MULTIPLATFORM INFORMATION ACCESS

PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR TE:E
AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING

e 2 j;.:i-—v;~-}, -
Lok T
;.j { } t OF BHARATHIAR UNIVERSITY.
LT COIMBATORE.
N Submitted by
(6 M. JAYAPRABHU

S. KARTHIK
M.S. PRABAKARAN

Q\/ S. SRIRAM

Guided by P~ & ;2

Mrs.D.Chandrakala M.E

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE 641 006

MARCH 2002

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERINC

KUMARAGURU COLLEGE OF TECHNOLOGY

(Affiliated to Bharathiar University. Coimbatore)
CERTIFICATE

This is to certity that project report entitled

MULTIPLATFORM INFORMATION ACCESS

Is a bonafide record of work done by

M JAYAPRABHU 9827K0176

S KARTHIK 9827K0O179
M S PRABAKARAN 9827K0195
S SRIRAM 9827K0218

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF
THE DEGREE OF

BACHELOR OF ENGINEERING

g N g e Cf_,%mﬁtiif‘:\m_ﬁ_

+

Head Of the Depar{ﬁqento : LJ;J Y Stalf-in-charge

Submitted for the University Examination held on

j A |" s

[y AR

! Internal Examiner External Examiner

Place : Coimbatore
Date

DECLARATION

We, M.Jayaprabhu, S.Karthik, M.S Prabakaran, S.Sriram here by deciare
that this project entitled “MULTIPLATFORM INFORMATION ACCESSS
submitted to Kumaraguru College of Technology, Coimbatore (Affiliated
to Bharathiar University) is a record of original work done by us under the
supervision and guidance of Mrs.D.Chandrakata ML.E..Senior Lzcturer.

Department of Computer Science & Engineering.

NAME REGISTRATION SIGNATURE I
NUMBER) i
M.Jayaprabhu " 0827K0176 M- ’ﬁm%——
S.Karthik 9827K0179 ﬁ omrnn L. '
M.S.Prabakaran 0827K0195 g P QA f
S.Sriram 9827K0218 e

e

Countersigned: ~ ~~—""Eek v

Staff in charge: Mrs.D.Chandrakala M.E,
Senior Lecturer,
Department of Computer Science & Engineering.

Kumaraguru College of Technology, Coimbatore.

Place : Coimbatore.

Date : (2. 0% 2002

Dedicated to our beloved parents

and parting Jriends. ..

%gg

A > ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We take this opportunity to thank everyone who contributec 1o our
project and their efforts are commemorative.

We are extremely grateful to Dr.K.K.Padmanaban B.Sc.(Engg),
M.Tech., Ph.D., Principal, Kumaraguru College of Technology for haver
given us his valuable guidance and useful suggestions during the course of
our education.

We are deeply obliged to Dr.S.Thangaswamy Ph.D, Prof & Head of
Department of Computer Science and Engineering his valuable guidance and
useful suggestions during the course of this project.

We extend our thanks to our project coordinator Mrs.S.Devaki
B.E.,M.S, Assistant Professor, Department of computer Science uand
Engineering, for providing us her support which really helped us to come out
with this project.

We are indebted to our project guide Mrs.D.Chandrakala M.E.
Senior Lecturer, Department of computer Science and Engineering. for her
heipful guidance and valuable support given to us throughout this project.

Above all we owe our gratitude and heart felt thanks to our parents.
our friends, all teaching and non-teaching staffs for their encouraging
support and Almighty for His abundant blessing for finishing this proicc:

successfully in time.

%Q

SYN
OPSLS

SYNOPSIS

This project deals with the implementation of a Muluplatforn:
Information Access. The objective of this process is to access the database
created in the Linux server from Microsoft Windows machine using a {ront
end in Windows, the operations to be performed on the database arc
obtained. We tackle the above problem by using sockets as the means of
communication between the Linux and the Microsoft Windows machine.
MySQL is the database used in Linux. This is implemented by creating «
server in Linux and a client in Microsoft Window. The client accepts the
request from the user and sends the request to the server that responds bv
accessing the database. The client provides the user interface in the

Windows programming environment.

<&&
8

/
5

CONTENTS

1.

Introduction

1.1 Existing system and its limitations
1.2 Proposed system and its advantages

2. System Requirements

3

4

5

6

8

2.1 Product Definition
2.2 Project Plan

. Software Requirements Specification
. Design Document

. Product Testing

. Future Enhancements

. Conclusion

. References

. Appendix

9.1 Sample source code
9.2 Sample Outputs

o I

i~
tn

I~
ho

47

48
84

S
%gé)?
IN
Tt
RODU
OT.
70
N

1. INTRODUCTION

1.1 Current System:

A large number of useful data has been stored in LINUX
database servers around the world. But nowadays, Windows based
machines are becoming more prevalent. It is out of the question to
physically transfer all the data from LINUX machines to Windows

systems as it involves huge manpower and computational time.

1.2 Proposed System:

So a means to use the databases existing in LINUX directly
from Windows without any physical transfer of data is implemented.
This implementation is called the transaction processor. The
Berkeley sockets do the data transfer. A front end is designed to
meet the scratchy thoughts of the user when user queries the
database.

A large amount of useful data has been stored in LINUX
database servers around the world. But nowadays, Windows based

machines are becoming more prevalent. it is impossible tc

physically transfer all the data from LINUX machines to Windows
systems as it involves huge manpower and computational time. So
a means to use the databases existing in LINUX directy from
Windows without any physical transfer of data is implemented. This

implementation is called the Transaction Processor (TP).

TRANSACTION
CLIENT SERVER
PROCESSOR

3
A 4

A
) 4

Block Diagram of the proposed approach

In this implementation, all the transactions are predefined as
a unit of work called service. The server is a multithreaded process.
waiting for the client’s request. It has a listening thread, which is the
main thread that will accept the client's request and dispatch it to
the appropriate service. The service is a C function, which in tum
invokes other C/C++, SQL functions. Thus there are two units, the
Listener and the Service Dispatcher.
The implementation of the project consists of three phases

1. Creating a Server process in LINUX

2. Creating a client process in Windows

3. Creating an interface to MySQL in LINUX.

The server receives a request from the front end Graphica:
User Interface (GUI) based client and then processes the request
by accessing one or more back end Resource managers. Generally
the Resource manager is a database file server or some other form

of data provider.

1.2 SOCKET IMPLEMENTATION IN LINUX
1.2.1 SOCKETS - AN OVERVIEW

A socket is an object used to send and receive packets of data.
It describes a file handle, which is a positive integer value that
identifies the endpoint for communication. The data is buffered both
by server application sending the data and client application
receiving the data. Each socket has a type and is associated with a
running process. A socket is not the same as TCP port value.
Instead it is a handle to the data that includes IP addresses as well

as a port addresses doing the communication.

Socket Programming can be broken down into two parts:
e What the client process does

+» What the server process does

The client creates a socket, binds the socket to the local
address and the port, connects to server, sends/ receives data and
then closes the socket. The server creates the socket, binds to its

address and the port and sits and listens for the client to start

something. After the client connects, the server accepts by creating

3

a new socket for the client's use. The original socket waiis for =
second client to connect. The new socket performs the receive

send operations with the client and then closes.

The basic concept is that two systems are communicating and
needs to know the socket numbers of each other. Each sends
messages with this socket number.

Sockets are of two types:
e Stream Sockets

» Datagram Sockets

A stream socket is a bi-directional stream of bytes delivered in
the correct sequence and each packet is received only once.
Datagram sockets are record oriented, may be duplicated and are

not guaranteed to be delivered in any specific sequence.

1.2.2 BERKELEY SOCKETS
The API (Application Programming Interface) is the interface to

the programmer for the communication protocols. The availability of

an APl depends on both the operating system being used and the

programming language.

The two most prevalent communication APls for LINUX system are
1. Berkeley sockets

2. System Vs Transport Layer Interface.

1.2.3 Comparison of Network I/O and File l/O:

The six system calls open, create, close, read, write, Iseek used
for file I/O work with the file descriptor. It would be nice if the
interface to the network facilities maintained the file descriptor
semantics of the LINUX file system, but network 1/O involves more
details and options.

e The typical client server relationship ‘s not
symmetrical.

e A network connection can be connection oriented or
connectionless

» Names are more important in networking than for file

operations.

e A network association needs the following five
parameters. {protocol, local_addr, local process,
foreign_addr, foreign process}

e For some communication protocols, record
boundaries have significance.

e The network interface should support multipie

communication protocols.

1.2.4 Overview:
The original 4.3 BSD VAX release from 1986 supporied the
following communication protocois.
¢ LINUX domain
* [nternet domain
e Xerox NS domain
A time line of the typical scenario that takes place for a
connection-oriented transfer is shown. First the server is started,

and then sometime later a client is started that connects to the

server.

Socket()
h 4
Bind{)
h 4
Listen{ }
A 4
Accept()
Blocks until connection from client
client Socket{)
. h
Connection Request
| Connect()
Read() Data request Y
| > Write()
Process requested l
J,- Data reply
Write() Read{)

Y

Socket system calls for connection oriented protocols

1.2.5 SOCKET ADDRESS:
Many of the BSD networking system calls require a
pointer to a socket address structure as an argument. The definition

of this structure is in <sys/socket.h>.

Struct sockaddr

u_short sa_family; /*address family: AF_ XXX
value*/

char sa_data[14]; /*upto bytes of protocol-specific
address®/

¥

The contents of the 14 bytes of protocol specific address are
interpreted according to the type of the type of address.
For the Internet family, the following structures are defined in

<netinet/in.h>.

Struct in_addr

{
u_long s_addr; /<32 bit netid /hosted*/

/*network byte ordered™/
%

Struct sockaddr_in

short sin_family; /* AF_INET*/

u-short sin_port; /* 16 bit port number*/

struct in_addrsin_addr; /* 32 bit netid/hosted*/
/* network byte ordered*/

char sin_zero[8]; /~ unused*/

1.2.6 ELEMENTARY SOCKET SYSTEM CALLS:
Socket system call:

To do network I/O, the first thing a process must do is call
the socket system call, specifying the type of communication
protocol desired (Internet TCP, Intemet UDP, XNS, SPP, etc..).

int socket(int family, int type, int protocol);

The family is one of

AF_LINUX LINUX internal protocols

AF_INET Internet protocols _ -
[P &2

AF_NS Xerox NS protocols o

AF-IMPLINK IMP link layer

The AF_ prefix stands for “address family”. There is another set
of terms that is defined starting with a PF_ prefix which stands for
“protocol family”: PF_LINUX, PF_INET, PF_NS and PF_IMLINK.
Either term for a given family can be used as they are equivalent.

The socket type is one of the following

SOCK_STREAM stream socket
SOCK_DGRAM datagram socket
SOCK_RAW raw socket
SOCK_SEQPACKET sequenced packet socket
SOCK_RDM reliably delivered message

Socket(not yet completed)

The socket system call specifies one element of this 5
tuple, the protocol. The socket system call return s a small integer
value, similar to a file descriptor. This is called a socket descriptor.

or a sockfd.

Bind System Call:
The bind system call assigns a name to unnamed socket.
int bind(int sockfd, struct sockaddr *myacdr, int
addrlen);
The second argument is a pointer to a protocol specific
address and the third argument is the size of this address structure.
The bind system call fills in the local process elements of the

association 5 tuple.

Connect System call:

The client process connects a socket descriptor following
the socket system call to establish a connection with a server.

int connect(int sockfd, struct sockaddr *servaddr, int

addrlen);

The sockfd is the socket descriptor that was returned by
the socket system call. The second and the third arguments are a
pointer to a socket address and its size. The client does not have to

bind a local address before calling connect.

Listen system call:

This system call is used by a connection orientec server
to indicate that it is willing to receive connection.

int listen(int sockfd, int backlog);

It is usually executed after both the socket and bind system
calls and immediately before the accept system calls. The backlog
argument specifies how many connection requests can be queued
by the system while it waits for the server to execute the accept
system call. This argument is usually specified as 5, the maximum

value currently allowed.

Accept system call:

After a connection oriented server executes the listen
system call described above, an actual connection from some client
process is waited for, by having the server execute the accept
system call.
int accept(int sockfd, struct sockaddr *peer, int *addrlen);

Accept takes the first connection request on the queus

and creates another socket with the same properties as sockfd. i

there are no connections requests pending, this call blocks the
caller until one arrives.

The peer and addrlen arguments are used to return the
address of the connected peer process{ the client), addrlen s
cailed a value result argument. This system call returns three
values: an integer return code that is either an error indication or
new socket descriptor, the address of the client process(peer Jand
the size of this address(addrlen). Accept automatically creates a
new socket descriptor, assuming that the sever is a concurrent

server.

Close system call:
The normal LINUX close system call is also used to close
a socket.
int close(int sockfd);
If the socket being closed is associated with a protocoi
that promises reliable delivery (e.g.: TCP or SPP), the system must
assure that any data within the kernel that still has to be transmitted

or acknowledged is sent. Normally the system returns from the

close call immediately but the kernel still tries to send any data

already queued.

1.2.7 BYTE ORDERING ROUTINES:

The following four functions handle the potentia: oyie
order differences between different computer architectures and
different network protocols.

u_long htonl(u_long hostiong);

u_short htons(u_short hostshort);

u_long ntohl{u_long netlong);

u_short ntohs(u_short netshort);

htonl convert host_to_network, long integer.
htons convert host_to _network, short integer.

ntohl convert network_to_host, long integer.
ntohs convert networkto_host, short integer.

1.2.8 ADDRESS CONVERSION ROUTINES:

An Intermet address is usually written in the dotted
decimal format eg 192.168.12.5. The following functions conver:
between the dotted decimal format and in_addr structures.

unsigned long inet_addr{char *ptr);

char *inet_ntoa(struct in_addr inaddr);
The first of these, inet_addr converts a character string ir.
dotted decimal format notation to a 32 bit Internet address. The

inet_ntoa function does the reverse conversion.

1.2.9 RESERVED PORTS:

There are two ways for a process to have an Internet 2o
or an XNS port assigning to a socket.
» The process can request a specific port.

» The process can let the system automatically assign a port.

BSD provides a library function that assigns a reserved TCP

stream socket to the caller.
Int rresvport(int *aport);

The function creates an Internet stream socket and binds a
reserved port to the socket.
Assignment of poris in the Internet Domain
Reserved Ports 1-1023
Ports automatically assigned by system 1024-5000

Ports assigned by rresvport() 512-1023.

1.3 SOCKET IMPLEMENTATION IN WINDOWS
1.3.1 WINDOWS SOCKETS : PORTS AND SOCKET ADDRESS
Port

A port identifies a unigue process for which a service can be
provided. In the present context, a port is associated with an application
that supports Windows Sockets. The idea is to identify each Windows
Sockets application uniquely so that it is possible to have more than one
Windows Sockets application running on a machine at the same time.
Certain ports are reserved for common services, such as FTP. The
Windows Sockets specification details these reserved ports. The file
WINSOCK.H also lists them. To let the Windows Sockets DLL seiect a
usable port, zero is passed as the pert value. MFC selects a port value
greater than 1024 decimal. The port value that MFC selected by calling

the CasyncSocket :: GetSockName member function:.

Socket Address

Each socket object is associated with an Internet
Protocol(IP) address on the network. Typically,the address is =
machine name, such as ftp.microsoft.com, or a dotted number. sucn

as “192.168.12.6".To create a socket it is necessary to specify oL

own address. It's possible that the machine has multiple network
cards, each representing a different network. If so, it might be
necessary to give an address to specity which network card the
socket will use. This is certain to be an advanced usage and z

possible issue.

1.3.2 WINDOWS SOCKETS: BACKGROUND
The Windows Sockets specification defines a binary-
compatible network-programming interface for Microsoft Windows.
Windows Sockets are based on the LINUX sockets implementation
in the Berkeley Software Distribution (BSD, release 4.3) from the
University of California at Berkeley. The specification includes both
BSD-style socket routines and extension specific to Windows. Using
Windows Sockets permits the current application to communicate
across any network that conforms to the Windows Sockets API. On

Win32, Windows Sockets provide thread safety.
The Microsoft Foundation Class Library (MFC) supporis
programming with the Windows Sockets APl by supplying two
classes, Csocket, provides a high level of abstraction to simolifv

network communications programming.

Definition of a Socket

\

A socket is a communication endpoint—an object whicn =
Windows Sockets application sends or receives packets of daiz
across a network. A socket has a type and is associated with =
running process, and it may have a name. Currently, sockets
generally exchange data only with other sockets in the same
‘communication domain”, which uses the Internet Protocol Suite.

Both kinds of sockets are bi-directional: they are data flows that
can be communicated in both directions simultaneousty (fuli-
duplex).

Two socket types are available

e Stream sockets
Stream sockets provide for a data flow record boundaries — &
stream of bytes that can be bi-directional (the application is full-
duplex: it can both transit and receive through the socket). Streams
can be relied upon to deliver sequenced, unduplicated cata.
(“Sequenced” means that packets are delivered in the order sent.
“Unduplicated” means that a particular packet can be sent only
once.) Receipt of stream messages is guaranteed, and streams are

well-suited to handling large amounts of data. The network transpor:

fayer may break up or group data into packets of reasonable size.
The CSocket class handles the packing and unpacking. Stream are
based on explicit connections: socket A requests a connection to

socket B; socket B accepts or rejects the connection requests.

e Datagram sockets
Datagram sockets support a record-oriented data flow that is
not guaranteed to be delivered and may not be sequenced as sent
or unduplicated. “Sequenced” means that packets are delivered in
the order sent. “Unduplicated” means that it is possible to get a

particular packet only once.

Uses for sockets
Sockets are highly useful in at least three communications
contexts:
e Client/Server models
e Peer-to-Peer scenarios, such as cha:

applications

e Making remote procedure calls (RPC by
having the receiving applications interpret a

message as a function call.

1.4 IMPLEMENTATION

In this project, a client running on Windows is used to access
data present in the MySQL database, through a server program
running on LINUX.

The implementation consists of three steps:

1.Creating a Server process in LINUX

2.Creating a Client process in Windows

3.Creating an interface to MySQL database in LINUX

1.4.1 CREATING A SERVER PROCESS IN LINUX:

The Server program is a multi-treaded program, which performs
three major functions.

First, it creates a socket, which is an endpoint of connection.
The socket created is bound to the address of the local host. After
this is done, the server listens for requests from the clients.

Secondly, it formats the message, which is to be sent through the

socket to the client. Concatenating the data items received from the
database along with their respective lengths forms this message.
This concatenated message is sent through the socket to the client.
The Server Program also receives the request from the cliert
through the socket, determines what service is necessary and
accordingly calls the function used to access the database. Thirdly.
the server performs the important function of accessing the
database. The MySQL database is accessed from the server
program using the SQL commands. The SQL commands are

included as part of the program.

1.4.2.CREATING THE CLIENT PROCESS IN WINDOWS:

The client is created in Windows 2000 using VC++ platform

SDK.
The operations performed by the client are

e A socket is created and bound to the host address of the
machine.
e Using the connect system call the client tries to cornect to

the server.

¢ After the connection is established, the client sends the
requests obtained from the user to the server through the

socket.

<&
v‘@

% Q
SYSTE
M
REQUIREMEN
JA)

2. SYSTEM REQUIREMENTS

2.1 Product Definition

When data transfer comes into picture oriented network 't
consumes a lot of time when the database from the LINUX platform
to Windows. This scenario is replaced by accessing the database
from the LINUX platform to Windows using queries using MYSQL.
To be beneficiary, space requirements are reduced and time for
data transfer is also reduced. In order to avoid the confusion over
the queries provided by the user to access the database, a suitable
front end is designed which effectively defines controls as well as
retrieves the information.

The transfer is not edged only for peers but multiclients are

comprised in.

2.2 Project Plan
In the analysis phase requirements for Multipiatform Information
Access like functions, user interface prototype and certain aspects

that eliminate the ambiguity were identified.

From the resuits obtained from the analysis phase system
design was established where the complete system was depicted in
the form of an event flow diagram.

In the implementation phase coding is written for each related
module and finally they are integrated.

In the testing phase all the necessary tests are performed to
test the validity of the product developed.

Multiplatform Information Access will be implemented as a ool
where it must be running in the client machine as well as the server

to obtain the functionality of the product developed.

<&
V‘D

% Q
SOFTW.
ARE REQUIREME
SPE .
CITICﬂTIOﬂf[

3. SOFTWARE REQUIREMENTS
SPECIFICATION

3.1 Introduction
3.1.1 Purpose

The purpose of this SRS is to elaborate the requirements of
Multiplatform Information Access. Multiplatform Information Access
would bring out the interface between two platforms namely Linux
and Microsoft Windows, access of the database in Linux from the
later with a newly designed front end. The Front end is designed in
Microsoft Visual C++ and the server program is .written in Linux
based C and executed PCs.
3.1.2 Scope

This SRS focuses mainly on the requirement to be met by the
Multiplatform Information Access. The well-structured format and
descriptive nature of the SRS is aimed at aiding the developers in

developing an efficient Information Access.

3.1 3 Overview

Exploring further the Software Requirement Specification gives
inforr;’iation about the specific requirements like functionality,
usability and supportability of the Multiplatform Information Access.
3.1.4 Overall Description

Tﬁe Multiplatform Information Access is a descriptive software
in wh‘i'{ah;!the user can access the database in a different piatform
namely Liﬁux effectively with many constraints.

The database mentioned above is a Linux based database
called MySQL. The objective of the Multiplatform Information
Accéss ends with Iisfing out the menus and it is up to the user to

effectively use the database.

3.2 Specific Requirements
3.2.1 Functionality
The functionality of the Multiplatform Information Access can be

explained using the enclosed functional diagram.

3.2.2 Data Definition Language (DDL.):

DDL commands allow modification of the database structure by
creating, replacing, altering or removing database objects such as
tables.

3.2.3 Data Manipulation Language (DML):

DML commands allow the wuser to manipulate data.

Manipulation of data refers to insertion, updating and deletion of

data.

3.2.4 Data Retrieval Command:

This category contains only one command-SELEC™. The
command is self explanatory in what it does. It selects the
requested data from the table and displays it to the user on the
screen. I's one the most widely used command and therefore
considered as a category itself.

3.2.5 Supportability

Throughout the coding Java standard naming and coding

conventions are followed. The runtime files generated is platform

dependant and a version for every platform must be released.

3.2.6 Design Constraints

e lLanguages having packages, to analyze the -unning

Instances, are imminent.

¢ Runtime Environment is mandatory for the Multiplatform

Information Access to operate.

e Queries are avoided by the customization of tre user

interface.

3.3 Interfaces
3.3.1 User Interfaces

User interface is Graphical based for better interpretation. GU!
is customized to the user such that the remembrance of the
commands is not needed.
3.3.2 Software Interfaces

The API (Application Program Interface) is the interface
available to the programmer for the communication protocols. The
availability of an API depends on both the Operating System being

used and the programming language.

The two most prevalent communication APIs for Linux system are
¢ Berkeley Sockets

o System Vs Transport Layer Interface

<&

7N DESIGN DOCUMENTS

4. DESIGN DOCUMENTS

4.1 Introduction

The Software Architecture Document lists the various issues
concerning the architectural design phase of the software lifecycie
process. It provides a detailed explanation of the purpose, scope.,
definitions, abbreviations, concepts and references encountered in
the design phase. The beneficiaries of this document are intended
to be:

a) The Design team which uses this document as a guide for
the design process.

b} The Implementation team which carries out all
implementation tasks and development of the user
interface based on the guidelines provided in this
document.

c) The Testing team which tests the developed software
system and checks if it conforms to the original

specifications and design motives.

4.2 Purpose

This document provides a comprehensive architectural
overview of the system, using a number of different architectural
views to depict different aspects of the system. [t is intended tc
capture and convey the significant architectural decisions, which
have been made on the system and which are to be implemented.
The reader of this document is equipped with a number of object
and sequence diagrams which depict the control flow in the
designed system and the various state transitions which the system
passes through.
4.3 Scope

The contents of this document cover the entire spectrum of
design related issues and they influence the implementation
process, the data structures used in the source code and the
various classes, methods and functions present in the source code.
This manuscript serves as a formal guideline for the design process

and methodology.

4.4 Overview

The remaining portion of the Software Architecture Document
contains details about the architectural representation and also
detailed explanations about the various views of the designed
system. References to the quality measures adopted are also made

available.

<8¢
QA

%V
PRO
DUCT TESTIN

G

5. PRODUCT TESTING

5.1 Unit Testing

Unit testing focuses verification effort on the smallest unit ¢
software product developed — software component or moduie. The
different modules that were developed in MIA are GU: user
interface, login, client — server communication and client — server
database operations were the modules that were developed to

implement MIA.

In the unit testing following were examined to ensure the

reliability and correctness of each module
» Local data structure.
» Boundary conditions.
» Data flow.
Some of common errors were detected and corrected namely

» Incorrect arithmetic precedence.

A

» Incorrect initialization.

\d

Casting.

Y

Improperly madified loop variables.

5.2 Integration Testing

Integration testing is a systematic approach for constructing the
program structure while at the same time conducting tests tc

uncover errors associated with interfacing.

In MIA testing was done by top — down integration where the
each unit created is integrated with its previously created unit and

tested for its validity.

First GUI was created then user interface is integrated with
login module. Client — Server communication was done which then
integrated with graphical user interface. After well-established
communication data transfer operation was implemented where

dynamic updation was validated.

A > FURTHER ENHANCEMENTS

6. FURTHER ENHANCEMENTS

There is scope for increasing the number of operations that can
be performed on the database.

Incase of other than peer networks mutually exclusive
operations can be performed, provided the client is permitted to do
S0 by the server.

Ciphers are included with the raw data to enhance the secured

data transmission between the nodes.

S
$¢

7
Q
C
0
NCL
Uus
I
0
N

7. CONCLUSION

The objective of this project is the implementation c¢f a
transaction processor to access the database present in the Linux
server from a Windows machine. Three phases of the

implementation of the project are

1. Creating a server process in Linux.
2. Creating a client process in Windows.

3. Creating a interface to a database in MYSQL.

All the three phases have been completed. The connection was
established between the Linux and Windows machines and running
the server and client process on respective machines did the

operation of accessing the database from the Linux machine.

S
g@

7
S %
‘E
7
‘F
REN
CE
S

8. REFERENCES

-3 W.Richard Stevens, “UNIX NETWORK PROGRAMMING”,
Prentice Hall of India Pvt. Ltd, Aug 1997.

[MySQL by Paul DuBois,

Techmedia Pvt. Ltd, Jan 2000.

a8} Windows 98 Programming by Herbert Schildt.

Tata McGraw Hill Edition, Aug 1999.

9. APPENDIX

The Appendix discusses briefly the following
1.Source code

2.Sample output

9.1 SOURCE CODE

SERVER CODE:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#include <fentl.h>
#include <netdb.h>
#finclude <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ulio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/un.h>
#include <time.h>
#include <mysqgl.h>
#define def host_name NULL
#define def user name NULL
##define def password NULL
#define SERV_PORT 1300
#define LISTENQ 1024
#define MAXLINE 100

#define

MYSQL *c

MYSQL_RES *res set;
MYSQL_ ROW row,col;

int main

{

SA struct sockaddr

onn;

(void)

int listenfd,connfd,1,i,k,j,d=0,p.,m,aa;
unsigned long f;
FILE * fp;
FILE * f£d;
FILE * fe;

FILE * fz;
int n,pid;
pid=fork():
if(pid==0)
{

char bufferl[50], *ans="";

struct sockaddr in servaddr;
char
incom[MAXLINE] ,buff [MAXLINE],inc[10], incomes[100], table[30
]="samp_db",num[10],quel50]1;
char numal[30];
char nu[50]="select * from as";
listenfd = socket (AF_INET, SOCK_STREAM, O0);

bzero(&servaddr, sizeof{servaddr));
servaddr.sin_ family AF INET;
servaddr.sin addr.s_addr htonl (INADDR_ANY) ;
servaddr.sin port htons (1300);

J*x*x%xx*YSQL CONNECTION ESTABLISH*****kk kst /
conn=mysqgl init (NULL);

if (conn==NULL)
{
printf("aserror");
}
if (mysql real connect(conn,def host name,def user name
,def password, table, 0, NULL, 0)==NULL)
{

printf ("error2");

/***********PORT CONNECTION******************/

bind{listenfd, (SA *) &servaddr, sizeof(servaddr));
listen{listenfd, LISTENQ):;

for (; ;)
{
connfd = accept{listenfd, (SA *) NULL, NULL);
n=read(connfd, incom, MAXLINE} ;
incomin]="\0"';
printf ("%s", incom) ;

fp=fopen("a.txt","w+");
while(incom[0]!I="#")

{

if(incom[0]=="#")

{
printf{"exiting");
exit(0);

}

fseek(fp, 0, SEEK_END) ;
fputs (incom, £p);

[REEXXAXXDESC table name only TABLE FUNCTION******xx%%%/

if(incom[0]=="'d")
{
printf ("%s the command is™”, incom);
if (mysgl query(conn, incom) !=0)
printf ("query error");
else
{

res_set =mysgl store result(conn);
if (res_set==NULL)

printf ("res set error");

else
{
k=0;
m=0;
n=0;
fe = fopen(Tc.txt", "w+");

while({ {row=mysqgl fetch row(res set))!=NULL)
{

for(i=0;i<mysgl _num fields(res set);i++)
{

1i£(i>0)

fputc('\t', stdout) ;

if(i==0)

{

fprintf (fe, "%s",row[i] !=NULL ? row[i]:"NULL");
printf("%s",row[i] !'=NULL ? rowl[il] :"NULL");
fprintf (fe,",");

}

fseek({fte, 0, SEEK_END);

k++;
fputc('\n',stdout) ;

}
Eseek(fe, 0, SEEK_SET) ;
fscanf (fe, "%s", inc) ;
fclose(fe);
write(connfd,inc, 100);

printf ("%d", k) ;

printf ("%s",col);
fputce('\n', stdout);

if (mysgl errno{conn) !=0;
printf("fetch error™);

else
{
printf("%lu fields returned\n", (unsigned
long)mysgl num rows(res set)):;

}
}
mysqgl free result(res set);
1
}
/************NO OF RECORDS**************/
else
if(incom[0]=="D"')
{
j=0;
for(i=5;i<n;i++)
{
numal[j]=incom[i];
J++i
}
i=14;
for(k=0;k<j;k++)
{

nuf{il=numalk];
i++;

}
nul[i]="\0"';
printf("%s",nu) ;

if (mysgl_ query{conn,nu)}!=0)
printf ("query error");
else

{

res_ set = mysgl store result(conn):
if(res set==NULL)
printf("res set error"™);

alse

Hh W o

:0;

e fopen("c.txt", "w+"};

while((row=mysqgl_fetch_row(res set)) !=NULL}
{

for(i=0;i<mysgl _num fields(res set);i++)

{
1f£{(i>0}
fputc('\t', stdout);
}
k++;
1
printf("NO of records is:%d",k);
}

fprintf (fe, "%d",k);
fprintf (fe,";™);
mysqgl_ free result(res set):

printf({"%s the command is",incom);
if (mysqgl_query(conn, incom}!=0)
printf ("query error™);
else

{

res_set = mysgl store result (conn);

if(res set==NULL)

printf{"res set error");

else

W
1]
o

-

m=0;
n=0;
while{ (row=mysqgl_fetch_row(res set)) !=NULL}
{
for(i=0;i<mysgl num fields(res set);i++)
{
fseek(fe, 0, SEEK END);
if(i>0)
fputc{'\t',stdout);
if(i==0)
{

fprintf (fe, "%s",rowl[i] '=NULL *?
rowl[i] : "NULL");

printf("%s",rowl[i] I=NULL °?
row[i] : "NULL");
fprintf{(fe, ", ");
}
//fseek({fe, 0, SEEK END) ;

kK++;
fpute('\n', stdout);

}
fseek(fe, 0, SEEK SET);
fscanf (fe, "%s", inc) ;
fclose(fe);
write(connfd, inc,100);

printf ("%d",k);

printf ("%s",col};
fputc('\n',stdout);

if (mysgl errno{conn) !=0)
printf ("fetch error™);

else
{
printf ("%lu fields
returned\n", (unsigned long)mysgl num rows(res set));
}
}
mysgl free result(res set);

/******SELECT * FROM FUNCTION****%%xkk%xxx/

else
if(incom[0]=="'s"')

{

if(mysgl query{(conn, incom) !=0)
printf ("query error");
else
{
res_set =
mysql_store_result(conn);
if (res set==NULL)
printf{"res set error"):

else

{

k=0;

m=0;

n=0;

fe = fopen("c.txt","w+");

while((row=mysqgl fetch row(res set)) !=NULL)
{

for(i=0;i<mysgl num fields{res set);i++)
{
1£(i>0)
fpute("\t ", stdout) ;

fprintf(fe, "%s",row[i] '=NULL ? rowl[i]:"NULL");
printf("%s",row[i] | =NULL 7
row[i] : "NULL") ;
Eprintf (fe,™, "}
}
fseek({fe, 0,SEEK END);
}

k++;
fputc('\n', stdout);

1
fseek(fe, 0, SEEK_SET) ;
fscanf (fe, "%s",inc);
fclose({fe);
write{connfd, inc,100);

printf ("%d",k);

printf ("%s",col);
fputc('\n', stdout) ;

if (mysgl errno(conn)}!=0;
printf{"fetch error"};

else
{
printf("%lu fields
returned\n", (unsigned long)mysgl num rows(res_set));
}
1

mysql free result{res set):;

/**************USE DATABASE*****************/

else

if (incom[0]l=="U")

{

printf ("fucked");
mysdgl_guery(conn, incom) ;
for(i=0;i<n;i++)

{

table[i]="\0";
incomes[il="\0";

}

j=0;

for{(i=4;i<=n;i++)

{

incomes [Jj]=incom[i];
J++;

1

j=0;

i=90;

while(incomes [j]i="\0"}

{

table[il=incomes[3];
i++;

j++;

}

printf("%s", table);

if (mysql real connect (conn,def host name,def user name,def
_password, table, 0, NULL, 0) ==NULL)
{
printf ("error2");

}

/********************OTHERS********************/

else

if (mysgl query{conn, incom) !'=0)

connfd = accept{listenfd, (SA *) NULL,

NULL) ;
n=read (connfd, incom, MAXTL.INE) ;
fz=fopen("command.txt", "w+"};
fprintf(fz, "%s", incom) ;
fclose(fz);
incom[n]="\0";
printf("%s", incom) ;

}
fclose(fp);
}
close(connfd);
mysgl_close(conn);
}

CLIENT CODE:

#include<windows .h>

#include<string.h>

#include<commctrl.h>

#include<stdio.h>

#include"ids.h"

HWND hwndclient =NULL;

HINSTANCE hinst;

SOCKET sockl;

FILE *fp;

HWND
hwnd,el,e2,e3,ed4,eb,sl1,s2,83,84,85,£[9]1,4[9],.£11[91,4t[9%9;
int status,zz=0,i=0,3j=0,k=0,1=0,m=0,=z=0;
char num([2];

char strll[S][15]={nr", "o ¢0 »wn nwo ow, oo ne i}y
char *strl=new charf[];

char *recvl=new charl[]:;

char *mod=new charl[];

char *modl=new char|]:;

char *dbname=new char][];

char *token;

char sepl[l=",":
char sepll]l="'";
char sep2[] = ";,";

LRESULT CALLBACK WindProc (HWND, UINT, UINT, LONG):;

LRESULT CALLBACK CreateDBProc (HWND, UINT, WPARAM, LPARAM) ;

LRESULT CALLBACK ShowDBProc (HWND, UINT, WPARAM, LPARAM) ;

LRESULT CALLBACK UseDBProc (HWND, UINT, WPARAM, LPARAM) ;

LRESULT CALLBACK DropDBProc (HWND,UINT, WPARAM, LPARAM) ;

LRESULT CALLBACK ShowTBProc (HWND,UINT, WPARAM, LPARAM} ;

LRESULT CALLBACK AlterTBProc (HWND, UINT, WPARAM, LPARAM; ;

char WinName[]="MyWin";

int WINAPI WinMain (HINSTANCE hthis, HINSTANCE hPrev, LPSTR 1lps,int 1z
{

HWND hwnd;

MSG msg;

WNDCLASS wc¢;

HACCEL hac;

we.style = 0;

wc. lpfnWndProc = (WNDPROC)}WindProc;
wc.cbClsExtra = 0;

we.cbWndExtra = 0;

wc.hIcon = LoadIcon (NULL, IDI_ TINFORMATION):

wc . hCursor = LoadCursor (NULL, IDC ARROW) ;
we . hbrBackground =
{HBRUSH) GetStockObject (WHITE BRUSH);

wc.lpszMenuName = "MyMenu”;
wc.lpszClassName = WinName;
wc.hInstance = hthis;

RegisterClass (&wc);

wc . lpEnWndProc= (WNDPROC) ChildwWwndProc;
wc.hIcon =LoadIcon(NULL, IDI APPLICATION) ;
wc.hCursor = LoadCursor (NULL, IDC ARROW);
wc . hbrBackground

={(HBRUSH) Get StockObject (LTGRAY BRUSH) ;
wc.lpszMenuName =NULL;
wc.lpszClassName ="Child";

RegisterClass (&wc};

we . lpfnWindProc= (WNDPROC) CreateDBProc;

wc.hIcon =LoadIcon(NULL,IDI_ APPLICATION):;

we.hCursor = LoadCursor (NULL, IDC_ARROW)} ;

we . hbrBackground
=(HBRUSH)CreateSolidBrush(RGB (180,180,180});

wc . lpszMenuName =NULL;

wc.lpszClassName ="Create Database®;

hwnd =
CreateWindow(WinName,"OurWin“,WS_OVERLAPPEDWINDOW|WS_VISIB

LE,0,0,1000,1000, NULL, NULL, hthis, NULL) ;
hac=LoadAccelerators(hthis, "MyMenu");
ShowWindow{(hvnd,n);

UpdateWindow (hwnd) ;

while (GetMessage (&msg,NULL,0,0)})
TranslateMessage{(&msg);

DispatchMessage (&msg) ;
}

return (msg.wParam);

/************* SOCKET CREATION *****************/

BOOL SocketCreation (HWND hWnd)
{

WSADATA WSAData;

SOCRKADDR IN psin;

WSAStartup (MAKEWORD(1,1), &WSAData):;
sockl=socket (AF INET, SOCK_STREAM, () ;

psin.sin addr.s addr=inet addr{("192.168.12.5");
psin.sin_family =AF INET;

psin.sin port =htons(1300);

if (connect({ sockl, (PSOCKADDR) &psin, sizeof(psin)) <
0)

{
closesocket (sockl);
MessageBox (hWnd, "connect() failed", "Error",
MB OK);
return FALSE;
}
else
{
MessageBox{(hWnd, "CONNECTED TO SERVER ", "Error”,
MB_OK) ;
return TRUE;
}

frxExwxxrxrx MATN WINDOW PROCEDURE *****¥xkxkxxx*x%x/

LRESULT CALLBACK WindProc (HWND hWnd,UINT mess,UINT wp, LONG
1p)
{
HWND hchild;
CLIENTCREATESTRUCT ccs;
switch(mess)
{
case WM_COMMAND:
switch (LOWORD(wp))
{
case ID CREATEDB:
hchild=CreateMDIWindow("Create
Database", "Create
DB",NULL,200,140,300,250,hwndclient,hinst, 0L) ;
break:;
case ID SHOWDB:
hchild=CreateMDIWindow (" Show
Database™, "Show
DB",NULL, 200,140,300, 250, hwndclient,hinst, 0L);
break;
case ID USEDB:

hchild=CreateMDIWindow("Use
Database", "Use
DB",NULL, 200,140, 300,250, hwndclient, hinst, OL) ;
break;
case ID SHOWTB:
hchild=CreateMDIWindow("Show
Table", "Show
TB",NULL,200,140,300,350, hwndclient, hinst, 0L);
break;
case ID EXIT:
PostQuitMessage (0);
break;
case ID_ START:

hchild=CreateMDIWindow("Child", "hai™, NULL, 200,140,309,
250, hwndclient, hinst, 0L);
ShowWindow(hchild, SW SHOW) ;
UpdateWindow(hchild);
break;
case ID_DROPDB:
hchild=CreateMDIWindow ("Drop
Database", "Drop
DB",NULL, 200,140,300, 250, hwndclient,hinst, 0L} ;
break;
}
break;
case WM_CREATE:
hwndclient
=CreateWindowEx (WS EX CLIENTEDGE, "MDICLIENT", NULL,WS_CHILD
| WS_CLIPCHILDREN, 200,200,300, 190, hWwnd, NULL, hinst, &ccs) ;
ShowWindow(hwndclient, SW_SHOW) ;
Updatewindow (hwndclient) ;
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return
{DefFrameProc (hWnd, hwndclient,mess,wp,1ip));
}
return(0L) ;

/************* DATABASE CREATION ************/

LRESUILT CALLBACK CreateDBProc {HWND hWnd, UINT ums, WPARAM
wpm, LPARAM lpm}
{

HWND bi;

switch (ums)

{
case WM _CREATE:

InitCommonControls(};

el=CreateWindow("edit","",WS_CHILD|WS VISIBLE|WS_BORDE
R, 100, 25,80, 25,hwWnd, (HMENU) 2, hinst,NULL) ;

bl=CreateWindow("button”, "DATABASE" ,WS_CHILD|WS_VISIBL
E|WS_BORDER, 100,80, 80,30, hwnd, (HMENU) 101, hinst, NULL) ;

SetFocus{el);

break;
case WM_COMMAND:
switch (wpm)
{
case ID_DATABASE:
strepy{(str,""});
strcpy{(buffl,"");

if (!SocketCreation{ hWnd))
{

MessageBox {(hWnd, "ERROR111",0,0};
}
strcat (str, "create database ");
strcat (str,buffl);
send(sockl,str,50,0};
break;
1
break;
case WM_QUIT:
PostQuitMessage(0);
break;
default:
return (DefMDIChildProc (hWnd,ums,wpm,lpm}));

return{0);

/******************* SHOW TABLES ******************/

LRESULT CALLBACK ShowTBProc (HWND hWnd, UINT ums, WPARAN
wpm, LPARAM lpm)
{

HWND bl;

switch (ums)

{

case WM_CREATE:

ITnitCommonControls();

if(!SocketCreation(hWnd))

{

MessageBox (hWwnd, "ERROR111",0,0);

1
strepy(str,"");
strcpy(szTemp,"");
for(i=0;i<9;i++)
{

strepy (str31[i1].,."");

}

InitCommonControls();

el=CreateWindow("listbox", "",WS_CHILD|WS_VISIBLE|WS_BO

RDER | LBS_NOTIFY|WS_VSCROLL, 100,25, 80,50, hWwnd, (HMENU) 2, hins
t,NULL) ;

bl=CreateWindow("button", "SHOW
TABLES",WS_CHILD|WS_VISIBLE |WS_BORDER, 100,100,100, 25, hWnd.
({HMENU) 141, hinst,NULL) ;

strepy(str, "Show tables ");

send(sockl, str,50,0);

status = recv{sockl,szTemp,100,0 };

szTemp[status] = "\0';

token=strtok(szTemp, sep};

k=0;

i=0;

while (token! =NULL)

{
strepy(str3l[i], token);
k++;
token=strtok (NULL, sep) ;
i++;

}
for(i=0;i<k;i++)

{

SendMessage (el, LB_ADDSTRING, 0, (DWORD)str31[il);
}

break;
case WM_COMMAND:

switch (wpm)

{

case ID SHOWTAB:
strepy(str,"");
strecpy(buffi, ") ;
strepy (szTemp, "") ;
strepy(recvl,"");

LV _ITEM item;
LV_COLUMN col;

if (! SocketCreation(hWnd))
{
MessageBox (hWwnd, "ERROR111",0,0) ;

}

e2=CreateWindow(WC_ LISTVIEW,"",WS_CHILD|WS VISIBLE|WS_
BORDER|LVS_EDITLABELS|LVS_LIST,100,130,100,150,hwnd, (HMENU
)2,hinst, NULL) ;

strcat (str, "Show tables ");
i=0;
i=SendMessage(el, LB GETCURSEL, (0,0} ;

SendMessage(el, LB GETTEXT, i, (DWORD) (LPSTR)dbname) ;
send(sockl, str,100,0);
status = recv(sockl,szTemp,50,0 };
szTemp[status] = "'\0';
token=strtok(szTemp, sep);

k=0;

i=0;

while (token!=NULL)

{
strepy{str2l[i], token);
k++;
token=strtok (NULL, sep) ;

i++;

col.mask=LVCF_FMT |LVCF_WIDTH|LVCF TEXT|LVCF_SUBITEM;
col.fmt=LVCFMT LEFT;
col.cx=100;

col.pszText="Takbles";
col.iSubItem=0;
ListView InsertColumn{e2,0, &col};

for(i=0;i<k;i++)

£
item.mask=LVIF TEXT;
item.pszText=(LPTSTR)str21[i];
item.iItem=i;
item.iSubItem=0;
ListView InsertiItem(e2,&item);

}
break;
}
break;

case WM_QUIT:
PostQuitMessage (0);
break;
default:
return (DefMDIChildProc (hWwnd,ums,wpm, lpm)) ;

return(0);

}

/****;k*********** INSERTION ********************/
LRESULT CALLBACK Insertion(HWND hWnd,UINT umsl, WPARAM
wpml, LPARAM lpml)}
{

HWND bl,b2;

int £id=70,did=80,y=230;

switch(ums1)

{
case WM_CREATE:

strcpy(stx,"");
strcpy{(buffl,™");

bl=CreateWindow("button", "OK",WS CHILD|WS VISIBLE |WS

ORDER | BS_ PUSHBUTTON, 200,80, 80, 30, hwnd, (HMENU) 301, hinst, NUL
L);

s5=CreateWindow("static", "Table
Name:",WS_CHILD|WS_VISIBLE|WS_BORDER|SS CENTER,135,4(,12C,
20,hwWnd, (HMENU)48,hinst, NULL) ;

e5=CreateWindow("listbox", "",LBS_NOTIFY|WS VSCROLL|WS_
CHILD|WS_VISIBLE |WS_BORDER,275,40,120,20,hWwnd, (HMENU)49, hi
nst, NULL) ;
if{18ocketCreation(hWnd))

{
MessageBox (hWwnd, "ERROR111",0,0);
}
strcat (str, "Show tables ");

send(sockl, stx,100,0);
status = recv(sockl,szTemp, 50,0);

szTemp[status] = '\N0';

token=strtok(szTemp, sep) ;

k=0;

1i=0;

while (token!=NULL)

{
strepy (str21[{i], token);
k++;
token=strtok (NULL, sep} ;
i++;

}
for (i=0;i<k;i++)

{

SendMessage (e5, LB_ADDSTRING, 0, (DWORD)str21[i]);
}
break;
case WM_COMMAND:
switch (LOWORD {wpml))
{
case ID INOCK:
strcepy{str,"");
strepy{(buffl,"");
strcpy (szTemp, "");
strepy(recvl,"");

if(!SocketCreation(hwWnd))
{
MessageBox (hWwnd, "ERROR111",0,0);

i=SendMessage(e5, LB GETCURSEL,(0,0);

SendMessage (e5,LB_GETTEXT, i, (DWORD) (LPSTR)buffl);
strcat (str, "desc ");
strcat (str,buffl);
send (sockl,str,100,0);
status = recv(sockl,szTemp,50,0);
szTemp[status] = '\0';
token=strtok(szTemp, sep) ;

k=0;

i=0;

while (token!=NULL)

{
strepy(str31[il, token);
kK++;
token=strtok (NULL, sep) ;
i++;

for(i=0;i<k;i++)

{

f[i]=CreateWindow("static", NULL, WS_CHILD|WS_VISIBLE WS
_BORDER, 100,y,100,20, hwWwnd, (HMENU) fid+i, hinst, NULL) ;

d[i]l=CreateWindow("edit", NULL, WS CHILD|WS_VISIBLE|WS_E
ORDER, 250,y,100, 20, hWwnd, (HMENU)did+i, hinst, NULL) ;
v=y+30;
}
b2=CreateWindow("button", "INSERT", WS_CHILD|WS VISIBLE |
WS_BORDER | BS_PUSHBUTTON, 215,y+2,80,30,hWnd, (HMENU) 302, hins
t,NULL) ;

for(i=0;i<k;i++)

{
SetWindowText (£[i],str31[i])};
}
for(i=0;i<9;i++)
{
strepy(strlliil,"");
strepy{(str31[i]l,"");
}
break;

case ID INSERT:

strcpy(stx,"");
strecpy{(buffl,"");
strcepy{szTemp, "");
strepy (buff2,"");

if (!SocketCreation(hWnd))
{
MessageBox (hWind, "ERROR111",0,0) ;
}
i=0;
i=SendMessage{e5, LB_GETCURSEL, (0,0);

SendMessage (e5,LB_GETTEXT, 1, (DWORD) (LPSTR)buffl);
strcat (str,"Insert into ");
strecat (str,buffl);
strcat (str," values(");
for (i=0;i<k;i++)
{
strcat (buffz,"'");
GetWindowText (d[1],buff3, 15);
strcat (buff2,buff3);
strcat (buffz2,""'");
if(i1=k-1)
strcat (buff2,™,");
}
strcat (str,buff2);
strcat(str,")");
send (sockl,str,200,0);
break;
}
break;
case WM_QUIT:
PostQuitMessage(0);
break;
default:
return (DefMDIChildProc{hWnd,umsl,wpml,lpml.);

return(0L);

/******************* RETRIEVAL ********************/

LRESULT CALLBACK Retrieval (HWND hw2,UINT ums2, WPARAM
wpm2, LPARAM 1pm2)

{

HWND bll,b2;

int y=230,£fid=70,did=80;

switch (ums2)

{
case WM _CREATE:
strcpy(str,"");

bll=CreateWindow("button", "OK",WS CHILD|WS_VISIBLE |WS_
BORDER | BS_ PUSHBUTTON, 200, 80,80, 30, hw2, (HMENU) 351, hinst, NUL

L):
s5=CreateWindow("static", "Table

Name: ", WS_CHILD|WS_VISIBLE |WS_BORDER|SS CENTER, 135,40,120,

20,hw2, (HMENU)70,hinst, NULL) ;

e5=CreateWindow("listbox", "",LBS NOTIFY|WS_VSCROLL|WS_
CHILD|WS_VISIBLE |WS_BORDER, 275,40,120, 20, hw2, (HMENU) 49, hin

st,NULL) ;
if (!SocketCreation(hw2))
{
MessageBox (hw2, "ERROR111",0,0);
}

strcat (str, "show tables ")};
send(sockl,str,100,0);
status = recv(sockl,szTemp,50,0 };

szTemp[status 1 = '"\0';
token=strtok(szTemp, sep);
k=0;
i=0;

while (token!=NULL)

{
strepy(str21[i],token);
k++;
token=strtok (NULL, sep) ;
i++;

1

for(i=0;i<k;i++)

{

SendMessage (e5, LB_ADDSTRING, 0, (DWORD)str21[i]);
}
break;
case WM_COMMAND:
switch (LOWORD (wpm2))
{
case ID_RETOK:
strepy(stx,"");
strepy(buffl,"");
strcpy(szTemp, ™") ;
strepy(recvl, ™) ;

strepy{(buff2,"");
strcpy (buff3,"");

for{(i=0;1<9;i++)

{
strepy(str31[il,"");
1
if (!SocketCreation({ hw2))
{
MessageBox (hw2, "ERROR111%,0,0);
}
i=0;

i=SendMessage{e5,LB GETCURSEL,0,0);

SendMessage (e5, LB_GETTEXT, i, (DWORD) (LPSTR)buffl);
strcat (str, "desc "};
strcat(str,buffl);
send (sockl,str,100,0);
szTemp [0] =NULL;
status = recv(sockl,szTemp, 50,0);
szTemp[status] = *\O';
token=strtok(szTemp, sep) ;

k=0;

i=0;

while (token!=NULIL)

{
stropy(str3i[i], token);
strepy(strlifil], token);
k++;
token=strtok (NULL, sep) ;
i+

for(i=0;i<k;i++)

{

f[i]=CreateWindow("static",NULL,WS_CHILD|WS_VISIBLE WS
_BORDER, 100,y,100,20,hw2, (HMENU) fid+i, hinst, NULL) ;

d[i]=CreateWindow("edit",NULL,WS_CHILD|WS_VISIBLE |WS B
ORDER, 250,y,100,20,hw2, (HMENU)did+i, hinst, NULL) ;
y=y+30;
1

b2=CreateWindow("button", "NEXT",WS_CHILD|WS VISIBLE|WS

_BORDER | BS_PUSHBUTTON, 215,y+2, 80,30, hw2, (HMENU) 352, hinst,N
ULL) ;

for(i=0;i<k;i++)
{

SetWindowText (f[i]l,strli[i]];
}

break;

case ID RETRIEVE:
for{(i=0;1i<9;i++)

{
strepy(strll1[il,"");
}
if {(!SocketCreation({ hw2))
{
MessageBox (hw2, "ERROR111",0,0) ;
}

strcpy(str,""};
strepy(szTemp,"") ;

ZZ++;
fp=fopen("project.txt", "w+");
fprintf (fp, "%d", zz) ;
fseek(fp, 0, SEEK_SET) ;
fscanf (fp, "%s",buff2);
fclose(fp);

strepy({str,"v"};
strcat(stxr,buff2);
strcat{str," select * from ");
strcat (str,buffl};

send(sockl, str,100,0);
status=recv(sockl, szTemp, 100,0);
szTemp [status]l="\0";
token=strtok(szTemp, sep) ;

k=0;

i=0;

while (token!=NULIL)

{
strepy(strll1[i], token);
k++;
token=strtok (NULL, sep) ;
it++;

}

for(i=0;i<k;i++)

{

SetWindowText (d[i],strl1llli]);

}
break;
}
break:;
case WM_QUIT:
PostQuitMessage (0);
break;
default:
return (DefMDIChildProc (hw2,ums2,wpm2, lpm2));

return{0);

/***************** CREATION *********************/

LRESULT CALLBACK Creation(HWND hw2, UINT ums2, WPARAM
wpm2 , LPARAM lpm2)
{

HWND bl,b2;

int £id=50,did=60,v=230;

switch{ums2)

{

case WM_CREATE:

sl=CreateWindow("static", "Table

Name:",WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER, 135,60, 120,
20,hw2, (HMENU)}37,hinst, NULL) ;

el=CreateWindow("edit",NULL,WS_CHILD|WS_VISIBLE|WS_BOR
DER | WS_GROUP | WS_TABSTOP, 275, 60,120, 20, hw2, (HMENU) 38, hinst,
NULL} ;
s2=CreateWindow("static", "No:of
Fields:",WS_CHILD|WS_VISIBLE|WS_BORDER|WS_TABSTOP|SS _CENTE
R,135,100,120,20,hw2, (HMENU) 39,hinst, NULL) ;

e2=CreateWindow("edit",NULL, WS CHILD|WS VISIBLE|WS_BOR
DER |WS_TABSTOP, 275,100,120, 20, hw2, (HMENU)40,hinst, NULL) ;

bl=CreateWindow ("button", "OK",WS_CHILD|WS_VISIBLE|WS_E
ORDER | BS_PUSHBUTTON | WS_TABSTOP, 215,150, 80, 30, hw2, (HMENU)45
1,hinst,NULL};
break:;
case WM_COMMAND:
switch (LOWORD (wpm2))}
{
case ID CREATEOK:
strecpy(buffl,"");

GetWindowText (e2,buffl,5);

m=atoi(buffl);

s3=CreateWindow("static", "Field
Name", WS_CHILD |WS_VISIBLE |WS BORDER|SS_CENTER, 100,200,120,
20,hw2, (HMENU)42,hinst, NULL) ;

sd=CreateWindow("static", "Data
Type”,WS_CHILD|WS_VISIBLE|WS BORDER|SS_CENTER, 250,200,120,
20,hw2, (HMENU)43,hinst, NULL)} ;

for(i=0;i<m;i++)

{

f[i]=CreateWindow("edit",NULL,WS_CHILD|WS_VISIBLE|WS B
ORDER, 100,v, 100,20, hw2, (HMENU) £id, hinst, NULL) ;

d[i]=CreateWindow ("combobox", NULL, CBS_AUTOHSCROLL |CBS_
DISABLENOSCROLL | CBS_DROPDOWN | CBS_ DROPDOWNLIST |CBS_SORT |WS_
CHILD|WS_VISIBLE|WS BORDER|WS_VSCROLL|WS_TABSTOP,250,y, 100
,20,hw2, (HMENU)did, hinst, NULL) ;

SendDlgltemMessage (hw2,did, CB_ ADDSTRING, 6, (LPARAM) "var
char (15)");

SendDlgItemMessage {hw2,did, CBE ADDSTRING, 0, (LPARAM)"int

");

SendDlgItemMessage (hw2,did, CB_ADDSTRING, 0, (LPARAM) "dat
e");
did=4id+1;
fid=fid+1;
y=y+30;
}

b2=CreateWindow("button", "CREATE" ,WS CHILD|WS_VISIBLE |

WS_BORDER|BSﬁPUSHBUTTON,215,y+2,80,30,hw2,(HMENU)452,hinst
. NULL) ;

break;

case ID CREATE:

strepy (str,"");

strepy(buffli,"");

strepy (buff2,"");

strepy(buffs,"");

strcpy(buff4,"");

if (1SocketCreation{ hw2})
{
MessageBox (hw2, "ERROR111",0,0) ;

strcat (str, "create table ";;
GetWindowText (el,buffi, 10} ;
strcat (buffl,"(");
strcat (stxr,buffl);
for{i=0;i<m;i++)
{
GetWindowText (f[i],buff2,15);
strcat (buff4,buff2);
strcat (buff4,™ 7);
GetWindowText (d[1] ,buff£3,15);
strcat (buff4,buff3);
if{ii=m-1)
strcat (buff4d4,",");
}
strcat (str,buffd);
strcat (str,™)");
send({sockl,str,200,0);
break;

}
break;

case WM _QUIT:
PostQuitMessage(0);
break;
default:
return {(DefMDIChildProc (hw2,ums2,wpm2,lpm2));

return(0L)};

/********** DROP TABLE *************/

LRESULT CALLBACK Dropping(HWND hw2,UINT ums2, WPARAM
wpm2, LPARAM lpm?2)}
{

JHWND bl;

switch(ums2)

case WM CREATE:

' strepy(str,"");
strcepy (szTemp, "");

sl=CreateWindow("static®, "Table
Name:",WS_CHILD|WS_VISIBLE|WS BORDER|SS CENTER, 135,60,120,
20,hw2, (HMENU) 45, hinst, NULL) ;

bl=CreateWindow("button", "DROP",WS_CHILD|WS VISIBLE|WS
_BORDER | BS_PUSHBUTTON, 215,150, 80, 30,hw2, (HMENU) 501, hinst,N
ULL) ;

e5=CreateWindow("1istbox","“,L357NOTIFY|WS_VSCROLL|WS_
CHILD|WS_VISIBLE|WS_BORDER,275,40,120,20,hw2,(HMENU)@Q,hin
st, NULL) ;
if (!SocketCreation(hw2))
{
MessageBox(hw2, "ERROR111",0,0};
}
strcat(str, "show tables ");
send (sockl, stxr,100,0);
status = recv({sockl,szTemp, 50,0);

sZTemp[status] = '\0";
token=strtok(szTemp, sep};
k=0;
i=0;

while{(token!=NULL)

{
stropy(str2l[i], token);
k++;
token=strtok (NULL, sep) ;
i++;

1

for(i=0;i<k;i++)

{

SendMessage (e5, LB_ ADDSTRING, 0, {DWORD)str21[i]);
}
break;

case WM _COMMAND:

switch (LOWORD (wpm2))

{
case ID DROPTAB:

strepy(stx,"");
strecpy (buffli,"");

if(!SocketCreation({ hw2))

{
MessageBox(hw2, "ERROR111", 0,0} ;

i=0;
strcat (str, "Drop table ");
i=SendMessage(eb,LB GETCURSEL,0,0);

SendMessage (e5,L.B_GETTEXT, i, (DWORD) (LPSTR)buffl};

strcat (str,buffl);
send(sockl,str,200,0);
break;

}

break;

case WM_QUIT:
PostQuitMessage(0);
break;

default:
return {(DefMDIChildProc (hw2,ums2,wpm2, lpm2));

return(0L)} ;
}

/**********'k ALTERATION *****************l

LRESULT CALLBACK Alteration(HWND hw2, UINT ums2, WPARAM
wpm2, LPARAM lpm2)

{
HWND bl,b2,b3,halter;

switch{ums2)

{
case WM_CREATE:

strepy(str,"");

bl=CreateWindow("button", "RENAME" ,WS_CHILD|WS_VISIBLE |
WS_BORDER | BS_PUSHBUTTON, 150, 80,100, 20, hw2, (HMENU) 551 . hinst

»,NULL) ;

b2=CreateWindow("button“,“ALTER“,WS_CHILD|WS_VISIBLE|W
S_BORDER|BSiPUSHBUTTON,250,80,100,20,hw2,(HMENU)SSZ,hinSt,

NULL) ;

e5=CreateWindow("1istbox","“,LBS_NOTIFY|WS?VSCR0LL|WS7
CHILD|WS_VISIBLE|WS_BORDER, 200,40,120,20,hw2, (HMENU)49, hin
st,NULL) ;
if (!SocketCreation(hw2))

{
MessageBox (hw2, "ERROR111",0,0) ;

strcat {str, "show tables ");
send(sockl,str,100,0);

status = recv(sockl,szTemp,50,0);
szTemp[status 1 = *\0";
token=strtok(szTemp, sep);
k=0;
i=0;
while (token!=NULL)
{
strepy(str21[i], token);
k++;
token=strtok (NULL, sep) ;
i++;
}
for(i=0;i<k;i++)
{
SendMessage (e5, LB_ADDSTRING, 0, (DWORD)stxr21[i]);
}
break;

case WM_COMMAND:
switch {LOWORD (wpm2))
{
case ID RENAMEOK:

el=CreateWindOW("edit",NULL,W57CHILD|WS_VISIBLE|WSiBOR
DER,120,120,100,20,hw2, (HMENU) 49, hinst, NULL} ;

e2=CreateWindow("edit",NULL, WS CHILD|WS_VISIBLE|WS_BOR
DER, 200,120,100, 26,hw2, (EMENU) 50, hinst, NULL) ;

b3=CreateWindow("button", "OK",WS_CHILD|WS_VISIBLE|WS_E
ORDER | BS_PUSHBUTTON, 200,160, 100,20, hw2, (HMENU)} 553, hinst, NU
LL) ;
break;

case ID_ALTEROK:
stxrcpy(buffli,"");
i=0;
i=SendMessage{e5,LB GETCURSEL, (,0)};

SendMessage (e5, LB GETTEXT, i, (DWORD) (LPSTR)buffl)
halter=CreateMDIWindow("AlterTab", "AlterTable" K NULL, 13

5,0,500,520, hvmdclient,hinst, NULL) ;
SetFocus(el);

ShowWindow{halter, SW_SHOW) ;
UpdateWindow{(halter);
break;

case ID RENAME:
strcpy(str,"");
strepy(buff2,"");
strepy(buff3,"");

if (1SocketCreation(hw2))

{
MessageBox (hw2, "ERROR111",0,0) ;
}
strcat (str,"Alter table ");
i=0;

i=SendMessage(e5,LB GETCURSEL,(,0};
SendMessage (e5, LB _GETTEXT, i, (DWORD) (LPSTR}buff2);

strcat (str,buff2);
GetWindowText (e2,buff3,10);
strcat(str," rename as ");
strcat(stx,buff3);
send(sockl, str,100,0);
break;
1
break;
case WM_QUIT:
PostQuitMessage (0);
break;
default:
return (DefMDIChildProc (hw2,ums2,wpm2,lpm2));

return{0L};

/**************ALTER TABLE ******************/

LRESULT CALLBACK AlterTBProc (HWND hWnd, UINT ums, WPARAM
wpm, LPARAM 1pm)
{

HWND bl,b2,b3,£[9]1.d4[9]:;

char sprill=" ,";

int £id=50,did=60,y=80;

int £4=70,dd=80;

switch(ums)

{

case WM_CREATE:
InitCommonControls();

el=CreatewWwindow("edit", "",WS_CHILD|WS_VISIBLE |WS_BORDE
R|WS_GROUP,160,25,80,20,hWnd, (HMENU) 2, hinst, NULL) ;

b1=CreateWindOW(“button",“DESC",WS_CHILD|WS_VISIBLE]WS
_BORDER|WS_TABSTOP,260,25,80,20,hWnd,(HMENU)SOl,hinst,NULL
):
SetWindowText (el,buffl);
SetFocus(el);
break;
case WM COMMAND:
switch (LOWORD (wpm))
{
case ID_DESC:

strepy (str,"");
strcpy(buffl,"");
strepy(szTemp, "");
strecpy(buffz,"v);
if(!SocketCreation(hWnd))
{
MessageBox (hWwnd, "ERROR111",0,0);

strcat (str, "Besc ");

GetWindowText (el,buffl, 15);

strcat (str,buffl);
send(sockl,str,100,0);

status = recvisockl,szTemp, 50,0);
szTemp[status] = *'\0°*;
token=strtok(szTemp, spr) ;

k=0;

i=0;

while(token!=NULL}

{
strepy{str31[i], token);
k++;
token=strtok (NULL, spx) ;
i++;

1

i=0;

for{(j=0;j<k/2;j++)

{

f[jl=CreateWindow("static",NULL,WS_CHILD|WS_VISIBLE|WS
_ BORDER |WS_TABSTOP, 120,y,100,20,hWnd, (HMENU) £id, hinst, NULL
)i
SetWindowText {(f[j],str31[i]);

d[jl=CreateWindow("edit",NULL,WS_CHILD|WS_VISIBLE|WS B
ORDER |WS_TABSTOP, 270,y,100,20,hWnd, (HMENU)did, hinst, NULL) ;

SetWindowText (A[jl,str31[i=1+1]);
did=did+1;

fid=fid+1;

y=y+30;

i++;

H

e2=CreatewWindow("edit", "",WS_CHILD|WS_VISIBLE |WS_BORDE
R|WS_TABSTOP, 120,y, 80,20, hWnd, (HMENU) 3, hinst, NULL) ;

b2=CreateWindow("button", "ADD",WS_CHILD|[WS VISIBLE|WS_
BORDER |WS_TABSTOP, 270,y,80,20,hWnd, (HMENU) 602, hinst, NULL) ;

break;
cage ID_ ADDOK:
GetWindowText (e2,buff2,5);
m=atoi(buff2);
y=y+90;
for(i=0;i<m;i++)

{

fl[i]=CreateWindow("edit",NULL,WS_CHILD|WS_VISIBLE |WS.
BORDER|WS_TABSTOP,120,y+30,100,20,hWnd,(HMENU)fd,hinst,NUL
L);

dt [i]=CreateWindow ("combobox", NULL, CBS AUTOHSCROLL | CBS
_DISABLENOSCROLL | CBS_DROPDOWN | CBS DROPDOWNLIST | CBS_SORT |WS
_CHILD|WS_VISIBLE |WS_BORDER|WS VSCROLL|WS_TABSTOP,270,y+30
,100,20,hwnd, (HMENU)dd, hinst, NULL) ;

SendDlgItemMessage (hWnd,dd, CB_ ADDSTRING, 0, (LPARAM) "var
char{(15)");

SendDlgItemMessage {hWwnd,dd,CB ADDSTRING, 0, (LPARAM) "int
b

SendDlgItemMessage (hWnd, dd, CB _ADDSTRING, 0, (LPARAM) "dat
e");
dd=dd+1;
fd=£d+1;
y=y+30;
}

b3=CreateWindow("button", "OK",WS CHILD|WS_VISIBLE|WS_B
ORDER[BS_PUSHBUTTON|WS_TABSTOP,215,y+30,80,30,hWnd,(HMENU)
603, hinst, NULL) ;
break;
case ID ADD:
if(!SocketCreation({ hWnd))
{
MessageBox (hWnd, "ERROR111",0,0) ;
}
strepy(stxr,"");
strepy (buffi,"");
strepy(buff2,""};
strepy{mod,"");
strepy (modl,"");
strcat (str,"alter table ");
GetWindowText (el,buffl,15);
gtrcat(str,buffl);
strcat({str,"” add "};
for(i=0;i<m;i++)
{
GetWindowText (£1[i],mod, 15);
strcat (buff2,mod) ;
strcat (buffz2,™ ");
GetWindowText (dt[i] ,modl,15);
strcat (buff2,modl);
if(i'=m-1)
strcat (buff2, ", "):
}
strcat{str,buff2);
send(sockl,str,100,0);
break;

}

break;

case WM_QUIT:
PostQuitMessage(0);
break;

default:

return (DefMDIChildProc (hWnd,ums,wprm, lpm) };

return(0);

9.2 SAMPLE OUTPUTS

VIEW DATABASE

jaya
sriram

SHOW TAB

TABLE CREATION:

[Table Name: | [SAMPLE |
[NowfFields: | |3 |
0K
[FieldName | [DataType |
[NAME | varchar(15) ~’
E] W -
IDEPT | ivarchar(15) '
CREATE |

DROP TABLE:

DROP

