C++ CODE CHECKER

Project work done at ?/ __7 q O

Think Business Networks, Coimbatore.

PROJECT REPORT
Submitted in partial fulfillment of the

requirements for the award of the
degree of

Master of Computer Applications of Bharathiar University,
Coimbatore.

Submutted by

Balu.N
Reg.No 9938M0601

Guided by

Internal guide External guides
Mrs. S.Devaki B.E, M.S. Mr. S.Chandra Kumar.
Mzr. C.Senthilnathan.

Department of Computer Science
Kumaraguru College of Technology

Coimbatore-641006
May-2002

Department of Computer Science

Kumaraguru College of Technology
(Affiliated to Bharathiar University)

Coimbatore-641006.

CERTIFIACTE
This is to certify that the project work entitled
C++ CODE CHECKER

Done by

Balu.N
9938M0601

Submitted in partial fulfillment of the requirements for the award of degree of
Master Of Computer Applications of Bharathiar University.

ot | /f Joale
A M,\ é,,/dgf»- /) 20ll0002

! U"l T,‘,
v

Professor and Head < ,A,- } . 5o Internal Guide

Submitted for University Examinationheldon __ ¢9 ©5 . 20C2.

v =
% g ‘/}:)__[1/:) Gml'(‘ ',<:~,},.\ \

External Examiner -~

Internal Examiner

ETWORKS (P) Ltd.

April 29, 2002

The Principal

Kumaraguru College of Technology
Chinnavedampatti

Coimbatore.

Sir:
Sub: Project by Balu N - Certification
This is to certify that Balu N (Reg. No: 9938M0601) doing MCA in your college,

has undertaken the semester project as a Student Project Trainee in our company
and has completed the project, as per the details below :

Naﬁe of the Project : C++ Code Checker

Duration : 5 months

Period of Project Training : December 2001 to April 2002
Project Report Submission Status ! Submitted

During the project training, the student has evinced keen interest in learning and his
overall performance has been evaluated as Satisfactory as per the evaluation by our
Student Project Management Committee.

We wish the student the very best in all his endeavors.
We thank you and look forward to a continued and fruitful relationship.
Yours truly,

\ﬁ\

M.Radhakrishnan
Hea HR

CC: Balu N

DECLARATION

I here by declare that the project entitled C++ CODE CHECKER submitted to

Bharathiar University as a project work of Master Of Computer Applications
degree is a record of original work done by me under the supervision and guidance
of Mr. S.Chandrakumar, Mr. Senthilnathan of Think Business Networks
Coimbatore and Mrs. S.Devaki B.E, M.S. Asst Professor Kumaraguru College of

Technology, Coimbatore.

Place: (pirain i £

Slgnature of Student

Date: ‘5()4%' Yoo

. @%ﬁf -

£ ¢

Internal Guide

Mrs. S.Devaki B.E, M.S,

Asst Professor,

Department of Computer Science & Engineering,
Kumaraguru College Of Technology,
Coimbatore.

C++ Code Checker

ACKNOWLEDGEMENT

I take this opportunity to express my gratitude to all. whose

contribution in this project work can never be forgotten.

I am extremely grateful to Dr.K.K.Padmanabhan, Principal,
Kumaraguru College of Technology for having given me an opportunity to

serve the purpose of my education.

I am indebted to Prof. Dr. S.Thangasamy, Head of the Department
of Computer Science and Engineering, for his valuable guidance and

useful suggestions during the course of the project.

I am deeply indebted to my project guide, Mrs. S.Devaki, B.E.,
M.S., Assistant Professor of Department of Computer Science And
Engineering, Kumaraguru College of Technology for her helpful guidance

and valuable support given to me throughout the project.

With pleasure, I express my esteemed gratitude to Mr.Arun Ulag,
President of Think Business Networks for providing me the opportunity to

do the project in his reputed organization.

I am equally grateful to Mr.Chandrakumar and
Mr.Senthilnathan for providing technical guidance and all others of the

organization for their constant motivation during the course of the project.

Above all, 1 owe my gratitude to my friends Mr. M.Deepak
Charanyan B.E. and Mr. H.Ashwin Prabhu B.E. parents and relatives
for their support and to God Almighty, for showering abundant blessings

on me.

C++ Code Checker

SYNOPSIS

C++ Code checker is an application intended to assess the
programmer’s C++ source code and make recommendations, which aid in

the improvement of program performance and efficiency.

C++ Code checker aims to provide a customizable mterface.
which allows the user to select fragments of code, which he/she wishes to
improve. It contains a set of rules which act as a guideline to write C++

code.

It’s anew system developed as an application, which checks
the efficiency of the C++ code. C++ code Checker is an object-oriented

system.

C++ code checker is developed at Think Business Networks Ltd.
Coimbatore. Screen Design module includes Menu design, source code
window, rule list window, debug window, workspace window and plug-in

window.

Dialog has been created for open, save, close, clipboard
operations, rule selection, rule processing against the code and display

warning in debug window.

Rules are implemented as Win-32 DLL files and the modules are

designed as easy-to-use functions.

C++ Code Checker is programmed in Visual C++. It uses

Microsoft Foundation Classes (MFC) for implementing data structures.

Screen interfaces are designed using Win32 API (Application

Programmers Interface).

C++ Code Checker

TABLE OF CONTENTS

1. Introduction
1.1 Project overview

1.2 Organization profile

2. System study & Analysis
2.1 Existing System and its limitations
2.2 Proposed System.
23 Requirements of new system.

2.4 User Characteristics

3. Programming Environment
3.1 Hardware configuration

3.2 Description of software and tools used.

4. System Design and Development
4.1 Input Design
42 Output Design

43 Process Design

5. System Implementation and Testing
5.1 System Implementation
52 System Testing
53 Refinement based on feedback.

6. Conclusion
7. Scope for future development
References

Appendices

C++ Code Checker

1.1 PROJECT OVERVIEW

C++ Code Checker is a software tool used to check the
effectiveness of C++ code. It contains a set of rules. The C++ Code
checker is a software application intended to assess the programmer's C++
source code and to make recommendations, which aid in the improvement
of program performance and efficiency. The C++ Code checker aims to
provide a customizable interface, which will allow the user to select
fragments of code, which he/she wishes to improve upon.

This tool is useful for C++ programmers in Think Business
Networks. This tool will help the users to add new rules in the form of
Plug-ins. The programmers at Think Business Networks can use this tool
to find errors, or use this as a guideline for quality and structured coding.

This software will attempt to identify portions of source code,
which contain programming loopholes, inefficient usage of programming
language features and will also put forward suggestions to effectively
utilize memory resources.

This helps the programmer to reduce debugging time and minimize
efforts to correct errors in the program. This software aims to fill a
presently existing gap for a fully functional and user-friendly program to
check the merit of C-++ source code. The software also aims to satisfy the
requirements of a wide array of users ranging from beginners to
professional programmers.

The motive of the application is only to make recommendations
and provide suggestions. The final implementation of these suggestions is
at the discretion of the respective users.

The application assumes that all source code has already been
compiled by industry standard compilers and so will concentrate only on

suggestions, which enhance the quality of code.

C++ Code Checker

RULES

Rules in C++ code checker are logical errors, runtime errors and

efficiency conditions which are implemented as functions. The C++ source

code is passed in to the rule function for checking against the conditions

applied. These functions are stored as Dynamic Link Library files (DLL).

The advantage of using DLL files is that they get loaded into the

application’s address space, where data can be passed by reference to the

functions.

RULES

SUGGESTIONS

Do not use C - style
comments

C —style comments don’t support
nested comments.

Do not use C- style
memory allocation

The malloc/free do not know about
constructors and destructors.

Case without break

The control may get to next case block

No semicolon after while
statement

The control evaluates the while condition without
executing its body. |

Do mnot support public

members

The values assigned by class users may be illegal.
It leads to production of runtime errors.
No validations can be done for the values.

Memory leak, Resource
leaks

Reduces the computer efficiency

Constraints

» C++ Code to be inspected should be free from

compilation errors.

* This system is mainly used by professional C++

programmers

» All rules should be stored as DLL files.

= Both rule functions and DLL files should bear the

same name. If they are not the same, C++ Code

Checker won’t execute the rule functions.

C++ Code Checker

1.2 ORGANIZATION PROFILE

Think Business Networks Limited is a premier software company
located in Coimbatore. This is a firm of dynamic young individuals,
qualified in areas of software engineering, e-business and
telecommunications. TBN was primarily established with a view to bridge

the gap, between Cotton City (Coimbatore) and Stlicon Valley (USA).

Four individuals led by Arun Ulag, an IRTT graduate in
Coimbatore as a small firm, started TBN. From a humble beginning the
firm has grown to one with over 100 employees having their own office at
Ramanthapuram next to the city’s biggest building The Stock Exchange

Building.

TBN mainly concentrates on offshore projects. They get projects
mainly from The United States, Italy and Sweden. They have a customer

base of about 28 firms spread across Europe and Australia.

TBN has achieved CMM level 4 from SEI (Software Engineering
Institute) of Carnegie Mellon University (USA) .The Company has

branches at Chennai and New York.

C++ Code Checker

2.1. EXISTING SYSTEM AND ITS LIMITATIONS

In the existing system, the programmer manually checks and
identifies portions of source code. which contain programming loopholes.

Users have to walkthrough the code and find the errors.

C++ programmers require more time 1o debug the errors. The
quality of code is not better in the existing system.

It is hard to find errors when user reads the code line by line. All
the tests were done manually. The user can’t have control over the code.

Author of code can easily find errors but qualily assurance team
may not find it.

C++ Code Checker

2.2 PROPOSED SYSTEM

In the proposed system, the C++ code checker is very much
flexible from the programmer’s point of view. It is a new system
developed as an application, which checks the efficiency and errors in the

C++ code.

This helps the programmer in reducing debugging time and the
effort to correct errors in the program. This software application aims 1o
fill a presently existing gap for a fully functional and user-friendly

program to check the merit of C++ source code.

The product function suite will include options and standard rules,
which the user can select and check for. The software provides for an

extendable interface wherein new rules can be installed as plug-ins.

The software also aims to satisfy the requirements of a wide array
of users ranging from beginners to professional industry standard

programmers.

The application assumes that all source code has already been
compiled by industry standard compilers and so will concentrate only on

suggestions, which enhance the quality of code.

C++ Code Checker

2.3 REQUIREMENTS OF THE NEW SYSTEM

Scope

C++ Code checker is an application intended to assess the
programmer's C++ code and make recommendations, which aid in the
improvement of program performance and efficiency. C++ Code checker
aims to provide a customizable interface, which allows the user to select

fragments of code, which he/she wishes to improve.

The software attempts 1o identify portions of source code, which
contain programming loopholes, inefficient usage of programming
language features and also puts forward suggestions to effectively utilize

memory resources.

Definitions, Acronyms and Abbreviations

Rule A logical error and run time error in the program.
Plug in New rules can be added to the application.

Inspection The C++ code is inspected against the rule.
DLL Dynamic Link Libraries, which contain the rules.

C++CC C++ Code checker

Overall Description

a) Product Perspective
It’s a new system of its kind developed as an application, which
checks the efficiency of the C++ code. The proposed system is an object-

oriented system.

C++ Code Checker

New Plug-in

!

Existing Rules

b) Product Functions

This helps the programmer in reducing debugging time and effort
to correct errors on the program.

This application aims to fill a presently existing gap for a fully
functional and user-friendly program to check the merit of C++ source
code.

The product function suite will include options and standard rules,
which the user can select and check for. The software will provide for an
extendable interface wherein new rules can be installed as plug-ins.

The application also aims to satisfy the requirements of a wide
array of users ranging from beginners to professional programmers.

The motive of the application is only to make recommendations
and provide suggestions. The final implementation of these suggestions is
at the discretion of the respective users.

The application assumes that all source code has already been
compiled by industry standard compilers and will concentrate only on

suggestions, which enhance the quality of code.

C++ source > @’0;\ >
Checker

Warning

C++ Code Checker

Specific Requirements

Functionality
a) Introduction

When the user runs the application, he is given a set of rules to choose
from. After selecting the set of rules he has to inspect the given C++ code.
A description of the rules is as follows:

e Provides the user with a suite of rules to check for.
The rules are conveniently grouped under functional
groupings.

e This software provides the user with the flexibility
of choosing only a selected set of rules by means of
an interactive interface.

e The software is designed to be a stand-alone
application into which rules in the form of plug-ins
can be fitted. This provides the user with a high

degree of scalability and (lexibility.

The application checks for rules that fall under the following subsets:
¢ Migrating from C to C++
¢ Objects and ciasses
e Pointers
o Declarations
e Memory utilization

e Processor utilization

C++ Code Checker

b) List of Inputs
1. The product can check the efficiency of code (Inputs) C++
code that may be as
i. C++ source files
ii. C++ header files
i1, C++ classes
iv. C++ Functions

v. C++ Blocks

2. Rules
1. Existing rules are selected .

ii. New rule is added in the form of DLL.

c) Information Processing required
The following processing is required at the application level at

various points during the life of the product

i. The C++ code should be pre-complied against the
syntax error.
ii. User is not allowed to inspect non-C++ code.

ili. No duplication of rules.

Performance Requirements

Security
a. Newly added rules should be having less space and
time complexity.
b. User can add only DLL files as plug-ins.

c. Never affect the Operating systems functions.

C++ Code Checker

Availability
It’s a probability measure that a program is operating according to

requirements. System is available for all professional C++ programmers.

Capacity
Application can inspect any number of lines of code in the
program. It can check any numbers of function/classes. Application can

inspect a number of programs at a time.

Response Time

The response time for the application depends on the processor

speed, amount of memory and efficiency of rule programs in DLL.

Usability

e User is provided with a comprehensive tutorial and help
package that will aid the user in getting accustomed to
the application.

e The GUI has been designed keeping in mind the user

requirements of simplicity and functionality.
User Interface, Screen formats

Win32 API is used for creating user interfaces (editor window,
menus).

It includes a rich text editor used for displaying C++ source file
and ActiveX controls to display rules. Each rule is displayed as a check
box, list box etc to display error after inspecting code resources used for

menu displays.

C++ Code Checker

Other Requirements

Operations required by user

Rule selection
User can inspect the default rules, or he can inspect specific

categories (Memory).He can also make specific rules as default ones.

Add plug-ins

New plug-ins added if user/programmer has written own rule.

Inspection
User can inspect the whole program and can also inspect a class in

C++ files and function.

C++ Code Checker

2.4 USER CHARACTERISTICS

The system has been designed for use with ease. The whole system
is partitioned into two parts: That used by programmers and that used by

quality assurance teams.

Programmers
Helps the programmer to check C++/header files for given set of

rules. The programmer is the user of the system.

Quality Assurance team
This team plays a very important role in software quality. They

check for various quality factors.

User View

Selecta C++

source code to X
/ inspect(*.cpp) |
Select all | Inspect “

——» Opens the possible rules the code
application

Select C++

—

Code
in header file
(*b)

Error list with
line number.

C++ Code Checker

3.1 HARDWARE CONFIGURATION

Processor : Pentium Celeron

Clock Speed ; 700 MHz

Main Memory : 128MB

External Cache : 128KB

Hard Disk : 10 GB

Floppy Disk Drive : 1.44MB

CD-ROM : 32x Creative

Display ; SVGA Samtron Color monitor
Mouse : Logitech 3-button

Keyboard : 105 keyboards

C++ Code Checker

3.2 SOFTWARE AND PACKAGES USED

Platform : Windows 98.

Programming Language : C++.

Compiler - Microsoft Visual C++ 6.0.

GUI Designer © Win32 Application development (VC++).
Rule Developer ' Win32 Dynamic Link Library, MFC.
Intermediate Files . INIfiles.

Help Files . HTML.

Platform Windows 98
This system is developed on Microsoft Windows 98 Operating system.

Reason for Choosing Windows-98:
1. It provides right user interface.
2. Itis most widely used by companies
3. It reduces the training required for users.
4

. It supports COM and COM+ standards for reusing binary codes

Programming Language C++

The source code and rules are written in C-++. It’s an object-oriented

language. So implementation of design is easy.

C++ Code Checker

Reason for Choosing C++:

1. It is an object oriented language, supporting concepls such as

classes, polymorphism, inheritance, virtual functions, interfaces.

2. C++, like C, is a language that is heavily reliant on a rich set of

Library functions to provide the following:

a. Portable operating-system interface (file and screen I/O)
b. String and buffer manipulation
C. Floating-point math transformations

d. Supports Cross Compiling.

Compiler: Microsoft Visual C++ (cl.exe)

The source codes written in C++ classes are compiled using

Microsoft VC++.

The reasons for choosing Visual C++ are the following:

1. It's a product of Microsoft Corporation.

2. Extensions to C++ Code Checker to system can be done
easily.

3. It supports many features like COM and COM+.
4. Low-level /hardware programming can be done easily.
5. It supports many predefined libraries.

6. Exception handling is done accurately.

C++ Code Checker

Choose INI Files to store intermediate results

1. Text file operations are hard when compared with INI files.

2. INI file supports sections and tags and so we need not care
about white spaces

3. Geltprivateprofilestring and Setprivateprofilestring are APIs

for accessing INI files.

UML: Unified Modeling Language

The Unified Modeling Language is a powerful new tool for
developers to use when working on object-oriented systems. Because its
purpose is to document and model a software system using a language-
independent methodology, software designers can easily communicate
their designs to other designers and to those who ultimately implement the

software.

C++ Code Checker

4.1 INPUT DESIGN

Input design is a part of overall system that requires careful
attention. most. The input should be a compiled free of errors. The system
is assumed that it gets a code that doesn’t have Compile-Time error. So if
user supplies a code that contains a compiler error, system will not
produce the required result. Objectives during input design are as follows:

a. Achieve high level accuracy

b. Ensure input is free of ambiguity

The input design involves converting the user-originated inputs
into a computer-based format. The aim of input design is to make data
entry easy and logical error free. It helps us to filter errors in the input data

that might have brought in a lot of inconsistency.

It involves procedures for capturing data, verifying and then
p p g g
passing them onto the system. After choosing input medium, attention 1s
focused on designing of error handling, control, and grouping the
o o o g p =]

validation procedures.

During application development, care has been taken to make our
system extremely user-friendly and organize our screens such that the

possibilities of making error are reduced.

List of possible inputs are C and C++ files which are provided to

the user for selecting the inputs. This makes system less error prone .

C++ Code Checker

Warnings are displayed on the screen for wrong entries such as non

C++ files, error prone rules, duplicate rules, missing of INI and (rule) DLL

files.

The inputs to the system are
{. C++ source code (*.cpp).
2 C-++ header code (*.h).
3. New rules as plug-ins (*.dll).
4

Selecting existing rules by using the check box.

C++
Scanned C++

1. Remove comment

2. Ignore strings

3. Put a blank before/after an operator.

4, Remove tabs and replace them by a single blank

5. Remove more than one blank and replace by a single blank.

Figure 1: C+-+ Code Checker scanner

{

)

rule

New
rule(plug-in)

Figure 2: Input View of C++ Code Checker

C++ Code Checker

INPUT TYPES

One of the early activities of input design is to determine the nature

of input data. The different types of inputs handled by our system are:

External : Prime input to system
Internal - Communication with system
Operational : Programming team communicating with system.
Computerized : Input to the computer media from other internal
sources.
Interactive - Input entered during a dialog.
Menus:

The menus in the application are as follows
File menu
Edit menu
View menu
Debug menu
Plug-in menu

Help

File Menu and its operations

It contains standard file related operations, for manipulating C++

code present in source code window.

Edit Menu and its Operations

It contains options for performing clipboard related operations (cut,
copy. paste), find and replace options, selecting whole file, selecting a

function and selecting a class.

C++ Code Checker

View Menu and its operations

It contains options for viewing
1. Rule window- Contains rules where user can make selection
2. Workspaces Tree like structure describing C++ files in tree view

3. Debug window Displays warning messages in a list box.

Debug Menu and its Operations

Check submenu is used to check the source code against the rules
selected by users. Also supports user to pass the following to the
application:

1 C++ classes
2 C++ functions

3 C++ blocks
Add Plug-in Menu and its operations
User can add plug-in to system using this menu.

Help Menu

It contains two submenus

1. About - Describes information about developers of
C++ Code checker
2. Online Help - It provides link to help file which is in

Windows standard Help format

C++ Code Checker

4.2 OUTPUT DESIGN

An inevitable activity in the system is the proper design of input
and output in a form acceptable to the user. Outputs from the system are
required primarily to communicate the result of processing to user.

An output also provides a permanent copy of the resuits for later
consultation. An intelligible output design will improve system

relationships with the user and help in the decision-making process.

Display warning
in debug
window/list box

Warmning >
message
C++

—»
Code

Tree view
of C++ code

|

Figure 3: Output View of C++ Code Checker

The various types of outputs required by most systems are:

External Outputs: Whose destination is outside the organization

which require special attention

Internal Outputs: Whose destination is within the organization and
which require careful design because they are
user’s main interface with computer

Operational Outputs: Whose use is pufely within the computer
department.

Interactive Qutputs: Which involves the user in communicating with
the computer. The approach to output design is
very dependent on the type of output and nature
of data. Special attention has to be made to data
editing. The choice of appropriate output

medium is also an important task.

C++ Code Checker

The selection may be affected by the following kinds of considerations.
1. Response time.

Experience of user with C++.

Cost.

Software / hardware.

wok W DN

Suitability of the device for application concerned.

The output design must be specified and documented. Data items
have to be defined and arranged for clarity and easy comprehension. The

other two objectives that were taken care were:

I. The interpretation of the results of the computer part of
the system to users in a form that they can understand
and also meets the requirements.

II. The output design specification is made in such a way
that it is unambiguous.
III. Comprehensive and capable of being translated into a

programming language.

Screens, which are major form of output, are designed in various

modules in the system. Screen generated are:

1. Debug window

2. Tree view of C++ files

Debug window
It displays warning messages for C++ code against the given set of
rules. It contains warning message, line number, error number and class
name. These messages are displayed in list box where user can click code

and move to corresponding line.

C++ Code Checker

Tree view of C++ files

It represents C++ files in a hierarchical structure. Root node will be
class’s list. The class name is in parent node and the child nodes are
represented by function name with its prototype. Any level of nesting of

classes should be displayed.

C++ Code Checker

4.3 PROCESS DESIGN

A computer procedure is a series of operations designed to

manipulate data to produce output from a computer system. A procedure

may be a single program or a set of programs.

Various types of procedures are

Validations

1.

2
3.
4

(o4}

Validations
Sorting

Process files
Process database

Printing

Data enters the computer-based system via validation procedures.

Often they are catered for by a generalized input validation package

tailored to the need of the particular system.

Error handling

Error procedures must be specified in detail showing decisions.

actions and exceptions.

There are various ways of error handling such as

Rejecting the items of input and processing the next item

Writing an error record onto an error file.

Signaling operator by messages on type writer

Not updating or processing the file or batch in which error

occurred

Dumping the content to the file where the error was

detected

Going back to an earlier stage in processing and starting

again from that point

Halting the program execution.

C++ Code Checker

- Allowing system to correct the error internally

- Manual procedure for correcting the error.

Sorting

Data frequently has to be sorted before a further phase of
processing can be carried out. The time spent sorting, which can represent
40% of total processing time, is really non-productive and must be reduced

as much as possible.

Sorting in general sense means arranging data according to a
particular rule or pattern. Sorting is classified as internal sorting and

external sorting.

The process design is the heart of the system design. The system
specification is designed here. In C++ Code Checker. rule processing is
the main activity. A set of rules is added to the system in the form of DLL

files.

Following activities will be helpful in the process design
1. Add Rule to system as plug-in (Stored in DLL files in /plugins
directory).
2. The new rules added have the following validations.
i. Rule DLLs should be in /plugins directory.
ii. Name of DLL and rule function should be same.
iii. Rule should not be added to the system.
Rule name is added with its description in rule.ini.
Rule list window is activated for selecting rules.

The selected rule status is stored in an array/list.

& o kW

Processing of C++ code comprise of the following steps
1. Press run button in tool bar.

ii. In rule.ini get file name and from list/array get the status.

C++ Code Checker

ii. If status = ok then
a. Load DLL file into address space using Load
Library API1
b. Getthe address of rule function and store in
pointer to function
c. Pass the selected data in rule window to rule
function.
d. Ifruleis not accepted then an error warning is sent
to sendmsg.ini
7. Repeat step 6 until all rules are processed.
8. If all rules are processed then get warning from the sendmsg.ini

and display in list box/debug window.

Procedures/processes in C++ Code Checker
1. Validations
2. Reading /writing of INI files (intermediate)
3. Checking correct rules/plugins

4. Sorting warning.ini by line number.

C++ Code Checker

C Start Application)

|

v

Open a C++ filcs
and selects
appropriate rules

v

Repeat until all rules
checked

44— Go to Next rule

A

1
! Yes

Pass the file to rule function

. Is rule

ok?

Figure 4: Process view of C++ Code Checker

-«

[

Display Warning

4

C++ Code Checker

5.1 SYSTEM IMPLEMENTATION

A crucial phase in the system life cycle is the successiul
implementation of the new candidate system. Implementation simply
means converting a new system design into operation. This involves
checking computer compatibility, training the operating staff and installing
the necessary hardware and terminals before the system is up and running.

Implementation is the stage of project when the theoretical design
is turned into a working system. It involves careful planning, investigation
of current system and its constraints on implementation. design of methods
to achieve the changeover, training of staff in the changeover procedures
and evaluation of changeover methods.

Therefore. implementation is the process of converting a new or a
revised system design into an operational one. Thus during this stage the
theoretical design is turned into a working system. If the implementation
stage is not carefully planned and controlled. it can cause chaos. Generally,

there are three types of implementation.

They are,
. Implementation of a computer system to replace a manual
system.
o Implementation of a new computer system to replace the
existing one.
. Implementation of a modified application to replace the

existing one uses the same existing system.

C++ Code Checker

5.2 SYSTEM TESTING

Quality Assurance

The amount and complexity of sofiware stagger the imagination.
Consequently, some controls must be developed to ensure a quality
product. Basically, Quality assurance defines the objectives of the project
and reviews the overall activities so that errors are corrected early in the
development process.

Thus, the quality assurance defines the factors that contribute to the
quality of the candidate system. The following factors were studied for

determining the major qualities of the system.

e Correctness of the system.

e System reliability.

e Efficiency of computer resources.

e Accuracy in input, computations & output.
e Error tolerance.

e Communication — How descriptive they are

e The inputs and outputs of the system.

Testing is a process of executing a program with the intention of
finding errors. A good test case is one that has a high probability of finding
as yet undiscovered errors.

A successful test is one that uncovers as yet undiscovered errors.
System testing is the stage of implementation. which is aimed at ensuring
that the system works efficiently and accurately before live operation.

K

commences.

C++ Code Checker

System testing requires a test plan that consists of several key
activities and steps for program, system and user acceptance testing.
C++ Code Checker is tested with the following criteria in mind
e The program execution is correct or not.
e To select more then one rule at a time.
e Usability documentation and procedure for the user-friendly
nature of the system.

e Recovery and security.

Software testing is an important phase in the development of the
software. Testing is done for software quality assurance. Software is
developed for a long use in the future and so it is necessary that a well
planned testing be done to overcome errors. Static Analysis is used to
investigate the structural properties of the source code. Dynamic test cases
are used to investigate the behavior of source code by executing the
program on the test data. As before, we use the term “Program Unit” to
denote a routine or a collection of routines or a routine implemented by an
individual programmer. In a well-designed system, a program unit 1s

stand-alone or a function of a large system.

UNIT TESTING:
Unit testing comprises the set of tests performed by an individual
programmer prior to integration of the unit into a larger system. The

situation is illustrated as follows,
Coding debugging ------ Unit testing --- Integration testing
A program unit is usually small so that the programmer who

developed it can test it in great detail. There are four categories of tests a

programmer will typically perform on a program unit.

C++ Code Checker

o [Functional test
e Performance test
e Stress test

e Structure test

Functional test cases involve exercising the code with nominal
input values for which the expected results are known, as well as boundary
values like minimum values, and values on the functional boundaries and
special values, such as logically related inputs, the identity matrix, files of

identical elements and empty files.

Performance test determines the amount of execution time spent in
various parts of the unit, program throughput and response time and device
utilization by the program unit. A certain amount of performance tuning
may be done during unit testing; however, caution must be exercised to
avoid expending too much of fine tuning of a program unit that contributes
little to the overall performance of the entire system. Performance testing

is most productive at the subsystem and system levels.

Stress tests are those tests designed to intentionally break the unit.
A great deal can be learned about the strengths and limitations of the

program by examining the manner in which a program unit breaks.

Structure tests are concerned with exercising the internal logic of
the program and traversing particular execution paths. The main activities
in structural testing are deciding which paths to exercise, deriving test data
to exercise those paths, determining the test coverage criterion to be used.
executing the test cases and measuring the test coverage achieved when

the test cases are exercised.

C++ Code Checker

A ftest coverage criterion must be established for unit testing,
because program units usually contain too many paths to permit exhaustive
testing. Even if it were possible to successfully test all paths through a
program, correctness would not be guaranteed by path testing because the
program might have missing paths and computational errors that were not
discovered by the particular test cases chosen. A missing path error occurs
when the branching statement and the associated computations are
accidentally omitted. Missing path errors can only be detected by
functional test cases from the requirement specifications. Thus, tests based
solely on the program structure cannot detect potential errors in a source

program.

Unit testing focuses on verification. In the smallest unit of software
design the module unit testing is done for each module to ensure that it
functions properly as a unit. In unit testing, the module interface is tested
to ensure that information properly flows into and out of the program

under test.

Unit testing is done to recover errors of the following types.

e Erroneous initialization

e [Incorrect variable names

e [nconsistent data type

e Underflow, overflow and addressing exceptions

o Computation errors.

C++ Code Checker

SYSTEM TESTING:

System testing is a series of different tests whose purpose is to
exercise the computer-based system fully. There are two kinds of activities
viz. integration testing and acceptance testing. Strategies for integrating
software components into a functional product include the bottom up
strategy, the top down strategy and the sandwich strategy.

Careful planning and scheduling are required to ensure that the
modules will be available for integration into the evolving software
product when needed. Acceptance testing involves planning and execution
of functional tests, performance tests and stress tests to verify that the
implemented system satisfies its requirements. Acceptance tests are
typically performed by the quality assurance and/or customer
organizations. Depending on local circumstances, the development group

may or may not be involved in the acceptance testing.

INTEGRATION TESTING:

Integration testing is a systemaiic technique for constructing the
program structure while at the same time conducting tests to recover errors
associated with interface. Bottom up integration is the traditional strategy
to integrate the components of the software system into a functional whole.
Bottom up integration consists of unit testing. followed by subsystem
testing, and testing of the entire system. Unit testing has the goal of
discovering errors in the individual modules of the system. Modules are
tested in isolation from omre another in an artificial environment known as
“Test Hamess” which consists of the driver programs and data necessary

to exercise the modules.

C++ Code Checker

Unit testing should be as exhaustive as possible to ensure that each
representative case handled by a module has been tested. Unit testing 1s
eased by a system structure that is composed of small, loosely coupled

modules.

A subsystem consists of several modules that communicate with
each other through well-defined interfaces. Normally, a subsystem
implements a major segment of the total system. The primary purpose of
subsystem testing is to verify operation of the interfaces between modules
in the subsystem. Both control and data interfaces must be tested. Large
software systems may require several levels of subsystem testing: Lower-
level subsystems are successively combined to form higher-level
subsystems. In most software systems, exhaustive testing of subsystem
capabilities is not feasible due to the complexity in the combination of the
module interfaces; therefore test cases must be carefully chosen to exercise

the interfaces in the desired manner.

System testing is concerned with subtleties in the interfaces,
decision logic, control flow, recovery procedures and throughput, capacity
and timing characteristics of the entire system. Careful test planning is
required to determine the extent and nature of the system testing to be

performed and to establish criteria by which the results will be evaluated.

Disadvantages of bottom up testing include the necessity to write
and debug test harnesses for the modules and subsystems, and the level of
complexity those results got by combining modules and subsystems into
larger units. All the modules are then linked and executed in a single
integration run. This is the “Big Bang” approach to integration testing. The
main problem with big-bang integration is the difficulty of isolating the

sources of errors.

C++ Code Checker

Top down integration testing starts with the main routine and one
or two immediately subordinate routines in the system structure. After this
top- level “Skeleton” has been thoroughly tested. it becomes the test
hamess for its immediately subordinate routines. Top down integration
requires the use of program stubs to simulate the effort of lower level
routines that are called by those being tested. Disadvantages of top down

integration are,

e System integration is distributed throughout the
implementation phase. Modules are integrated as they are
developed.

e Top-level interfaces are tested first and most often.

e The top-level routines provide a natural test harness for
lower-level routines.

o [rrors are localized to the new modules and interfaces that

are heing added.

While it may appear that top-down integration is always preferable,
in many situations it is not possible to adhere 1o a strict top-down coding

and integration strategy.

For example it may be difficult to find top-level input data that

will exercise a lower level module in a particular desired manner.

Sandwich integration is predominantly top-down. but bottom-up
techniques are used on some modules and subsystems. This mix alleviates
many of the problems encountered in pure top-down testing and retains the

advantage of top-down integration at the subsystem and system level.

C++ Code Checker

ACCEPTANCE TESTING

Acceptance testing involves planning and execution of functional
tests, performance tests and stress tests in order to demonstrate that the
implemented system satisfies its requirements. Ii is not unusual for two
sets of acceptance tests to be run: those developed by quality assurance

group and those developed by the customer.

In additional to functional and performance tests, stress tests are
performed to determine the limitations of the system. Typically.
acceptance tests will incorporate test cases developed during unit testing
and integration testing. Additional test cases are added to achieve the
desired level of functional, performance and stress testing of the entire

system.

C++ Code Checker

6. CONCLUSION

C++ Code Checker provides the user with a suite of rules to check
for. The rules are conveniently grouped under functional groupings. This
software provides the user with the flexibility of choosing only a selected

set of rules by means of an interactive GUL

Each rule is implemented as separate function; the content of file is
passed as parameter to the system. The software is designed to be a stand-

alone application into which rules in the form of plug-ins can be fitted.

If error or warning is present in the code, message is stored in the
intermediate file along with line number and sorting based on line number
occurs. C++ Code to be inspected should be compiler error free. This

system is mainly used by C++ programmers.

C++ Code Checker

7. SCOPE FOR FUTURE DEVELOPMENT

Suggestions are made here for further developments. The language

has adequate scope for further development in the future.

At the moment this project handles C++ codes. But in future it can

be extended to all languages like Java, Visual Basic, etc...

The code checker only gets input as compiler error free format. But
in future enhancements, you can add C++ compiler in this project to check

for syntax errors.

You can extend the project to all platforms like UNIX, LINUX,
etc., Now only the limited rules are defined, you can add more rules in

future using QT+ software and WINE Interfaces.

The rule functions are in the DLL files. In next version of the

system it will be converted to ActiveX-DLL (In-process servers).

C++ Code Checker

REFERENCES

Books:

Scott Mayer - Effective C++ Addison Wesley Publications.

Scott Mayer - More Effective C++ Addison Wesley Publications.
Deitel & Deitel - C++ How to Program Pearson Education Asia.
Bjarne Stroustrup - The C++ Programming Language

Herbert Schlitz - “Windows-98 Programming” Tata McGraw-Hill
Websites:

www.vokasoft.com
www.gimple.com

Additional References

1) Chandra Kumar Team Leader (Mentor)
2) Senthil Nathan ~ Software Engineer (Mentor)

Think Business Network Ltd, Coimbatore

C++ Code Checker

C++ Code Checker

w - {
1
W sk | | public:
M alphal) alpha()
S it sun it a, b {
= 4 Global count++;
L intmain |) cout<<"Number of object created = "<<count;
}
“alpha(j
{
cout<<" Number of Object destroyed = << count;
count-; :
int sum(int a,int b) ‘
{
return a+b; |
) !
I3 :
int main() i
{ !
cout<<'\n Enter Main \n'% bt
alpha A1,A2,A3,A4; :
cout<<" Enter Block 1'% .
bl
] i

{Co\suinnar20\COME INE 2. 0\suii.cop s saved Lo e : : S

C++ Code Checker

int count=0;
class alpha

Classes List
& @ alpha
2 alpha(]

t

#include<iostream.h>

{

cout<i;
it+;

}

C++ Code Checker

finclude<iostream.h>
int count=0;
class alpha

& alphia || {

8 alphis || public:
@:ﬂ static wn um (it s e | @lpha)
i= N Global {
ol it main ()
"'<<count;
< count;

Mo Friend specifiers| |

5

return a+b;
while(i<=10);
{

cout<<i;

it+;

iCheckstheFile , . e]

C++ Code Checker

Sy
N

iy

G

-]

NN

Feady: T

C++ Code Checker

SAsuilmarZ\COMBINE 2. O\ suti.cpp
e Edit™ View " Check ™ Plugiing “Help

B2 alpha ()
& alphaf)
% intsum (inta,inth)
Globa!

-8 int main []

int count=0;

class alpha

{
public:
alphaf)

counts+;
coutd<"Number of object created = ""<<count;

“alpha[

cout<<" Number of Object destroyed ="'<< count;
count—;

int sum(int a,int b}
{

return atb;

}

N
int mainf
{
cout<<"Yn Enter Main \n'%;
alpha A1,A2,A3.A4;

{

cout<<" Enter Block 1'%

+]

[Ci\suiuar20\COMEINE 2. 0\slriicpp iy saved:

C++ Code Checker

C:\swi\mai20\COMBINE 2.0\zuii.cp,

int count=0; .:}
class alpha
{
public:
alpha(]
(

count++;
cout<<"'Number of object created = ''<<count;

}
“alpha(
{

cout<<" Number of Object destroyed = '<< count;
count—;

int sum(int a,int b)

{
return a+b;
}

IX

int main()

{

cout<<'{n Enter Main \n'} -
alpha A1,A2,A3,A4;
{

cout<<" Enter Block 1'%

' .
H T g

(€ surmar20\COMEIME 2. 0\suti.cpp s saved:

C++ Code Checker

int count=0;
class alpha

B @ alpha

L33 alphal) public:

[%8 abhal) alpha()
i 7 S intsum(inta,intb]
| & G Global counti+; .
L B8 intmain() cout<<"Number of object created = "'<<count;
}
“alpha[)
{
cout<<" Number of Object destroyed ="<< count;
count—;
}
int sum{int a,int b}
{
return a+b;
)

"

int mainfj

cout<<"\n Enter Main \n'%
alpha A1,A2,A3,A4;

cout<<" Enter Block 1'%

NCOMBINEZ 0l o ts saved

S A) el

C++ Code Checker

[C:\suri\mar20\COMBINE 2.0\ suri.cpp
i Hel

33-E Cl

= N

& @3 apha

int count=0;

asses List class alpha
B2 alpha) publie:
b9 alpha() alpha{
4 intsum(inta,inth)
Global count+;
B2 int emain [) cout<{<"Number of sbject created = "<<count;
“alpha{)
{
cout<<" Number of Object destroyed ='<< count;
count—;
}
int sum(int a,int b]
{
return atb;
}
5
int main()
{
cout<<"\n Enter Main \n';
alpha A1,A2,A3,A4;

cout<<" Enter Block 1"

C++ Code Checker

{ﬁg alpha{)
- 3 dpha()

8 it sum [t &, it o)
oW Globsl

@ i taain | |

nt count=0;
class alpha

public:
alphaf)
{
countt+;
cout<<"Number of object created = '<<count

}
“alpha()

cout<<" Number of Object destroyed = "'<< count;
count—;

int sumf{int a,int b)
{
return a+b;
}
1

int mainf)

cout<<'\n Enter Main \n';
alpha A1,A2,A3,A4;

cout<<** Enter Block 1'%}

L

i il

Crhsuivenar 208COMEINE 2. Dhsuii.cpp is saved BN {

C++ Code Checker

Classes List

= @ parent

@ inside

L piint ()

2 i Global
‘ - int avoid_csyle_com
C b int avoid_malloc_free
o M it Avvoid_Multiple_Lnl

B it Bvvaid_ _o
b it Avoid_overload_s

| 4 intAvaid_overlosd_s ;
.88 it avoid_private_pio
“.8b int check_semi_color:
Lo g8 int estive_cast [char
. 4 int donat_ delete _thi
-8 int donot_retumby_re

L inl donot_use_bitfield
int Donotuse_macto_-
int Donotuse_Symbol %

43%»

o

oMb int find_dest_const [,
8
2

int find_four_three_tw
int initalizevariables | ¥
‘ " ¥

#include "do_while_i
#include "ppp_order.h"

H#tinclude "no_bit_fields.h'

finclude "nest.h”

nclude "initalize.h"

#include "def_cons_des.h"

class parent

{
public:
class inside

{
print{ {

jidone

int aveid_cstyle_comment(char *}; {/ok

int Donotuse_Symbolic_Const(char *]; Jlek
int check_semi_colon_after_while[char *ptr]: Hlok
int searchfor_static(char *ptr]; ljok

int searchfor_friend(char *ptr); {jok

int searchfor_public(char *ptr); [fok

int searchfor_protected(char *ptr]; jfok

int searchfor_anonymous_union{char *ptr}: ffok

C++ Code Checker

‘Generating Warning Messages

WarninoMessanas

§D;\Bal(z Golnder\scan cpp is:saved

vl

