REAL TIME 3D MODELLING
IN SURVEILLANCE SYSTEMS

PROJECT REPORT

Submitted In Partial Fulfillment Of The Requirements For The Award
Of The Degree Of Bachelor Of Engineering In Computer Science And
Engineering Of Bharathiar University, Coimbatore.

Submitted by

Mr. Kishore Kumar J

Mr. Rama krishnan V N
Ms. KN Seetha I e

Ms. Smitha Surendran S

Under the guidance of

Mr. VS. Shenoi
Scientist ‘D’
NPOL

Cochin.

Mrs. S. Devaki, M.S

Assistant Professor

Kumraguru College Of Technology
Coimbatore.

Department of Computer Science & Engineering
KUMARAGURU COLLEGE OF TECHNOLOGY
Coimbatore - 641006
March 2002

CERTIFICATE

Department of Compuger Science and Engineering
KUMARAGURU COLLEGE OF TECHNOLOGY
Coimbatore - 641006,

This is to certify that the project work entitled

“REAL TIME 3D MODELLING N SURVEILLANCE SYSTEMS”
has been submitted by

Mr. Kishore Kumar J 9827K0185
Mr. Rama Krishnan \% 9827K 0205
Ms. KN Seetha 9827K0213
Ms. Smitha Surendrar: 9827K921¢6

in partial fulfillment for the award of the degree of
Backelor of Engineering in Computer Science and Enginecring
of Bharathiar University, Coimbatore
during the academic year 2001 - 2002

02

Cuide Head of the Department
Certified that we examined the candidate in the Project Work
Viva Yoce “Xamination heldon. and the

University Register Numberwas ...

Internal Examiner - Externsl Examiner

ACKNOWLEDGEMENTS

This project report is an outcome of an enjoyed project, coordinated
with the co-operation of various persons, views and ideas shared, warmth and
affection showed by family and friends.

The credit goes to the faculty members and students and staff of
the college especially our Principal Dr. K.K. Padmanaban, B.Sc (Engg),
MTech, PhD who directed us with sincerity and dedication.

We place on record our sincere thanks to our Head of the
Department, Prof. Dr. S. Thangaswamy, PhD, for his progressive outlook and
valuable suggestions.

We express our sincere thanks to our internal project guide
Assistant Professor Mrs. S. Devaki, M.S, for her thought provacating
suggestions and encouragement.

We would like to express our sincere thanks to Shri V Chander,
Director NPOL and Dr. Unnikrishnan HRD, NPOL, Cochin for giving us
opportunity to carry out this project work.

We are greatly indebted to our guide and mentor Mr. VS. Shenoi
Scientist ‘D’, NPOL for the relentless support, valuable suggestions and advice
he gave throughout the project.

We are grateful to Mr. Shoban, Project Manager, TBN,
Coimbatore, for his guidance.

We also extend our sincere thanks to Mr. M.C. Surendran, MTech,
Scientist ‘E’ CSIR, Chennai for having helped us enter this project & work
through it successfutly.

We cherish the love and the moral support of our parents, which
has helped in the successful completion of this project.

We thank our friends who deserve special mention for their
magnanimity care and concern.

Above all we owe our gratitude to god almighty for showing
abundant blessings on us.

SYNOPSIS

In today’s world of nuclear warfare, the very existence depends
upon the technological advancement of defense systems. Most of the warfare
takes advantage of the vast seas and oceans, which implies a need for the
development of highly equipped sea vessels. These vessels that can go
. underwater have employed surveillance systems with the ability to scan the
terrains, for steering the vehicle by monitoring obstacles and targets on, above
and below the surface.

The SONAR sensing technology is mainly used here in detecting
targets that are not seen by bare eyes. The surveillance system picks up
acoustic signals around the vesse| covering 360 degrees. These signals undergo
different processing and the processed data are finally presented pictorially.

This project “REAL TIME 3D-MODELLING IN SURVELLANCE
SYSTEMS” is undertaken to simulate and study the various Scenarios dealt by
the surveillance system. The terrain simulated by software can be inferred to
estimate the positions of the objects around the source.

The GUI for the software consists of a menu based interface, which
can be easily used by the user. The required data is generated at the server end
and passed to the client through IPC The data recejved is used by the client to
plot the 3D terrain. The position of the objects in the terrain can be inferred from
the display.

CONTENTS

1. Introduction
1.1 Existing system and its Limitations
1.2 Proposed system and its Advantages
1.3 Operating Environment

2. System Requirements
2.1 Product Definition
2.2 Project Plan

3. Software Requirements Specification
3.1 Product Overview and Summary
3.2 Development Environment
3.3 External Interface and Data Flows
3.4 Functional Specifications
3.5 Performance Requirements
3.6 Acceptance Criteria

4. Design Document
4.1 External Design Specification
4.2 Design Specifications

5. User Manual
5.1 Introduction
9.2 Getting Started

6. Product Testing

7. Project Legacy
7.1 Project Description
7.2 Initial Expectations
7.3 Current Status of the Project

7.4 Activities/Time logs
7.5 Technical Lessons Learnt
7.6 Managerial Lessons Learnt

7.7 Recommendations for Future

8. Conclusion

9. Bibliography

10. Appendix

9.1 Sample source code
9.2 Output

I. INTRODUCTION

The project REAL TIME 3D MODELING IN SURVEILLANCE
SYSTEM is used to simulate the terrain around the surveillance system. In
surveillance systems SONAR sensing technology is used to scan the ocean
bed. Acoustic signals are sent 360 degree around the own vessel and the
reflected signals are recepted using highly complicated equipments. The
acoustic signals received, are converted to electrical signals, and after a
series of transformations are finally presented pictorially. The terrain scenario
thus generated will give lot of information regarding the objects around the

source.

The equipments used in the surveillance system to generate the
terrain scenario are highly complicated and expensive. Here in this project, we
are simulating the 3D view of the terrain around the source vessel. A real time
3D presentation of the data would give more details with high degree of

precision from that of the conventional systems.

1.1 EXISTING SYSTEM AND ITS LIMITATIONS

The conventional system generates pictorial output in the form of
a discrete graph, history graph or waterfall charts. These models are just two-
dimensional representations of the terrain. The inferences made from the 2D
graph are limited and discrete intensity variations are not clearly visible. Apart

from this it does not give the effect of the live scenario.

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES

To overcome the problem associated with the existing system
we can go for a real time three-dimensional presentation of the data that
would give more details with high degree of precision from that of the
conventional systems. This simulation will give a real effect to the terrain
scenario. It is proposed to be user interactive and hence simple to handle.

The simulation is done by making use of algorithms, which have been made
as simple as possible.

1.3 OPERATING ENVIRONMENT

The software is developed on a Linux platform, for it's powerful
features such as networking, portability and security. The GU] s developed
using X Window System Programming (X11 R6). The client/server application
is implemented using UNIX network programming. The graphics algorithms

are solved in C programming; the entire application is compiled using the
GCC (GNU C) Compiler.

[NS)

2. SYSTEM REQUIREMENTS

2.1 PRODUCT DEFINTION

2.1.1 Problem Statement:

The Product is concerned with the simulation of the terrain

around the surveillance system. It should be able to simulate the

scenario of multiple objects with the help of floating horizon algorithm.

2.1.2 Processing Environment

Hardware Specifications

Processor:

Floppy Disk Drive:
Hard Disk:
Keyboard:

System RAM:
Display adapter:

Monitor:

Software Specifications

Language Used:

Tools Used:
Operating System:
Compiler:

Debugger:

Pentium 11l 500 MHz

1.44 MB

10 GB

Intel 105 Keyboard

64 MB

VGA card with on-board 4 MB VRAM
supporting a resolution of 800 * 600 with 16-
bit color depth running.

Color monitor with refresh rate of 85 Hz.

X Window System Programming (X11R6),
Unix Network Programming.

Open Motif Toolkit

Red Hat Linux 7.1

gcc compiler version 2.96.

gdb

s

2.1.3 User Characteristics

The product is basically a simulation program to be used by
scientists and other staff members monitoring the surveillance systems
for further study and research. A user interactive interface Is designed
in which the user can visualize the terrain and the current data is
displayed simultaneously. User's manual is prepared and available for

the users.
2.1.4 Solution Strategy

The problem was dealt in 3 sequential manner. The first step
was to study the relevant Operations of the surveillance system. An
analysis of the problem definitions was made based on the current
system and the requirements of the proposed systems were compared.
As a result of the requirements analysis, the project was split into three

main modules.
2.1.5 Acceptance Criteria
The product has to accept some input values and do some

processing. Finally the product should display the terrain in the window
from which the relative position of objects can be studied.

2.2 PROJECT PLAN

2.2.1 Life Cycle Model

The Spiral Model is Proposed to be the life cycle model for
developing the software product. It provides the potential for the rapid
development of incremental version of the software. The software is
developed in the series of incremental releases. The spiral model has

six task regions.

Task Region 1:

e Terminology:
e Milestones:

e Work Product:

Task Region 2:

¢ Terminology:

. Miléstones:
Work Product:

Task Region 3:

¢ Terminology:
e Milestones:
e Work Product:

Technical Risk:

Managerial Risk:

Customer Communication.
November 24
The scientist defined the problem statement and

suggested the books related to the project.

Planning

November 28"

Analysis of the product definition. The function the
product has to perform. the platform, programming
languages and development tools to be used are

decided in this stage.

Risk Analysis

December 11"

Preparation of design document is a crucial part of
the project, which is time consuming. The entire
coding depends on how the display is going to be
given. The logics, GUI structure to be used are

clearly designed.

The project modules have to be efficiently planned
within the time limit specified. The modules under
consideration are independent. Hence each

module has to be completed in time.

Task Region 4

Terminology:
Milestones:
Work Product:

Milestones:

Work Product:

Task Region 5:

Terminology:

Milestones:

Work Product:

Engineering

SRS Document December 24"

Based on the needs of the scientists, the software
requirements specification is prepared. SRS
includes product Overview, Processing
Environment, External interface and data flow,
Functional specifications, performance
requirements, Exception Condition and handling,
early subsets, Foreseeable
modifications, Acceptance critical design

guidelines.

Design Document January 11

The design document is prepared based on the
Needs of the scientist. The Design document is a
prominent part of the project and facilitates easy
coding. It includes External design specification
Architectural design overview and detailed design

specifications.

Construction and Release
February 15" - 2gth
The product is designed according to the

product definition with user friendly GUI.

Task Region 6:

* Terminology: Customer Evaluation.
e Milestones: March 2"
e Work Product: The customer evaluated the present product by

seeing the execution of the project and gave the
feedback. The feedback was that the product
works well and can be extended in future with

more advanced features if time permits.

2.2.2 Team Structures

The software is used to simulate the terrain around the
surveillance system. The scientists go for simulation since the line
equipments are very expensive and complex. Hence the simulation is

done first and later replaced by real equipments.

3. SOFTWARE REQUIREMENTS
SPECIFICATION

3. 1 PRODUCT OVERVIEW AND SUMMARY

The product is mainly concerned with the plotting of the terrain,
giving 3D view of the environment around the sea vessel. The terrain gets

plotted.every few seconds (i.e.) a predetermined interval is fixed.

Summary: The objective of the product designed is to generate the three
dimensional view of the terrain, around the sea vessel. The iNnputs are
received at real time from the server process console. After receiving the
target details (as the input from the input module), the data are sent to the
processing stage, in the server the computed values are sent to the client,
through the established sockets. From there, sent to the display module. The
display module plots the data.

3.2 DEVELOPMENT ENVIRONMENTS

Hardware specification

Processor: Pentium 11l 500 MHz

Floppy Disk Drive: 1.44 MB

Hard Disk: 10GB

Keyboard: Intel 105 Keyboard

System RAM: 64 MB

Display adapter: VGA card with on-board 4 MB VRAM supporting a
resolution of 800 * 600 with 16-bit color depth
running.

Monitor: Color monitor with refresh rate of 85 Hz.

Software Specifications

Language Used: X Window System Programming (X11R6),
Unix Network Programming.

Tools Used: Open Motif Toolkit

Operating System: Red Hat Linux 7.1

Compiler: gcc compiler version 2.96.

Debugger: gdb

3.3 EXTERNAL INTERFACE AND DATA FLOWS

3.3.1 User displays and report formats

This software is a user interactive product, where the user can
select any desired option.

It contains a menu, form and drawing area.

Top-level Shell
Main Widget
Menu
Form Widget
Drawing Area

The main menu consists of file and plot sub-menu items

!
File ‘ Plot

Ouit Terraini
—

Terrain?

Terrain?

S

The file menu item consists of quit option and the plot menu item

consists of options to select different terrains to be drawn.

Y

File Plot

Oniit —— ;

Terrain|

Terrain?

Terrain3

3.3.2 User Command Display

In order to be a user friendly software there are user commands
available. With the help of the user commands the user can interact
with this software. Interaction with the software is with the help of

mouse.

1. File menu
With the help of left mouse button the user clicks the menu

which inturn will drop down the pop up menu having the option quit.

2. Plot menu

With the help of the left mouse button the user clicks the plot
menu which inturn will drop down the POP up menu having the option
terrain1, terrain2, and terrain3.

10

2.1 Terrain 1
Clicking this generates a particular terrain scenario with the help

of floating horizon algorithm.

2.2 Terrain 2 .
Clicking this generates a particular terrain scenario with the help

of floating horizon algorithm.

2.3 Terrain 3

Clicking this generates a particular terrain scenario with the help

of z-buffer algorithm.
3.3.3 High-level Data Flow Diagrams.

Data flow diagram is a graphical technique that depicts the
information flow and the transforms that are applied as data move from
the input to the output. DFD may be used to represent a system or
software at any level of abstraction infact DFD’s may be portioned into

levels that represent increasing information flow and functional details.

Graphical notations used in DFD

Inputs/Outputs to the Software

Processing the inputs

Data Flows

Data Stores

DATA FLOW DIAGRAM

Real Time Input

Data
Generation
Process

IPC

Server Through
... R 'B‘é{kéléy‘ .
Client Sockets

Process

Plot

3.4. FUNCTIONAL SPECIFICATIONS

This software product comprises of two programs each

consisting of two modules.

Server program

1. Data Generation

2. Communication process (IPC)

Client program

1. Communication process (IPC)

2. Display process

Software Product
Real Time l
Input .

l l

—> Server IPC — Client

! v

Data Generation Display

SERVER PROGRAM

1. Data Generation module

Real time input for the specific terrain is received and computed
in accordance with the algorithm used and the data are generated

accordingly.

Processing Narrative

This module generates the data based on two algorithms
floating horizon algorithm and z-buffer algorithm, which are used for

hidden line elimination of the terrain generated.

Floating horizon algorithm

The algorithm states that if at any given value of x, the y value of
the curve in the current plane is larger than the maximum y value or
smaller than the minimum y value for any previous curve at that X value
then the curve is visible. Otherwise it is hidden.

Z-buffer algorithm

Z-buffer algorithm uses a depth buffer, which is used to store the
z co-ordinate or depth of every visible pixel in image space. The depth
or z value of a new pixel to be written to the frame is compared to the
depth of that pixel stored in the z-buffer. If the comparison indicates
that the new pixel in front of the pixel stored in the frame buffer then the
new pixel is written to the frame buffer and the z-buffer updated with
new z value. If not, no action is taken. Conceptually, the algorithm is a

search over x, y for the largest value of z = f (X, y).

2.Server Communication Module

This process waits for the client to request. On client request it
communicates with data generation process for data and sends the
data to the client. This is implemented using TCP Berkeley sockets

protocol.
Processing Narrative:

The interprocess communication is established using Berkeley
sockets. Berkley’'s Socket programming is also used to continuously
poll the client request.

CLIENT PROGRAM

1.Client Communication Module

This program gets the data from the server The communication

is established using interprocess communication protocol.

Processing Narrative:

Data is generated in real time and sent through the socket to the
client. The client side display program to generate the terrain uses this

data.
2.Display Process Module
The display process reads the data sent through the socket and

plots it. This module consists of developing a user interface in which

the data is displayed.

Processing Narrative:

The data read is used to plot the terrain according to the menu
selected. The terrain is generated at specific intervals of time. This is

displayed in a separate drawing area.

3.5 PERFORMANCE REQUIREMENTS

The software displays the terrain periodically according to the
inputs received. Since the product is used in Surveillance system, the time of
responsé plays a very crucial role. The algorithms havge been made very
simple by reducing the complexity, which in turn increases the speed of

execution.

3.6.ACCEPTANCE CRITERIA

3.6.1 Functional and Performance Tests
The scientists did Functional and Performance Tests and when

the modules were finished, expected outcomes were tested and
accepted.

3.6.2 Documentation standards

System Requirement document and the software requirement

specification documents were done and accepted by the scientists.

16

4. DESIGN DOCUMENT

4.1 EXTERNAL DESIGN SPECIFICATION

4.1.1 User Displays and Report Format

The software has a user interactive interface, in which the user
can easily simulate the output using click events.

it contains a menu, drawing area and a label.

Top-level Shell
Main Widget
Menu
Form Widget

Drawing Area

The main menu consists of file and plot sub-menu items

File Plot

Ot
, Terrain| l
Terrain? l
Terrainy ’

_]

The file menu item consists of quit option and the plot menu item

consists of options to select different terrains to be drawn.

User Interface

File Plot

Ouit -
Terrainl
Terrain?
Terrain3

In order to be a user friendly software there are user commands
available. With the help of the user commands the user can interact
with this software. Interaction with the software is with the help of
mouse.

1. File menu

With the help of left mouse button the user clicks the menu

which inturn will drop down the Pop up menu having the option quit.

2. Plot menu

With the help of the left mouse button the user clicks the plot
menu which inturn will drop down the pop up menu having the option
terraini, terrain2.

2.1 Terrain 1

Clicking this generates a particular terrain scenario with the help
of floating horizon algorithm.

2.2 Terrain 2

Clicking this generates a particular terrain scenario with the help
of floating horizon algorithm.

2.3 Terrain 3

Clicking this generates a particular terrain scenario with the help
of z-buffer algorithm.

4.2 Design Specifications

4.2.1 Structure Diagrams

The product structure is explained in detail in Structure diagram.
The Modules in the program and the input and outputs are mentioned
here.

Terrain

>

Server Client
Data Display
Generation Module
Server Chient
Communication —p Communication
Module Module
]

4.2.2 Functional Description

This software product comprises of two programs each
consisting of two modules.

Server program
3. Data Generation

4. Communication process (IPC)

Client program
2. Communication process (IPC)

3. Display process

20

Software Product

Real Time l
Input

L Server ‘ IPC Chient

! !

Data Generation Display

SERVER PROGRAM

1. Data Generation module
Real time input for the specific terrain is received and computed
in accordance with the algorithm used and the data are generated

accordingly.

Processing Narrative

This module generates the data based on two algorithms
floating horizon algorithm and z-buffer algorithm, which are used for

hidden line elimination of the terrain generated.

Floating horizon algorithm

The algorithm states that if at any given value of x, the y value of
the curve in the current plane is larger than the maximum y value or
smaller than the minimum y value for any previous curve at that x value

then the curve is visible. Otherwise it is hidden.

Explanation:

Initialize upper and lower horizon arrays as follows:
Upper array for each x point = 0.0

Lower array for each x point = Vertical Screen

The fundamental idea behind the technique is to convert the three-
dimensional problem to two-dimensions by intersecting the surface with

a series of parallel cutting planes at constant values of z.

Then for eath z = constant plane,
And for each x point on the curve in a Z = constant plane,
Calculate the corresponding y value according to the

function given.

If at any given value of x,
the y value of the curve in the current plane is
greater than or equal to the lower horizon of that
particular x or less than the upper horizon of that x,

then do nothing;

else plot that particular point and update the lower and

upper horizons relatively.

PSEUDOCODE

Upper is the array containing the upper horizon values
Lower is the array containing the lower horizon values
Y is the current value of the function y =f(x, z) for

Z = constant

Xmin, Xmax are the minimum and maximum x
Coordinates for the function

Xinc is the increment between X values

Zmin, Zmax are the minimum and maximum z coordinates ‘or the
function

Zinc is the increment between z = constant planes

Initialize variables

Initialize the horizon arrays

Upper=0.0

Lower = Vertical Screen

Evaluate the function for each constant Z plane

start with the closest plane, Zmax

start a loop for the x values

calculate the y value with the corresponding x and z values
convert x and y values to screen coordinate representations
compare the calculated y value with the upper and
lower horizons to satisfy the required conditions.

The relative steps are followed and the loop is repeated

until the conditions satisfied.

Z-buffer algorithm

Z-buffer algorithm uses a depth buffer which is used to store the
Z co-ordinate or depth of every visible pixel in image space. The depth
or z value of a new pixel to be written to the frame is compared to the
depth of that pixel stored in the z-buffer. If the comparison indicates
that the new pixel in front of the pixel stored in the frame buffer then the
new pixel is written to the frame buffer and the z-buffer updated with
new z value. If not, no action is taken. Conceptually, the algorithm is &

search over x, y for the largest value of z (X, y).

19
|PS]

Pseudocode:

1. Initialize the depth buffer (Z-Buffer) and the refresh buffer.

so that for all the buffer positions (x, y),

Depth (x, y) =0,
Refresh (x, y) = intensity at the background.
2. For each position on each surface, compare depth (Z) values
to previously stored values in the depth buffer to determine
visibility .
Calculate the depth Z for each (X, y) positions on the
surface.
If Z > depth (x, y), then set
Depth (x, y) = Z
Refresh (x, y) = intensity of the surface at X, Y
After all surface have been processed, the depth buffer contains depth
values
for the visible surfaces and the refresh buffer contains corresponding\g

intensity values for those surface.
2.Server Communication Module
This process waits for the client to request. On client request it
communicates with the data generation process and sends the data to
the client. This is implemented using TCP Berkeley sockets protocol.
Processing Narrative:
The interprocess communication is established using Berkeley

sockets. Berkley’s Socket programming is also used to continuously

poll the client request.

CLIENT PROGRAM

1. Client Communication Module

This program gets the data from the server The communication

is established using interprocess communication protocol.

Processing Narrative:

Data is generated in real time and sent through the socket to the
client. The client side display program to generate the terrain uses this
data.

2.Display Process Module

The display process reads the data sent through the socket and
plots it. This module consists of developing a user interface in which

the data is displayed.

Processing Narrative:

The data read is used to plot the terrain according to the menu
selected. The terrain is generated at specific intervals of time. This is
displayed in a separate drawing area.

Display module consists of plot function, which plots the terrain
at frequent intervals of time. The position of the target can be relatively

judged using the display simulated.

5. USTR MANUAL

5. 1 Introduction

5. 1. 1 Product Rational and Overview

The product is mainly concerned with the simulation of the
terrain scenario around the surveillance system. The data required to
simulate the terrain is generated in the server using data generation
process. The generated pointé are passed to the client via network
using sockets. At the client side these points are received and passed
on to the display process. The display process displays the

corresponding terrain in the designed user interface.

5. 1. 2 Basic Features

The product is mainly developed for the simulation of a three
dimensional terrain which is displayed in a user friendly GUI. The
product has got it's own features like menu options and drawing area.
The main menu options consist of File and Plot.

File menu consists of a sub menu quit. On selecting the quit
option the user can exit the application.

The plot option consist of three sub option terrain1, terrain2 and
terrain3, these three options are used for the display of different terrain

scenarios in the drawing area

26

5. 1. 3 Summary of Display

The display consists of two types

Floating horizon:

The first two options under the plot menu simulate the terrain in
which the hidden lines are eliminated using the floating horizon
algorithm. This is an image space algorithm in which the curve
representing the current data will be drawn after comparing with the

previous curves and eliminating the hidden lines.

Z-buffer algorithm:

The third option under plot menu is used to simulate the three
dimensional terrain which is displayed by eliminating the hidden lines
using z-buffer algorithm. The pixels having the greatest depth value will

be plotted

5.2Getting Started

5.2.1 Menu
1. File

When the file menu option is selected it gives a sub menu quit

Quit submenu.

With the help of the left mouse button the user clicks the File
Menu. This menu will in turn drop the pop up menu having quit
submenu option. On clicking the quit submenu the whole software is

exited.

and is rated for 415V. One 750 kVA is of Cummins make and the other is of
Caterpillar m ake. They both are also rated for 415V, Al gen-sets are
provided with FRP cooling towers. At present, the mill is opting for captive
power generation only during power failure.
Lighting:

There is a separate feeder for lighting which supplies power to
all departments.
Metering at Power House:

Apart from electronic recorders in the EB side, the mill has its
Oown metering arrangements as per following.

% Digital meters for measuring Voltage, Analog meters for

measuring current and frequency are provided in the MV panels.
Location of Capacitors:

About 1041 kVAr capacitors are kept at the feeder end and no

capacitor is provided at the powerhouse.

21

2. Plot
When the plot submenu is selected it gives three submenu

options, terrain1, terrain2, terrain3.

Terrain1 submenu
This sub menu is used to display the terrain scenario simulated
by the input generated in the server by eliminating the hidden line using

Floating Horizon algorithm,

Terrain2 submenu

This sub menu is used to display the terrain scenario simulated
by the input generated in the server by eliminating the hidden line using
Floating Horizon algorithm.

Terrain3 submenu

This sub menu is used to display the terrain scenario simulated
by the input generated in the server by eliminating the hidden line using
Z-buffer algorithm.

5.2.2 Sample Run
The following are the sample screen outputs from the software
while being tested.

Screen 1

Main Menu- The user selects any option from the menu in this screen

6. PRODUCT TESTING

Type of test: Functional Test

Machine Configuration:

Processor:

Floppy Disk Drive:

Hard Disk:

Operating System:

Compiler:

Pentium Il 500 MHz
1.44 MB

10G.B

Red Hat Linux 7.1

gcc compiler 2. 96 version.

Test assumption: communication between client and server.

Exact test Stimuli: To check the communication between the client

and server under standard conditions.

Expected Outcome: The client application gets connected with the

server properly and carries out it's functions.

. Type of test: Performance Test

Machine Configuration:

Processor:
Floppy Disk Drive:
Hard Disk:

Operating System:

Compiler:

Pentium 1l 500 MHz
1.44 MB

10GB

Red Hat Linux 7.1

gcc compiler 2.96 version.

Test assumption: Correctness of Floating Horizon algorithm

o)
-

Exact test Stimuli: To check the correctness of the floating horizon
algorithm in removing the hidden lines for a given mathematical
equation for surface plot.

Expected Outcome: The algorithm displays the series of curves for
the given equation with all the hidden lines removed.

. Type of test: Performance Test

Machine Configuration:

Processor: Pentium 111 500 MHz
Floppy Disk Drive: 1.44 MB

Hard Disk: 10 G.B

Operating System: Red Hat Linux 7.1
Compiler: gcc compiler 2.96 version.

Test assumption: Correctness of Z — buffer algorithm

Exact test Stimuli: To check the correctness of the z — buffer
algorithm in removing the hidden lines for a given mathematical

equation for surface plot.

Expected Outcome: The algorithm displays the series of curves for

the given equation with all the hidden lines removed.

(. PROJECT LEGACY

7.1 Project Description

The product is mainly concerned with the plotting of the terrain.
giving 3D view of the environment around the sea vessel. The terrain gets

plotted every few seconds (i.e.) a predetermined interval is fixed.

7.2 Initial Expectations

The objective of the product designed is to generate the three
dimensional view of the terrain, around the sea vessel. The inputs are
received at real time from the server process console. After receiving the
target details (as the input from the input module), the data are sent to the
processing stage, in the server. Then the computed values are sent to the
client, in response to its request. From there, sent to the display module. The

display module plots the data.
7.3 Current Status of the project

This software performs operations like real time data generation,
as a server process generates the data in real time and sends them for
display to the client process, on its request .The client machine’s process
retrieves the data and sends it to its display process where in the terrain gets

plotted, which is a periodical process. This can be further developed in
future.

OS]
9

7.4 Activities/ Time logs

Time logs Activities
Nov 24" Product Definition
Nov 28" Product Analysis
Dec 11" Programming
Language
Dec 17" Risk Analysis
Dec 24" SRS
Jan 11" Design Documentation
Jan 25" Coding for Server
Feb 5" Coding for Client
Feb 10" Coding for Floating

Horizon Algorithm

Feb 15 Coding for Z-buffer
Algorithm

Feb 20" Coding for GUI

Feb 24" Prepare User Manual

Feb 28" Test Plans

March 6" Full Project Demo

7.5 Technical Lessons Learnt

Many Technical lessons were learnt while working on the project.
The Software used such as the Xwindow, Open Motif Toolkit, were studied to
implement the coding. Graphical concepts were learnt to implement the
algorithms used. UNIX Network Programming with Berkley's Socket

Programming was also learnt during the development of the software.

7.6 Managerial Lessons Learnt

During the course of the project, apart from the technical lessons
certain Managerial aspects were also learnt The systematic approach to a
program, effective communication with the guide, and above all the team
management helped in successful completion of the project .The time slots
were set for each and every module and the time taken for each was noted as

soon as they were finished

7.7 Recommendations for future

This project is mainly concerned with research and development in
surveillance systems .The project can be further enhanced from the methods
used to have more inferences to gather more information about the terrain

scenario.

8. CONCLUSION

Real time generation of data and its simulated display gives a
periodic update of the terrain scenario around the source vessel It involves a
lot of mathematical and logical calculations which can be developed in future.
This project is designed in such a way that even a novice user can use the
software efficiently, under the guidance of the User Manual, without causing

any damage to the software.

The advantage of the project is that it implements a truly distributed
system on a Linux Platform. The algorithms are made simple by reducing the

complexity and it is mainly used for the speed of execution.

To conclude with the “Real Time 3D modeling In Surveillance
Systems was an educative work, which was enjoyed by the team. The project

also involves all the features for future enhancement.

Bibliography

1)

X Window System Programming Second Edition, Nabajyoti Barkakati
by Prentice Hall India

Procedural Elements for Computer Graphics, David.F Rogers

McGraw Hill, International Edition.

UNIX Network Programming, W. Richard Stevens by Prentice Hall
India

Linux COMPLETE, Grant Taylor by BPB Publications

Software Engineering, Roger .S. Pressman McGraw Hill. International
Edition.

http://www.openmotif.net

http:/itronche.com/gui/x/xlib/

SOURCE CODE:

/*

khkkhkhhkkhkhkkhkkkhkhhkhhkkhkhkhkkhk T E R R A I N 3 D AhkkkhkhkhkhhkkkRkERhhkhhkhhhkhhkhhhhhkdk

*File: terrain.c
*Handles communication with Server and carries out display process
*/

// Standard C Header Files
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>

#include <errno.h>

I Include files for X11 Library and Utility functions
#include <X11/Xlib.h>
#include <X11/Xutil.h>

I/ Include files for Motif Widgets
#include <Xm/Xm.h>

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA h>

#include <Xm/Form.h>

Il user defined Header files

#include "mathfunc.h" // math routine prototypes
#include "graph.h" // graph routine prototypes
#include "xmutil.h" // Make menu routine prototypes
#include "terrain.h" // terrain routine prototypes

#include "genterrain.h"

I/l Definitions for TCP server program

#include<sys/socket.h>
#include<netinet/in.h>
#include<arpalinet.h>

#include<sys/uio.h>

// width and height for main window
#define WIDTH 800
#define HEIGHT 600

/I structure to store points send from server
struct Points
{ int x{1000];
int y[1000];
I3

int XRes,YRes:
int PreCalcY[MaxY+1];

int CentreX,CentreY;

int Angl, Tilt;

float CosA,SinA;

float CosB,SinB;

float CosACosB,SinASInB ;
float CosASInB,SinACosB:

boolean PerspectivePlot;
float Mx,My Mz ds;

int Height{MaxRes+1][MaxRes+1];
int Scaling;
int MaxHeight;

int Res;

unsigned long bgpix; // stores pixel value

38

GC theGC; [/* GC for regular drawing */

/1 define widgets for window, form, menu and drawing area

Widget top_level, main_window, menu_bar, drawing_area,drawing_areaZ2,

new_menu,form_win;
/*Equations™/

#define Span 5
float zf(float x,float y)

{

float c;
c=SqrFP(x)+SqrFP(y),
return(75.0/(c+1.0)),

}

XtAppContext app; // Application context for top level widget

/***

* Main function
e
int main(argc, argv)
int argc;
char **argv;
{

Arg args[MAXARGS]; // max arguments

Cardinal argcount, // argument counter

int fg, bg, drawbgpix;

XGCValues xgev; /l object to GC Values

/* XtAppContext app;*/

unsigned long drawfg = 5555;

/* Create the top-level sheli widget and initialize the toolkit*/
top_level = XtApplnitialize(&app, "Terrain3d", NULL, O,
&argc, argv, NULL, NULL, 0);

/* Next, the main window widget */
argcount = 0;
XtSetArg(args[argcount], XmNwidth WIDTH); argcount++;
XtSetArg(args[argcount], XmNheight, HEIGHT); argcount++:
main_window = XmCreateMainWindow(top_level, "Main",
args, argcount);
XtManageChild(main_window),

/* Create the menu bar */

menu_bar = XmCreateMenuBar(main_window, "Menubar", NULL, 0);
XtManageChild(menu_bar);

/* Create the Form*/
form_win=XtVaCreateManagedWidget("form" xmFormWidgetClass,
main_window,
NULL);

/* Create the "File" menu i

new_menu = MakeMenuPane("File", menu_bar,
"Quit", quit_action, NULL,
NULL),
/* Create the "File" cascade button and attach new_menu to it */
AttachToCascade(menu_bar, "File" new_menu);

/* Create the "Terrain" menu Wi

new_menu = MakeMenuPane('"Terrain", menu_bar,
"Terrain_1", gen_terrain1, NULL,
"Terrain_2", gen_terrain2, NULL,
"Terrain_3", gen_terrain, NULL,
NULL);

40

/* Now create the cascade button and attach this sub menu to it */

AttachToCascade(menu_bar, "Terrain", new_menu),

/* Create the drawing area */

argcount = O;

XtSetArg(args[argcount], XmNresizePolicy, XmRESIZE_NONE);
argcount++;
XtSetArg(args[argcount], XmNbackground, 0); argcount++;
XtSetArg(args[argcount], XmNwidth, 640); argcount++;
XtSetArg(args[argcount], XmNheight,400); argcount++;
XtSetArg(args[argcount], XmNleftAttachment,
XmATTACH_FORMY);argcount++;
XtSetArg(args[argcount], XmNleftOffset, 1); argcount++;
XtSetArg(args[argcount], XmNtopOffset, 2); argcount++;
XtSetArg(args[argcount], XmNtopPosition, 6); argcount++;

(
(
XtSetArg(args[argcount], XmNtopWidget, menu_bar); argcount++;
XtSetArg(args[argcount], XmNborderWidth, 12); argcount++;

(

XtSetArg(args[argcount], XmNresizable, True); argcount++;

drawing_area = XmCreateDrawingArea(form_win,
"drawing_area", args, argcount);
XtManageChild(drawing_area);

/* Create drawing area 2%/
argecount=0;
XtSetArg(args[argcount], XmNresizePolicy, XmRESIZE_NONE);
argcount++;
XtSetArg(argsfargcount], XmNbackground, 0); argcount++;
XtSetArg(args[argcount], XmNwidth, 20); argcount++;
XtSetArg(args[argcount], XmNheight, 20); argcount++;
XtSetArg(args[argcount], XmNtopOffset, 12); argcount++;
XtSetArg(args[argcount], XmNtopWidget, drawing_area); argcount++;
XtSetArg(argsfargcount], XmNborderWidth, 12); argcount++;,

41

drawing_area2 = XmCreateDrawingArea(form_win,
"drawing_areaZ2", args, argcount);

XtManageChild(drawing_area?2),

/* Attach the menu bar and the drawing area to main window */
I* XmMainWindowSetAreas(main_window, menu_bar, NULL, NULL,
NULL, drawing_area
)"
I* Create the GCs. First retrieve the background and foreground
* colors from the widget's resources.
*l
argcount = 0;
XtSetArg(args[argcount], XmNforeground, &fg), argcount++;
XtSetArg(args[argcount], XmNbackground, &bg); argcount++;

XtGetValues(drawing_area, args, argcount);

* Define a GC with these colors */
xgev.foreground = fg;
xgcv.background = bg;
theGC = XtGetGC(drawing_area, GCForeground | GCBackground,
&xgev);
XSetForeground(XtDisplay(drawing_area), theGC, drawfg);
XSetForeground(XtDisplay(drawing_area2), theGC, 3333);

/* Add callback to handle expose events for the drawing area

XtAddCallback(drawing_area, XmNexposeCallback, handle_expose,
&drawing_area);

*

/* Add event handlers for terrain to be drawn
XtAddEventHandler(drawing_area, ButtonPressMask, False,

draw_pixel, NULL);*/
/* Realize all widgets */

XtRealizeWidget(top_level);

/* Start the main event-handling loop */
XtAppMainLoop(app);
} // End of Main

* *l

" quit_action

*

*

This routine is called when the "Quit" item is selected from

*

the "File" menu.

*/

void quit_action(w, client_data, call_data)
Widget w,

XtPointer client_data;

XmAnyCallbackStruct *call_data;
{
XtCloseDisplay(XtDisplay(w));
exit(0);

I* */

*gen_terraint

*

* Routine to plot terrain1

*/

static void gen_terrain1()

{

struct sockaddr_in ServAddr;
struct Points p;

int RSize, WSize; /I No. of bytes Read & Wrote

43

inti,z

int ConnSoc,ConnliD;

if((ConnSoc=socket(AF_INET,SOCK_STREAM,0)) <0)

perror("Cannot Create Manager Socket. Terminating..."), exit(0),

bzero(&ServAddr,sizeof(ServAddr));

ServAddr.sin_family=AF _INET;

ServAddr.sin_port=htons(2000);
ServAddr.sin_addr.s_addr=inet_addr("127.0.0.1"),
ConniD=connect(ConnSoc,(struct sockaddr *)&ServAddr,sizeof(struct
sockaddr));

if(ConniD<0)

perror("Cannot Connect Manager with Agent. Terminating..."), exit(0);

XClearWindow(XtDisplay(drawing_area), XtWindow(drawing_area));

for(z=320,z>=100;z=2z-2)

{
RSize = read(ConnSoc,&p,sizeof(p));
if(RSize<=0)

printf("Cannot Read from the Agent."),

for(i=0;i<1000;i++)

XDrawPoint(XtDisplay(drawing_area), XtWindow(drawing_area), theGC,
p-x{i},p-yliD);

sleep(1);
/IXtAddTimeOut(5000*10000,gen_terrain1,NULL);
}

close(ConnliD),

}

44

/*

*gen_terrain?2

*

* Routine to plot terrain2
*I
static void gen_terrain2()
{
int X,X2,z,1,j;
double abc,y,y2,s,ct,xyz;
double hor{640],hor1[640];
for(i=0;i<640;i++)
{
hor(i]=0.0;
hor1[i]=479.0;
}
XClearWindow(XtDisplay(drawing_area), XtWindow(drawing_area));

for(z=100;z<=150;z=z+2)

{

for(x=-319;x<=320;x++)

{
abc=((x-180)"2) + ((z-180)"2);
s=x*3.14/180;
c=2*3.14/180;
xyz=sqrt((s*s)+(c*c));

[* y=(6*cos(s+c)+50);*/

y=100*(sin(xyz)*cos(xyz)),
x2=x+319:;
y2=240-y;

if(y2>=hor1[x2] && y2<hor[x2])

{

1

else

{

XDrawPoint(XtDisplay(drawing_area), XtWindow(drawing_area),
theGC,x+319,240-y);

if(y2<=hor1[x2])
hor1{x2]=y2,
else

hor{x2]=y2;

XtAddTimeOut(1*10, gen_terrain2, NULL);

}

}

}
}

/*
*gen_terrain

*

* Routine to plot terrain using z-buffer algorithm
*/
static void gen_terrain()

{

/* TERRAIN terrain[];*/
XClearWindow(XtDisplay(drawing_area), XtWindow(drawing_area));

ClearHeightBuffer();
Res=MaxRes;
InitPerspective(false,0,0,600,600);

406

InitPlotting(240,18):
CreateEquationPlotHeightBuffer(-Span, Span, -Span Span);

void HeightBufferScalingFactor()

{
Scaling = 32767 / MaxHeight;

}

void ClearHeightBuffer()
{

inti, j;

for(i=0; i<=MaxRes; i++)
{
for(j=0; j<=MaxRes; j++)
Height[i][j] = O;

void PreCalc()

{
Word j;

for(j=0;j<=MaxY;j++)
PreCalcY[j]=0;

for(j=0;j<=MaxYj++)
PreCalcY[j]J=XRes*j;

[*Three Dimensional Plotting Routines*/

47

void InitPlotting(Ang, Tit)

int Ang;

int Tlt;

{
CentreX=MaxX>>1;
CentreY=MaxY>>1;
Angl=Ang;
Tilt=TH;
CosA=CosD(Angl);
SinA=SinD(Angl);
CosB=CosD(Tilt);
SinB=SinD(Tilt);
CosACosB=CosA*CosB;
SinASinB=SinA*SinB;
CosASinB=CosA*SinB;
SinACosB=SinA*CosB;

void InitPerspective(Perspective, x, y, z, m)
boolean Perspective;
float x, y, z, m;
{
PerspectivePlot=Perspective;
Mx=x;
My=y;
Mz=z;

ds=m;

void MapCoordinates(float X, float Y, float Z, int *Xp, int *Yp)
{
float Xt, Yt Zt;
Xt=(Mx+X*CosA-Y*SIinA);
Yt=(My+X*SinASinB+Y*CosACosB+Z*CosB):

48

if(PerspectivePlot)

{
Zt=Mz+X*SinACosB+Y*CosACosB-Z*SinB;
*Xp=CentreX+Round(ds*Xt/Zt);
*Yp=CentreY-Round(ds*Yt/Zt),

}

else

{
*Xp=CentreX+Round(Xt);
*Yp=CentreY-Round(Y1);

}

}
void CartesianPIlot3D(X, Y, Z)

float X;
float Y;
float Z;
{
int Xp,Yp;
MapCoordinates(X,Y,Z,&Xp,&Yp);
XDrawPoint(XtDisplay(drawing_area), XtWindow(drawing_area), theGC, Xp,
Yp),
/I XtAddTimeOut(1*1, gen_terrain, NULL);
}
void CreateEquationPlotHeightBuffer(XIft, Xrgt, Ybot, Ytop)
float XIft, Xrgt, Ybot, Ytop;
{
int ix,ly,1Z;
float x,y;
float dx,dy;
MaxHeight=Res;
HeightBufferScalingFactor();
dx=(Xrgt-XIft)/(Res-1);
dy=(Ytop-Ybot)/(Res-1);

40

for(ix=0;ix<Res;ix++)
{
x=XIft+ix*dx;
for(iy=0;iy<Res;iy++)
{
y=Ybot+iy*dy;
iz=Round(zf(x,y));
if(iz<0)
{
exit(1);
}
Height[ix][iy]=iz,
CartesianPIlot3D(ix-Res/2,iy-Res/2,iz);

/*

* khkkkkhkRkhkkkkkkhkkhkkhkhkhkkihihkk terraln h *hhkkkkkhkkhkikkhhkhkkhkitihk

*/
/* Function prototypes */

void handle_expose(/* Widget w, XtPointer client_data,
XmDrawingAreaCallbackStruct *call_data */);

void quit_action(/* Widget w, XtPointer client_data,
XmAnyCallbackStruct *call_data */),

/* This function selects the terrain */
static void select_terrain(/* Widget w, XtPointer client_data,
XmAnyCallbackStruct *call_data */);

/* This function draws the terrain */
static void draw_terrain(/* Display *d, Window w, GC gc, int terrains */),

static void gen_terrain();
static void gen_terraini();

static void gen_terrain2(),

/*

khkhkhkhkkhkhkrkhkkhkhhhhhkkkkhhhhkk 1 kkkkkkikkkkhkhkkhkkhkhikik
genterrain.h

* */

#ifndef _GENTERRAIN_H__
#define _ GENTERRAIN_H__

void HeightBufferScalingFactor();

void ClearHeightBuffer();

void PreCalc(),

{*Three Dimensional Plotting Routines*/

void InitPlotting(int, int);

void InitPerspective(boolean, float, float, float, float);

void MapCoordinates(float, float, float, int *, int *);

void CartesianPlot3D(float, float, float);

void CreateEquationPlotHeightBuffer(float, float, float, float),

#endif /* __GENTERRAIN_H__ ¥/

AN
[§]

/*

* kkkhkkkkkkkkhkhkhkkkkkkkkkkkkkkkk
mathfunc.h *********

*/

#ifndef _ MATHFUNC_H__
#define _ MATHFUNC_H__

/* Function returns (Rounded off)integer value of a floating point number */
int Round(float x);

/* Function returns square of a floating point number */
float SqrFP(float x);

/* Function returns square of a integer number */
int Sqr(int x);

/* Function returns angle in Radians */
float Radians(float Angle);

/* Function returns angle in Degrees */
float Degrees(float Angile);

/* Function returns cosine of angle in Degrees */
float CosD(float Angle);

/* Function returns sine of angle in Degrees */
float SinD(float Angle);

#endif /¥ __MATHFUNC_H__ %

]
‘o

/*

*hhhkhkhhhkhkhhhkhkhkhhkhhkrkkkhhikikix Flle Xmut” h nnnnnnnn * Fhkk

*/

#ifndef _ XMUTIL_H__
#define _ XMUTIL_H__

* This function, defined in file "xmutil.c" prepares menus */
Widget MakeMenuPane(/* char *name, Widget parent, ... */);
/* This function, also in xmutil.c, attaches a menu to a

* cascade button :

*

void AttachToCascade(/* Widget parent, char *label,
Widget sub_menu */);

#endif /* _ XMUTIL_H__ ¥

OUTPUT

Terrain 1

RSN

SRR

Terrain 2

D A R

o

N <

Yl

AR RS
R SR

Terrain 3

