FINSWITCH
PROJECT WORK DONE AT
ELIND COMPUTERS (P) LIMITED, -
BANGALORE.

PROJECT REPORT
SUBMITTED IN PARTIAL FULFILLMENT OF TIHE
REQUIREMENTS FOR THE AWARD OF THE DEGREL Ol
M.Sc [APPLIED SCIENCE| SOFTWARE ENGINEERING
O BHARATHIAR UNIVERSITY, COIMBATORE.
SUBMITTED BY
R.VISHNU PRAKASH
REG NO. 993750100

UNDER THE GUIDANCE OF

External Guide Internal guide
Mr. B.Kingshuk Mrs. Devaki

ELIND Computers, Dept. Of CSE.,
Bangalore, Coimbatore — 6

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE — 641 006
MAY 2002 - AUG 2002

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY

{Affiliated to Bharathiar University)
COIMBATORE — 641 602
SEPTEMBER — 2002
CERTIFICATE

This s to certify that the project entitled

FINSWITCH

DONE BY

R.VISHNU PRAKASH
REG NO. 993750100

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF
M.Sc [Applied science] SOFTWARE ENGINEERING
OF BHARATHIYAR UNIVERSITY

Sl et
_ .) - P /;_\“-3 K

Professor and HO gl}h Internal Guide
i . X L. o~ /L, e
Submitted to University Examination held on XKoL

1\ 9& vfzg(ﬂ’ '

/Llntemal anml er E gl nal 1 Kamincr

elind %

Elind Computers Private Limited
4032, 100 Feet Road, Indiranagar, Bangalore -550 038. INDIA Tel: <91-80-5216767 Fax: +91-80-5216761

September 20, 2002

CERTIFICATE

This is to certify that Vishnu Prakash (VII Semester MSc, Kumaraguru Coliege of

Technology, Coimbatore) was invoived in the project titled ™ FinSwitch” at Elind

Computers Private Limited.

Suman Joshi
Manager - HR

DECLARATION

[hereby declare that the project entitled “FINSwitch™ submitted 1o Bharathia:
University as the project work of Master Of Sofiware Engineering Degree. is a record of
original work done by me under the supcrvision and cutdance ol Mr.Kingshuk
Bandyapadhyay. Senior Member Technical, Elind Compuders. Bangalore and
Mrs.Devaki Senior Lecturer. Depurtment of Computer Science and Engincering,
Kumaraguru College of Technology, Coimbaiore and this project work has not found the
basis for the award of any Degree/Diploma/Associate ship/Fellowship or similar titie te

any candidate of any University.

Place: Coimbatore
Date: (Vishnu Prakash.R)
Reg. No.9937s0100

Countersigned By

(Internal Guide)

DEDICATED TO MY EVER LOVING PARENTS

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

['express my profound respect and sincere gratitede to Dr. KiK. Padmanaban PhD.
Principle, Kumaraguru College of lTechnology, Coimbatore, for providing me an
opportunity o undergo the Msc [APPLIED SCIENCE SOFTWARIS ENGINEERING|

Course and thereby this project work also.

I'record myv sincere thanks to Dr. S.Thangaswamy PhD. flead of the Departinent.
Computer Scicnce and Engineering, Rumaraguruy College of Technology, tor allowin

0
=

me to take up the project at Elind Computers Private Linited banyalore.

I's my privilege to express my deep sense of gratitude and profound thanks to
Mr.Mangal Das Shetty, Chief Executive Officer. //ind Compuicrs private Limiied.

Bangalore, for having allowed me 1o carry out the project at their esteemed organization.

Gratitude will find least meaning without a mention to my guide Mrs. S.Devaki BE
MS. Assistant professor, Depurtment of Computer Science and Ingincering,
Kumaraguri College of Technology, who has guided me with her valuable suggestions

and constant motivations during my project work.

Words are boundless for me to express my deep sense of gratitude and profound
thanks to Mr.Kingshuk Bandyapadhyay, Scnior Member Technical and all my
associates at Llind Computers, Bangalore for all their kind guidance and encouragement
towards my project work. I am happy that | was able to give shape to their novel ideas (o

an extent.

Finally. this acknowledgement will not achieve its complete form if | dont
remember my parent’s sacrifices. Without their constant moral support. motivations and
kind encouragements, | could not have channeiised my carecr 1n the ficld of Computer
Science.

Vishnu Prakash.R

PROJECT ABSTRACT
___—_——4——*———'**——_‘__———-;—'—__'_-—_—'———_—————_-

PROJECT ABSTRACT

The project entitlied “FINSwitch™ is developed for Elind Computers Private

f.imited.

FINSwitch. a powerful and extensible, multi-platform and multi-nrotocol
messaging platform tor securitics trading networks developed by Elind. FINSwitch s an
mtegral component of Elind’s Straight Through Processing (STP) product ofterings that

offers products across the securities trade cvele

FINSwitch is a financial messaging solution that serves as a messaging layer for
financial institutions across the securities chain (buy-side. scll side. execution
destinations and post-trade intermediarics). FINSwitch plays the role of a messaging,

translation and routing of data.

FINSwitch supports the translation and routing of bi-directional message {lows
wheremn messages emanating in application proprietary formats arc converted 10
FIX/AFIXML and messages based on FIX/FIXML are converted to the pertinent
application APIL. The direction (routing) of message flows intelligently. for both inbound
and outbound messages and between internal applications is a core capability of the

product.

CONTENTS

h

CONTENTS

PREFACE

1.1 INTENDED AUDIENCE

1.2 PURPOSE

1.3 ORGANIZATION PROFILE

1 4 PROGRAMMING ENVIRONMENT
1.4.1 Hardware & software Configuration
1.4.2 Description of the Software

1.5 ORGANIZATION OF THE DOCUMENT
1.5.1 Text Conventions
1.5.2 Abbreviations and Notations

INTRODUCTION TO FIX

2.1 A BRIEF LOOK AT THE FIX PROTOCOL
Message Format

—
—

Communcation/Trasport Layer
Session Layer
Application Layer

[T NG T (NG I o]
Te Lo b0

INTRODUCTION TO FINSWITCH

SUPPORTED PLATFORMS
MESSAGE PROTOCOL SUPPORT
TRANSPORT PROTOCOL SUPPORT
PROGRAMMING LIBRARY SUPPORT
MONITORING SUPPORT
EXTENSIBILITY

L Ly L L L) L

oy B B —

FINSWITCH ARCHITECTURE

4.1 TRANSPORT LAYER
4.1.1 Built-in Reconnects
4.1.2 Remote Management and monitoring
4.2 SESSION MANAGEMENT LAYER
42.1 Pluggable interface
422 Remote monitoring
4.3 ROUTER
4.4 RUN-TIME VIEW

PROGRAMMING INTERFACES TO FINSWITCH

5.1 DEPLOYMENT SCENARIOS
5.2 AUTHENTICATOR

52.1 Where is it used

5.2.2 Relevant packages

9

17

18
18
8
18
18
1Y
{0
20

21

21

21

21

17

7 SAMPLE DEPLOYMENT SCENARIOS

8

9

10 SYSTEM IMPLEMENTATION & TESTING

5.3 FIXLOGINCREATOR
5.3.1 Where is it used
5.3.2 Relevant packages

FINSWITCH LIBRARY
6.1 PROGRGAMMING SCENARIOS
6.2 MESSAGE COMPOSER
6.2.1 Where itisused
6.2.2 How is it used
6.23 Relevant packages
6.3 MESSAGE VALIDATOR
6.3.1 Where it is used
6.3.2 How is it used
633 Relevant packages

6.4 SESSION
6.4.1 Where it is used
6.4.2 How is it used
6.4.3 Relevant packages

6.5 MONITORING
6.5.1 Where it1s used
652 How is it used
6.5.3 Relevant packages

7.1 SCENARIO 1
7.1.1 Description
7.1.2 How to implement

ADMINISTRATIVE MESSAGES

8.1 MESSAGE STANDARD HEADER
8.2 MESSAGE STANDARD TRAILER

8.3 LOGON MESSAGE

8.4 HEARTBEAT MESSAGE

8.5 TESTREQUEST MESSAGE

8.6 RESEND REQUEST MESSAGE
8.7 REJECT

8.8 SEQUENCERESET-GAPFILL MESSAGE

2.9 LOGOUT MESSAGE

TEST CASE

10.1 SYSTEM IMPLEMENTATION
10.2 SYSTEM TESTING

o]

a7

A

| I R i]
L

o =

to D 10 LD 1D

S R)

[l sRRee]

o

PSRN USTRUS T SR S0 T SN B I [O) S0 (]
e

Ll D 1 —

oy

PREFACE

1 PREFACE

This document, entitled, FINSwitch is a technical reference guide that accompanies the

L:lind FINSwitch software.

This section details the document conventions, tareet audience and how to go aboul
bl o

reading it.
1.1 INTENDED AUDIENCE
The audience for this guide is system integrators, developers and wser interface designers

responsible for writing adapters for FINSwitch to connect to host applications.

The readers of this guide are expected to have good understanding of Java Programming

language and FIX Protocol.

1.2 PURPOSE

This document presents a high-level functional and technical overview of FINSwitch

with an objective 10 acquaint readers with the product's {unctionality and capabilitics.

The document is aimed at the technology decision-makers at financial institutions
evaluating financial messaging solutions and other personnel involved with their

organization's STP initiative/project office.

This guide is designed to provide programming information related to FINSwitch

interfaces.

1.3 ORGANIZATION PROFILE

Elind delivers mission critical software products & solutions 1o the sccuritics &
related financial services industry. Its products automate the entire transaction chain by

providing order routing, order management, order matching, clearing & settlement &

depository solutions. Thesc products and solutions increasc operational efficiency and

minimize risks.

The Professionat Services Group within Elind specializes m business consultancy
and delivery of technology projects to the securitics industry and related financial

services sector.

With the implementation of two major overseas exchange contracts with Abujae
Stock Exchange. Nigeria and TradingLab. Milan, Flind has made an entry into the

international arena.

Today, Elind's products cover the entire transaction chain to suit the various needs
of stock exchanges, commodities exchanges, brokerage houses. clearing houses.
depositories and new generation marketplaces like ATS. ECNs, B2B exchanges and

financial portals.

Elind is headquartered in Bangalore with sales and support offices in Mumbai. New

York and London.

PRODUCTS

Elind's products and solutions cater to the securitics industry and related financial

services sector covering stock exchanges, ATS, ECNs, brokerage houses, primary

markets as well as negotiated trading. Built on robust technology, the producis can be
casily interfaced with customers’ existing systems. The products are built on open

platforms and are highly scalable and reliable.

[Elind's product offerings: ‘

ISTRIDE™ _Tra.dmg solution for equity and debt |
o i instruments !
: \Integrated clearing & settlement system ”
infinet C&S for equity, debt and derivative

instruments |

IATS STRIDE™ #An exchange system for Alternative W

[R]

jTrading Systems (ATS) ' ?

S |

An exchange solution for commoditics

COMM STRIDE
marketplaces

- ' Multi-exchange order routine and risk I
I'radePort™ g = ;
— managemcnt SYS“’“}HM., B

Web channel server W'hid‘l cnablcs _
Internet trading i
Web-based IPO (Initia) Public Offering) |
system with multiple allocation models

TradeilPort™

;IPO STRIDE™

IFINS witch™™ iMuti-protocol message engine

1.4 PROGRAMMING ENVIRONMENT

1.4.1 Hardware & software Configuration

System Requirements

The minimum system requirements, needed to install FINSwitch, are listed below.

Hardware Requirements

The recommended hardware for FINSwitch is as follows:

_CPU - Pentium [1I 5300 Mz or above
_Memory - 128 MB RAM

.20 GB HDD

32X CD ROM Drive

. Disk Storage — 20 MB free space

Software Requirements
Solaris 8 (Sparc)-
. Java run time environment - Sun JRE 1.3.1 03

. Databases - Oracle 8i using thin driver or HSQL Databasc 1.6.1

IMS - JMS server shipped with Sun Micro system’s J2EE reference implementation 1.3

(8]

[By combining Java technology with enterprisec messaging, the Java Messaging Service
(JMS) API provides a new, powerful tool for solving cmerpriise~compuiing problems.
The IMS APl improves programmer productivity by defining a2 common set of messaging
concepts and programming strategies that will be supported by all IMS technology-

compliant messaging systems.

Windows 2000 and Windows N1 4.0 scrvice pack 6 —
CJava run ume environment - Sun JRIZ 1.3.1 03

. Databases - Oracle 8i using thin driver. MSSQL Server 7.0/MSSQIL. Server 2000

ITMS - IMS server shipped with Sun Micro system’s J2EE reference implementation.

1.4.2 Description of the Software

Never before has any new programming language attracted so much atiention
and becomes so popularly so quickly. In the {irst vear of its existence. java took the web
by storm and became its adapted programming language. Since then, java has become the
language of choice for developing both applications and applets. and is used for both
business and consumer software development. The java phenomenon has captivated the
imaginations of programmers around the world and is leading a way towards the rext cra
of distributed application development. Java’s appeal lies in its simplicity, its familiarity.
and careful selection of features that it includes and excludes. A government comity or a
clique of academics did not design java. Its shares the spirit with ¢ more than any
syvntactical similarities. 1t is programming language that was designed by programmers

for programmers.

'The reason that so much attention has been paid to java is summarizec in the

following list. Java allows the developer to do

v" Write robust and developer to do

v Built an application on almost any platform and run that application on

any other supported platform without recompiling the code

v Distribute the application over the network in a secured fashion.
v" Java is Object Oriented
v" Java is platform independent
v' Java is safe
v" Javais reliable
SECURITY

Java provides an excellent security towards the web applications by providing a
“pirewall” between networked application and your computer. The ability to download
applets with confidence that no harm will be done and that no security will be breached s

considercd by many to be the single most important aspect of java.

PORTABILITY

Many types of computers and operating systems are in use throughout the world
and many are connected to Internet. For programs to be dynamically downloaded to ali
various types of platforms connected to Internet, some means of generating portable
executable code is needed. Java’s solution to these two problems is both clegant and

efficient.

JAVA’S MAGIC: THE BYTECODE

The kev that allows Java to solve both the security and the portability problems just
described is that the output of a Java compiler is not executable code. Rather, it is
bytecode. Bytecode is a highly optimized set of instructions designed to be exccuted by
the java run-time system, which is called the Java Virtual Machine (JVM). That is, in 118

standard form, the JVM is an interpreter for bytecode. Translating a java program into

bytecode helps makes it much easier 10 run a program in a wide varicty of environments.
The reason is straightforward: only the JVM is to be implemented for cach platform.

Onee the run-time package exists for a given system, any java program can run on ‘L.

ARCHITECTURAL NEUTRAL

Java language follows the principle of “write once: run anvwhere, any time,

Jorever” To a great extend this goal was accomplished.

DISTRIBUTED

Java is designed for the distributed environment of the Internet. because 1t handles
TCPAP protocols. The concept of Remote Method Invocation (RMI) brings unparalleled
level of abstraction to client/server programming.

DYNAMIC

Java programs carry with them substantial amounts of run-time type informaton
that is used to verify and resolve accesses to objects at run-time. This makes it possible 1o

dynamically link code in a safe and expedient manner.

MULTI-THREADED

Java was designed to meet the real-world requirement of creating interactive.
networked programs. To accomplish this, Java supports multithreaded programming.
which allows you to write programs that do many things simultaneously. The Java run-
time system comes with an elegant yet sophisticated solution for multiprocess
synchronization that ¢nables you to construct smoothly running interactive systems.
Java's easy-to-usc approach to multithreaded allows you to think about the speciiic

behavior of your program, not the multitasking subsystem.

NETWORKING

A network is like an electric socket. Network sockets are TCP/IP packets and IP

address. Internet protocol is a low level routing protocol that breaks data into small

packets and sends them to address across a network. Transport control protocoi 1s @
higher-level protocol that manages a robustly string together these packets, sorting and

retransmitting then as necessary.

1.5 ORGANIZATION OF THE DOCUMENT

‘The document is organized 1n the following manner

Table: Organization of the Document _ B -
LQ@pte ! Description]
\7E@@cuon to FIX Describes FIX protocol |
I Introduction 1o Introduces you to FINSwitch and ptowdcs information about !
| the features supported in this release |

|

| FINSwitch

| FINSwitch | Introduces you to F INSwitch architeclure
| Architecture {

_ATrChUeeliie [— —
| Programming Deals with programming interfaces o I INSwitch \
| interfaces to |

| FINSwitch |
i FINSwitch Library Deals with how FINSwitch Library aliows the dcvclopgr o
‘ develop FIX applications using a proolamrnmgD interface.

. S—
i Sample deployment \ Deals with some sample deployment scenarios N
| Test Cases ___74_1_ lesting of Administrative Messages i

1.5.1 TEXT CONVENTIONS

The document conventions followed in this manual are listed below:

Table: Text Conventions

[T o

LFom‘ Field : ERER J
| Ttalic Table Title and Image Capt1ons]
| Bold Titles |
|—Normal moles o) ~ »

1.5.2 ABBREVIATIONS AND NOTATIONS

This section describes the various Abbreviations and Notations used in the manual.

“Abbreviation |De “
FIX Fmanc1al Information eXchange 1
FIXML Financial Information eXchange Markup Languagc]
J2EE Java 2 Enterprise Edition o]

JDK Java Development Kit o 7 H

IMS Java Messaging Service R B 7]‘
JRE - | Java Runtime Environment __ - i ‘
IMX Java Management cxtension _ B |
JjDBC Java Database Connectivity _7 _7) 7_ ,, o
SSL | Secure Sockets Layer _ _ |
OMS Online Marketing Stratcgircg” f _ - i
ECN | Explicit Congestion NOtiﬁCﬂrljl__l:_)__I;l:r 7 B |
101 | Indication Of Interest) o

ﬁ_bZ)/\kl’__:;J\ Sxmplc Object Access Protocol 77 _ B "
XML eXtended Markup Language o

i LDAP Ll@i Weight Directory Apphcau(m N :
ATS I Alternative Trading Systems

INTRODUCTION TO FIX

e ——————

2 INTRODUCTION TO FIX

The Financial Information Exchange (FIX) protocol 1s a message standard developed o
facilitate the electronic oxchange of information related (o securities transactions. 1 is
intended for use between trading partners wishing to automate their pre-trade. trade. post-

trade and settlement instruction message flows.

FIX has cvolved over a period of time from supporting US domestic equity trading
{version 3.0) to cross-border Collective nvesiment Vehicles (CIVs). Dertvatives. 1ixed

[ncome, and Forcign Exchange trading (version 4.3).

FIX is now used by a variety of firms and vendors. It has become the inter-firm
messaging protocol of choice in the pre-trade activities involving [nstitutional
Investors/Fund Managers, Brokers. lixchanges, ECN's and ATSs. FFIX has helped
market participants reduce the clutter of unnecessary telephone calls and scraps of paper.

and facilitates targeting high quality information to specitic individuals.

The FIX protocol specification is maintained by the FIX Technical Committee. which
receives its direction from the Internatiopal Steering Commitiees. the Global Steering
Committee, and the various Working Groups comprised of industry participants such as

fund managers, brokers, exchanges, and vendors.

The FIX Website. http://www.fixprotocol.org, serves as the central repository and
authority for all specification documents. commitiee calendars. discussion f{orums.

presentations. and everything FIX.

2.1 A BRIEF LOOK AT THE FIX PROTOCOL

The different elements of the FIX protocol are:

+ Message Format

e Communication/Transport Layer
s Session Layer

e Application Layer

2.1.1 Message Format

o The general format of a FIX message is a standard header followed by the
message body and terminated with a standard traifer.

e FIX protocoi currently exists i IWO synlaxes

<Tagr=<valuczsynlax

Each message is constructed of a stream of <lagz=<valuce> fields with a flield delimiter
between fields in the stream. The non-graphic. ASCIL "SOH™ (*Start oi Hleader

2001 hex:0x01. referred to n this document as SO is used as ficld delimiter.
I'IXML syntlax

© FIXMI. uses XMI, as its vocabulary for creating FLIX messages.

> Focuses primarily on the FIX Application Layer and does not concern
itsel{ with the sesston Layer.

» Can be encapsulated within the FIX Session Protocol or within another

protocol like SOAP.

e Apart from a few exceptions, ficlds can be in any order.

e Ficlds can be part of a repeating data group. A repeating group encapsulates one
or more repeating instances of the group of fields defined for the group, including
nested repeating groups.

e Ficlds can belong to one of many defined types. .o, inl float, char. Boolean.
data, clc.

o [ach message defined in the protocol satisfies a business function and is made up

of a collection of option-al and mandatory licids.

e Messages are cither session related or application related.

10

2.1.2 Communication/Transport Layer

FIX neither demands a single type ol carrier (e.g., it will work with leased lines, frame
relay, Internet, elc), nor a specific security protocol. It [caves many of these decisions o
the individual firms that are using it. It would be pertinent to mention that TCP/IP 1s the

most widely implemented communications opiion in the FIX domain.

2.1.3 Session Layer

The protocol is defined at two tevels: session and application. The session level s
concerncd with the delivery of data. A F1X session is defined as a hi-dircctional stream ot
ordered messages between two parties within a continuous sequence number series. Some

characteristics are:

A unigue sequence number per session, for ensuring ordered delivery identifics all

IFIX messages.

e All FIX messages have a body length and checksum field for cnsuring data
mtegrity.

o [ields can be encrypted and also present as plain text. Uscful for validation and
verification.

e Automatic recovery is buill into the protocol

e Supported by messages likc Heartbeat, Logon, Logout, Reject, Resend

2.1.4 Application Layer

The exchange of business related information is accomplished through the passing of
application messages. The different application messages defined in the protocol fall into

the following categories:

o Pre-Trade - These are messages that are typically communicated prior wo the

placement of an order. E.g. 101, News. Quote, Market Data, cte.

11

« Orders and Executions — These are messages that are used to place or amend
orders and communicate the results and status of orders. IE.g. New Order Single,
Iixceution Report (Trade), Order Cancel Request, cte.

e Post-Trade — These are messages that are typically communicated aler the
placement and successful execution of an order and prior to settlement. Tig.

Allocation, Settlement Instructions, cte.

INTRODUCTION TO FINSWITCH

Ml

3 INTRODUCTION TO FINSWITCH

FINSwitch is a financial messaging solution that serves as a messaging layer for financial
istitutions across the securities chain (buy-side, sell side. exceution destinations and
post-trade intermediaries). FINSwitch plays the role of a messaging. translation and
routing intermediary between a financial institution's trading/back office applications that
communicate through proprictary APL and syslems that use FiX, FIXMIL protocols.
These FIX/FIXML systems could be applications within an organization {(order routing
caleways, Crossing engines ete) and external destinations (broker-dealers, mvestment

managers, post-trade intermediaries, execution destinations ete) working on FIN/EIXMLL

FINSwitch supports the translation and routing of bi-directional message flows wherein
messages emanating in application proprictary formats are converted to FIX/FIXMI, and
messages based on FIX/FIXML are converted to the pertinent application APL The
direction (routing) of message flows intclligently, for both inbound and cutbound

messages and between internal applications 1s a core capability of the product.

The forthcoming releases for the product offer high protocol extensibility with support
for SWIFT 1SO 15022, FpML, OFX & 1IFX. Protocol adaptors for conncctivity to the
virtual matching Utilities (VMUs) - OMGEO and GSTP are also planned in the future

rcleases.

FINSwitch is a FIX Engine written in 100% pure java programming Janguage. It
currently supports FIX protocol versions 4.2 and 4.3. This section gives an overview ol

the features in the current release from the following aspects:

» Supported Platforms
e Message Protocol Support
e Transport Support

¢ Programming Library Support

e Monitoring Support

e Extensibility

3.1 SUPPORTED PLATFORMS

The current release of FINSwitch has been tested on the following platforms:

{ JRE version - | Operating System Database and JDBC Driver
L1303 from Sun Solaris 2.8 on Sparc Oracle 8iwith thin driver
| Microsystems hardware. HSQL 16,1
131 03 from Sun Windows 2000 Service Pack | Oracle 8i (8. 1.7)with thin
Microsystems 2 driver

! MS SQLServer 7.0 with
JDBC-QDBC driver from
Sun Microsysiems

1.3.0 03 from Sun Windows NT 4.0 Service Oracle 8i (8. 1.7)with thin
% Microsystens Pack 6 driver

MS SQLServer 7.(with the
JDBC-QDBC driver from

i Sun Microsystems

3.2 MESSAGE PROTOCOL SUPPORT

The current reiease of FINSwitch provides complete session level and application level

message support for FIX.4.2 and FIX.4.3.

3.3 TRANSPORT PROTOCOL SUPPORT

Current transport protocol support include the following:

Simple TCP/IP based communication
SSL V3 using JSSE 1.0.2 from Sun Microsystems.

JMS 1.0.2 using Sun Microsystems reference implementation of JMS Provider.

Counterparties can communicate with FINSwitch using any of the abovc transport

mechanisms.

14

3.4 PROGRAMMING LIBRARY SUPPORT

The current release of FINSwitch comes with a Java library that can be used to build FIX
client and server applications.
The library provides Java classes to:
Compose complete FIX.4.2 and FIX.4.3 session and application level messages 1 Java.
e Validate FIX messages from a user defined XML message definition dictionary.
e Use F1X 4.2 or 4.3 session to build IFIX client or server.
‘The rest of the document will deseribe in detail how o use the library along with

programming examples.

3.5 MONITORING SUPPORT

FiNSwitch comes with Java Management Extension (IMX) based Managed Beans
(MBeans) to monitor the state of all FIX session and transport related objects within
FINSwitch. The current release of FINSwitch has been tested with Sun Microsystems’s
reference implementation of JMX server 1.0.1. FINSwitch ships with the reference
implementation’s JMX server and provides a browser based monitoring screen to display

the state of FIX sessions and transport related activities.

3.6 EXTENSIBILITY

To take into account the varied needs of an enterprise’s requirement of integrating a I'IX
cngine within its existing software infrastructure. FINSwitch has been developed in o
highly extensible manner. Its behavior can be altered and extended bv wriling custom
classes and hosting them within FINSwitch. The current release of FINSwitch allows

altering (i.c. plugging in custom implementations of) the following aspects:

e Authentication mechanism — By writing appropriate authentication class and
supplying it to FINSwitch.
e Message validation mechanism — cither by cxtending the supplied validation

mechanism or by developing new validation logic.

e New message support — By modifying the supplied XMI. based message
dictionary.
New host application protocol support - By writing a host application specitic

Dispatcher class and instructing FINSwitch to load it

The rest of the document will deseribe how each of the above aspects can be modilied.

16

FINSWITCH ARCHITECTURE

4 FINSWITCH ARCHITECTURE

FINSwitch architecture is based on open, industry standard Java and 12EL technologies
like JMS. This ensures that FINSwitch can be integrated into existing ' infrastracture by
leveraging the wide support basc available for Java-based products. Most subsystems
within FINSwitch provide a pluggable interface wherein custom classes can be loaded
and integrated within FINSwitch casily. For example, the Sceurity Manager module
within FINSwitch, used to authenticate a user, can be replaced with a customized
Sccurity Manager that leverages the existing security infrastructure 0 support. say.

LLDAP based authentication.

JDBC/Flat IDBC/Flat
file based file based
persistence per_s:stence
= XML Message S XML Message
Repository Repository
TCP - - | TP |
c Message c Message —
o vatidator Y Validator
E E
v)
= =
: :
c
g e s S [TssL |
> SSL = Session fae = Se5510N |mm— =
-1 c 5"‘\ < -
o] O " Q "
= = E2 [n I~
pu h a = a o
=] 7] cn = n
o QJ W O o J10] 8
u N B o & wn n
5 T C 2 o Composer s ‘ i
I amposer mo i
[Q - LY = IMS
= | IMS - = o = !
] o]
o L
= K=
% A
P Parser -« = Parser -
/ =1]
i RMI = = RMI
1 1
) . Logaging
Configuraticn Manager Licence
Manager (file based Manager
logging)

Logical View

i

4.1 TRANSPORT LAYER

This layer provides connectivity between FINSwitch and its clients. As indicated in the
above diagram the current release of FINSwitch supports TCP. SSL. IMS as transport
mecchanism.

The main features of the transport layer are:

4.1.1 Built-in Reconnects

The transport layer can detect a network failure and can attempt recovery. This ensures
that temporary network unavailability over a particular link does not bring down the

entire FINSwitch instance or disconnect all other clients.

4.1.2 Remote Management and Monitoring

The transport module provides IMX based Managed Beans that can be used o monitor

and manage the system from a remote browser-based console.

4.2 SESSION MANAGEMENT LAYER

This layer provides message parsing, validation and session management ability for a
particular message protocol. Multipic session management implementations (for each of
the supporied message protocols) can be loaded within FINSwitch. This enables support
for multiple message protocols In a single FINSwitch instance. The current release of
FINSwitch provides support for FIX 4.2 and 4.3, Message validation is driven by XML
definition of messages availabie in a message dictionary. Adding support for new
messages or custom tags will involve creating a new XML file containing the message

definition and adding it to the repository. The main features of the layer are:

4.2.1 Pluggable interface
By developing appropriate classes, support for custom message formats and protocols
used by legacy applications can be added. FINSwitch can be configured to usc these

classes before delivering a message to a host application

18

4.2.2 Remote monitoring

This subsystem provides JMX based managed beans that publish ail the fix session
events allowing a remote administrative console 1o monitor and detect any problems

within the system

4.3 ROUTER

The session management layer uses the router component 1o find out the
counterparty/host application to which an application message should be delivered. By
default. FINSwitch is installed with a FIX router that can identify a destination by
inspecting FIX message headers.

4.4 RUN-TIME VIEW

Transport i
Counter (IMS/TCP/ | 3| Moniger |ae—— |
Party SSL) Protocol: P1 i
’% ED um e e LM :
s 5 H
1 i Session manager queries i
i r router for counterparty/ i
2 registers itself at startup i
] . ;
o [H
3 i ’
1 :
E i Router
: g |
B 1 Tranformer
; (Pluggable)
£ B
i :
£ 1 i
F ; Session | |
v Manager
£ 1 . (can be FIX
[; Protocol: P2 § 5" istomer
%:-‘ k&’ Session)
é
I RMI/HTTP Monitorin R ;
Monitoring / Agent 9 Transport ;
Console ~ | =3 (IMX based) (IMS/TCP/ |
SsL)
Host
Application/
Counterparty

Run time view

19

The diagram above shows a run time snapshot of a single instance of FINSwitch where

1wo counterpartics are connected through FINSwitch.

The following are the steps during run ume:

1.

sl

N

0.

7.

Counterparty initiates a FIX scssion by connecting to FINSwitch via any
of the supported transport mechanisms

Depending on the transport end point the counterparty connecting o
FINSwitch creates a particular session manager for the counterparty

The session manager carries out the initial handshake requiree. by the
protocol along with any other session messages that the protocol demands
The counterparty sends a business application message that bas to be
delivered 10 another counterparty (or host application) connceted o
IFINSwitch.

The session manager finds the appropriate destination by querving the
router. The appropriate destination is another session manager acling on
behalf of the destination. This could be a session manager supporting the
same protocol. Or it could be a cusiom session manager specifically
written for that host

In case the two session managers speak different message protocols. an
appropriate message transformer can be embedded in the second session Lo
convert the counterparty message format into host specific message format

The message will be sent to the host application using its $ess101 manager

PROGRAMMING INTERFACES

5 PROGRAMMING INTERFACES TO FINSWITCH

5.1 DEPLOYMENT SCENARIOS

Some applicable deployment scenarios are mentioned before describing the usage of the

interfaces exposed by FINSwitch:

e FINSwitch fronts the order mapagement/trading/execution systeim (referred to as
the Host)., exchanging FIX messages with counterpartics (possibly supporting
multiple FIX versions). The Host system may be an OMS. an Exchange. LON.
ATS or an internal marketplace.

e The Host is a buy-side Institutional Investor, Broker/Dealer or Fund Manager who
would initiate connections to multiple sell-side/trading pariner destinations that
provide execution systems or accessing pools of tiquidity.

e The Host is a sell-side Exchange, ECN, ATS or Sctilement system that would
accept connections from other sell-side/buv-side/trading partner systems for

providing trade executions/market data/trade settlement and other facilitics.

5.2 Authenticator

The Authenticator is an interface exposed by FINSwitch for autbenticating users

connecting 1o the system.

5.2.1 Where is it used

FINSwitch comes with a default authenticator that validates a username/password with
the information stored in the FINSwilch participant databasc. Alternatively, IFINSwiich
can be configured to use an object that adheres to the Authenticator interface lor user
authentication. The implementation can refer to an cxisting databasc (RDBMS, LDAP,

etc) for this purpose.

21

5.2.2 Relevant packages

com.elind finswitch.processing. Authenticator;

com.clind.finswitch.protocol. ﬁx.exceptio11./\thhcnticationlixccpiion;

5.3 FIXLoginCreator

The FIXLoginCreator is an intcrface exposed by the FINSwitch for allowing Dispatcher
objccts representing an [nitiator session Lo create the Logon message to be sent o the
counterparty in the counterparty-specific fashion.

5.3.1 Where is it used

The FixLoginCreator is used by Dispatcher objects representing an initiator session 1o
create the Logon message to be sent to the counterparty in the counterparty-specific
fashion.

5.3.2 Relevant packages

com.elind. finswitch.processing. FixLoginCreator;

com.elind.finswitch.protocol fix.composer.FixMessag:

com.elind.ﬁnswitch.protocol.ﬁx.session.FixScssionlnfo;
com.elind.ﬁnswitch.protocol.ﬂx.session.FixCounterPar{ylnfo;

22

FINSWITCH LIBRARY

6. FINSWITCH LIBRARY

The FINSwitch Library is a suitc of components that allows the developers o develop
I'IX applications using a programming interface. It hides the complexities of the session
protocol {rom the developer so that the developer is [ree to concentrate on the actual

business message processing.

The FINSwitch Library is composed of the following functional blocks:

e Message Composer
e Message Validator
e Session

s Monitoring

6.1 PROGRAMMING SCENARIOS

Some applicable programming scenarios for the usage of the FINSwitch Library are

discussed below:

« Communicating with a trusting FTX server without going through a FIX session.
This is very tvpical of an organization with multiple front-ends linking to 2 central
OMS svstemn. via secure internal network, for executing orders at multiple
destinations

e A scrver application that serves as the gateway to an external market place via a
FIX connection. Translates between multiple internal formats to FIX and vice
versa, and validates all messages coming in and going out.

e A simple front-end order entry system, taking inputs from a trader, composes FIX
messages (optionally validates the messages) and forwards them to an exccution
system through a connection to an ECN. Receives executions and forwards them

to multiple back office systems for settlement

6.2 MESSAGE COMPOSER

The Message Composer encapsulates all the FIX 4.2 and 4.3 messages as Java objects
and allows the user 1o manipulate the values of the tags using simple mcthod calls on the
object without being aware ol the actual F1X tag id. it handles the formattng ot the
message object contents to FIX string and vice versa. [t also allows addition of

custom/user-delined tags into a message. as well as creation of custom messages.

6.2.1 Where is it used

The Message Composer can be used for FIX-cnabling Java-based client applicanons hike

Order ntry System/Trading Workstation/ete.

6.2.2 How is it used

The Message Composer is a set of packages, each of which support the creation off
messages specified as part of a particular FIX version. Currently there are two packages.
which support F1X 4.2 and 4.3 messages. All FIX 4.2 and 4.3 messages are subclasses of

Fixd2Message and Fixd3Message objects respectively.

The message objects provided are convenience classes hiding from the programmer the
intricacies of a FIX message and its rules of formatting. The repeating groups within I'IX
messages have also been modeled as objects and hence case programumer burder: in

understanding and coding thesc instances.

Pointers on how to usc these objects:

¢ (Create the message object (no-args constructor)

¢ Set the fields using the setter methods provided. Setter methods that take a
java.util.Collection object as argument are uscd to sct repcating groups within the
message.

e If the message defines a repeating group, then create the appropriate repeating

group object. Objects of name

Fix<vcrsi0n>Rg<Messachamc>_vf<cheatingGroupN ame> identify such
repeating groups. For ¢.g., Fix42RgAHocationMcssagcJ’ixcc is a repeating group
present in the Fix42AllocationMessage.

e Add cach repeating group instance o a java.mil.Colicction and use the setier
method 1n the parent message object to set the repeating group. For c.o.. use the
seibixec() method of the Fix42 AllocationMessage 10 s¢t the
Fix42ReAllocation _Exce repeating group collection.

e Usc the pack() method to calculate the body Tength and checksum for the message
once all the fields have been sct.

e Use the toSiring() method to extract the message s a FIX formatied string which
can then be communicated (o any FIX-aware application. There is an implicit cail
to pack() before the string is formatted.

o The toString() and pack() method call ensures that the cheeksum field 1s present

(adds it otherwisc).

in addition to using the message lypc specific message object (as deseribed above). the
developer may choose 10 use the Fix42Message/Fix43Message objcet itself, The

developer should be aware of FIX message formaiting specifics for doing so.

Additional pointers on using the Fix42Message/Fix43Message objeet tor creating the

messages:

e Creaic a Fix42Message/Fix43Message object with no-args constructor and use the
addTag() methods to add the tag id and its value

o Create the FixMessage object passing the message type &s argument.
Note:
a. ‘The BeginString ficld 1s populated by default and is always the first ficld.

b. The BodyLength and CheckSum felds are checked for when pack() or toString()

method is called and added if necessary.

25

6.2.2.1 Extending a Message

In addition to using the different message objects. therc may arisc a necessity to add
custom tags/ficlds to an existing message or create custom business/application messages
having both custom and existing FIX tags. The way to go about creating these messages

is described below.

6.2.2.2 Custom/User-defined Tag

User-defined tags can be added to an existing message by extending the particular

message composer class and adding the required field’s setter and getter methods.

6.2.2.3 Custom/User-defined Message

User-defined messages can be created by extending the base message class. Depending
upon the protocol version this will be either the Fix42Message or Fix43Message class.
By doing so, the new message assumes the default behaviors of a I'IX 4.2 or VX 4.3
message and builds on it. All the fields encompassed by the new message become setter

and getier methods.

6.2.3 Relevant packages

com.elind.finswitch. protocol.fix.composer.*;
com.clind finswitch.protocol.fix.composer.fix42.*;
com.elind.finswitch.protocol.fix.composer.fix43.*;

com.elind.finswitch.protocol.fix.samples.composer.*;

6.3 MESSAGE VALIDATOR

The Message Validator encapsulates the validating logic for FIX 4.2 and 4.3 messages as

Java objects and allows the user to influence the validation in a number of ways.

6.3.1 Where is it used

The Message Validator can be used for validating FIX messages and ensuring that the
contract with the trading partner/counterparty 1s adhered 1o vis-a-vis the messages

flowing between the two parties.

6.3.2 How is it used

The Message Validator 1s a sct of packages. cach ot which support the validation of
messages specified as part of a particular FIX version. Currently there are two packuages.
which support FIX 4.2 and 4.3 message validation. Both FIX 4.2 and 4.3 validators are

subclasses of the FixValidator class.

There arc a number of ways in which the validation of FIX messages can be influenced:
e By cditing the IFIX Message Definttion/Tag Definttion XML files (more on this
can be found here)
¢ Extending the default validator

e Creating a custom validator

6.3.3 Relevant packages

com.elind. finswitch.protocol. fix.validator *;
com.clind.finswitch.protocol.fix.validator.fix42 . *;
com.elind.finswitch.protocol.fix.validator.fix43 *;

k]

com.elind. finswitch.protocol.fix.samples.validator. *;

6.4 SESSION

Session encapsulates the logic of maintainming a FIX session with a counterparty. The FIX
4.2 and 4.3 Session related Java objects ensure ordered delivery (sequence numbers.
Resend Requests, and Sequence Reset messages) and message integrity (body length and
checksum). The Message Composer and Message Validator components arc used for
creation, manipulation and validation of FIX messages in accordance with the session-

level rules detined in the FIX 4.2 and 4.3 specifications. The user has a reasonably fine-

grained control over the working of the session and can customize certain behavioral
aspects of the component using the callbacks and interfaces provided for the same.
Support for Initiator and Acceptor sessions with mechanism for dehining custom

quthentication mechanisms are also provided.

6.4.1 Where is it used

[{ can be used for mainiaining a session with FIX-speaking counterpartics and ensuring
the ordered delivery and integrity of the messages exchanged. [Ucan be used by a buy-
side counterparly to lalk to a selleside counterparty for cxecuting orders and
receiving/sending 1017s, or by a sell-side counterparty accepting FIX connections from
buy-side counterpartics for trade executions, market data. trade seitlement. cte. baery
FIX session has a one side initiating the first connection and logon, known as the

Initiator, and the other side waiting for connections, known as the Acceptor.

6.4.2 How is it used

The Session package with support for FIX 4.2 and 4.3 sessions expose d callback
interface that allow the embedding application to react 0 the callbacks in @ business-
specific fashion. Since the actual transport mechanism 15 not dictated by the session. the
embedding application has more freedom in choosing an appropriatc mode of ransport
for FIX-connectivity 1o other counterparties. The programming model for Initiator and
Acceptor sessions is the same except for some startup activities specilic to an Intuator

and an Acceptor.

The different callback interfaces used by the session are described below:
a. FixSessionHandler

Allows the FixSession to communicate FIX messages with the counterparty 1o the
session. It also provides the session with cailbacks for validating Jogons, indicating
session termination, and other queries 1o the embedding application. the

FixSessionHandler gives the embedding application the freedom to choose an appropriate

transport satisfying the quality of service requirements, though TCP is the most widely

implemented choice of transport.

b. FixRequestStore

Allows the FixSession to persist request messages Lo the persistent store. The embedding
application can use an appropriate persistent store like an RDBMS, Flat e, cle.
Persisting a request message may not be of much importance other than for keeping track
of the message sequence number and hence a Flat File with logging of the sequence

number and comp id’s alone would suifice.

¢. FixResponseStore

Allows the FixSession to persist response messages o the persistent store. The
embedding application can use an appropriate persistent store like an RDBMS, Flat Ijc.
etc. All response messages need to be persisted as such to the persistent store as the
cossion uses this store to service Resend requests from the counierparty. For reasons of
transactional integrity and consistency it might be a cood idea to use an RDBMS here.
But, of course. if speed is the overwhelming criteria then a lat File would serve the

cause betler.

d. FixValidator

Allows the FixSession to validate incoming and outgoing messages against the set of

rules specified in the xml configuration files. Refer to the FINSwitch Administration

Guide for more details.

¢. FixApplicationHandler

Allows the FixSession to forward an FIX application message Lo the business system for

further processing.

29

Other than the above-mentioned callback interfaces the session also requires a couple of
information objects, viz., FixSessionlnfo and FixCounterPartylnfo. The FixSessionln:o
object encapsulates ‘nformation about the FIX session related propertics of the
counterparty represented by the embedding application, including ComplD. SublD.
LoclD. FIX Version and Heartbeat Interval. The FixCounterPartyInfo object captures the
ComplD. SublD. LocID and Heartbeat Interval information about the opposite party 10

the session.

SESSION AS AN INITIATOR

Other than capturing the information in the two information objects. it 1s also necessary
to have an object that creates the Logon message, specific to the counterparly, Lo be sent
immediately after a transport session is established. FINSwitch provides an interface.
LoginCreator, which allows an appropriate instance to be plugged-in 1o FINSwiich

runtime and can be used to create a FIX Logon message to be sent to the counterparty.

SESSION AS AN ACCEPTOR

While creating an Acceptor session only information about the accepling session is
available. te.. the FixSessionInfo object can be set. But. the counterparty’s information
will be available only when the first message has been received and vahidated. Alsc. 1
will be necessary for the embedding application to authenticate the user/password when a
Logon is received. FINSwitch allows a custom authenticator. an instance of the

Authenticator interface, to be plugged-in to the runtime.

6.4.3 Relevant packages

com.clind.finswitch.protocol fix.session.”

com.elind. finswitch.protocol {ix.session.fix42.*
com.elind finswitch. protocol fix.session.fix43 . *
com.elind.finswitch.protocol.fix.samples.session. *
com.elind. finswitch.preessing. Authenticator

com.elind.finswitch.prcessing.FixLoginCreator

30

6.5 MONITORING

During the lifecycle of a FixSession object various events occur that change the state of
.the session. For example arrival of an application message causes the sequence number to
increase by one, or arrival of a message with low sequence number causces the session 1o
terminated. The library provides an interface called

com.elind finswitch.protocol.fix.monitor.Session EventHandler (from now onwards
called ScssionbventHandler) that provides callback method signatures for cach ol the
session events. An object of type SessionlsventHandler represents a caliback object that is

interested in the session events,

6.5.1 Where is it used

FFor you as a FIX application programmer some or all of these events could be of interest

for —

Audit trail
Since all the events are published to a SessionEventlandler along with the messages that

caused the event you can usc this mechanism to build vour audit trail.

Dcbugging
Since all messages between a counterparly and your FIX application go through a
FixSession you can monitor the session to debug any FIX related problems that mn

appear 1n vour application.

Monitoring the state of a session
The state of the session can be monttored and if required an alert can be raised. Lor
example a certain number of consecutive “ResendRequest ~ event could be a trigger tor

an alert or even session termination.

Event correlation
You may develop a SessionEventl{andler class that accepts cvents from all the sessions
in your systen1, inspeets the messages and correlates them to trigger some other business

process.

6.5.2 How is it used

The interlace tor the callback object 1s

com.elind finswitch. protocol.fix.monitor. SessionEventHandler.

‘This interface provides callback methods for cach session cvent. 1t an object of type
Sessionfiventilandler 18 supplied to a FixSession, the FixSession calls the appropriate

method whenever an cvent occurs.

To access the session cvents write a class that implements the inierface
SessionlventHandler and provides appropriate implementation for cach callback method.
Afier session creation you will have 1o supply an instance of this class to the session by
invoking the setEventHandler method on the FixSession object. From that point onwards
antil the session termination all the events will be notified to the SessionbBventHandler.
While writing an implementation of Sessionbventilandler take into account the

following:

o The implementation class must be thread safe - Since several threads can act on
the FixSession object to change its state. more than one thread can invoke the
methods on the SessionEventHandler object that you write concurrently. Henee
the monitor class must be thread sa fc.

e The FixSession can notify only one SessionBventHandler at any instance of time
- Hence only one SessionEventtlandler object can be used to monitor a given
session at a time. The SessionEventHandler object thal gets notificd by &

FixSession is the one that has been supplicd to the session most recently.

-6.5.3 Relevant packages

“com.clind.finswitch.protocol.fix.Monitor

com.clind. finswitch.protocol.fix.Composer

com.clind. finswitch.protocol.fix.Session

L

(V5]

7. SAMPLE DEPLOYMENT SCENARIO

7.1 SINGLE APPLICATION USING LIBRARY

Java spplication FINSwitch library FIx ‘ ‘
Leing FINSwitd providing FIX courtenarty L ‘
| lbrary connectivity 4

7.1.1 Deseription

In this scenario a single java application needs to be FIX ecnabled so that it can
communicate with FIX aware counterparty applications. The application will handle the

necessary transport protocol details.
7.1.2 How to implement the scenario
Vou will have make use of the java library that ships with FINSwitch and use the

composer, validator and session to embed FIX communication ability within your

application.

8 ADMINISTRATIVE MESSAGES

8.1 MESSAGE STANDARD HEADER

Each administrative or application message is preceded by a standard header.
The header identifies the message type. length, destination. sequence number. origination

point and time.

T'wo ficids help with resending messages. The PossDuplilag is set to Y when resending a

CCe reusimng

o

message as the result of a scssion level event (i.e. the retransmission of a messa
a sequence number). The PossResend 1s set 10 Y when reissuing a message with & new
sequence number (e.g. resending an order). The receiving application should process

these messages as follows:

PossDuplFlag - if a message with this sequence number has been previously reccived.

ienore message, 1f not, process normally.

PossResend — Ambiguous application level messages may be resend with the
PossResend flag set. If the end user suspect a message has not reached he can send an

message with PossResend flag set with same body data & a new Sequence numbcr.

in addition checksum fields requires recalculations.

REQUIRED FIELDS IN HEADER

Tag | Field Name E Comments
8 1 BeginString | To identify the FIX Version T
9 BodyLength For checking the integrity of data |
i 35 | MsgType | To identify the FIX message 7
49 SenderComplD Originating Comp D -
56 TargetComplD Destination Com;ﬂ 1D -

MsgSeqgNum

Unique for each FIX message

52 SendingTime FIX Message sending time

43 PossDupllag Required only a message 1s resend !
- - — g e S - [}

122 OrigSendingtime ¢ Required only a message 1s resend |

8.2 MESSAGE STANDARD TRAILER

flach message. administrative or application. is terminated by o standard trailer. The

trailer 1s used to seer

o

of the Checksum value.

egate messages and contains the three digit character representation

Standard Message Trailer

Tag | Field Name Req'd | Comments i
93 | Signaturel.ength N Required when trailer contains signature. Note. Nof to be |

included within SecureData field i
89 | Signature N Note: Not to be included within SecureDatu field
10 | CheckSum Y (Abways unencrypied, always last field in message) i

Data Integrity

The integrity of message data content can be verified in two wavs: verification of

message length (body Length) and a simple checksum of characters.

Sequence Number

All FIX messages are identified by unique sequence number. Sequence Number arce

initialized at the start of the FIX session in the Logon Message with an initial value and

incremented throughout the session.

MsgSeqNum-34(Tag Value)

Message Type

Message type 1s the most important field in the FIX Message that is used to identify the

Type of the Message

[MsgType(35) | Message Description
A Logon

3 Logout

0 HeartBeat
1 TestRequest

L2 ResendRequest o

3 Reject i

4 SeqguenceResel

GARBLED MESSAGE

The FIX Protocol takes the optimistic view; it presumes that a garbled message 1s
received due to a transmission error rather than a FIX system problem. Therefore. 11" a
Resend Request is sent the garbled message will be retransmitted correctiy. [f a message
is not considered garbled then it is recommended that a session level Reject message be

sent.

What constitutes a garbled message

e BeginString (tag #8) is not the first tag in a message or is not of the format

8=FIX.n.m.

e Bodylength (tag #9) is not the second tag in a message or does not contain the

correct byte count.

+ MsgType (tag #35) 1s not the third tag in a message.
e Checksum (tag #10) is not the last tag or contains an incorrect valuc.

i Administrative Message

Fields Required

A-Logon

98- EncryptMethod

108- HeartBeat

(0-HeartBeat

112-TestRequestID(Required oﬁly while Responding o .
TestRequest Message) o N

1-TestRequest

112- TestRequestlD

2-Resend Request 7- BeginSegNo
16-IndSegNo

3-Reject 45-RefSeqNum
i 38-Text (Optional)

-Z'—ch uenceReset-GapFill 36-NewScquenceNo
5-LogOut Nil

8.3 LOGON MESSAGE

The logon message authenticales a user establishing a connection o a remote system.
The logon message must be the first message sent by the application requesting 1o initiate

a FIX session.

The HeartBtlnt (108) field is used to declare the timeout interval for generating
heartbeats (same value used by both sides). The HeartBtInt value should be agreced upon
by the two firms and specified by the Logon initiator and cchoed back by the Logon

acceptor.

Upon receipt of a Logon message. the session acceptor will authenticate the parhy
requesting connection and issue a Logon message as acknowledgment that the connection
request has been accepted. The initiator to validate that the connection was established

with the correct party can also use the acknowledgment Logon.

The session acceptor must be prepared 1o immediately begin processing messages afier
receipt of the Logon. The session initiator can choose to begin transmission of FIX
messages before receipt of the confirmation Logon, however it is recommended that
normal message delivery wait until afler the return Logon is received o accommodate

encryption key negotiation.

38

Logon

Tag | Field Name Req' | Comments H
d —

Standard Header Y | MsgTlype = A — fl‘

98 | EncryptMethod Y | (Aiways unencrypied) H
108 | HeartBtInt Y__| Note same value used by both sides |I
95 | RawDatal_ength N | Required for some authentication methods L
96 | RawData N | Required for some authentication methods ___j:}
{ Standard Trailer Y B j!

8.4 HEARTBEAT MESSAGE

The Heartbeat monitors the status of the communication link and identifics when the

last of a string of messages was not received.

When either end of a FIX connection has not sent any data for [HeartBtInt] seconds.
it will transmit a Heartbeat message. When either end of the connection has no
received any data for (HeartBtlnt + “some reasonable transmission time™) sceonds. it
will transmit a Test Request message. If there is still no Heartbeat message received
atter (HeartBtInt + “some reasonable transmission time™) seconds then the connection
should be considered lost and corrective action be initiated. If HeartBilnt is sol 1o
zero then no regular heartbeat messages will be generated. Note that a test request
message can still be sent independent of the value of the HeartBtint, which will force
a Heartbeal message.

Heartbeats issued as the result of Test Request must contain the TestReqlD
transmitted in the Test Request message. This is useful to verily that the [Heartheal is

the result of the Test Request and not as the result of a regular timeout.

Heartbeat
| Tag | Field Name Req'd | Commenis]
Standard Header Y MsgType =0 J
112 | TestReqID N Required when the heartbeat is the result of a Test ‘
Request message. "
Standard Trailer Y :“

39

8.5 TESTREQUEST MESSAGE

The test request message forees a heartbeat from the opposing application. The test

reguest message checks sequence numbers or verifies communication line status. The

opposite application responds to the Test Request with a }leartbeat containing the

testReqglD.

The TestReql) verifies that the opposite application is gencrating the heartbeal as the

result of Test Request and not a normal timeout. The opposite application includes the

TestReqlD in the resulting Heartbeat. Any string can be used as the TestReqglD (one

suggestion 1S 1o use a timestamp string).

Test Request

[Tag | Field Name Reg'd | Commenis F
Standard Header Y MsgType = | ‘

112 | TestReqID Y |
Standard Trailer Y [

8.6 RESEND REQUEST MESSAGE

The resend request is sent by the receiving application to initiatc the retransmission of

messages. ‘This function is utilized if a sequence number gap is detected. it the receIving

application lost a message. or as a function of the initialization process.

The resend request can be used to request a single message, a range of messages or all

messages subsequent to a particular message.

. To request a single message: BeginSeqNo = EndSeqNo

. To request a range of messages:

EndSeqNo = {ast message of range

BeginSegNo = first message of range.

. To request all messages subsequent to a particular message: BeginSegNo = first

message of range, EndSeqNo = 0 (represents infinity).

40

Resend Request

W"ag Field Name Req'd | Comments

Standard Header MsgType = 2

7 1 BeginSegNo

16 | EndSeqNo

==

Standard Trailer

8.7 REJECT
The reject message should be issued when a message 1s received but cannot be properly
processed due to a session-level rule violation. An example of when a reject may be
appropriate would be the receipt of a message with invalid basic data (¢.p. MsgType=&)
which successfully passes de-encryption, CheckSum and Bodylength checks. As a rule,

messages should be forwarded to the trading application for business level rejections

whenever possible.

Rejected messages should be logged and the incoming sequence number incremented.
Note: The receiving application should disregard any message that is garbled, cannot he
parsed or fails « deta integrity check. Processing of the next valid FIX message will

cause detection of a sequence gap and a Resend Requesi will be generated.

Generation and receipt of a Reject message indicates a serious error that may be the result

of faulty logic in either the sending or receiving application.

If the sending application chooses to retransmit the rejected message. it should be

assigned a ncw sequence number and sent with PossResend=Y.

41

Scenarios for session-level Reject:

 which case SessionRejectReason is not specified)

SessionRejectReason

0 = Invalid tag number

= Required tag missing
Tag not defined for this message type
Undefined Tag

It

1l

Value is incorrect (out of range) for this lag
| 6 = Incorrect data format for value
7 = Decryption problem
8 = Signature problem
9 = ComplD problem
. 10 = SendingTime accuracy problem

]

2

3

4 = Tag specified without a value
5
6

11 =Invalid MsgType
12 = XML Validation error
13 = Tag appears more than oncc _

14 = Tag specified out of required order
15 = Repeating group fields out of order
16 = Incorrect NumInGroup count for repeating group

17 = Non “data” value includes field delimiter (SOH
character)

{Note other session-level rule violations may exist in

Reject
Tug | Field Name Reg'd | Comments
Standard Header Y | MsgType =3
45 | RefSeqNum Y MsgSeqNum of rejected message
58 | Text N Where possible, message to explain reason for rejection
Standard Trailer Y

|

8.8 SEQUENCE RESET-GAPFILL

The sequence resct message is used by the sending application to reset the incoming

sequence number on the opposing side. This message has two modes: "Sequence Reset-

Gap Fill” when GapFillFlag 1s “Y’ and “Sequence Reset-Reset” when GaplillFlag is N or

not present. The “Sequence Reset-Reset” mode should ONLY be used to recover from a

disaster situation which cannot be otherwise recovered via “Gap Fil” moce. T

sequence reset message can be used in the following situations:

42

v" nDuring normal resend processing, the sending application may choose not to
send a message (c.g. an aged order). The Sequence Reset - Gap Fill is used 1o
mark the place of that message.

¥" During normal resend processing, a number of administrative messages are not
resent, the Sequence Resct — Gap Fill message 1s used to fill the sequence gap

created.
v" In the event of an application failure, it may be necessary to force synchronization
of sequence numbers on the sending and receiving sides via the use of Sequence

Reset — Reset

Sequence Reset

Tag | Field Name Req'd | Comments Tl
Standard Header Y MsgType = 4]

123 | GapFillFlag N

36 | NewSegNo Y -
Standard Trailer Y J

8.9 LOGOUT MESSAGE

The logout message initiates or confirms the termination of 4 FIX sesston. Disconnection
without the exchange of logout messages should be interpreted as an abnormal condition.
Belore actually closing the session, the logout initiator should wait for the opposite side

to respond with a confirming logout message. This gives the remote end a chance to

perform any Gap Fill operations that may be nceessary. The session may be terminated il

the remote side does not respond in an appropriate timeframe.

After sending the Logout message, the logout initiator should not send any messages

unless requested to do so by the logout acceptor via a ResendRequest.

43

Logout

Tug | Field Name Req'd | Comments B J'
Standard Header Y MsgType =5 o _ll
58 Text N] |
Standard Trailer Y “7:

44

9 TEST CASES

‘est casc Mandatory | Condition/Stimulus [Expected Behavior
/ Optional i _ o
eccive Mandatory | a. MsgSeqNum received as expected Accept MsgSegNum for the message
Tessage b. MsgSeqNum higher than expected Respond with Resend Request message
tandard c. MsgSeqNum lower than cxpected 1. Discennect without sending a message
feader without PossDupllag setto Y 2. Generate an "error” condition in test
B) output, - o
d. Garbled message received 1. Consider garbled and ignore message
i (do not increment inbound MsgSvgNiunn
and continue accepting messapes.
2. Generate a "warning” condition In test
output.
| e. PossDupFlag setto Y 1. Accept the message.
OrigSendingTime specified is less
than SendingTime
Note: OrigSendingTime should be
earlier than SendingTime unless the
message is being resent within the
' same second during which it was sent.
f. PossDupFlag setto Y, /. Send Reject (session-level) message
| OrigSendingTime specified is greater referencing inaccurate Seading!ime (&
than SendingTime and MsgSeqNum \ FIX 4.2: SessionRejectReason -
- lower than expected "Sending Time acceuracy problem”)
. 2. Increment inbound MseSeyNum
Note: OrigSendingTime should be ‘ 3. Send Logout message referencing
earlier than SendingTime unless the ; inaccurate SendingTime value
message is being resent within the i 4. Wait for Logout message response (note
same second during which it was sent. ‘ likely will have inaccurate
? Sending¥ime) or wait 2 scconds
‘ whichever comes first
- 5. Disconnect

| Generate an "error” condition in lest output.

45

g. PossDupFlag setto Y and
OrigSendingTime not specified

Note: Always set OrigSendingTime to
the time when the message was
originally sent-not the present
SendingTime and set PossDupllag =
Y™ when responding to a Resend
Request

1. Send Reject (session-level) message

referencing missing
CrigSendingTime (>~ FIX 4.2:
SessionRejectReason = "Required
tag missing")

Increment inbound AdseSegNum

(S

h. BeginString value received as
expected and specified in testing
profile and matches BeginString on

| outbound messages.

Aceept BeginSiring for the message

i. BeginString value (c.g. "FIX.4.2")
received did not match value expected
and specified in testing profile or does
not match BeginString on outbound
messages.

D

i3

Send Logout message referencing
incorrect BeginString value

Wait for Logout message response (note
likely will have incorrect BeginString)
or wait 2 seconds whichever comes first
Pisconnect

Generate an "error” condition in test
output.

j. SenderComplD and TargetComplD
values received as expected and
specitied in testing profile.

C Accept SenderComplD and TeargetCompli)
i for the message

k. SenderCompiD and TargetComplD
values received did not match values
expected and specified in testing
profile.

Wl 2

Send Reject (session-level) message
referencing invahd SenderCompil) or
TargetComplD (>= FIX 4.2:
SessionRejectReason = "ComplD
problem™)

Increment inbound MsgSeqvum

Send Logout message referencing
incorrect SenderComplD or
TargetComplD value

Wait for Logout message response (note
likely will have incorrect
SenderComplD or TargetComplD)) or
wait 2 seconds whichever comes [irst
Disconnect

Generate an "error” condition In test
oulput.

46

I. BodyLength value received 1s

: correct.

m. BodyLength value received is not
correct.

n. SendingTime value received is
specified in UTC (Universal Time
Coordinated also known as GM'T) and
15 within 2 minutes of atomic clock-
based time.

_ Accept Bodyﬂanglh for the mess (Dfx_

2.

1.

Consider garbled and 1gnore mcséug"c- .
(do not increment inbound AMseSeqgNinn
and continue accepting messages
Generate a "warning” condition in test
output.

Accept SendingTime for the message

0. SendingTime value received 1s
either not specified in UTC (Universal
Time Coordinated also known as
GMT) or is not within 2 minutes of
atomic clock-based time.

Rational:
Verify system clocks on both sides are

{ in svnc and that Sending Time must be

current time

S R

p.- MsgType value received is valid
(defined in spec or classified as user-
defined).

q. MsgType value received 1s not valid
{defined 1n spec or classificd as user-
defined).

) by

N

6.

Send Reject (session-level) messagc
referencing inaceurate Seadinglime (5
FIX 4.2: SessionRejectReason
"Sending Time acccuracy problem™)
Increment inbound MsgSeyNum

Send Logout message referencing
maccurate Sending'l'ime value

Wait for Logout message response (note
likely will have maccurate
SendingTime) or wait 2 scconds
whichever comes first

Disconnect

Grenerate an "error” condition n test
output.

P Accept Msg?vpe for the message

{. Send Rejeet (session-level) message
referencing invalid Msg/ype (>
FIX 4.2: SesstonRejectReasen
"Invalid MsgTvpe")

2. Increment inbound AMsgSeqNum

3.Generate a "warning” condition in o

. oulpul.

47

r. MsgType value received is valid
(defined in spec or classified as uscr-
defined) but not supported or
registered in testing profile.

-

2

< FIX 4.2

a) Send Reject (session-level) message
referencing valid but unsupported
MsgType

If>=1IX42

¢ Send Business Message Reject
message referencing valid but
unsupported MsgTvpe (= 111X 4.2:
BusinessRejectReason
“Unsupported Message Type”}

Increment inbound MsgSeqgNum

Generate a "warning” condition in test

output.

s. BeginString, BodylLength, and
MsgType are first three fields of
message.

- Accept the message

t. BeginString, BodyLengih, and
MsgType are not the {irst three ficlds
of message.

3

Consider garbled and 1gnore message
(do not increment inbound MsgSegNwin)
and continue accepting messages
Generate a "warning” condition 1n (est
output.

2ve

Mandatory ' a. Valid CheckSum Accept Message
sage | ‘
wdard ‘:
er i i | e
b. Invalid CheckSum 1. Censider garbled and ignore message
{(do not increment inbound MsgSegNuin)
and continue accepting messages
2. Generate a "warning" condition n test
output.
¢. Garbled message 1. Consider garbled and 1gnore message
! (do not increment inbound MsgSegNunn
and continue aceepling messages
| 2. Generate a "warning" condition in test
i output. o

48

Mandatory

d. CheckSunt is last field of message,
value has length of 3, and is dehimited
by <SOH>.

¢. CheckSum is not the last field of
| message, vaiuc does not have length
of 3, or is not delimited by <SOH=>.

- a. Valid Logon message

b. Invalid Logon message

¢. First message received is not a
Logon message.

i

b —

!\)

1
i Accept Message

Consider garbled and 1gnore message
(do not increment inbound MsgSeqg N
and continuc accepling messages
Generate a "warning” condition 1n test
output.

Respond with Logon response message
If MsgSegNum 1s too high then send
Resend Request

. Generate an "crror” condition in test
output.

(Optional) Send Reject message
with RefMsgSeqgNum relerencing
Logon mcssage’s MseSegNum with
Text referencing error condition
Send Logout message with 7exy
referencing error condition

4. Disconnect

~J

()

Log an error “first message not a logon™
Disconnect

at ; Mandatory

a. No data sent during preset heartbeat
interval (HeariBeatInt field)

Valid Heartbeat messa_éc

49

' Send Heartbeat messace

| Accept Heartbeat mcséagc

o

No data received during presct ‘ 1. Send Test Request message
. _ heartbeat interval (HeartBeailnt field) Track and verify that a Heartbeat witl
st Mandatory | + "some reasonable period of timie” Z the same JestReglD 1s received (may
not be the next message received)

(S

d i : Respond with application level messages
st Valid Resend Reguest - and SequenccReset-Gap [il/ for admin
" | Mandatory E messages in requested range according to
7 | | "Message Recovery” rules.

a. Receive Sequence Reset (Gap Fill) |

message with NewSegNo > i Issue Resend Request 1o 1111 gap between
ace MsgSeqNum last expected MsgSeqNum & received
Gap and MsgSegNum.

. Mandatory MsgSeqNum > than expect scquence

number

\
\
b. Receive Sequence Reset (Gap Fill) |
message with NewSegNo > !

MsgSegNum - Sct next expected sequence number -
and NewSegNo

MsgSeqNum = to expected sequence

number

¢. Receive Sequence Reset (Gap Fill)
message with NewSeqNo >
MsgSegNum | [gnore message
and '

MsgSeqNum < than expected i

sequence number

and

PossDupFlag = Y™

Initiate Logout
Mandatory 1.5end Logout messag

ag
2. Disconnect

50

10 SYSTEM IMPLEMENTATION AND TESTING

10.1 SYSTEM IMPLEMENTATION

As a policy every product in the company ready for release undergoes a
versioning and release management process. The product is versioned and then
implemented in the client location. A complete st of operational documentation. user s
manual and guidelines are supplied. Professionals exclusively give user training 1o o few

in the client place from the company.

IMPLEMENTATION PROCEDURES

The project undergoes a versioning and relcase management before it is delivered
to the client. It is a process of identifying and keeping track of different versions and
releases of the system. And the released product usually includes configuratior files
defining how the release should be configured for particular mstallatons. Data liles
needed for successtul operations. An Installation program. which is used to help mstall
the system on the target hardware. Electronic and paper documentation deseribing the
system. All these information are madc available on a medium. which can be read and

understood by the customer for the software.

The following factors are considered before implementation. Checking if ali the
components which make up the system been included, if the appropriate version ol cach
required component been included, are the data objects included. cte.. An instalation

program is created and the entire kit 1s delivered to the chient.

USER TRANING

The kit delivered consists of a complete guide on the new system developed. A
through training on the new system 1s given to a representative from cach of the user arca
and an overall demo given to the entire team. The queries from the audicnce were

answered and hints given on various issues, Special training was given to the admin staff

that is to play the role of super user. The configuration details and trouble shooting
methodologies were explained and his performance absorbed. The user manual was
completely explained and doubts cleared for the samc. Installing and uninstalling the
package and taking a backup of the data were demonstrated (o the super user. Various
possible exceptions and the possible causes for it from the user’s end were explained. The
various user environments and the right of access specified to each uscr was c.early
explained and demonstration given to the team on different user cnvironments.
Instructions on successful operation of the system and trouble shooting methodologles

were thus discussed.

OPERATIONAL DOCUMENTATION

Properly produced and maintained system documentation 1s a tremendous wid 10
maintenance engineers. The system documentation inciudes all the documents describing
the implementation of the system from the requirements specification to the linal

acceplance test plan.

A complete set of Operational Documentation was prepared for the client. which
included the features of the system, the access rights allocated for various uscrs and
trouble shooting details. The special features of the system were highlighted. A siep-by-
step procedure was included in the documentation for FIX Message Creation. Validation
and Monitoring. The documentation is prepared keeping in 'mind users who have hitle or

no knowledge of computers.

The operational documentation includes a document describing the overall
architecture, a maintenance guide, a user manual for operations like FIX Message
Creation, Validation, Session and Exceptions and their causes and solution. The way the
FINSwitch receives messages and processes them are explained with the help of
Architecture and Run-Time views. A clear picture of the system and its functionalities are

thus provided.

10.2 SYSTEM TESTING
TESTING PROCESS

Except for small software, systems should not be tested as a single, monclithic
unit. Large systems are built out of sub-systems, which in turn are built out of sub
systems, composced of procedures and functions. The testing process should theretore
proceed in stages where testing is carried out incrementally in conjunction with the

svstem implementation.

There are the five testing stages and defects are discovered at any stage, they require
program modifications to correct them and this require other stages in the testing process
to be repeated. The process therefore in an interactive one with information being f(ed

back from later stages to earlier parts of the process.
The stages in the testing process are:
Unit Testing

Module Testing

System Testing

RN NN

Acceptance Testing

UNIT TESTING

Individual components are tested to ensure that they operate correctly. [ach
component 1s lested independently, without other system components. With respect to

this project, the individual functions are treated as component and were tested.

MODULE TESTING

A module 1s a collection of dependent components such as an object class, an
abstract data type or some looser collection of procedures and functions. A module

encapsulates related components so it can be tested with other system components.

53

Fach module in the FINSwitch works successfully and dependent components as

object and class are checked.
SYSTEM TESTING

The sub-systems are integrated to make up the entire system. The testing process
is concerned with finding errors. which result from unanticipated interactions between
sub-system and system components. [t is also concerned with validating that the system
meets its functional and non-functional requirements. After integrating ol the above sub-

systems with the whole systems, the entire system is tested for ervor.

ACCEPTENCE TESTING

This is the [inal stage in the testing process before the system is accepled for
operational use. The system is tested with data supplicd by the system procurer rather
than simulated data. Acceptance testing may reveal errors and omissions in the system
requirements definition because the real data exercises the system in different ways from
testing the data. Acceptance testing may meet the users need or the system performance

1$ unacceptable.

DEFECT TESTING

Defect testing is intended to exercise a system so that later defects are exposed
before the system is delivered. These contrasts with validation testing which s intended
to demonstrate that the system meets its requircment. Validation testing requires the
system to perform correctly using given acceptance test cascs. A successful defeet test s
a test, which causes a system 1o perform incorrectly and hence exposes the detects. It

demonstrates the presence, not absence of program faults.
Various values. within the limit and exceeding the limit were provided repeatedly

to individual components of data acquisition. These brought out the defects in the system

and were corrected. Two approaches to defect testing are:

54

BEACK- BOX TESTING
It relics on the specification of the system or component. which being tested o

derive test cascs. The system 1s “black-box™ whose behavior can only be determined by
studying its inputs and the related outputs. This is also called as Tunctional testing

because mathematical functional can be specified using only inputs and outputs.

IFollowing black-box methods were applied to both the modules o test arrays:

~ Usage ol only one vaiue of entire array. This proved that the program works
for an exceptional array.

~ Usage of different arrays of different sizes. This decrcased the chances that
the program with defect would accidentally produce a correct output because
of some characteristic of the inputs.

» Tirst, middle and last elements were accessed and any problems due o the

boundary effects were delivered.

STRUCTURAL TESTING
This ts the complementary approach to black box testing and is sometimes called

structural, white-box or glass-box testing. The tester can analyze the code and the use

knowledge about the structural of the component to derive test data.

The advantage of structural testing is that an analysis of the code can be used 10
find how many test cases arc needed to guarantee a given level of test courage. A
dynamic analysis can then used to measure the extend of this coverage and help with 1est

casc design.

PATH TESTING

Path testing is a white-box tesling strategy whose objective is to exercise every
independent execution path through the component. If every independent path is exccuted
then all the statements in the program must have been executed at least one. Furthermore.
all conditional statements are tested for both true and false causes. This helped o

improve the program efficiency with respect to time complexity and memory usage.

55

CONCLUSION

FINSwitch has been successfully designed. implemented and tested. The

software developed is found o work cffectively and efliciently.

The FINSwitch library helps to create FIX Messages in a very effective way.
The classes and methods provided by the library helps the end user (o @ great extent mn
developing and modifying the Messages. FINSwitch helps the market participanis o
casily go with their day-to day business activities. The clectronic exchange ol

information in securities industrics is greatly favored by this FIX Engine.

FINSwitch plays the role of a messaging, translation and routing intermediary
between a financial institution's trading/back office applications that communicate
through proprietary APl and systems that use FIX. FTXML protocols. These FIX/FIXML.
systems could be applications within an organization {order routing gateways. Crossing
engines ete) and external destinations (broker-dealers, invesiment managers. post-trade

intermediaries, execution destinations ete) working on FIX/FIXML.

FINSwitch supports the translation and routing of bi-dircctional message lows
whercin messages emanating in application proprictary formats are converted 1o
FIX/FIXML and messages based on FIX/FIXML are converted to the pertinent
application API. The direction (routing) of message flows intelligently, for both inbound
and outbound messages and between internal applications 1s a core capabilitv ol the

product.

SCOPE FOR FUTURE DEVELOPMENT

The primary objective of FINSwiteh is to facilitate the clectronic exchange of
formation related to securities transactions. Since FINSwitch is a product it keeps on

adding new features and functionality towards the end of each release.

The forthcoming relcases for the product oller high protocol extensibility with
support for SWIFFT 1SO 13022, FpML. OFX & IEX. Protocol adaptors tor conncctvity o
the virtual matching Utitities (VMUSs) - OMGEO and GSTP are aiso planned in the future

releasces.

