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ABSTRACT

Our project %ﬁms at developing an automatic speech recognition system. Our
sctive 18 to imp‘lement Isolated Word Recognition (IWR) using two techniques,

ch are: |
s Neural netv*orks
e Dynamic Time Warping (DTW)

The crux of the project is speech recognition which is the process by which a
mputer identifies spoken words. In our project we recognize isolated words.

The first module is speech recognition using neural networks. In this module
» process of feature extraction is done using Linear Predictive Coding (LPC).
1c working platform is Linux. This system is speaker independent and is an
\line speech recognition process.

The next module is speech recognition using DTW. Here the feature

ctraction is done using Mel-Frequency Cepstrum Coefficients (MFCC). The

ent is windows and this is an offline process. The system is

seaker dependent
Thus from our project we see that we implement most of the concepts under

peech recognition like LPC and MFCC, speaker dependent and independent
ystems, online and offline processing, neural network and DTW and two

lifferent operating systems. This is the main advantage of the project and this is

where it differs from other projects.
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INTRODUCTION

PROBLEM STATEMENT:

~ The purpose of the project is to implement speech recognition
system i | different operating systems using different techniques. The
objectivq of the project is to identify Isolated words like ‘one’, ‘two’, etc,
using two techniques:

| e Neural networks

i ¢ Dynamic time warping(DTW)

The worl#ing environments to be used are linux and windows.

LITERA #‘URE SURVEY:

‘ Speech recognition systems are in plenty. There were
many previous systems that implemented speech recognition in many
applications. The previously developed projects were mostly developed in
windows|OS. These systems were not much accurate. Some of the
techniques were accurate in some respective fields. For example the DTW
technique was accurate only in some environments, for other systems neural
networks were used. So the proposed system implements both these
techniques under different environments. By doing so we would be able to

explore the different types of problems that could be encountered while

implementing these techniques.

|

1
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SYSTEM ANALYSIS

Proposet# system:

Our system aims at developing a speech recognition system.
Towards completing the project our first step will be to obtain the input
speech from the users and to digitize to input speech signal. The next step is
to extract the features which uniquely represent the word using the two types
of Cepstral analysis, viz, MFCC and LPC.

| Then we store the features and for the search and match of the
speech i@put for recognition we propose to use two techniques which are,

Neural nelftworks and DTW. A general overview can be obtained from the

picture bélow.

LPC

\

NEURAL
NETWORKS RECOG-

INPUT NIZED
SPEECH | DIGITIZATION

WORD

MFCC DTW

h 4
A 4
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REQUIREMENTIS SPECIFICATION

External | nterface Requirements:
e User interface: accomplished via keyboard input.
e Hardware interaction: The project needs a system with
the following hardware configuration: a PC with atleast a
pentium processor, 32 MB of RAM and a 640 X 480
screen resolution with a minimum of 256 color,
" multimedia kit with good quality microphone and
speakers. Hared disk space is of 4 MB and above is ideal.
¢ Sofitware interaction: the project requires MATLAB and
C language i linux.
Input dal% requirements:
} e The project shall be able to detect voices only when

good quality microphones are used in a noise free room.

e The project shall be able to handle data inputs only from

SIX users.
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Output ddta requirements:

The results of the following phases will be displayed as output
to the user:
e Pre-emphasis
¢ End point location
e Windowing
e Auto correlation

¢ Cepstrum analysis

e Recognized word is displayed
These out*;uts will be displayed in the MATLAB.
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MODULAR DESIGN

' The project consists of two modules as already discussed. In this
documentation we give a deeper explanation to the modules. This project

implements the speech recognition using two techniques which are taken up

in the two modules.

MODUL{E‘ 1:

. A general description of the module is given by the following

diagram: ‘

Overview

classifirthis
rarae

vocabulary,
gramnar
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Audio input

The input to the speech recognition system developed is from
the micro#)hone. The data is retrieved in the PCM format directly from the
sound ca:JF buffers. This data is actually a sequence of amplitude values. In
order to configure the sound card the parameters like sampling rate, sample
Jormat, data transfer rate, number of channels, buffer size, device handle,

number of devices are to be set.

Cepstral +nalyzer

%
normaliza‘tion, windowing and frame-blocking operations on the input data

The cepstral analyzer implements the pre-emphasizing,

before ob#aining the cepstral coefficients.

Fi r#zme Blocking:
i The continuous speech signal is blocked into frames of N
samples, with adjacent frames being separated by M (M < N). The 1st
frame consists of the first N samples. The 2nd frame begins M
samples after the 1st frame, and overlaps it by N — M samples.
Similarly, the 3rd frame begins 2M samples after the 1st frame (or M
samples after the 2nd frame) and overlaps it by N - 2M samples. This
process continues until all the speech is accounted for within one or

more frames. Typical values for N and M are N = 256 (which is

equivalent to ~ 30ms windowing and facilitate the fast radix-2 FFT)
and M = 100.




The next step is to window each individual frame so as to

midimize the signal discontinuities at the beginning and end of each
fra:‘#xe. The concept here is to minimize the spectral distortion by using
the window to taper the signal to zero at the beginning and end of
each frame. If we define the window as w(n), 0 <n <N-1,
where N is the number of samples in each frame, then the result of
windowing is the signal
 y@E@wm), 0<n<N-1
Ty#ically the Hamming window is used, which has the form:
 W(n)=0.54 -0.46 cos(2m/(N-1)), 0 <n < N-1.
Fa.%t Fourier Transform (FFT)
FFi‘ converts each frame from the time domain into the frequency
dorLain. The FFT is a fast algorithm to implement the Discrete Fourier
TrJnsform (DFT) which is defined on the set of N samples {xn}, as
follow:

N-1

Xn= Zxk e 2N 1 =0.1,2....N-1

K=0

Thé resulting sequence {Xn} is interpreted as follow: the zero
frequencycorresponds to » = 0, positive frequencies 0<f<f/2

correspond to valués1< n < N-1, while negative frequencies -f /2 <f

< 0 correspond toN/2+1<n < N-1.
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ediction Cepstrum Coefficients

Linear Prediction Cepstrum Coefficients are Linear Prediction
Coefficients (LPC) represented in the cepstrum domain. The idea of LPC is
based on #he speech production model which the characteristic of the vocal
tract can l#e modeled by an all-pole filter. LPC is simply the coefficients of
this all- ‘le filter and is equivalent to the smoothed envelope of the log
spectrum of the speech. LPC can be calculated either by the autocorrelation
or covari nce methods directly from the windowed portion of speech and the

LPCC |
[3] were 4cquired from the LPC

LPCCi=LPCi+ 2 (k-i)/i LPCCi,LPC,

‘ LPCC have been widely used for a few decades and it has been
proven that it is more robust,and reliable than LPC. However LPCC has also
inheriting the disadvantages from LPC. One of the main disadvantages is
that LPC approximates speech linearly at all frequencies. This is inconsistent
with the perception of human hearing. Also LPC includes the details of the
high frequency portion of a speech where containing mostly noise. This

inclusion of noise information may affect the system performance.
\
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Basic conkepts of neural networks:

A neural network has a parallel distributed architecture with a
large num\ber of nodes and connections. Each connection points from one

node to ar*other and is associated with a weight.
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Construction of neural networks involves the following tasks:

1. Determine the network properties: the network topology
(connectivity), the types of connections, the order of
connections, and the weight range.

2. Determine the node properties: the activation range and

the activation (transfer) function.

3. Determine the system dynamics: the weight initialization

scheme, the activation-calculating formula, and the

learning rule.
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Network Properties:

The topology of a neural network refers to its framework as

well as its interconnection scheme. The framework is specified by the

no, of layers and the no. of nodes per layer. The types of layer

md lude:

1.

The input layer: The nodes in it are called input units,
which encode the instance presented to the network for
processing. For example, each input unit may be
designated by an attribute value possessed by an
instance.

The hidden layer: The nodes in it are called hidden
units, which are not directly observable and hence
hidden. They provide nonlinearities for the network.
The output layer: The nodes in it are called output
units, which encode possible concepts to be assigned to

the instance under consideration.

According to the interconnection scheme, a network can be

eitﬁer feed forward or recurrent or its connections either symmetrical

or %nsymmetrical.

1. Feedforward networks: All connections point in one

direction.

2. Recurrent networks: There are feedback connections

or loops.
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3. Symmetrical connections: If there is a connection
pointing from node I to node j, then there is also a
connection from node j to node I, and the weights
associated with the two connections are equal, or
notationally, Wij=Wji.

4. Asymmetrical connections: If connections are not

symmetrical.

No#ie properties:
| The activation levels of input units need not be calculated
sin#e they are given. Those of hidden and input units are calculated
acc#rding to the activation function used. Provided that it is a sigmoid
fun#tion, the activation level (Oj) of unit j is calculated by
‘ 0j = 1/[1+e-(Zi Wij.Xi — 9j)]
Where Xi — input from input unit.

Wij - weight on the connection from unit I to unit

j - threshold on unit j.
In the hard limiting activation function, the output of a

neuron is given by
Oj={1, ZXiWij.Xi>0j
{0, else
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Inference and Learning:

Building an Al system based on the neural network
approach will generally involve the following steps:

1. Select a suitable neural network model based on the
nature of the problem.

2. Construct a neural network according to the
characteristics of the application domain.

3. Train the neural network with the learning procedure
of the selected model.

4. Use the trained network for making inference or

solving problems.
Single-L%yer Perceptron:

A single layer perceptron consists of an input and an output
layer. The activation function employed is a hard-limiting function. An
output unit will assume the value 1 if the sum of its weighted inputs is

greater than its threshold.
Multilaye* Perceptrons:

A multilayer perceptron is a feedforward neural network with at
least one hidden layer. It can deal with nonlinear classification problems
because it‘can form more decision regions. Each node in the first layer can

create a hj:fperplane. Each node in the second layer can combine hyperplanes
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to create convex decision regions. Each node in the third layer can combine

convex regions to form concave regions.

Supervised and Unsupervised Learning:

Th‘k distinction between supervised and unsupervised learning
depends #n whether the learning algorithm uses pattern-class information.
Supervis#d learning assumes the availability of a teacher or supervisor
classiﬁes\the training examples into classes, whereas unsupervised learning
does not.

Th+:s, unsupervised learning must identify the pattern-class
informati*)n as a part of the learning process. The task of unsupervised
learning 1% more abstract and less defined. Unsupervised learning algorithms
use unlabeled instances. They blindly or heuristically process them.
Unsupervised learning algorithms have less computational complexity and
less accuracy than supervised learning algorithms. Unsupervised algorithms
can be designed to learn rapidly. This makes unsupervised learning practical

in many high-speed, real time and environments, where we may not have

enough time and information to apply supervised techniques. Unsupervised

learning has also been used for scientific discovery.

Supervised learning algorithms utilize the information on the class
membership of each training instance. This information allows supervised
learning algorithms to detect pattern misclassifications as a feedback to
themselve%. Error information contributes to the learning process by

rewarding accurate classifications and punishing misclassifications — a

implausib

process known as credit and blame assignment. It also helps eliminate
le hypotheses.
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Neural Network Learning:

The neural network has also been dubbed the connectionist. It
contains a large number of simple neuron like processing elements and a
large nudber of weighted connections between the elements. The weights on
the connektions encode the knowledge of a network. It uses a highly parallel,

distributed control, and can learn to adjust itself automatically.
Backpro#agation:

The backpropagation network is probably the most well known
and widely used among the current types of neural network systems
available.|In contrast to earlier work on perceptrons, the backpropagation

network is a multilayer feedforward network with a different transfer

function 1
learning n
network n
weights b
input patts
they have
This is tru
patterns, t

previously

n the artificial neuron and a more powerful learning rule. The

ule is known as backpropagation. The training instance set for the
nust be presented many times in order for the interconnection
ctween the neurons to settle into a state for correct classification of
erns. While the network can recognize patterns similar to those
learned, they do not have the ability to recognize new patterns.

¢ for all supervised learning networks. In order to recognize new
he network needs to be retrained with these patterns along with

/ known patterns. If only new patterns are provided for retraining,

then old patterns may be forgotten. In this way, learning is not incremental

over time.

This is major limitation for supervised networks. Another

limitation|is that the backpropagation network is prone to local minima.

Th

J

backpropagation network learns a mapping from a set of input

|
patterns (¢.g., extracted features) to a set of output patterns (e.g., class
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information). This network can be changed and trained to accomplish a wide
variety of mappings. This ability comes from the nodes in the hidden layer

or layersi of network which learn to respond to features found in the input

patterns. The features recognized or extracted by the hidden units (nodes)
correspobd to the correlation of activity among different input patterns. As
the network is trained with different with different examples, the network
has the aiility to generalize over similar features found in different patterns.
The key ’issue is that the hidden units must be trained to extract a sufficient
set of ge‘ eral features applicable to both seen and unseen instances. To
achieve this goal, at first, the network must not be over trained. Overtraining
the network will make it memorize the individual input output training pairs
rather than settling in the mapping for all cases. To prevent this undesired
effect, orﬁe way is to terminate training once a performance plateau has been

reached. ‘LAnother way is to prune the network, creating a bottleneck between

and output layers. The bottleneck will force the network to learn in
a more g«‘aneral manner.

The backpropagation network is capable of approximating arbitrary
mapping given a set of examples. Furthermore, it can learn to estimate
posterior probabilities (P (wiX)) for classification. The sigmoid function

guarantees that the outputs are bounded between 0 and 1. In the multiclass

case, it is not difficult to train the network so that the outputs sum up to 1.
with accd:ate estimation of posterior probabilities, the network can act as a
Bayesian‘classiﬁer.

Th%: backpropagation network consists of one input layer, one output
layer, anq one or more hidden layers. If the input pattern is descrlbed by n
bits or n Values then there should be n input units to accommodate it. The

network 1% fully connected between and only between adjacent layers.

%M

15
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Backpropagation Algorithm:

e Weight Initialization:
: Set all weights and node thresholds to small random numbers.
Note that ¢e node threshold is the negative of the weight from the bias unit.
(Whose ackivation level is fixed at 1).
. Cal#ulation of Activation:
| 1. The activation level of an input unit is determined by the
mnstance presented to the network.
2. The activation level Oj of a hidden and output unit is
determined by
Oj=F(X W;ji.0i-0j)
| Where Wji is the weight from an input Oi, Oj is the node
threshold and F is a sigmoid function:
: F(a)=1/(1+e-a)
e Weight Training:
1 1. Start at the output units and work backward to the hidden
layers recursively. Adjust weights by
Wji(t+1)=Wji(t)+tAWji
Where Wji(t) is the weight from unit I to unit ) at time t
(or tth iter%tion) and AWij is the weight adjustment.
1. The weight change is computed by
AWji=ndjOi
Where 1 is a trial independent learning rate
(0<n<l,e. $., 0.3) and §j is the error gradient at unit j. convergence is
sometime# faster by adding a momentum term:
e —————————————————

16
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Wji(t+1) Wji(t)+ ndjOit+a] Wji(t)-Wji(t-1)]
Where 0<o<1.

2. The error gradient is given by:

- For the output units:

6j=0j(1-0j)(Tj-0j)
Where Tj is the desired output activation and Oj is

the actual output activation at output unit j.

- For the hidden units:

8j=0j(1-0j)X 8k Wk;j
Where 6k is the error gradient at unit k to which a

connection points from hidden unit j.

3. Repeat iteration until convergence in terms of the selected
error criterion. Iteration includes presenting an instance,
calculating activations, and modifying weights.

The name “backpropagation” comes from the fact that
the error of hidden units are derived from propagating
backward the errors associated with output units since the target
values for the hidden units are not given. In the
backpropagation network, the activation function chosen is the
sigmoid function, which compresses the output value into the
range between 0 and 1. The sigmoid function is advantageous
in that it can accommodate large signals without saturation
while allowing the passing of small signals without excessive
attenuation. Also, it is a smooth function so that gradients can

be calculated, which are required fir a gradient descent search.

17



System Design l@pewh recognition

MODULE II:

The first few steps are similar to the first module. They are
audio ir#put, pre-emphasizing, normalization, frame blocking and
windowink. The next step is the feature extraction for which we follow the

MEFCC. Tbe general diagram can be represented as follows:

isolated
speech | Frame frame Windowing SFT SpeCtitm
| Biocking
mel Cepstrum mel Mel-frequency I
cepsirum Spectrum Wrapping

Mel-freqt*enqy wrapping:

‘ As mentioned above, psychophysical studies have shown that
human perception of the frequency contents of sounds for speech signals
does not follow a linear scale. Thus for each tone with an actual frequency, f,
measured in Hz, a subjective pitch is measured on a scale called the ‘mel’

scale. The mel-frequency scale is linear frequency spacing below 1 KHz and

a logaritthlic spacing above 1 KHz. As a reference point, the pitch of a 1
kHz tone, HO dB above the perceptual hearing threshold, is defined as 1000
mels. The&efore we can use the following approximate formula to compute

the mels fJ)r a given frequency f in Hz:

%W

18
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mel(f)=2595*log(1+£/100)

One approach to simulating the subjective spectrum is to use a filter bank,
spaced uhiformly on the mel scale (see Figure 4). That filter bank has a
trlangular band pass frequency response, and the spacing as well as the
bandw1dﬂ1 is determined by a constant mel frequency interval. The modified

pectrum} of S(w) thus consists of the output power of these filters when
S(w) is t}re input. The number of mel spectrum coefficients, K, is typically
chosen a# 20. Note that this filter bank is applied in the frequency domain;
therefore‘lt simply amounts to taking those triangle-shape windows in the
Figure An the spectrum. A useful way of thinking about this mel-wrapping
filter bank is to view each filter as a histogram bin (where bins have overlap)
in the fre#;uency domain.

mel scale representation

Mel- 'b{:abt'!d Hterl;unk
2

1.8 T
1.6 \F b
1.4 | -
1.2 1
o8 b
G.6 4
o4 F E
o.z2 | ,‘) .

04 ' ——-

1000 2000 -OUG dUi‘Zz 000 FI00
Froquency (Hz!
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Cepstrum:

Finally the log mel spectrum is converted back to time. The
result is c#lled the mel frequency cepstrum coefficients (MFCC). The
cepstral r#presentation of the speech spectrum provides a good
represent&tion of the local spectral properties of the signal for the given
frame analysis. Because the mel spectrum coefficients (and so their
logarithm) are real numbers, we can convert them to the time domain using
the Discrete Cosine Transform (DCT). Therefore if we denote those mel
power spectrum coefficients that are the result of the last step are
Sk.,k=1,2,....K , we can calculate the MFCC's, , Cn as

 Cn=X(log Sk)cos[n(k-12)(wk)] , n=1,2,.. k.
Note that +ve exclude the first component, Co from the DCT since it

represents|the mean value of the input signal which carried little speaker
specific information.
Dynamic Time Warping:

1 Dynamic programming is an approach to the implicit storage of
all possibl% solutions to problem solutions to a problem requiring the
minimizati)on of a global error criterion. It is formulated as a sequential
optimizati‘ n strategy in which the current estimate of the global error
function IS‘ updated for each possible step. At each step, enough information
about the élausible hypotheses are retained so that at the end, when the best
global err(%r value is found, the corresponding set of choices that correspond
to this vah*e can also be discovered.

Appﬂied to template matching for speech recognition, this algorithm

can be stat%d fairly simple. Imagine a matrix D in which the rows

conespon4 to frames of a reference template and the columns to an input




Syste ‘Design Speech recognition

template, For each matrix element in D we will define a cumulative
distortioifl measure,
D(@i,j)=d(i,jymin p 5 { DIp(Li)I+T[(1.),p(ii)]}
W}nere d is a local distance measure between frames i of the input and
frame j df the reference template.

| p (1) is the set of possible predecessors to i, j; in other words,
the coor ‘inates of the possible previous points on the matching trajectory
between the two templates.

‘ The T () is a term for the cost associated with any particular
transitior#. Thus, each matrix element is the value of the total error that arises
from the best step that could lead to associating those two frames, and since
this step is made after a similar optimal decision, the best cumulative
distance in the final column (corresponding to the last frame in the input
template) will be the distortion corresponding to the best match between
reference and input. For isolated word recognition, the reference with the
lowest value will be taken as the best match. The basic computational step is

illustrated in figure.

DG-1j) | D(,j)
dG-1j) | d(ij)

DG-1,-1) | DG4-1)
d(i-14-1) | d(i,j-1)

reference template ]

i

input template

M

21
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Thus, the algorithm consists of the following steps.

1. Compute the local distance for each element in
column 1 of each distortion matrix (that is, the
distance between frame 1 of the input and all the
frames of each reference template). Call this the
cumulative distortion value for that matrix
element.

2. starting with frame 2 of the input, and beginning
with the bottom row (frame 1 of the first reference
template), compute the local distance and add it to
the best cumulative distortion value for all possible
predecessors ( that is, all possible matches between
input and reference that could temporally precede
either the current input frame or the current
reference frame). Compute this value for each
element in the column for each reference template.

3. Continue this operation through each of the other
columns.

4. Find the best distortion number in the last column
for each reference template and declare it the
distortion associated with that reference.

5. Choose the word associated with best of the
reference distortions and declare it the winner.

‘ Since, this algorithm applies a dynamic programming approach
' to the time warp problem; it is often referred to as a dynamic

' time warp, or DTW.,

M
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IMPLEMENTATION

Since we have implemented speech recognition in two different
operating systems the implementation details differ. Hence, we look into the
implementation details module by module.

MODULE I:
" In this module we use Linux OS as the platform. We use C for

programming purposes. For input audio processing and for signal processing

we use the following user-defined functions:

set_snd():
" This function is used to set the following values to the sound
card:
Sampling frequency : 8000 Hz
Sampling format : PCM (pulse coded modulation)
No of bits per sample : 8-bit
No of channels . 1(mono)
speech __p#ocesso:

| This function is used to perform the preliminary

processinf of the input speech functions like pre-emphasizing, end-point

detection and noise reduction.
|
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The following functions are used to perform the various neural
network processes:
bpnn_create:
This function is used to create a network of structure BPNN
- BPNN *bpnn_create(int n_in, int n_hidden, int n_out)
where,
n_in — no of input units
n_hidden — no of hidden units
| n_out — no of output units
bpnn_initi%lize:
. This function is used to initialize the created BPNN.
| void bpnn_initialize(seed)
where,
| seed — random number
bpnn_lay%rforward:
‘ This function is used to process the network and identify the
variation 1# the network.
void bpnn‘ layerforward(double *11,double *12,double **conn, int nl,int n2)
bpnn_adjust_weights:
- This function adjusts the weights according to the error
ide:{tiﬁed in the previous function.
void bpnn| adjust_weights(double *delta, int ndelta, double *ly, int nly,
doutle **w._ double **oldw, double eta, double momentum)
bpnn__traiho:
" This function is used to train the neural network.
void? bpnn_train(BPNN *net,double eta, double momentum,
| double *eo,double *eh)

|
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bpnn_read():
This function is used to read the details from the network and
identify the word.
BPNN *bpnn_read(char *filename)

MODULE II:
; In this module we use the windows98 OS as the platform.
For programming we use MATLAB 5.3.

MATLAB has wonderful features like built-in functions for digital
signal processing, getting audio input, to perform high-speed numerical
computati‘on and visualization. There are also options to display colorful
pictures a*nd graphs which help in viewing the energy diagram of various
audio ianxts. The programming using MATLAB is also easily adaptable for
persons tho already have proficiency in other programming languages like
C, C++, etc.

First we will look into audio specification before we go into
implementation details.

Specification for Input Audio data:

1 Sampling frequency : 8000 Hz
Sampling format : PCM (pulse coded modulation)
No of bits per sample : 8-bit

No of channels : 1(mono)

Foﬁ sound processing we use certain built-in functions in MATLAB

which ar# as follows:

W
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SOUNDSC(Y,...) is the same as SOUND(Y,...) except the data is scaled so
that the soﬁnd is played as loud as possible without clipping. The mean of

the data is removed.

[Y, FS, N#ITS]= WAVREAD (FILE) returns the sample rate (FS) in Hertz
and the nuhxber of bits per sample (NBITS) used to encode the data in the
file.

HAMMI]*G (N) returns the N-point symmetric Hamming window in a

|
column vector.

HAMMING (N, SFLAG) generates the N-point Hamming window using
SFLAG window sampling. SFLAG may be either 'symmetric' or ‘periodic’.

By defaul#, a symmetric window is returned.

FFT(X) is the discrete Fourier transform (DFT) of vector X. For matrices,
the FFT operation is applied to each column. For N-D arrays, the FFT

operation operates on the first non-singleton dimension.

Thjlfollowing user-defined programs were programmed to obtain

certain si

al processing functions which are as follows:
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enframe:

ENFRAME split signal up into (overlapping) frames: one per
row.
F= ENFRAME(X,LEN) splits the vector X up into frames. Each
frame is of} length LEN and occupies one row of the output matrix. The last
few framei:f X will be ignored if its length is not divisible by LEN. Itis

an error if X is shorter than LEN.

F= ENFRAME(X,LEN,INC) has frames beginning at increments of
INC. The centre of frame I is X((I-1)*INC-HLEN+1)/2) for I=12,...
The numbir of frames is fix((length(X)-LEN+INC)/INC)
endpoint__#etect:
1 This function is used to identify the useful portion of the signal.
This is dorLe by calculating the energy levels of the signal.
r1 = endpoint_detect(y)
rl1 - useful speech samples.
y - The original speech samples.
mfcc:
T This function is used to calculate the mel-frequency cepstrum
coefﬁcien*:s for the given sample.
| ccep=mfcc(y,M,N,P)
‘ Calculates cepstral coefficients for sequence y, using
window l#ngth N, window step size M, and order P.
dtwr2:
Thiﬁ function is used to compute the accumulated distortion between

two given| vectors (acoustic templates) using dynamic time warping

i
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technique, to find the number of vectors finding their places in test and
reference t#mplates and to allocate the number of vectors of reference and
test templates in 1’ &' respectively.

acc_globdist=dtwr2(test,ref)

where,
test — input template
ref ~reference template

acc_glbdist —accumulative global distance between the
input and reference template
euclidean:
This function compares the input and reference template and finds the
Euclidean distance between them which helps to find out whether the dtw

function can be applied to the set of input and reference template.

| y=L2norm(a,b,test,ref)
training session:

This function is used to identify the reference templates which are
relative to each other. The templates which vary to a large distance are
removed. This function is independent one.
testing session:

This function is used to identify the spoken word. This function calls
all the functions which are described above.
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SYSTEM fmssmvg

Testing is an activity to verify that a correct system is being
built and is performed with the indent of finding fault in the system. Testing
is an activity however not restricted to being performed after the
development phase is completed. But this is to be carried out in parallel with
all stages Pf system development, starting with requirements specification.

| While working with a speech recognition system we need to

keep testlﬁg the following parts of programming:
Sound ca*ds

Diferrent sound cards and driver versions: Make sure to test on
different sound cards and driver versions. The variation in the sound
cards, mixer and quality might cause problems with an application.
Make sure that the device driver handle specified in the program is
correct.

Test for sound card: Identify if the user does not have a sound card,

or the user’s sound card can’t handle IWR, and inform the user.
MO.L than one sound card: The user might have more than one
souJFd card. Make sure they can choose the right one

More than one speech applications: Make sure that there are no

morg than one speech applications that can access the sound card at

the same time.
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Usability

Can# the users get their microphone working? - does extensive
test{‘ng to make sure the user can plug in their microphone and use
therh properly.

Are the settings adjusted? — make sure that the microphone input is
enabled in the settings for sound devices. Also in the settings for the
mic#ophone volume make sure it is not muted and volume is properly

set. |

Miscellan%ous
Proper machine speed- Some machines require Pentium-speed or
betttr to function. Inform the user if their PC is too slow for speech
recc#gnition or text to speech. Some older Pentiums with faulty math
coprocessors will have their math coprocessor disabled by Windows
NT. If the speech engine relies on floating point, it may be too slow

on these machines.

Noiseless environments- make sure to work in noiseless environment
for better accuracy and performance
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CONCLUSION

To summarize our project primarily dealt with providing speech
recognition utilities. The human voice is considered the most common form
|
of commuﬁication. Using this form of communication to interact with the

computer motivated us to undertake this project.

Thi# project is a high-level overview of how speech recognition
system works. It is not nearly enough detail to actually write a speech
recognizer, but it exposes the basic concepts. Most speech recognition
systems work in a similar manner, although not all of them work this way.
Recognition accuracy can be affected by regional dialects, quality of the

microphone and the ambient noise level during speech session.

On finishing the project we observed that it included most of the
topics under speech recognition, like DTW and neural networks, MFCC and
LPC, offline and online, different operating systems, etc. thus we were able
to summarize speech recognition on the whole. And thus we could have an

overview of all speech recognition systems available.
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FUTURE ENHANCEMENTS

Th#re are many factors involved in speech recognition. Although
speech re#ognition technology seems relatively new, computer scientists
have beeni continuously developing it for the past 40 years. They have made
great strid%s in improving the systems and processes, but the futuristic idea
of the co#puter hearing and understanding we are still a long way off.
However, there are numerous ongoing projects that deal with topics such as
the following:

e Visual cues to help computers decipher speech sounds that are
obscured by environmental noise.
Sp%ech to text translation project for spontaneous speech.
¢ Building synthetic voices.
Dejigning web browsers to be speech enabled.

Dug to time constraints we were able to finish only up to the speech
recognition process. This could be further used to control electrical and other

appliances using the telephone. Also the computer operations can be

executed using vocal commands. These further developments require more

time and other constraints to be overcome.
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SOURCE CODE LISTING:

main.c

#include<stdio.h>

#include <stdlib.h>
#include<time.h>

#include <math.h>
#include<linux/soundcard.h>
#include<fcntl. h>
#include<sys/ioctl. h>
#include"backprop.h"”
#define USERS 6

#define ORDER 10

#define COEFF 10

#define sgn(x) ((x<0)?-1:1)
#define ABS(x) ((x<0.0)?x*-1.0:x)
#defineP 10000

#define WLEN 300
#defineM 256

#define N 1024

#define Q  (P/WLEN)
#define KK 150

int set_snd();

/*** Return random number between 0.0 and 1.0 ***/

double drnd(){ return ((double) random() / (double) BIGRND);

}

bpnn_randomize_weights(double **w,int m,int n)

{
int i, j;
for(i=0;i<=m;it+) {

for §=0;j<=n; j++) {
wli][j] = dpnl();

ﬁ
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bpnn_zero_weights(double **w,int m,int n)
{
int i, jj
for (i=0;i<=m;i++) {
for (5 =0;j <=n; j++) {
w[i][5]1=0.0;
33
void bpnn_initialize(seed)
{ i

}
/* Call this fun to create a bpn */

BPNN *bpnn_create(int n_in,int n_hidden,int n_out)

srand?m(seed);

sum = 0.0
for (k=0;k <=nl; k++) {
+= conn[K][j] * 11[k];

12[3] ‘= squash(sum);
I
void b;%nn_output_error(double *delta,double *target,double *output,
| it nj,double *err)

34



aa Hpeech recognition
R ‘)

{ . .
nt j;
double o, t, errsum;
errsum = 0.0;
for (j=0; j <= nj; j++) {
o = output[j];
t = target[j];
deltaf[jl=0* (1.0-0) * (t- 0);
errsum += ABS(delta[j]);
|
*err ﬁ errsum;
} ;
void b#m_ﬁdden_enoﬂdouble *delta_h,double *delta_o,double *hidden,
double **who,double *err,int nh,int no)

= hidden[j]; // hidden layer output

+=delta_o[k] * who[j][k];

delta hj]=h * (1.0 - h) * sum;
errsum += ABS(delta_h[j]);
}

*err = errsum,
}

void bpnn_adjust_weights(double *delta,int ndelta,double *ly,int nly,double
**w, double **oldw,double eta,double momentum)
{ !

double new_dw;

/l'ly is the input array

wlk][j] +=new dw;
oldw[k][j] =(eta * delta[j] * ly[k]); /new_dw;
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/* C this func to feed forward */
v01d nn_feedforward(BPNN *net)

mt in, h1d out;

in = net->input_n;

hid = net->hidden n;

out = net->output_n;

/*** Feed forward input activations. ***/

bpnn | layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);

bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);

v01d bpnn_train(BPNN *net,double eta,double momentum,double
*eo do ble *eh)

mt in, h1d, out,i,j;

double out_err, hid_err;

in = net->input_n;

hid = net->hidden_n;

out = net->output _n,

/*** Feed forward input activations. ***/

bpnn_layerforward(net->input_units, net->hidden_units,
net->mnput_weights, in, hid);

bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);

/*** Compute error on output and hidden units. ***/

bpnn_output_error(net->output_delta, net->target, net->output_units,
out, &out_err);

bpnn_hidden_error(net->hidden_delta,net->output_delta,
net->hidden_units,net->hidden_weights, &hid_err,hid,out);

*eo =out_err;

*eh =hid_err;

/*** Adjust input and hidden weights. ***/

bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid,
net~>hidden_weights, net->hidden_prev_weights, eta, momentum);

bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in,
net->input_weights, net->input_prev_weights, eta, momentum);
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void bpnn_save(BPNN *net,char *filename)

{

mt fd, n1, n2, n3, i, j, memcnt;

double dvalue, **w;

char *mem;

if (fd = creat(filename,0644)) = -1) {
printf{"BPNN_SAVE: Cannot create '%s"n", filename);
return;

}

nl = net->input_n;

n2 =net->hidden_n;

n3 = net->output_n;

printf("Saving %dx%dx%d network to '%s"\n", n1, n2, n3, filename);

fflush(stdout);

write(fd, (char *) &nl, sizeof(int));

write(fd, (char *) &n2, sizeof{int));

write(fd, (char *) &n3, sizeof{int));

mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double)));
for 1=0;i<=nl;it+) {
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write(
free(
close

fd, mem, (n2+1) * (n3+1) * sizeof(double));
em);
fd);

return;

BPNN

char *
BPNN
int fd,
if ((fd

}
printf]

retur

*bpnn_read(char *filename)

mem,;
N *new;

nl, n2, n3, 1, j, memcnt;

= open(filename, 0, 0644)) = -1) {
n (NULL);

("\nReading '%s"\n", filename);

fflush(stdout);

read(f
read(f
read({
new =
printfi
printfi
memc
mem
read(f
for (i
for (
fast

fd, (char *) &nl, sizeof(int));

fd, (char *) &n2, sizeof(int));

fd, (char *) &n3, sizeof{(int));

=bpnn_internal create(nl, n2, n3);

("'%s' contains a %dx%dx%d network\n", filename, n1, n2, n3);
("Reading input weights..."); fflush(stdout);

nt=0;

= (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double)));
fd, mem, (nl1+1) * (n2+1) * sizeof(double));

=0;1<=nl; i+t+) {

=0, <=n2; j++) {

tcopy(&(new->input_weights[i][j]), &mem[memcnt], sizeof(double));

mement += sizeof(double);

}

}
free(n
printf|
memc
mem
read(1
for (i
for (|
fast
sizeof{

nem);

("Done\nReading hidden weights..."); fflush(stdout);

nt=0;

= (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double)));
fd, mem, (n2+1) * (n3+1) * sizeof(double));

=0;i<=n2;it+) {

j=0;j<=n3; j++) {

icopy(&(new->hidden_weights[i][j]), &mem[memcnt],

double));

mepncnt +=sizeof(double);

;%
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free(mem);
close(fd);
printf("Done\n"),
fflush(stdout);
bpnn_zero_weights(new->input_prev_weights, nl, n2);
bpnn _zero_weights(new->hidden_prev_weights, n2, n3);
return (new);
} |
double * speech_process(int audio _fd) {
unsigned char value[P];
float coeff res[Q][11];
double x[P+1];
int sample=0,sample1c,set,Lsup=1,skip=0;
int Ic;
double xp[P+1],CP=0.9375,pi=22.0/7.0;
double B=0.0,Clp[M],w[M],Cslp[M],G=0.0;
double E[11],R[11],alfa[11][11];
double K[ORDER+1},ist=0.0 finalalfal ORDER];
mt i,j,k;n,a,p=10,xy=0 ;
double fin[1024],avg[1024],xw[P+1],sum;
int start in,end_in;
double log_energy[Q],temp,temp2;
int num_zeros[Q];
double threshold,endan[P+1];
double *O;
int left |index, right_index;
int num_samples;
nt temp1,IZCT,STZCR pitch;
double Ts,Td,STE,D,MIN,sum1,A,Y[WLEN],S[WLEN/2];
int temp3=0,cnt=0,flag=0;
/****SETTING & READING THE SOUND CARD *#####kk sk sk kkk%%/
/* Using this for loop we are reading ten 1024 samples from the sound card
Reading the 1024 samples from card */
if (a=read(audio_fd,value,P)==-1) {
printf("Cant Read\n");
)

for (sample=0;sample<P;sample++) {
| X[sample]=((double)value[sample}-128.0);

——
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}
x[P]=0.0;
/** SO PROCESSING OF 1024 SAMPLES *#*/
/* To check for Noice */
.0;
for(i=0;i<P;it+)

temp=log(temp);
1f{temp<9.0) /1 if log energy is less than some value it is noise

temp=ABS(x[i]);

for(i=0;i<P;it++) {
x[1]=(x[i}/temp);
}

[ voiced unvoiced separation */
start_in=0;
end_in=(WLEN-1);
[s=pow(10.0,-4.0);
[d=9.0*pow(10.0,5.0);
lum_samples=0;
IIN=pow(10,10);
or(i=0;i<Q;i++)
for(j=0;j<11;j++)

coeff res[i][j]=0.0;
for (set—0; set<Q; set++) {
temp=0.0;
temp2=0.0;
for(jrstart_in;j<end_in;j++) {
emp-+=x[j}*x[j];

mp2+=x[j];

o 2 Wi B = NS R |

mp/=(double)WLEN;
emp2/=(double)WLEN;
emp2*=temp2;
| STE=temp-temp2; // Varience of 4 frames (STE)

%
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~ log_energy[set]=STE; //Log energy
if(STE<Ts) {
- start_int=WLEN;
~ end_in+=WLEN;
. printf("Skipping noise \n");
continue;
}
[¥w=eeme-r-—-NUM OF ZERO CROSSING */
STZCR=0;,
for(j=start_in;j<end_in-1;j++){
templ=sgn(x[j+1])-sgn(x[j]);
if{ABS(temp1)=2)
STZCR+;

}
TZCR=(8000*STZCR)/WLEN;
um_zeros[set]=STZCR,; // Zero crossing
)=((double)STZCR)/STE;
f((D<MIN)&&(D!=0.0))

MIN=D;

Td=KK*MIN;

if(D<Td) {

}

else {
printf("Unvoiced");
start in+t=WLEN;
end in+=WLEN;
continue;

}

N oAl e B = 3 7]

/* Processing starts Here */
sum1=0.0;

/* Amplitude Normalisation */
printf("\n MAX is : %If " temp);
for(i=0;i<WLEN;i++) {
xw[k*WLEN+]=((xw[k*WLEN+i}/temp)*(128.0));
}
/*/// Pitch Detection///*/
A=0.0;

— e e
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for(j=start_in;j<end in;j++) {

- if(ABS(x[j])>A)
A=ABS(x[j]);
b
A*=0.3;
for(a=0,j=start_in;j<end_in;j++,a++) {
| f(x[j]>0.0) {
Y[a]=x[j]-A;
if(Y[a]<0.0)
| Y[a]=0.0;
-} // end of if
else {
Y([a]=x[j]+A;
if{Y[a]>0.0)
Y[a]=0.0;
} // end of else
}
temp=0.0;
for(k=0;k<(WLEN/2);k++) {
temp=0.0;

for(j=0;j<WLEN-k-1;j++)
temp+=Y[j]*Y[j+k];
S[k]=temp/(double)( WLEN-k);

}
temp=0.0;
for(k=10;k<(WLEN/2);k++)
if{(S[k]>temp)
{
pitch=k;
temp=S[k];
1f{(pitch<100)& &(pitch>40)) {
temp3-+=pitch;
cnt++;
}
/* hamming window */
for(i=start_in j=0; i<end_in;j++,i++) {

B=2*3.14159265*j/(WLEN);
pljl=x[i]*(0.54-0.46*cos(B));
H }

42
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*/

x[0]=0.0;
for( i=1; i<KWLEN;, i++) {
 x[i]=xp[i]-CP*xpl[i-1];
}
/*-- array-initialisation -------- */
for (sample=0; sample<=p; sample++) {
[sample]}=0.0;
{sample]=0.0;
[sample]=0.0;
} o
for (sz#mple=0; sample<=p; sample++) {
| for (sample1=0; sample1<=p; sample1++)
j alfafsample1][sample]=0.0;

[¥ e auto correlation -*/

for(i=0; i<=p; i++) {

[1]=0.0;

or(j=1; j<=(WLEN-i); j++)
RH=x[5]*x[5+i]; /I R[0-10]
. suml=sum1+ABS(R[i]);

suml/% 10.0;
/* ‘ LPC evaluation

*/

alfa[0][0]=0.0;
[_0]; //Fixed

)=13j<=(i-1);j++)
ist+=alfa[j][i-1]*R[i-];
K[i]=(R[i]-istyE[i-1];
alfa[i][i]=K[il;
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finalalfa[j]=alfa[jl[p]; // finalalfa[1-10]

/¥==emet—--—- Cepstral analysis */
for(n=0;n<M;n++)

Clp[n]=0.0;

for(n=1;n<=p;n++)

for(i=1;i<n;i++)
G+=(1/n)*Clp{i]*finalalfa[n-1];
Clp[n]=finalalfa[n]+G; //Clp[1-10]

/*=-———- Liftering Process */
for(n=1;n<=p;n++) {
w[n]=1+((WLEN/2)*sin(n*pi/WLEN));
Cslp[n]=Clp[n]*w[n]; // Cslp[1-10]
}
for(i=1;i<=p;i++)
coeff_res[set][i]=Cslp[i];
start| int=WLEN;
end_in+=WLEN;

} // end of processing of 10 - 1024 samples
/*¥¥** WRITTING DATA TO A FILE**#/

xy=0;
for(c=0;c<10;c++)
{
temp=0.0;
temp2=0.0;
for(set=0;set<Q;set++) {

if(coeff res[set][c]!=0.0)

temp+=1.0;
temp2+=coeff res[set][c];
}
if(temp!=0.0)
vg[xy]=temp2/temp;

<)

else

avg[xy]=0.0;
Xy++;

b

}
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O=(double*)malloc(10*sizeof{double));
for(c=0;c<10;c++) {
O[c]=(double)avg[c];

if{cnt!=0) §
O[0]=((double)temp3)/((double)cnt*100.0); // pitch period average
} :

if(flag=1)
0O[0]=0.0;
return(O);
}

/* setting the snd card */

mt set_snd() {

int speed=8000,format=AFMT US;

int audio_fd,

/* Setting the Sampling rate(11025) & Format (8 bit) of

the Sound Card and opening it for recording */

printf('/test\n");

if((au‘z:j(?_fd=open("/dev/dsp",O_RDWR,O))=-1) {

perror("/dev/dsp");

exit(1);

)
if(ioctl(audio_fd, SNDCTL_DSP_SPEED,&speed)==-1) {
perror("SNDCTL_DSP_SPEED");

exit(]);
}
if(speed==8000) {

printf("Now Sampling rate is : %d \n",speed);
}

if(ioc%(audio_fd,SNDCTL_DSP_SETFMT,&format)=-1) {

perror("SNDCTL_DSP_SETFMT");
);
} |

return audio_fd;

exit(

}
[*&&& & & &&E& MAIN & & &&&&&&*/

main()
{

/*** DECALRATION & INITIALISATION ***/
mt 1,,k,],maudio_fd,ID;

%
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double eta=0.2, momentum=0.6,e0,eh;
char ch="a',ch1l;
BPNN *bpn;
double *Input,*target,temp,temp1=0.0;
FILE *fperr,*fp;
double *noise,avg=0.0;
Input=(double *)malloc(10*sizeof(double));
target=(double *)malloc(3*sizeof{double));
audio_fd=set_snd();
/* Here we are going to fetch noise */
bpnn_initialize();
printf{"\nSelect one \n");
printf{"\n 1 -Training the net \n"),
printf{"\n 2 -Identification \n");
printf{"\n else QUIT\n");
ch=getchar();
/¥ TRAINING ###H*/
getchar();
if(ch=—='1")
{ printf("\n enter O to start training 1 to continue ....");
scanf("%d",&k);
getchar();
if(k==0) {
bpn=bpnn_create(10,16,USERS);
bpnn_save(bpn,"output.txt");
bpnn_free(bpn);

}

fp=fopen("data.dat","a");

fperr=fopen("error.txt","a");
while(1)

{
printf("type q to stop entering data \n");
ch=getchar();
getchar();

if(ch==q")
break;
printf{"enter id of the person\n");
scanf(1%d",&i);
getchar();
printf("type enter to start talking\n");

W
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audio_fd=set snd();
Input=speech_process(audio_fd);
fprintf(fp,"\n%d:" i);
for(i=0;i<10;i++) {

fprintf{fp,"%lf ", Input[i]);
printf("\n %If", Input[i]);

}oh

fclose(fp);

printf("\n Type enter to start Training \n");
fp=fopen("data.dat","r");
if(fp=NULL) {

printf{"\n Can't open File data.dat");
exit(0);

for(1=0;1<30000;1++) {
if(fscanf(fp,"\n%d:",&i)=—=EOF)
{
rewind(fp);
fscanf(fp,"\n%d:",&i);
}
printf("\n Traininig for user: %d".i);
bpn=bpnn_read("output.txt");
for(j=0;j<USERS;j++)
pn->target[j]=0.0;
pn->target[i-1]=1.0;
r(j=0;j<10;j++)

canf(fp,"%If ", &temp);
nput[j]=temp;

[aral

)
for(i=0;i<10;i++) {
bpn->input_units[i]=Input][i];
}
bpnn_train(bpn,eta,momentum,&eo,&eh);

fprintf(fperr," hidden err :%lf output err :%If \n",eh,eo);
for(i0;i<USERS;i++)

printf{"\noutput %d : %lf",i+1,bpn->output_units[i]); // for debug
bﬂsave(bpn,"output.bct");

|
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bpnn_free(bpn);

fclose(fpexr);

fclose(fp);

}

/*HHHH#IDENTIFICATION ##HHE*/
else if{ch=—="2") {

printf("\n Type anything to start speaking for identification \n");

if(Inp

}

chl=getchar();

Inptt=speech _process(audio fd);
t[0]=0.0) {

printf{"\n Sorry It's Noise \n");
exit(0);

bpn=bpnn_read("output.txt");
for(1=0;i<10;i++) {
bpn->input_units[i]=Input[i];
printf("\n%If",bpn->input_unitsfi]);
v

_feedforward(bpn);

1=0;i<USERS;i++) {

t("\n %d : %If".i,bpn->output_units[i]);
if(temp 1<bpn->output units[i]) {
templ=bpn->output_units[i];

ID=1+1;

+}

printf("\n \n You Are Identified as : %d \n ",ID);

free((double *) Input);
free((double *) target);
return 0;}
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MODULE II:
End poﬁpt detection:

function acc_globdist=dtwr2(test,ref)
[row]1,coll]=size(ref);
[row2,col2]=size(test);
flag=(col1==col2)|(rowl==row2);
if flag==0
error('The lengths of test and reference vectors do not deserve the hope to
get matched');
end
if flag==1
[ord,ind]=min([abs(row1-row2) abs(coll-col2)]);
if ind=1
i=coll;
Jj=col2;
else
=rowl;
JFrow2,;
end
end
%

tresh=0.5;
if (abs(elap)>(tresh*(min(i,j))))

|

for c1=1:1
cumdist(c1,1)=euclidean(1,c1, test,ref);
end |
for c2=2;j

cumdist(1,c2)= euclidean(c2,1,test ref);
end |
%TO TRACE OUT THE DISTORTION MATRIX
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for c3=2;j
for c4=2:1

stepl=1;

while stepl<=3
if stepl=—1
1diff=1;jdiff=0;
pred(step1)=cumdist(c4-idiff,c3-jdiff)+ph;
end
if step]==2
idiff=1;jdiff=1;
pred(step1)=cumdist(c4-idiff,c3-jdiff)+(2 *euclidean(c4-idiff,c 3-
jdiff,ref test));
end
if stepl=3
1diff=0;jdiff=1;
pred(step1)=cumdist(c4-idiff,c3-jdiff)+pv;
end
[i;ep 1=stepl+1;

e
[globdist,index]=min(pred);
cumdist(c4,c3)=globdist;
end
end
% TO COMPUTE THE GLOBAL DISTORTION BETWEEN THE
TEMPLATES
%
c5=1;
while (¢5<=abs(elap)+1)
if sign(elap)<0
elapdist(c5)=cumdist(i,(j-c5+1));
end
if sign(elap)>0
elapdist(c5)y=cumdist((i-c5+1),j);
end
if sign(elap)==0
elapdist = cumdist(i,j);
end
c5=cH+1;
end |

_—
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acc=sum(elapdist);
acc_globdist=(acc/max(size(elapdist)));

Dtw process:

function acc_globdist=dtwr2(test,ref)
[row],coll}=size(ref);
[row2,col2]=size(test);
flag=(coll=col2)|(row1==row2);
if flag==0
error('The lengths of test and reference vectors do not deserve the hope to
get matched');
end
if flag=—1
[ord,ind]=min([abs(row1-row2) abs(coll-col2)]);
if ind=1
i=coll;
j=col2;
else
=rowl;
JFrow2;
end |
end |
elap=i-j;
tresh=0.5;
if (abs(elap)>(tresh*(min(i,j))))
acc_globdist = 60;
break
end
%TO COMPUTE THE DISTORTION OF PRIMAL MATRIX
ELEMENTS
for c1=1:1
cumdist(c1,1)=euclidean(1,c1,test,ref);
end
for c2=2;j
cumdist(1,c2)= euclidean(c2,1,test,ref);
end
%TO TRACE OUT THE DISTORTION MATRIX
pv=1;ph=1;

 ——— R
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for c3=2j
for c4=2:i
stepl=1;
while step1<=3
if stepl==1
- 1diff=1;jdiff=0;
‘ pred(step1)=cumdist(c4-idiff,c3-jdiff)+ph;
nd
stepl==2

- 1diff=1;jdiff=1;
‘ pred(step1)=cumdist(c4-idiff,c3-jdiff)+(2 *euclidean(c4-idiff,c3-
jdiff ref test));
nd
stepl==3
idiff=0;jdiff=1;
pred( stepl )—-cumdlst( c4-1diff,c3-diff)+pv;

tep I=stepl+1;

[ obdlst Jindex]=min(pred);
cumdist(c4,c3)=globdist;
end
end
% TO COMPUTE THE GLOBAL DISTORTION BETWEEN THE
TEMPLATES
%
c5=1;
while (c5<=abs(elap)+1)
if sign(elap)<0
elapdist(c5)=cumdist(i,(j-c5+1));
end
if sign(elap)>0
elapdist(c5)=cumdist((i-c5+1),j);
end
if sign(elap)=—=0
elapdist = cumdist(i,j);
end
c5=<45+1;
end |
acc=su#n(elapdist);
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acc_globdist=(acc/max(size(elapdist)));

mfcc:

function ccep=mfcc(y,M,N,P);
subplot(2,3,1);

plot(y)

]

title('Input Speech Signal');
xlabel('time-->");

ylabel(

Amplitude-->');

%normalization

y=y/m:

(abs(y));

subplot(2,3,2);

plot(y)

title('Normalised Speech Signal');

xlabel(/Time");
ylabel(l Amplitude');

NYQ=

N/2;

% Triangular Filter Defs

for i=1
fstart(i
end;

10
=(2*i)-1;

fcent=fstart+2;
fstop=fstart+4;
fstart(11)=23;
fstart(12)=27;
fstart(13)=31;
fstart(14)=35;
fstart(15)=40;
fstart(16)=46;
fstart(17)=55;
fstart(18)=61;
fstart(19)=70;
fstart(20)=81;
fcent(11)=27,
fcent(12)=31,
fcent(13)=35;
fcent(14)=40;

33
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fcent(15)=46;

fcent(16)=55;
fcent(17)=61;
fcent(18)=70;
fcent(19)=81;
fcent(20)=93;
fstop(11)=31;
fstop(12)=35;
fstop(13)=40;
fstop(14)=46;
fstop(15)=55;
fstop(16)=61;
fstop(17)=70;
fstop(18)=81;
fstop(19)=93;
fstop(20)=108,;
seqlen=size(y,1);
m=0;
startpt=1;
endpt=N;
m=1;
while endpt<=seglen
winseq=hamming(N).*y(startpt:endpt,1);
magspec=abs(fft(winseq));

plot(magspec)

for i=1:20 % Calc triangle filter outputs
for j=fstart(i):fcent(1)
iltmag(j)=(j-fstart(1))/(fcent(i)-fstart(i));
end;

=

for j=fcent(i)+1:fstop(i)
filtmag(j)=1-(j-fcent(i))/(fstop(i)-fcent(i));
end;
Y (1)=sum(magspec(fstart(i):fstop(i)). *filtmag(fstart(i):fstop(i))');
end;
subplot(2,3,2)
plot(filtmag);

title(Triangular filter bank");
xlabel('Frequency");

==———————_—
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ylabel('Normalised Amplitude');

coefwin=cos((p1/20)*i*(linspace(1,20,20)-0.5))";
ccep(i,m)=sum(coefwin.*Y");
end;
m=m+1;
startpt=1+(m-1)*M;
endpt=startpt+N-1;
) t
endpt |

end;

subplot(2,3,2);

plot(winseq);

title('After Windowing');
xlabel('Time");
ylabel('Normalised Amplitude');
subplot(2,3,3);

plot(magspec);

title('After FFT");
xlabel('Frequency");
ylabel('Normalised Amplitude'),

Training session:

%PROGRAM FOR TRAINING SECTION

name 1 = input('Enter the file name : ');

N = input(‘Enter the starting number of reference templates to be processed:
V);

N1 = input('Enter the last number of reference templates to be processed : ");

clear ave;clear match;
for k = N:N1

for IFN:N1
1
Ly,fs,n] = wavread(strcat(name 1, int2str(k),". wav'));

| |
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¢ = endpoint_detect(y); %end point detection and returns valid speech
samples
test == mfcc(c,100,256,10); %returns mel frequency cepstral coefficients
[y1.fs,n] = wavread(strcat(name1,int2str(l), . wav'));
1= endpoint_detect(y1);
testl = mfce(c1,100,256,10);
match(lk)= dtwr2(test,testl);
end |
end
for d =1:(abs(N-N1)+1)
ave(d) = comp_mean(match(d,:));
end
ave
match

Testing session:

p=0;
while p=0
N = input(‘Enter the file name : ");
Ly.fs,n] = wavread(N);
¢ = endpoint_detect(y);
test = mfcce(c,100,256,10);
%
%COMPARING SECTION
clc
disp('Comparing with templates for the word "SIX")
for I=1;10

index=1

clear y1 testl c1;

[y1,fs,n] = wavread(strcat('si',int2str(1), wav'));

cl= endpoint_detect(y1);

testl = mfcc(c1,100,256,10);

match(1,1)= dtwr2(test,test1);
end
cle
disp('Comparing with templates for the word "FOUR")
for I=1:10

index~=l1

clear y1 testl cl;

%
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[y1,fs,n] = wavread(strcat('fou',int2str(1),' wav'));
c1=endpoint_detect(y1);
test] = mfce(c1,100,256,10);
matcL(2,1)= dtwr2(test,testl);
end
clc

disp('Comparing with templates for the word "EIGHT™)
for I=1:10

index=1

clearyl testl cl;

[y1,fs,n] = wavread(strcat(‘eight’,int2str(l), wav'));

c1=endpoint_detect(yl);

testl = mfcc(c1,100,256,10);

match(3,1)= dtwr2(test,testl);
end
clc
disp('Comparing with templates for the word "NINE™)
for1=1:10

index=l1

clear y1 testl cl;

[y1,fs,n] = wavread(strcat(‘nine',int2str(1),'.wav"));

cl=endpoint_detect(y1l);

testl = mfcc(c1,100,256,10);

match(4,1)= dtwr2(test,testl);
end

|
% |
%AVERAGE CALCULATION
fork=1:4
ave(k) = comp mean(match(k,:));
end |
flag=0;
for k1=1:length(ave)
if ave(kl) >= 30
ag=flag + 1;
nd
end
if flag<length(ave)
[min,opt] = min(ave);
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%OUTPUT SECTION
cle

if opt==1

disp('You have utterred the number 6");
disp('Thank You');
{tril,fs,n]=wavread('tria2.wav');
soundsc(tril);
end
if opt=—=2
disp('You have utterred the number 4');
disp('Thank You');
[tri2,fs,n]=wavread('trial.wav');

soundsc(tri2);
end |
if opt=—=3

disp('You have utterred the number 8');
disp('"Thank You");
[tri,fs,n]=wavread('tria.wav');

soundsc(tri);
end
if opt=—4

disp('You have utterred the number 9);
disp('"Thank You");
[tri,fs,n]J=wavread('tria9.wav');

soundsc(tri);
end |
breaki
else
disp('Sorry!");
disp(' )

disp("Your voice is not audible. Please try again');
end

end |
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OUTPUT SCREEN:(DTW)

conp__nean.l#
dt,n'_n . ile match =

Columns 1 through 4

| Al 0 40.0617 417653 42.3217
| F1 60.0000 60.0000  60.0000  60.0000
60.0000 55,1198  52.4395  60.0000

| 60.0000 60,0000 60.0000 60.0000
i P
6
[‘.] eigh. vay | Celumns 5 through
endpoint_det.ect.n M-fili i1 42.0476 42.1832
R ENFRARE . 1 M-file f| 60.0000 60.0000
% i
=y oor || e0.0000 513877 |
euchdean.m M-file 3 60.0000  60.0000 |
Etirst.n H-fils
[.L] fourl.wav ;
[] four10.way i k= ;
” fourll.way 4
[+] touriz. way q
iYou have utterred the nuxber &
[] fourZ.wav s
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