EZXMLSPY
P-792

PROJECT WORK DONE AT
Premier Technology Group Pvt. 1.td.
PROJECT REPORT
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF
MASTER OF COMPUTER APPLICATIONS
OF BHARATHIAR UNIVERSITY, COIMBATORE

SUBMITTED BY
Selvamani K. 9938M0638
GUIDED BY
Mr. Suresh Sirigineedi, B.Tech. Mr. Ramasubramanian K. MCA
EXTERNAL GUIDE INTERNAL GUIDE

Department of Computer Science and Engineering
KUMARAGURU COLLEGE OF TECHNOLOGY
Coimbatore — 641 006
May 2002

Department of Computer Science and Engineering
Kumaraguru College of Technology
(Affiliated to Bharathiar University)
 Coimbatore — 641 006

CERTIFICATE

This is to certify that the project work entitled
EZXMLSPY
Done by
Selvamani K.
9938M0638
Submitted in partial fulfillment of the requirements for the award of the degree of
Master of Computer Applications of Bharathiar University.

.. -
gtk By

Professor and Hea

2sy

Submitted for the University Examination heldon <" & -

W‘i\ﬁo‘v

Internal Examiner

PREMIER TECHNOLOGY GROUP PVT. LTD.

'Riaz Garden', 4" Floor, No. 29 Kodambakkam High Road, (Near Palm Grove Hotel)
Nungambakkam, CHENNAI - 600 034. Ph: 8213945

Date : April 22, 2002.

CERTIFICATE

This is to Certify that Mr. K.Selvamani, of (Kumaraguru College of
Technology) did his project training in partial fulfillment of the Academic
requirement of MCA curriculum with us from November 2001 to April 2002.

His Project Training title was “EZXMLSpy”, which he has completed
successfully in the above said period

(AA-. e G

ugham) Suresh Sirigineedi
Manager - HR & Admin Sr.Project Leader

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to Dr. K. K. Padmanabhan, BSc.,
(Engg.), M. Tech, Ph. D., Principal, Dr. S. Thangasamy, Ph. D., Head Of the
Department, Department of Computer Science and Engineering, Kumaraguru
College of Technology, Coimbatore for providing me opportunity to take up this
project.

'I would like to place on record my thanks to my internal guide Mr.
K.Ramasubramanian, Lecturer, Department of Computer Science and Engineering,
Kumaraguru College of Technology, whose encouragement proved to be stimulating. I
am also grateful to all staff members of the Department for their support and guidance
throughout this project work.

I am grateful to Mr. Arun Arumugham, Manager - Human Resource and
Administration, and Mr. Suresh Sirigineedi, Senior Project Leader, Premier
Technology Group Pvt., Ltd., Chennai, for giving me the opportunity to work on this
project. I also wish to express my appreciation and thanks to Mr. Krishna Perumal for
his keen interest and valuable suggestions throughout the project regarding XML.

My special thanks to Ms. Sureka Rajeshwari, Project Coordinator for her
encouragement and support during the project period.

I am proud of my family for encouraging me whenever 1 was depressed, to face
the challenges in the life and made the project a great success.

I am also grateful to my friends for their valuable comments and constructive

criticisms, without which the success of this project would not have been possible.

DECLARATION

I hereby declare that the project entitled ‘EzXMLSpy — Generation of XML
documents from databases’, submitted to Bharathiar University, Coimbatore as
the project work of MASTER OF COMPUTER APPLICATIONS Degree
during May 2002, is a record of original work done by me under the supervision
and guidance of Mr. Suresh Sirigineedi, Senior Project Leader, Premier
Technology Group Pvt. Ltd., Chennai, and Mr. K. Ramasubramanian,
Lecturer, Kumaraguru College of Technology, Coimbatore, and this Project
has not found the basis for the award of any Degree/ Diploma/ Associateship/

Fellowship or similar title to any candidate of any University.

Place: (S\M BATORE

k SN~
Date: Ze- k- ro0d (K.Selvamani)

(

ternal Guide) (External Guide)

DECLARATION
I have not disclosed not attempted to disclose any proprietary and/or confidential
information related to the business of Premier Technology Group Pvt. Ltd. in this Project

report that is being submitted by me after completion of my Project Training in PTG.

Signature: Ik -SeZ=NA
Name: SEVVAMANI K
Date: 2o . K- 2 oc2-
Place: co\mpaTels

SYNOPSIS

The project aims to generate eXtensible Markup Language (XML) from existing
databases and represent the data in the database using the XML syntax.

Normally a database has two types of information, one the values stored in the
database and the other is the information about those values stored, which is called
metadata.

The XML document generated by the proposed system, which contains the
database values, is called data XML. The XML document, which contains the metadata
about the database, is called metadata XML.

The proposed system generates these two XML documents for the databases for
which the user wants the XML representation.

The data XML and metadata XML documents generated conform to the
predefined data Document Type Definition (DTD) and metadata DTD files respectively.

CONTENTS
1. Introduction
1.1 Project Overview
1.2 Organization Profile
2. System Study and Analysis
2.1 Existing System
2.2 Proposed System

2.3 Requirements on new System

2.4 Feasibility Study
3. Programming Environment
3.1 Hardware Configuration

3.2 Software Used

4. System Design and Development

4.1 Input Design
4.2 Output Design
4.3 Database Design

4.4 Process Design

5. System Testing and Implementation

5.1 System Testing

5.2 System Implementation
6. Conclusion
7. Scope for future development
References

Appendices

o & W A

10

11
12
18
19

20
22
23
24
25
26

1.1 Project Overview

EzXMLSpy is intended at building a tool that converts the data in the database to
its corresponding eXtensible Markup Language (XML) document and vice versa.

XML is a markup language designed specifically for delivering of information
over the World Wide Web (WWW). It is the standard way to identify and describe data
on the web. It is widely implementable and easy to deploy.

XML can be used to represent each field of information within each database
record. This enables us to display the data in a variety of ways and search, sort and
process the data in other ways. The response time will be considerably improved when
data is accessed from a XML document than directly from the database.

XML can be used as an intermediate tool for transfer of database information in
one platform to a database in another platform or from a database of one vendor to
another vendor’s database.

Since XML consists of only text it can be easily transported over the Internet.
XML is currently the most promising language for storing and delivering information on
the World Wide Web (WWW).

Although Hyper Text Markup Language (HTML) is presently the most common
language used to create web pages, HTML has a limited capacity for storing information.
In contrast XML has a highly flexible syntax that allows us to use it to describe virtually
any kind of information from a simple page to a complex database.

Because an XML document so effectively structures and labels the information it
contains, the browser can find, extract, sort, filter, arrange and manipulate that
information in highly flexible ways.

XML thus provides an ideal situation for handling the rapidly expanding quantity
and complexity of information that needs to be put on the web.

Normally a database consists of two types of data. The first is the actual data
stored in the database and the second is the information about the actual data, which is
the metadata.

The proposed system translates the database information into the corresponding

XML document, which contains the data and metadata.

1.2 Organization Profile

About Premier Technology Group Private Limited

Premier Technology Group (PTG) is a provider of large-scale e-Business
applications for customers in the insurance, investment and banking industries.

PTG delivers e-Business solutions that meet customers' needs in rapidly changing
business environments. Utilizing a proven framework, customers are able to tap new
markets, increase presence or provide better service in the industries they serve. PTG has
developed the right infrastructure to do Quality Software Development & Research. It is
registered with Software Technology Parks of India (STPI). It is also ISO 9001 certified.
PTG has a strong strategic relationship with US based E-Z Data Inc., which also happens
to be the parent Company of PTG, E-Z Data is a leader in Practice Management & Sales
Force Automation Solutions for Insurance Industry. It has total user base of about 75,000
users, it has customer base in US, Canada and Australia. PTG belongs to Private Sector
and is a MNC company.

With a total of over 75,000 user base, the company's clients include
approximately 30 of the largest insurance, investment and banking companies in the
United States, Canada and Australia. The company is a leader in Practice Management &
Sales Force Automation Solutions for Insurance Industry. It is the leading provider of
front office systems for insurance providers, investment advisors and managers.

In 1997 E-Z Data, Inc. facing competition and the shortage of IT resources in the
U.S. established a development arm offshore. The result was the creation of Premier
Software Technology Group Inc. (PSTG) in United States and Premier Technology
Group Pvt. Ltd. (PTG) in India. The corporate office and main development center of
PTG are in Nagpur. It also has a development center in Chennai.

Other offshore offices are in Kuwait and Japan.

Mission
“Premier Technology Group's mission is to provide vital IT support for rapidly
expanding organizations. In today's competitive global economy you need a
partner with proven technology implementation experience.”

Platforms

e Windows based applications using VC++, MFC, ODBC, OLE Automation,
COM, DCOM, Windows CE, and VB.

e Virtually supporting all back-end RDBMS (UDB, MS SQL, Oracle, Sybase-
System 11, Sybase SQL Anywhere, Sybase Adaptive Server, Sybase
Ultralite).

o Internet Application using Java, XML, DHTML, Active X, ASP.

e Developing applications for hand -- held devices like Palm.

e Lotus Notes & Group ware

Services offered

e Comprehensive consulting service

e Turnkey development projects

e Web/Internet development

e Mobile/Wireless connectivity

e Handheld device application development

.e Customer Relationship Management (CRM)

e Enterprise Resource Planning (ERP) implementation and configuration

¢ Data migration

o Data warehousing

System Study and
Analysis

2.1 Existing System

The rapid growth of Web services has led to a situation where companies and
individuals rely more and more on material that is available over the Internet. An
increasing number of people use web services both at work and at home.

Most of the web services rely upon the information transfer over the net, which is
accessed from traditional databases. This involves the overheads of establishing
connection and accessing complex database structures and converting to the format in
which it can be displayed over the Internet.

When a user wants to transfer his database in one platform to another he has to
write a conversion program. If the has to transfer database across multiple platforms he

has to write a separate program for each platform.

The limitations of the above approaches include
e Unnecessary delay in response time for accessing databases through Internet.
e Separate programs for transferring of database information into another -
platform.
e When the user needs XML representation of the database the conversion is

done manually which is quite time consuming.

2.2 Proposed system

The objective of the project is to develop a tool, which extracts the database
information and converts it into the corresponding XML format. The output generated
will contain both the data and the metadata about the database. The project aims at a tool,
which automatically generates XML after establishing the connection with the database.

This product can be used by organizations, which want to migrate their database
to another platform. Online information systems, which provide information depending
upon the request submitted, can use the output of this tool. Accessing the data in XML is
far less processor intensive.

While accessing the information, which is stored in relational databases, much of
the processor time is wasted in unwanted security checks and frequent accessing of
complex database structures, which is not needed all the time.

Efficient XML parsers are available in the market, which access the data at higher
speeds from XML than the traditional database engines.

The user has to provide connection parameters like database Uniform Resource
Locator (URL), username, password and the database driver to be used through the easy
to use wizard and establish connection with the database. After the connection is
successfully established the wizard leads the user to a screen, which shows the list of; all
table names. Then the user has to select the table names.

This will lead to the Generation wizard in which the user provides the generation
options. In the Generation Wizard the user specifies whether he or she wants to generate
XML for all tables or for only the selected tables. The user also specifies whether he or
she wants data XML or the metadata XML or both.

One more option of getting XML document for a SELECT statement is also
available. Here the user can send queries to the database using the WHERE clause. Using
this option the user can select specific rows and generate XML documents for those rows

only.

2.3 Requirements on new system

Requirement Specification is focused specifically on functioning of the system. It
allows the developer to understand the system, functions to be carried out, performance
levels to be obtained and corresponding interfaces to be established. Some of the
attributes of the requirement specification are unambiguous, complete, verifiable,
consistent and modifiable.
Scope

This project is to develop a tool, which converts the data stored in the database to
XML documents. It has a wizard-based interface and it is an easy to use tool. Since it is
developed in Java it can be run on any Java enabled platform.
Product perspective

The output of the product is the XML form of the database information. Database
values are different ﬁoxh a XML document, so it introduces several conversion issues.

The product reads information from the database and converts into corresponding XML

documents.
Product function

The product converts the Database information into corresponding XML
documents. The user can choose from the tables available in the database or generate
XML for all the tables in the database.

User characteristics

There is a large potential set of users for the product. Any person who wishes to
convert his database into XML documents can use this product.

The product can be use with Online Information Systems that read information
from the database and display it over the Internet through rendered XML documents.

A Database Administrator who wants to migrate his database contents to another
geographical area can also use the product in an effective manner. Thé reason for this
being XML can be easily transported over the Internet than the complex database
structures.

A User who wishes to copy his database to another platform uses this as an

intermediate tool for transfer of the database.

The product has a wizard-based interface through which the user can virtually
click his way to the output files.
Functional requirements
The main class of the product is the one, which establishes connection with the
database generates XML and closes the connection. .
Other functions include generating XML for a SELECT statement, viewing of
XML as text file and hierarchical tree.
Input |
Input to the product include,
Database driver to be used,
Database URL,
Username,
Password,
Selected list of tables,
Output filenames.
Information processing required
1. Establish connection with the database
2. Read the database data and metadata
Map the data in database to data XML
Map the metadata of database to metadata XML

Map foreign key references

N v oW

Generate metadata XML which conforms to metadata DTD (Document Type
Definition)

7. Generate data XML which conforms to data DTD

8. Display the output XML files by using appropriate parsers

Design constraints
Standards compliance

Java 2 Standard
World Wide Web Consortium (W3C) XML 1.0 Specification

Hardware limitations

The proposed system should work on any hardware with lower or higher
configurations, which support Java Runtime Environment.
Hardware interfaces and software interfaces with other systems

The product establishes connection with the database for which the user wants to

generate XML documents.

2.4 Feasibility Study

Economic Feasibility
The cost in developing the proposed system involves cost of hardware, software
and power consumption. Hardware is already present, the software is freely
downloadable and the only cost involved is for the power consumption.
Technical Feasibility
The proposed product is to be developed on Windows 2000 platform with Java
2.0. It can be ported to any platform.
(@) Development Risk:
The proposed product can be built, but doing it within the deadline
of 4 months is a risk.
(b) Resources Available:
Suitable hardware and software.
Windows, JDK 1.3 and XML parser library.
(c) Technology:
High-speed processors and softwares are available and no bar for

technology is seen.

Programming

Environment

3.1 Hardware Configuration

Processor - Pentium 111, 833 Mega Hertz
RAM - 128 Mega Bytes

Hard Disk - Seagate 20 Giga Bytes

Monitor - Samsung 14” color

Keyboard - Logitech

Mouse - Logitech

3.2 Software Used

Operaﬁng System - Windows 2000 Professional
Development - JDK 1.3, Java Project X

Tools Technology 2 Release XML Parser.

Others - Internet Explorer 5.5

System Design and

Development

4.1 Input Design
List of methods used

DTX() /*Constructor*/

Description: This method constructs a Database to XML object and establishes
connection with the database.

Parameters: Driver name, URL, Username, password

generateXML,()

Description: This method generates XML for the table names in the list. It stores XML
in a String buffer.

Parameters: Vector containing names of tables.

generateMetaXML()

Description: This method generates metadata XML for the table names in the list. It
stores metadata XML in a String buffer.

Parameters: Vector containing names of tables.

getValidTableList()

Description: Gives the list of tables, which are accessible by a particular user.
Parameter: None

Return value: Vector containing the list of accessible table.

foreignKeyStatus()

Description: Stores the foreign key status of a particular key in a table in metadata
XML buffer.

Parameters: Table name and column name.

getConnectTime()

Description: Gets the connection time of the current connection for log information.
Return value: String containing date and connection time.

getDisConnectTime()

Description: Gets the disconnection time of the current connection for log information.

Return value: String containing date and disconnection time.

4.2 Output design

The output of the product is the metadata and data XML documents. The user
gives the names of the output XML file names in the final step of the generation wizard.

The output XML files are valid and they conform to the metadata DTD file and
data DTD file.
Design of metadata output XML

The content of the metadata DTD file is as follows,
<IENTITY%DATA_TYPE_CODES
"(BIGINT/BINARY|BINARYBIT/BYTE|CHARICOUNTER|CURRENCY|DATE[DAT
ETIMElDECIMAL|DOUBLE|FLOAT|GUID|IMAGE|INT|INTEGERILONG|LONGRA
W|LONGBINARY|LONGCHAR|MONEY|NCHAR|NTEXT|NUMBER|NVARCHAR|R
AW|REAL|ROWID|SMALLDATETIMEISMALLINTISMALLMONEY|SQL_VARIAN
T|TEXT|TIMESTAMP|TINYINTlUNIQUEIDENTIFIER|VARBINARY|VARCHAR|V
ARCHAR2)">
<IENTITY % YESNO_TYPE_CODES (YES[NOJUNKNOWN)">
<IENTITY%RULES_TYPE_CODES
"(UPDATE_NO_ACTION|UPDATE_KEY_CASCADE|UPDATE_KEY_SET_NULL|U
PDATE_KEY_SET_DEFAULT|DELETE_NO_ACTIONIDELETE-_KEY_CASCADE|D
ELETE_KEY_SET_NULLIDELETE_KEY_SET_DEFAULT)">
<IELEMENT DBMETA (Table*)>
<IELEMENT Table (Column*)>
<IATTLIST Table name CDATA #REQUIRED>
</ELEMENT Column EMPTY>
<IATTLIST Column

name CDATA #REQUIRED

type %DATA_TYPE_CODES; #REQUIRED

size CDATA #REQUIRED

scale CDATA #IMPLIED

defvalue CDATA #IMPLIED

isprimary %YESNO_TYPE_CODES; #IMPLIED

isnotnull % YESNO_TYPE_CODES; #IMPLIED

istfkey %YESNO_TYPE CODES; #IMPLIED
ptablename CDATA #REQUIRED
pcolname CDATA #REQUIRED
updaterule %RULES_TYPE_CODES; #REQUIRED
deleterule %RULES_TYPE_CODES; #REQUIRED>
The general format of the metadata XML output is,
<?xml version="1.0"7>
<IDOCTYPE DBMETA SYSTEM "md.dtd">
<DBMETA>
<Table name="table name 1">
<Column name="column 1 name"
type="column 1 type"

size="column 1 size">

<Column name="column n name"
type="column n type"
size="column n size">
</Table>

<Table name="table name n”>
<!— column details -->
</Table>
</DBMETA>

Design of data output XML

The content of data DTD is,
<IELEMENT DBDATA (Table*)>

<IELEMENT Table (Row*)>

<IATTLIST Table name CDATA #REQUIRED>
<IELEMENT Row (Col*)>

<IELEMENT Col (#PCDATA)>

The general format of the data XML output is,
<?xml version="1.0"?>
<IDOCTYPE DBDATA SYSTEM "data.dtd">
<DBDATA>
<Table name="table name 17>

<Row 1>

<Col 1> value in colﬁmn 1 </Coll>

<Col n> value in column 1 </Col n>

</Row 1>

<Row n>
<|— column n details -->

</Row n>

</Table>

<Table name="table name n”>
<!—table n details -->

</Table>

</DBDATA>

Sample Table Structure and Values

SQL> desc dept

Name Null? Type

DEPTNO NOT NULL NUMBER(2)
DNAME VARCHAR2(14)
LOC VARCHAR2(13)
SQL> select * from dept;

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON
SQL> desc emp
Name Null? Type
EMPNO NOT NULL NUMBER(4)
ENAME . VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7.2)
COMM NUMBER(7,2)
DEPTNO : NUMBER(2)

SQL> select * from emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

14 rows selected.

SQL> desc salgrade

Name Null? Type
GRADE NUMBER
LOSAL NUMBER
HISAL NUMBER
SQL> select * from salgrade;

GRADE LOSAL HISAL

1 700 1200

2 1201 1400

3 1401 2000

4 2001 3000

5 3001 9999
SQL>

Sample metadata XML Output as seen on Internet Explorer 5.5 for the sample
tables

Sample data XML Output as seen on Internet Explorer 5.5 for the sample tables

4.3 Database design
Since the product is cross database software there is no specific database design.

4.4 Process design

r Start |

Connect to the database

”

A
Read next table name

Append table name to metadata

XML as elements

A

Read all the column names
and data in each row

A

Append column names in metadata XML
and data in rows in data XML as elements

If there are Yes

no more
tables

Disconnect from

the database

f St‘op J

5.1 System Testing
| Software testing is a critical element of software quality assurance and follows the
ultimate review of specification, design and coding. In addition, data collected during
testing is used to provide a good indication of software quality as a whole. Some severe
errors that require design modification are encountered with regularity, software
functions appear to be working properly and the errors encountered are easily corrected.
The objectives of testing are as follows,
o Testing is the process of executing a program with the indent of finding
and error.
e A good test case is one that has probability of finding an undiscovered
error.
The testing phase involves the testing of developed system using various kinds of
data. The following tests were conducted and desirable results were found.
Black Box Testing
In Black box testing the incorrect or missing functions, interface errors,
performance errors, initialization and termination errors are tested by giving proper inputs
and the errors, which are found, are corrected.
White Box Testing
In white box testing, the following were tested for the product. Checking whether
all independent paths within each module have been exercised at least once.
¢ Exercise all logical decisions on their true false sides.
e Execute all loops at their boundaries and within their bounds.
Unit Testing
Unit testing focuses verification effort on the smallest unit of software design.
Important control paths were tested to uncover errors within the boundary of the module.
The relative complexity of tests and errors detected as a result is limited by the
constraints.
This testing was carried out during programming stage itself and found to be

working satisfactorily as regard to the expected output from the module.

Integration Testing

Data can be lost across an interface. One module can have an adverse effect on
another. Sub functions, when combined, may not produce the desired output for the major
functions. Integration testing is a systematic testing for constructing the program
structure, while at the same time conducting tests to uncover errors associated within the
structure. All the modules are combined and tested as a whole.

This system has been tested by using integration testing and found to be working
satisfactorily.
Validation Testing

Validation testing can be defined in many ways, but a simple definition is that
validation succeeds when the software functions in a manner that can be reasonably
expected.

The proposed system gets the input database parameters and generates the output

XML files. The outputs are tested for validity and found to be satisfactory.

5.2 System implementation
The implementation phase of the software development is concerned with
translating design specification to source code. The primary goal of implementation,
testing and modification enables us to write source code and internal documentation so
that conformance of the code to its specifications can be easily verified, and so that
debugging is easily done. This goal can be achieved by making the source code as clear
and straightforward possible. Simplicity, clarity and elegance are indications of adequate
design and misdirected thinking.
e All the code modules that are developed for this system is single entry and
single exit constructs.
e Static variables and methods are used whenever necessary for efficient
execution of code.
e No goto statement is used during the development.
e The comments are added at all the parts of the source code to make the
code easily understandable to the other programmers.
The product converts the data in the database to XML elements, attributes and
values in the output XML documents. XML Parser is used to display the output XML in

a tree view format.

Conclusion

The project has aimed to satisfy the requirements of the system to the maximum
extent. All the required changes during the implementation are being resolved to the best
of abilities.

Maximum care and concentration has been focused to troubleshoot this project
and provide an efficient system.

Invaluable experience has been gained in the areas of system design, new

technologies like XML, system testing and implementation.

Scope for future

development

Further enhancement of the product can be done in the following areas:
Reading multimedia data.

Storing vector graphics.

Generation of WML decks.

Encoding and displaying RNA, DNA and protein sequence information.

Generation of voice scripts for delivery over phones.

References
Books
Step by step XML
Author: Michael J. Young
Publication: Prentice-Hall of India Private Ltd.
XML in Record Time
Author: Natanya Pitts
Publication: BPB publications
SAMS Teach Yourself XML in 21 days
Authors: Simon North and Paul Hermans
Publication: Techmedia
Professional XML databases
Authors: Kevin Williams and other Group of authors
Publication: Wrox Press
Web references
http://www.w3.org/ XML/
http://www.w3schools.com/

Java overview

The application level safety features of Java make it possible to develop new
kinds of applications not necessarily feasible before. A web browser that implements the
Java run-time system can incorporate Java applets as executable content inside the
documents. This means that web pages can contain not only hypertext information but
also full-fledged interactive applications. The added potential for use of WWW s
€normous.

A user can retrieve and use software simply by navigating with a web browser.
Formerly static information can be paired with portable software for interpreting and
using the information. Instead of providing some data for a spreadsheet, for example, a
web document might contain a fully functional spreadsheet application embedded within
it that allows users to view and manipulate the information.

Other main features of Java include, |
¢ Platform independent
e Compiled and interpreted
e Complete and portable
e Object oriented
e Safety of design
o Exception handling

e Multithreading

XML Overview

eXtensible Markup Language (XML) is subset of the Standard Generalized
Markup Language (SGML) defined in ISO standard 8879:1986 that is designed to make
it easy to interchange structured documents over the Internet. XML files always clearly
mark where the start and end of each of the logical parts (called elements) of an
interchanged document occurs. XML restricts the use of SGML constructs to ensure that
" fall back options are available when access to certain components of the document is not
currently possible over the Internet. It also defines how Internet Uniform Resource

Locators can be used to identify component parts of XML data streams.

By defining the role of each element of text in a formal model, known as a
Document Type Definition (DTD), users of XML can check that each component of
document occurs in a valid place within the interchanged data stream. An XML DTD
allows computers to check, for example, that users do not accidentally enter a third-level
heading without first having entered a second-level heading, something that cannot be
checked using the Hyper Text Markup Language (HTML) previously used to code
documents that form part of the World Wide Web (WWW) of documents accessible
through the Internet.

However, unlike SGML, XML does not require the presence of a DTD. If no
DTD is available, either because all or part of it is not accessible over the Internet or
because the user failed to create it, an XML system can assign a default definition for

undeclared components of the markup.
XML allows users to:

o bring multiple files together to form compound documents

o identify where illustrations are to be incorporated into text files, and the format
used to encode each illustration

« provide processing control information to supporting programs, such as document

validators and browsers

« add editorial comments to a file.
It is important to note, however, that XML is not:

o a predefined set of tags, of the type defined for HTML, that can be used to
markup documents

« astandardized template for producing particular types of documents.

XML was not designed to be a standardized way of coding text: in fact it is
impossible to devise a single coding scheme that would be suit all languages and all
applications. Instead XML is formal language that can be used to pass information about
the component parts of a document to another computer system. XML is flexible enough
to be able to describe any logical text structure, whether it be a form, memo, letter, report,

book, encyclopedia, dictionary or database.
The components of XML

XML is based on the concept of documents composed of a series of entities.
(Entity' is the English spelling of the French word “entité', the Teutonic equivalent of
which is ‘thing'. Those familiar with modern programming techniques will be probably
be more comfortable using the word "object'. All these terms are synonymous.) Each
entity can contain one or more logical elements. Each of these elements can have certain
attributes (properties) that describe the way in which it is to be processed. XML provides
a formal syntax for describing the relationships between the entities, elements and
attributes that make up an XML document, which can be used to tell the computer how it

can recognize the component parts of each document.

XML differs from other markup languages in that it does not simply indicate
where a change of appearance occurs, or where a new element starts. XML sets out to
clearly identify the boundaries of every part of a document, whether it be a new chapter, a

piece of boilerplate text, or a reference to another publication.

To allow the computer to check the structure of a document users must provide it
with a document type definition that declares each of the permitted entities, elements and

attributes, and the relationships between them.
How is XML used?

To use a set of markup tags that has been defined by a trade association or similar
body, users need to know how the markup tags are delimited from normal text and in
which order the various elements should be used in. Systems that understand XML can
provide users with lists of the elements that are valid at each point in the document, and
will automatically add the required delimiters to the name to produce a markup tag.
Where the data capture system does not understand XML, users can enter the XML tags
manually for later validation. Elements and their attributes are entered between matched
pairs of angle brackets (<. . .>) while entity references start with an ampersand and end

with a semicolon (&. . . 7).

Because XML tag sets are based on the logical structure of the document they are
somewhat easier to understand, and remember, than physically based markup schemes of

the type typically provided by word processors

Well-Formed and Valid XML Documents

An XML document that conforms to the structural and notational rules of XML is
considered well-formed. A well-formed XML document does not have to contain or
reference a DTD, but rather can implicitly define its data elements and their relationships.

Well-formed XML documents must follow these rules:

e The document must start with the XML declaration <?xml
version="1.0">

o All elements must be contained within one root element

« Elements must be nested in a tree structure without overlapping

« All non-empty elements must have start and end tags

Well-formed XML documents that also conform to a DTD are considered valid.
When an XML document containing or referencing a DTD is parsed, the parsing
application verifies that the XML conforms to the DTD and is therefore valid, which
allows the parsing application to process it with the assurance that all of the data follows
the rules defined in the DTD. When storing data from an XML document in a database,
the DTD can be used to validate its structure ensuring its data elements will map to the
corresponding columns in the database table. If an XML document is generated by
reading data from the database and constructing the XML based upon its schema, the
resulting XML document will be implicitly valid. By design, it will conform to the

underlying table structure that generated it.

XML in Internet Applications
There are many potential uses of XMI. in Internet applications. Two of the most
compelling uses that involve database applications are customizing the presentation of

data and exchanging business data among applications.

XML enables customized presentation of data for different browsers, devices, and
users. By using XML documents along with XSL stylesheets on either the client, middle-
tier, or server, you can transform, organize, and present XML data tailored to individual
users for a variety of client devices, including graphical and non-graphical Web browsers,
personal digital assistants (PDAs) like the Palm Pilot, digital cell phones, and pagers,
among others. In doing so, you can focus your business applications on business
operations, without concern for the kind of output devices that will present the data, now
or in the future. Using XML and XSL also makes it easier to create and manage dynamic
Web sites. You can change the look and feel simply by changing the XSL stylesheet,
without having to modify the underlying business logic or database code. As you target

new users and devices, you can simply design new XSL stylesheets as needed.

XML and Databases Overview

There are many reasons why we might wish to expose our database content as
XML, or to store our XML documents in the database.

One obvious advantage to XML is that it provides a way to represent structured
data without any additional information. Because this structure is inherent in the XML
document rather than needing to be driven by an additional document that describes how
the structure appears as wee do with, say, a flat file, it becomes very easy to send
structured information between systems. Since XML documents are simply text files,
they may also be produced and consumed by legacy systems allowing these systems to

expose their legacy data in a way that can easily be accessed by different consumers.

Another advantage to the use of XML is the ability to leverage tools, either
available, or starting to appear that uses XML to drive more sophisticated behavior. For
example XSLT may be used to style XML documents, producing HTML documents,
WML decks, or any other type of text document. XML servers such as BizTalk allow
XML to be encapsulated in routing information, which then may be used to drive

documents to their appropriate consumers in our workflow.

Data serialized in an XML format provides flexibility with regard to transmission
and presentation. With the recent boom in wireless computing, one challenge that many
developers are facing is how to easily reuse their data to drive both traditional
presentation layers (such as HTML) and new technologies such as (such as WML-aware
cell phones). XML provides a great way to decouple the structure of data from exact
syntactical presentation of that data. Additionally, since XML contains both data and
structure, it avoids some of the typical data transmission issues that arise when sending

normalized data from one system to another.

One caveat to remember is that, at least at this time, relational databases will
perform better than XML documents. This means that for many uses, if there are no

network or usage barriers, relational databases will be a better home for our data than

XML. This is especially important if we intend to perform queries across our data — in
this case a relational database is much better suited to the task than XML documents
should be.

If we imagine that we are running an e-commerce system and that we take orders
as XML, perhaps some of information needs to be sent to the some internal source (such
as customer service department) as well as to some external partner (an external service
department). In this case we might want to store past customer order details in a relational
database but make it available to both parties, and XML would be the ideal format for
exposing the data. It could be read no matter what language the application was written or
what platform it is running on. It makes the system more loosely coupled and does not

requires us to write code that ties us to either part of the application.

Clearly, in the case where numerous users (especially B2B and B2C) need

different views of same data, the XML can provide a huge advantage.

XML Parsers Overview

The XML recommendation assumes that there is a separate software module,
called the processor or the parser that converts the physical content of the document into
a data structure or a sequence of events and callbacks. The output of the processor is
made available to a larger application.

The purpose of parsing an XML document is to make some interfaces available to
an application that needs to make use of the document; using those interfaces, the
application can inspect, retrieve, and modify the document’s contents. The XML parser
thus sits between an XML document and an application that uses it.

The interactions between the processor and the application are codified in two
specifications: Document Object Model (DOM) and Simple API for XML (SAX).

To process an existing document, you need an “input source” that delivers the
document’s contents. Once an input source is in place, the lexical analyzer can convert its
sequence of characters into a sequence of tokens, and the parser can get to work. The
application that uses that uses the parser wants to access various components of the
document for the purpose of displaying or modifying or rearranging them.

Simple API for XML (SAX)

Here, we usually don’t know or care how the parsing process unfolds and in what
order lexical analysis or production rules are applied. However, we can visualize that
process as a steady progression through the text that sends notifications of certain
important events: the document has stated, an element has started, an element has ended,
a character sequence between two elements has been found, and so on. SAX provides
standard names for callback functions that are triggered by these events. Writing a SAX
application mostly consists of implementing these callbacks.

When you use SAX, you have to think in terms of an unfolding process, a sweep
through the text to be parsed. If you come across an element or an attribute list that you
want to use later, you have to save a persistent reference to it, because it is not yet part of

any data structure.

Document Object Model (DOM)

By contrast, DOM is all about a data structure: the result of parsing an XML file
is not the emission of events (a la SAX), but a generic object tree.
COMPARISION

Because the parser reports events as it visits different parts of the document, it
does not have to build any internal structure. That reduces the strain on system resources,
which makes the parser attractive for large documents. For XML documents received as
continuous streams, an event-based API is the only choice.

The DOM API, on the other hand, follows a treelike construct. Elements have
parent-child relations with other elements. With this API, the parser builds an internal
structure such that an application can navigate it in a treelike fashion. DOM allows an
application to have random access to the tree-structured document at the cost of increased

memory usage.

XML DOM Parser

The DOM recommendation defines an API (Application Programmer Interface)
for the description and manipulation of HTML/XML documents. It is said to be an
“Object Model” because it describes an object view of the components of the document.

The DOM specification itself only defines the interfaces that will be used to
represent an XML document, by presenting one abstraction for each of the components of
a document.

DOM History

Back in the early days of Web, people started to realize the need to manipulate the
content and presentation of HTML pages on the client side. This involved the creation of
scripting languages that could manipulate the document, and of course, some program-
accessible representation of the document itself. As is usual in polarized markets with
time constraints, the first approach to the problem was the creation of proprietary,
browser-specific solutions. Both Netscape and Microsoft came up with their own “Object
Document Model”.

The DOM is the result of standardization of a common document view of
HTML/XML documents. The uses of DOM are not restricted to Web browsers and the
current recommendation (Level 2) includes interfaces not only for HTML but also for
CSS, stylesheets, user inteface events, and XML.

Features of DOM

e The result of parsing an XML document is an object tree.

) Beforé you are able to see the content of even the first element, the whole document
is loaded into the memory.

o The object structure reflects the view of your XML file as a document object, not as a
domain-specific object.

e You can easily go back and forth in the tree, visiting elements and attributes more
than once.

e The process of manipulating your XML is now based on the traversing and
manipulation of objects.

e Whether or not this model of processing is better depends on the problem at hand.

DOM Structure

DOM interfaces are grouped in eight categories:

Core interfaces.

HTML.

Views.

Stylesheets.

CSS.

Events.

Traversal.

Range.
Core‘ DOM Interfaces
Node

Tt defines the set of methods necessary to navigate, inspect, and modify any
node(e.g. getChildren, removeChild, getFirstChild).
Element

It contains methods to access and manipulate the name and attributes of the
clement, as well as the inherited methods of the Node interface.
Attr

It represents an attribute/value pair. Attr objects are not considered subnodes of
the tree but rather mere attributes of the element in which they appear.
Document

It serves a dual purpose: first, it represents the whole XML document and is
therefore the root of the DOM tree. Second it provides the factory methods used to create
elements and attributes programmatically.

Definitions, Acronyms and Abbreviation

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables
programmatic access to its elements and attributes. The DOM object and its interface is a
W3C recommendation. It specifies the Document Object Model of an XML Document
including the APIs for programmatic access. DOM views the parsed document as a trec

of objects.

Document Type Definition (DTD)
A set of rules that define the allowable structure of an XML document. DTDs are
text files that derive their format from SGML and can either be included in an XML

document by using the DOCTYPE element or by using an external file through a
DOCTYPE reference. |

Element

The basic logical unit of an XML document that may serve as a container for
other elements as children, data, attributes, and their values. Elements are identified by

start-tags, <name> and end-tags</name> or in the case of empty elements, <name/>.

eXtensible Markup Language (XML)

An open standard for describing data developed by the W3C using a subset of the
SGML syntax and designed for Internet use. Version 1.0 is the current standard, having
been published as a W3C Recommendation in February 1998.

EzXMLSpy
The Software that is being developed.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves
as the basis of the World Wide Web.

Java

A high-level programming language developed and maintained by Sun
Microsystems where applications run in a virtual machine known as a JVM. The JVM is
responsible for all interfaces to the operating system. This architecture permits developers
to create Java applications and applets that can run on any operating system or platform
that has a JVM.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through
the SQL. JDBC drivers are written in Java for platform independence but are specific to

each database.
Java Developer's Kit (JDK)

The collection of Java classes, runtime, compiler, debugger and usually source
code for a version of Java that makes up a Java development environment. JDKs are

designated by versions, and Java 2 is used to designate versions from 1.2 onward.
Java virtual machine (JVM)

The Java interpreter that converts compiled Java byte code into the machine

language of the platform and runs it.
Parser

In XML, a software program that accepts as input an XML document and

determines whether it is well formed and optionally, valid.

Product

EzXMLSpy
Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

Supplier

Organization for which the developer is developing the product.
User

The person who uses EZXMLSpy to generate valid XML documents from the
database.
Valid

The term used to refer to an XML document when its structure and element
content is consistent with that declared in its referenced or included DTD.

Well-formed

The term used to refer to an XML document that conforms to the syntax of the
XML version declared in its XML declaration. This includes having a single root

element, properly nested tags, and so forth.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the
World Wide Web. It is located at http://www.w3c.org/.

23 -
w2 Conn

SH

