_Server = server,
m_database = database;
m_userName = userName;
m_password = password;

if(m_server.length() == 0)
m_server = _T("(local)");

if(m_database.length() == 0)
m_database = _T("MediaSeek");

bool useDefaultPW = true;
1f{ m_userName.length() == 0)

)

m_userName = _T("TabRCO");
else
useDefaultPW = false;

if(m_password.length() == 0 && useDefaultPW)
m_password = _T("!@#AfGAn*.1");

CString S;

s.Format(IDS_CONNECTIONSTRING, (LPCTSTR) m_server, (LPCTSTR)
m_database, (LPCTSTR) m_userName, (LPCTSTR) m_password);

_bstr_t sConnectionString(s);

try
{
HRESULT hr=0;

TESTHR(m_connection.CreateInstance(
__uuidof(ADODB::Connection)));
TESTHR(m_connection->Opern(sConnectionString, BSTR(""),
BSTR(""), NULL));
~ m_bOpen = true;

return S OK;

}

catch(_com_error &e)

{
_bstr_t sErrorSource(e.Source());
_bstr_t sErrorDesc(e.Description());
m_sErrorSource = sErrorSource;
m_sErrorDescription = sErrorDesc;
return S_FALSE;

}

STDMETHODIMP CMagnoliaDS::get_publishers(IDispatch **pVal)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState())
CComObject<CPublishers> *publishers=0;

if(CComObject<CPublishers>::Createlnstance(&publishers) != S _OK)
' return S_FALSE;

publishers->AddRef();

publishers->Attach(m_connection);

*pVal = publishers;

return publishers->LoadAll(orderByName);

STDMETHODIMP CMagnoliaDS::GetResourcesByStatus(long statusID, IDispatch
**rkeys)

{
AF X_MANAGE_STATE(AfxGetStaticModuleState())

CComObject<CResourceKeys> *resources;

if(CComObject<CResourceKeys>::CreateInstance(&resources) =S OK)
return S_FALSE;

resources->Attach(m_connection);
*rkeys = resources;

return resources->LoadByStatus(statusID, orderByName);

}

STDMETHODIMP CMagnoliaDS:: get_availReferenceTypes(IDispatch **pVal)
{ .
AF X_MANAGE_STATE(AfXGetStaticModuleState())

if(! Co11ectionUti1s<CReferenceTypes>: :GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;;
}

STDMETHODIMP CMagnoliaDS:: get_availKnowledgeBases(IDispatch **pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CKnowledgeBases>::GetAvail(m_connection, pVal))
return S_ FALSE;

return S OK;
}

STDMETHODIMP CMagno]iaDS::get_availTargelUsers(IDispatch **pVal)
{ :
AF X_MANAGE_STATE(AfoetStaticModuleState())

if(!CollectionUtils<CTargetUsers>:: GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;

STDMETHODIMP CMagnoliaDS::get_availStatuses(IDispatch **pVal)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CStatuses>::GetAvail(m_connection, pVal))
return S FALSE;

return S_OK;
}

STDMETHODIMP CMagnoliaDS::get_availAges(IDispatch **pVal)

{
AFX MANAGE STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CAges>::GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;
} .

STDMETHODIMP CMagnoliaDS::get availGrades(IDispatch **pVal)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CGrades>::GetAvail(m_connection, pVal))
return S FALSE;

return S_OK;
}

STDMETHODIMP CMagnoliaDS::get availGroupings(IDispatch **pVal)

{ .
AFX MANAGE STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CGroupings>::GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;
} .

STDMETHODIMP CMagnoliaDS::get availTeachingStrategies(IDispatch **pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CTeachingStrategies>::GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;
}

STDMETHODIMP CMagnoliaDS::get_availMediaTypes(IDispatch **pVal)

{
AFX MANAGE STATE(AfxGetStaticModuleState())

if(! CollectionUtils<CMediaTypes>::GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;
}

STDMETHODIMP CMagnoliaDS::get_availResourceTypes(IDispatch **pVal)

{
AFX MANAGE_STATE(AfxGetStaticModuleState())

if(!CollectionUtils<CResourceTypes>::GetAvail(m_connection, pVal))
return S_FALSE;

return S_OK;;

) .

STDMETHODIMP CMagnoliaDS::BeginTransaction()

{ .
AFX_MANAGE_STATE(AfxGetStaticModuleState())
return m_connection->BeginTrans();

}

STDMETHODIMP CMagnoliaDS::AbortTrans()

{

AFX_MANAGE_STATE(AfxGetStaticModuleState())
return m_connection->RollbackTrans();

3

STDMETHODIMP CMagnoliaDS::CommitTrans()

{

AFX MANAGE_STATE(AfxGetStaticModuleState())
‘ return m_connection->CommitTrans();

} « . .
STDMETHODIMP CMagnoliaDS::GetNewResourceKey(IDispatch **pVal)

{
AFX _MANAGE_STATE(AfxGetStaticModuleState())
long rkid = GetNextId(TEXT("NEXT RK ID"));
if(rkid ==-1)

}

return S_FALSE,;

CComObject<CResourceKey> *ikey;

if(CComObject<CResourceKey>::Createlnstance(&ikey) = S_OK)
return S_FALSE,

CResourceKey *rkey = dynamic_cast<CResourceKey *>(ikey);

rkey->SetRKID(rkid);

ikey->AddRef();

*pVal = ikey;

retum S_OK;

STDMETHODIMP CMagnoliaDS::GetNewResourceComponent(IDispatch **pVal)

{

}

STD

{

}

AFX _MANAGE_STATE(AfxGetStaticModuleState())
long rcid = GetNextId(TEXT("NEXT RC_ID"));
M rcid ==-1)
return S_FALSE;
CComObject<CResourceComponent> *icomp;
if(CComObject<CResourceComponent>::Createlnstance(&icomp) != S_OK)
return S_FALSE;
CResourceComponent *rcomp = dynamic_cast<CResourceComponent
*>(icomp);
if(rcomp ==0)
return S_ FALSE;
rcomp->SetRCID(rcid);
icomp->AddRef();
*pVal = icomp;
return S_OK;;

METHODIMP CMagnoliaDS:: get_availCorrelators(IDispatch **pVal)

AF X_MANAGE_STATE(AfxGetStaticModuleState())
if(!CollectionUtils<CCorrelators>: :GetAvail(m_connection, pVal, orderByName)

)
return S FALSE;
return S_OK;;

STDMETHODIMP CMagnoliaDS:: get_availKBStatements(IDispatch **pVal)

{

AFX MAN AGE_STATE(AfxGetStaticModuleState())
if(!CollectionUtils<CKBStatements>: :GetAvail(m_connection, pVal,
orderByStatement))

return S_FALSE;

}

return S_OK;

STDMETHODIMF CMagnoliaDS:: get_availCorrGrades(IDispatch **pVal)

{

}

AFX_MANAGE_STATE(AfxGetStaticModuleState())

if{!CollectionUtils<CRC_CorrByGrades>: :GetAvail(m_connection, pVal,
orderByDescription))

return S_FALSE;
return S OK;

bool CMagnoliaDS::UpdateNextld(LPCTSTR pColumn, long pNewValue)

{

}

CString sqlStmt;

sqlStmt.Format("UPDATE REGISTRATION SET %s = %d", pColumn,

pNewValue);

ADODB::_RecordsetPtr rset;

if{ rset.Createlnstance(__uuidofl ADODB::Recordset)) != S OK)
return false;

HRESULT hr = rset->Open(_bstr_t(sqlStmt), (IDispatch *)

m_connection.GetlnterfacePtr(), ADODB::adOpenStatic,

ADODB::adLockOptimistic, ADODB::adCmdText);

return SUCCEEDED(hr);

long CMagnoliaDS::GetNextId(LPCTSTR pColumn)

{

CString sqlStmt;
sqlStmt.Format("SELECT REGISTRATION _ID, STATIC_MULTIPLIER, %s
FROM REGISTRATION", pColumn);
ADODB::_RecordsetPtr rset;
if(rset.CreateInstance(__ uuidof(ADODB::Recordset))!=S OK)
return -1; :
if(rset->Open(_bstr_t(sqlStmt), (IDispatch *) m_connection.GetInterfacePtr(),
ADODB::adOpenStatic, ADODB::adLockOptimistic, ADODB::adCmdText) I=
S_OK)
. return -1;
long regld = -1, staticMultiplier = -1, nextld = -1;
while(!rset->EndOfFile) {
ADODB: FieldsPtr pFields = rset->GetF ields();
ADODB::Field *pFieldDetail;
_Vvariant_t var;
pFieldDetail = pFields->Getltem("REGISTRATION_ID");
var = pFieldDetail->GetValue();

if(var.vt = VT _NULL)
regld = var;

pFieldDetail = pFields->Getltem("STATIC_MULTIPLIER"),
var = pFieldDetail->GetValue();
if(var.vt 1= VT NULL)

staticMultiplier = var;

pFieldDetail = pFields->Getltem(pColumn);
var = pFieldDetail->GetValue();
if(var.vt != VT_NULL)

nextld = var;
break;
}
if(regld == -1 || staticMultiplier == -1 || nextld =-1)
return -1;

long baseValue = regld * staticMultiplier + 1;
if(nextld < baseValue)
nextld = baseValue;

long retld = nextid;
nextld++;
if('UpdateNextId(pColumn, nextld))
return -1;
return retld;

}

STDMETHODIMP CMagnoliaDS::updateToggle(long pDependency, long pld, long
pIndexnum, BSTR pName, long *pRetval)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
CString tempinput;
tempinput.Format("%d-%d-%d-%s", pDependency, pld, pIndexnum, pName);
CString temp = TEXT(pName);
tempinput.Format ("%s", temp);
*pRetval = UpdateDep(pDependency, pld, pIndexnum, pName);
return S_OK;

|
long CMagnoliaDS::UpdateDep(long pDependency, long pld, long pIndexnum, BSTR
pName)

{
CString getsqlStmt;

CString name = TEXT(pName);
getsqlStmt.Format("SELECT KB_ID FROM KNOWLEDGE BASE WHERE
NAME LIKE '%s", name),
- ADODB::_RecordsetPtr getrset;
if(getrset.Createlnstance(__uuidof{ ADODB::Recordset)) !=S_OK)
return 0O;
if(getrset->Open(_bstr_t(getsqlStmt), (IDispatch *)
m_connection.GetInterfacePtr(), ADODB: :adOpenStatic,
ADODB::adLockOptimistic, ADODB::adCmdText) '=S_OK)
return 0;
long primary kb = -1;

while(!getrset->EndOfFile) {
ADODB::FieldsPtr pFields = getrset->GetFields();
ADODB::Field *pFieldDetail;
_variant_t var;
pFieldDetail = pFields->Getltem("KB_ID");
var = pFieldDetail->GetValue();
if(var.vt '=VT_NULL)
primary_ kb = var;

break;
}
CString tempprimary_kb;
tempprimary_kb.Format("%d", primary kb);
CString sqlStmt;

sqlStmt.Format("SELECT KBS _ID FROM
KNOWLEDGE_BASE STATEMENT WHERE INDEX_NUM = %d AND
PRIMARY_KB = %d", pIndexnum, primary kb);

ADODB::_RecordsetPtr rset;
if(rset.Createlnstance(__uuidof(ADODB::Recordset)) =S _OK)
return 0;

if(rset->Open(_bstr_t(sqlStmt), (IDispatch *) m_connection.GetInterfacePtr(),
ADODB::adOpenStatic, ADODB::adLockOptimistic, ADODB::adCmdText) !=
S OK)

return O;

long kbs_id =-1;

while(!rset->EndOfFile) {
ADODB::FieldsPtr pFields = rset->GetFields();
ADODB::Field *pFieldDetail;
_variant_t var;

pFieldDetail = pFields->Getltem("KBS_ID");
var = pFieldDetail->GetValue();
if(var.vt '=VT _NULL)

kbs_id = var;
break;
3
CString tempkbsid;
tempkbsid.Format ("%d", kbs_id);
CString updateStmt;

updateStmt.Format("UPDATE RC_CORR_GRADE_LINK SET
DEPENDENCY = %d WHERE ID = %d AND KBS _ID = %d", pDependency,
pld, kbs_id);

ADODB::_RecordsetPtr rsetUpdate;
if(rsetUpdate.Createlnstance(_ uuidof{ ADODB::Recordset)) =S _OK)
return O;

HRESULT hr = rsetUpdate->Open(_bstr_t(updateStmt), (IDispatch *)
m_connection.GetInterfacePtr(), ADODB::adOpenStatic,
ADOQODB::adLockOptimistic, ADODB::adCmdText);

if (SUCCEEDED(hr))
return 1;

else
retum-1;

User Interface

Publisher Tree List

Fle E® View Tods Hepots Heb

2| 3| rl=lals]i
SHlE

-~
B A+ Math
M ADAM. Softwate, Inc.
- Accul.ab Products Group
- Addison‘Wesley Longman
Adobe Systems Inc.
Advanced Software Pty. Ltd
&5 American Cybercasting Corporation
B3 Apple Computer, Inc.
B Amy Times Publishing Co.
4 Bagheera and R and E Oniine. Inc.
- BBN Systems and Technologies
Beaumont Publishing (London] Ltd.
= Becky Bray and Patrick Meysr
bigchak.com
@ Bil Amett
- Bil Dallas Lewas
Bots
- Bound to Stay Bound Books
8 Boxer Leaming
- Brainchild Corporation
B3 Briapatch
Brodesbund Software
& Brookes Publishing Company
- Bytes of Leaming Incomporated
- Cable in the Classroom
@ Calfornia Distance Leaming Project
[Calfornia Institute for Biodiversity =l
Ready

Besauics Larrelator et 303

Publisher Screen

= FOSS Arimals Two by Two
Big and Little Worms
Eogs and Chicks
Goldfish and Guppies
Land and Water Snals
Pilbugs and Sowbugs
DEMCD. Inc.
0

Al heric € oo

aUIuC

Dig-Block
Digital Frag Intemational, Inc.
- DINE Systems, Inc.
Discit Knowledge Aeseasch, inc.

Discovery Communications. Inc.
Ditnay Interactive
& Ditney's Animated StoyBook The Lion k
Bug Catching:A Lion King Leaming A
Connect the Stars-A Lion King Leami
Pick a Page-A Lion King Leaming Fe
Rafki-A Lion King Leaming Feature
AeadA Lion King Learming Festure
The Pouncing Game-A Lion King Lez
0K Mulimedia
Dorfing Kindersley
£ Edmark Corporation
S Thinkin' Trings Collection 2
20-30 Blox
Fiippletration
Orangs Banga's Band
Snake Blox
Toory's Tunes
Education Resource Network
Education Resources
- Educational Activitiez, Inc.
=+ Educational Insights
B Geo SafariJi.: Learning Fun
Adding And Subbracting
K] |

Ready

m

Ze 9924

Countr |

Cudu-l’hont'

Ordeding Phore: |

E-Mal Addrees: mwm

URLAWeb Page: MMM

Resources Screen

7 — I T8 e [o T8 e |

R E— -
Gt o G Evizting Resouce: [FOSS Anirnals Two by Tro -
Land and Water Snais
; Pilbuge and Sowbugs
-~ DEMCO, Inc,

of A henc S ci & UIUC
. DigiBlock J

- Digital Frog Interational, Inc]
i~ DINE Systems, Inc.
+- Discis Knowledge Research. Inc.
Discovery Charnel
Discavery Communications. Inc.
2} Disney Interactive
| & Disney's Arimated StenyBook The Lion ¥ el P
- Bug Catching-4 Lion King Leaming A 7 [j I
Connect the Stars4 Lion King Learmi
Pick & Page-A Lion King Leaming Fe
RafkiA Lion King Leaming Featurs
ReadA Lion King Leaming Festre
The Pouncing Game-A Lion King Lez
DK Mubimedia
:- Deding Kindartley
£ Edmark Comoration
B Thinkin' Things Collection 2 & K
20-30 Bl Dolauk GisdeFarge: (| [
Frippletration
Oranga Banga's Band , « X
Snaks Blox Defadt Roadrglevit (] [~
6
r

New flesource: |

Trox [ActityProecErperment 7]

Toory's Tunes &

Education Resowce Network i :

E ducation R DefuiktAgeRuige: | | :

(. Eduat esouroes e, et e o e e . e

£ Educational insights

& Geo Safan Ji.: Leaming Fun

ficking Ard Subacting _’_'J

»

1
J
12
g4
7
d

¢
Rond

Components Screen

Hezauree Parelalod U eat 30

: : L wmy
[Conporart Count:]~ | Fied | ~] Operacer | =] veloota} | SRR |
£ Deka Education, | - — =

EEEETEEN

. . Select

E0os and Chicks i _

Goldish and Guppies | EnskogComporgrt. [BgendUlewome oo d
Land and Water Snais |

Pilbugs and Sowbuge ‘| !

| B

- DEMCO, Inc.
Department of Atmospheric Sciences at UIUC
- DighBlock
- Digital Frog Infemalional, Inc
. DINE Systems, Inc.
- Diseis Knowdedge Recesch, inc.
Discovery Charnel
Discovery Communications. Inc.
€ Disney Interactive
' & Disney's Animated StoryBook The Lion k
Bug CatchingA Lion King Leaming A
Connect the Stare-A Lion King Leami
Pick a Page-A Lion King Leaming Fe
Rafiki-A Lion King Leaming Feature
Read-A Lion King Leaming Festure
DK Mulimedia
-+ Dofing Kindartley ; : Shudent Groupings -, Toaching Shategies 1 Medis Types
5 Edmark Corporation j : P Teamig _']

+ 5
4403949490494
00" 2 1B W6 17 I e

IR N TN [S [[

3 -7 8 3 WM RO
44
9

Cme Im

;l__\l [
L_ml_m

B Thinkin' Things Collection 2
2D-30 Blox : |
Frippletration . Socond ' Pt I ~|.
Drangs Banga's Band : I ‘J : I '_I
Snake Blax . |
Toory's Tunes Tediary: | j] =1

Education Resource Network ‘

Education Resources

*- Educational Activities, Inc.
5 Educational insights
3- Geo Safar Jr.: Lesming Fun

I

Correlations Screen

=] vasia]

S DebaEacin o, = vy e ——
- FOSS Arimals Two by Two e i -]i Fovircon: IV Is Comeior: | - s
Epgs and Chicks ;/ .
ot o Gepies : Fesource: ["_smrmmm L 7 I
Land and Water Snaiks ; Coimporient: [Big and Litle Worme i
Pibugs and Sowbugs :
* DEMCD, tnc. 1[kes © | sttement | —
of Atmospheric Sciences at UIUC [.
- DigiBlock ‘ Souch|
;- Digitsl Frog Intermational, Inc.

i~ DINE Spstems, Inc. MMI
;- Diseis Knowledge Rezearch, Inc. :
Discovery Channel
Oiscovery Communications, Inc.
& Disney Interactive :
- & Dieney's Animated StoryBook The Lion k
Corecs o S Limkigtoun |
Pick 8 Page Lion King Leaming Fe Ew“- et v
Rafiki-A Lion King Lzaming Feshwe :
ReadA Lion King Leaming Feshre i
The Pouncing Giame-A Lion King Lez
DK Mulimedia

Arimals need food. ai. water. and a place to fve.

Living things can respond to stimul.

Alhough thers is great diversity in ving things, thees is also great similarly.
An animal's body struchure is related ko how & survives in s environment,
Huﬁlycdca’rgfaiviw»'-qs.
Culwnglﬁsﬁli&insudlﬂamnhﬁmmvmgm
Animals vary in sizes, body covenngs, and ways of moving.

FERRRRAA(E
FRBRRAEA(E
g

i

Advanced Search Screen

Search Knowledye B.rsef<)

