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ABSTRACT

Self-organized clustering is a powerful tool, whenever huge sets
of data have to be divided into separaie categories. Adaptive resonance
(ART) architectures are neural networks, that self organize stable
recognition codes in real time in response to arbitrary sequence of input
patterns. Many different types of ART networks have been developed to

improve clustering capabilities.

In this project titled, ” Analysis of ART network Clustering Performance”,
clustering performance of different typesof ART networks: ART-1,ART-2A,
Fuzzy ART is compared. Some outstanding features of ART besides 1ts
clustering capabilities include performance, economic usage of memory
resources and temporal stability of stored knowledge. This project
concentrates on the comparative analysis of clustering properties for several
variants of ART networks on input patterns of arbitrary dimensions, which
Jllustrate the geometric characteristics of ART clustering and internal

representation of knowledge by prototypes.

Keywords: Adaptive Resonance Theory, clustering analysis, neural

networks, self-organization, unsupervised.
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CHAPTER I

INTRODUCTION

| PROBLEM DEFINITION

Pattern clustering is the problem of grouping a giving set of patterns according to
the similarity of the patterns. The pattern clustering by any ART network can be modeled
by the simple sequence of operations: preprocessing, choice, match and adaptation. The
central part of the ART network computes the matching score reflecting the degree of
similarity of the present input to the previously encoded

clusters.

A combination neural networks consisting of feed forward and feedback parts can
perform pattern recognition tasks. The network is also called the competitive learning
network. There are two types of problems here. The first type of problem is that the
network displays an accretive behavior. That is, if an input pattern not belonging to any
group is presented, then the network will force it into ohe of the groups. The input pattern
space is typically a continuous space. The test input patterns could be the same as the
ones used in training or could be different. The output pattern space consists of a set of
cluster centre or labels. The second type of problem is that the network displays an
interpolative behavior. In this case, a test input pattern not belonging to any group
produces an output which is some form of interpolation of the output patterns or cluster

centre depending on the proximity of the test input pattern to the input pattern groups

formed during training.



1.2 RELEVANCE AND IMPORTANCE OF THE TOPIC

Adaptive Resonance theory(ART) that learns in an unsupervised fashion is of the
interpolative type. ART structure is a neural network approach for cluster formation.
ART allows the user to control the degree of similarity of patterns placed in the same

cluster.

Many pattern mapping networks can be transformed to perform pattern
classification or category learning tasks. However these networks have the disadvantage
that during learning the weight vectors tend to encode the presently active pattern, thus
weakening the traces of patterns it had already learnt. Moreover, any new paiterns that
does not belong to the categories already learnt is still forced into one of them using the
best matched strategy, without taking into account how good the best match is. The lack
of stability of weights as well the inability to accommodate
patterns belonging to new categories, led t0 the proposal of new architectures for pattern
classification. The various conventional algorithms for clustering are K-means, vector
quantization (VQ) techniques, ISODATA algorithms, which are examples of decision

theoretical approaches.

In these conventional neural networks, the stability-plasticity ~dilemma
encountered. The architecture of Adaptive Resonance Theory is specially designed to
take care of the so called stability-plasticity dilemma in paftern classification.
The common algorithm used for clustering in any kind of ART network is closely related
to well known K-means algorithm. Both use single prototype 10 internally represent and
dynamically adapt clusters. The K-means algorithm clusters a given set of input patterns
into K-groups. The parameter K thus specifies the coarseness of the partition. In contrast
ART uses a minimum required similarity between patterns that are grouped within one
cluster. The resulting number K of clusters then depends on the distances (in terms of the
applied metric) between all input patieins, presented 10 the network during training

cycles. This similarity parameter is called vigilance.



1.2.1 STABILITY PLASTICITY DILEMMA

The human brain has the ability to learn and memorize many new things in a
fashion that does not necessarily cause the existing ones to be forgotten. In order to
design a truly intelligent pattern recognition machine, compatible with the human brain, it

would be highly desirable to impart this ability to our models.

In real world applications, though, the network can be exposed to a constantly
changing environment, such that training that does not evolve will ultimately become
inaccurate. The ability of network to adapt and learn a new pattern well at any stage of

operation is called plasticity.

Grossberg describes the stability-plasticity dilemma as follows: “How can a
learning system be designed to remain plastic, or adaptive, in response to significant
events and yet remain stable in response to irrelevant events? How does the system know
how to switch between its stable and its plastic modes to achieve stability without chaos?
In particular how can it preserve its previously learned knowledge while continuing to
learn new things? What prevents the new learning from washing away the memories of

prior learning?”

As such ART provides a mechanism by which the network can learn new patterns
without forgetting old knowledge. For example, in the context of character recognition
problem, this could be useful in contexts such as training writer specific handwriting in
an on-line system or in adding new fonts 10 an existing off-line system needing to retrain

the network from scratch.

The incorporation of a tolerance measure (vigilance test) allows ART architecture
to solve the stability-plasticity dilemma. New patterns from the environment can create
additional classification categories, but they cannot cause an existing memory to be

changed unless the two match closely.



1.2.2 ANALYSIS OF PATTERN CLUSTERING NETWORKS

A competitive learning network with nonlinear output functions for units in the
feedback layer can produce at equilibrium larger activation on a single unit and small
activations on other units.This behavior leads to a winner-take-all situation, where, when
the input pattern is removed, only one unit in the feedback layer will have non-zero
activation. If the feed forward weights are suitably adjusted, each of the units in the
feedback layer can be made to win for a group of similar input patterns. The
corresponding learning is called competitive learning. The units in the feedback layer
have non-linear f(x)=xn ,n>1 output functions. Other non-linear output functions such as

hard-limiting threshold function or semi linear sigmoid function can also be used.

These units are connected among themselves with fixed weights in an on-centre
off-surround manner. Such networks are called competitive learning networks. Since they
are used for clustering or grouping of input patterns, they can also be called pattern
clustering networks. In the pattern clustering task, the pattern classes are formed on
unlabelled input data, and hence the corresponding learning 18 unsupervised. In the
competitive learning the weights in the feed forward path are adjusted only after the

winner unit in the feed back layer is identified for a given input pattern.

This project deals with the comparative analysis of the clustering performance of

various ART architectures which are competitive learning models.



1.2.3 STAGES OF PROCESSING IN AN ART ARCHITECTURE

The various stages of processing in any ART architecture is as shown in Fig. 1.2

"PREPROCESSING ADAPTATION

Figure 1.2

Preprocessing is the creation of input pattern as an array with constant number of
clements. Once the input pattern is formed, it 18 compared with the n-stored prototypes.
The neuron with the maximum net value ie. maximum bottom-up net activity in
recognition layer is fired. The top down net activity from F2 layer is matched with the
input pattern. Depending on the degree of similarity, either the input pattern 18 fed again
or adaptation occurs. The weights are accordingly changed so as t0 accommodate the

input pattern in the cluster which it matches.



CHAPTER I

LITERATURE SURVEY

This Project gets inspired by the article presented in the IEEE Transaction on
Neural networks titled, “Comparative Analysis of Fuzzy ART and ART-2A Network
Clustering Performance”.General Clustering Capabilities of ART network are briefly
illustrated in conceptual manner with general idea about how to compare their clustering
capabilities. The conceptual approach has been developed as a software program in this

project which follows the algorithmic notion presented in the article.

And also, ART1 clustering capabilities are included to illustrate the performance
analysis to begin from the basis. The main inspiration for this project is from the Text
Book, “Simulating Neural Networks with Mathematica” by James A. Freeman. The
processing equations that are dealt in this project are caught hold from the esteemed
columns of the same.And also, 1t will be worth while to mention about the IEEE
Transaction, “FUZZY ARTMAP : A Neural network architecture for Incremental
Supervised Leaming of Analog Multidimensional Maps” in which processing equations

of Fuzzy ART are derived.



CHAPTER 111

SOFTWARE AND HARDWARE REQUIREMENTS

3.1 USER INTERFACE

3.1.1 GUI

s any Graphical User interfaces. This is

The system under design does not use
and real-valued analog input

since because the input to the system is mainly binary

patterns.

3.12CL
r design invokes by itself on the command line with input

Yes, the system unde
ol under DOS

file names as arguments and the system will be a powerful clustering to

platform.

3.1.3 AP1

lication programming interfaces are not required by the system under design

App
and there is no need for invoking the routines using public interfaces.

3.1.4 DIAGNOSTICS
Any error encountered during run-time will be properly addressed to the

users by invoking appropriate debugging routines.



3.2 HARDWARE SPECIFICATION

The system under design requires no additi

and it do need at least 64MB RAM as a major requireme

onal hardware interfaces to be attached

nt and it can be run on any

Celeron or Intel

Processors.

33 COMMUNICATIONS INTERFACES

The system do not require any Network interfaces.

3.4 SOFTWARE INTERFACES

The product under design require Turbo C or Borland C as a only software

interface to be present.



CHAPTER IV

PROPOSED APPROACH TO THE PROBLEM

One of the nice features of human memory is its ability to learn many new things without
necessarily forgetting things learned in the past. It is easier for humans to recognize the
input patterns on viewing them and they will be able to judge correctly whether the input

pattern was seen previously or it is a new one and they can update their memory

accordingly.

Is there an intelligent learning system, to program computers to do the same things that
we humans do? This is where, the implementation of «“Neural Networks” architecture
comes into effect. Humans can do this by developing the algorithm and writing the

program that enables a computer 10 perform its function.

Many Neural Network architectures are available to do the above function. The flaw in
those systems is, there is no built-in mechanism for the network to be able to recognize
the novelty of the input. The Neural Network doesn’t know that it doesn’t know the input
pattern. On the other hand, suppose that an input pattern is simply distorted, the network
treats this pattern as a totally new pattern, then it may be over-working itself to learn that
it has already learned in a slightly different form. This dilemma is known as stability-

plasticity dilemma.

Adaptive resonance theory (ART) attempts 10 address the stability-plasticity dilemma.
ART architectures are Neural Networks, that self organize stable recognition codes in

real time in response to the arbitrary sequence of input patterns.

In this project titled, “Analysis of ART Network Clustering Performance”, clustering
performance of different types of ART networks: ART-1, ART-2A, Fuzzy ART is

compared and their performances are analyzed.



n the comparative analysis of clustering properties for

Also this project concentrates O
£ arbitrary dimensions, which

everal variants of ART networks on input patterns O
ring and internal representation of

llustrate the geometric characteristics of ART cluste

knowledge by prototypes.

BLOCK DIAGRAM OF THE APPROACH

The block diagram of the approach is as shown in the fig 4.1. The first step is to

1. Secondly, ART-2A is implemented and its ¢
of ART-1. Finally Fuzzy ART is implemented

compared with ART-2A.

implement ART- lustering performance for

‘binary input vectors is compared with that

and its clustering performance for real-valued input vectors is

ART ARHITECTURES

|

‘ r
IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION
OF ART-1

OF ART-2A OF FUZZY ART
y "y
ANALYSIS OF ART1 ANALYSIS OF ART-
AND ART2A
2A AND F-ART

4.1 Block Diagram



- This is a binary version of ART, i.e. it can cluster binary input vectors.

ART-1

ART-2A . This is an analog version of ART, i.e. it can cluster binary and real
valued input vectors.

Fuzzy ART : This method is a synthesis of ART and fuzzy logic. It is also used to

cluster real-valued input vectors



CHAPTER YV

DESIGN DETAILS

5.1 PRODUCT FUNCTIONS
The product that is being designed will be helpful to impart the pattern clustering

em in any real time situation. Also, ART1 implementation
“Optical ~ Character recognition

probl which is being done here

will be  helpful to address problem™.

5.2 SIMILAR SYSTEM INFORMATION

The proposed system in the 1EEE article is the main source of inspiration and 1t

purely follows the conceptual approach described there.

5.3 USER CHARACTERISTICS

DOS or Windows(9x)

The user community should be able to run this program on

platforms either using Turbo C or Borland C compilers.

5.4 USER PROBLEM STATEMENT

Self-organized clustering is a powerful tool, whenever huge sets of data have

divided into separate categories. Adaptive resonance (ART) architectures are neural

to be
es in real time in response to arbitrary

networks, that self organize stable recognition cod

sequence of input  patterns.



CHAPTER VI

ART-1 AND ART-2A

6.1 ART-1

ART is an extension of the competitive learning schemes. A key to solving the
stability-plasticity dilemma in ART is to add a feedback mechanism between the
competitive layer and the input layer of a network. This feedback mechanism facilitates
the learning of new information without destroying old information automatic switching
between stable and plastic modes, and stabilization of the encoding of the classes done by
the nodes. This results in the nature of their input patterns. ART 1 networks require that

the input vectors be binary, thus it can cluster binary input vectors.
6.2 ART-1 ARCHITECTURE

The ART1 architecture is as shown in figure 6.1. The overall architecture of the

ART]1 network is divided into two subsystems namely.
Attentional Subsystem and Orienting Subsystem
6.2.1 ATTENTIONAL SUBSYSTEM

The attentional subsystem is characterized by feedforward and feedback
connections. This system determines whether the input pattern matches with one of the

prototypes stored. If a match occurs a resonance is established.



ORIENTING
SUBSYSTEM

VIGILANCE

COMPARISON LAYER

Fig. 6.1 ART-1 Architecture

The attentional subsystem consists of two layers of neurons called the comparison
layer and recognition layer. The neurons in the comparison layer respond to the features
in the input pattermn. The synaptic connections (weights) between the two layers arc
modifiable in both directions. The recognition layer neurons have inhibitory connections
that allow for a competition. The classification decision is indicated by a single neuron in

the recognition layer that is fired.



5.2.2 ORIENTING SUBSYSTEM

The orienting system is responsible for sensing mismatches between bottom-up
and top-down patterns on the comparison layer. The value of vigilance parameter
measures the degree 10 which the system discriminates between different classes of input
pattern. Depending on this vigilance parameter the orienting subsystem may of may not
cause a reset.

The orienting subsystem can be modeled as a single processing, A, with an
output to each unit on the recognition layer. The inputs to A are the outputs of
comparison units, S, and the input vector are all equal to a value P: those on the
connections from the comparison layer are all equal to a value-Q. The net input to A is

thenP11{-QIS| The output of A switches on if the net input becomes NONZETo

P|I]-QIS|>0
Or
P|1|>QlS]
P/Q>|SI/11]

The quantity P/Q is given the name vigilance parameter and is usually identified

by a symbol.,p Thus, activation of the otienting subsystem is prevented if

|S$1/11]>=p

The recognition layer is inactive when | S |=1{11. The orienting subsystem must
not set a reset signal to recognition layer at that time. From equation above. We get a
condition on the vigilance parameter:

p<=1



A subsequent condition on Pand Q:

P<=Q

The value of vigilance parameter measures the degree to which the system
discriminates between different classes of input patterns. Because of the way it is defined,
it implements a self-scaling patierm match. By self-scaling we mean that the presence Or

absence of a certain feature in defining the patiem class.

The value of p determines the granularity with which input patterns are classified
by the network. For a given set of input patterns 0 be classified, a large vatue of p will

result in finer discrimination between classes than a smaller value of p.
6.3. ART-1 ALGORITHM

Step 1- Preprocessing : The input patterns which is a binary vector consisting of 1’s and
0’s is fed to the network. The input pattern I = (i1, i2, 3,...-1n ). The feedback from
| recognition layer is set to zero initially. Every neuron of an output layer receives a
bottom-up net activity 1j, built from all the comparison layer outputs S = 1. The vector
elements of T= t1,12,13,....tn) can be seen as results of comparisons between input pattern
I and prototypes Wi =( W, Wi2yeeeeeenr Wim Jpeeereees wn={(Wn. Wi,-- ... Wom). These
Prototypes are stored in synaptic weights of the connections between comparison and

recognition layer neurcns.

Step 2- Choice: The bottom-up net activities lead to the choice of winning neuron in the
recognition layer. The recognition layer neuron J receiving the highest net activity tj, sets
its output to 1 while all other neurons,

U= 14> max(tk!=9)

0 otherwise



One possible way to compute net activities §j, and by that measure the similarity between !
and W; 1s weighted as

Tj = X Wigli
The pattern again fed back as top-down activity to the comparison layer

Step 3-Match:The comparison layer checks for a match between the pattern fed back and
the input pattern. If the degree of similarity is greater than vigilance value a match occurs
and adaptation takes place. Else the reset signal is set and the winning neuron is
inhibited. The input pattern is again fed and the process continues until all the neuron in
the recognition layer has been fired after which a new cluster is formed for the input

pattern fed.

Step 4- Adaptation: After the winning neuron J if the recognition layer bas been found
the corresponding prototype W= (WijsWajaeeeeeeees W) is adapted to input pattern L.
Adaptation takes place by altering the weights suitably to accommodate the input patiern
in the already stored pattern. One suitable method for adaptation 1s to slightly move the

weight W; towards the input pattern 1
Wj(new) — I_].I + (1_ IJ)WJ(Old)

The constant learning rate pé [0,1] is chosen to prevent prototype Wj from moving

too fast and therefore destabilizing the learning process.

6.4 ART-2A
ART-2 is an analog version of ART, that is it can cluster real valued input

vectors. The ART-2A/is a fast version of ART-2. ART-2 can categorize both binary and

analog input vectors.



ART-2 differs from ART-1 only in the nature of the input patterns ART-2 accepts
analog (or gray-scale) vector components as well as binary .components. The capability
represents a significant enhancement to the system. Beyond the surface difference
between ART-1and ART-2 lie architectural differences that give ART-2 its ability to deal
with analog patterns.These differences are sometimes less complex than the

corresponding ART-1 structures.

6.5 ART-2 ARCHITECTURE

The comparison layer of ART-2 is complex because continued
valued input vectors are used. Additional nodes are designed for the
following reasons :
1. Allowance for noise suppression
2. Normalization.
3. Comparison of top-down and bottom-up signals used for the reset mechanism.

4. Dealing with real-valued data that may be arbitrarily close to one another.

The recognition layer consist of six types of units W,X,U,V,p.,q. There are N units in
each of these units where N is the dimension of input pattern. Supplemental units are
used to compute the norm of all input patterns which it receives and send to the
inhibitory signal to the output unit to which it connects. The action of the recognition
layer is essentially unchanged when compared to ART-1 .The units compute ina

winner-take-all mode for the right to learn input patterns.



.6 ART-2A ALGORITHM

Step 1- Preprocessing: No negative values are allowed and all uncoded input
vectors. A are normalized to unit Euclidean length,

[=A/Ea)?=ATAl
A;> 0 forall L, Al > 0.

Step 2- Choice: Botiom-up net activities leading to the choice of a prototype, are

determined by

T=| I.W; if j indexes a committed prototype

a . T T; otherwise

where 0 <= a6 <=1/ m"?

Bottom-up net activities are determined differently for previously committed and
uncommitted prototypes. The choice parameter & >= 0 again defines the maximum
depth of search for a fitting cluster. With =0, all committed prototypes are checked

before an uncommitted prototype is chosen as winner.

Step 3- Match: Resonance and adaptation occurs cither if J is an index of an
uncommitted prototype or if J is a committed prototype and

p<=1W;=T;

Step 4- Adaptation: Adaptation of the final winning prototype requires a shift toward
the current input pattern

W) =g 1+ (- W 0<=n <l



\RT-2A type networks always use fast-commit slow-recode mode therefore the

earning rate is set to n=1,if Jisan uncommitted prototype and to lower values for

further adaptation.

Since match and choice do not evaluate the values of uncommitted prototypes, there is no
need to initialize them with specific values ART-2A related networks should not be used
in fast-learning mode with n = 1, because prototypes then begin to “jump” between all

patterns assigned to their cluster, instead of converging toward their mean.



CHAPTER VII

FUZZY ART

7.1 DEFINITION
eves a synthesis of ART and Fuzzy Logic by analyzing the

Fuzzy ART achi
and ART category

close similarities between the computations of fuzzy subset hood

choice resonance and learning.

72 ARCHITECTURE

The architecture of fuzzy ART is as shown in figure 7.1

E F, LAYER OUTPUT y \

|

F; LAYER OUTPUT x

L INPUT VECTOR a !

Fig. 7.1 Block Diagram of Fuzzy ART Architecture



The various notations used in Fuzzy ART given as follows

7.3 ART FIELD ACTIVITY VECTORS
Each ART system includes

1. A field Fo, of nodes that represent a current input vector
5 a field Fy, that receives both bottom-up input from Fo and top-down input from a field
Fa,

3. A field Fy,that represents a active code or category.

The activity vector of each field is as follows:

1. The Foactivity vector is denoted as I=(I1,.....- L), with each component I; in the
interval [0,11.3=1,2,... M.

9. The F, activity vector is denoted X=(X1,-- . Xm) and

3. The activity vector is denoted Y=(¥1,.----- vn). The number of nodes in each field is

arbitary.

73.1 WEIGHT VECTOR

Associated with each F category node j (=1.2,..N) isa vector Wi=(Wjl,- .- Wjm)
of adaptive weights or LTM ftraces.
Initially,
Wii(o)=.. .=wjm(o)=1

Then each category is said to be uncommitted. After a category is selected for coding, it
becomes commited. The fuzzy ART weight vector wj subsumes both the bottom-up and
top-down weight vectors of ARTI.



7.3.2 PARAMETERS

Fuzzy ART dynamics are determined by

1) Choice parameter o >0
ii) Learning rate parameter p € [0.1] and

iiiy  Vigilance parameter p € 10,1].

7.3.3 COMPLEMENT CODING

Complement coding is a normalization rule that preserves amplitude information.
Complement coding represents both the on-response and off-response to an input vector
a. Let a itself represent the on-response. The complement of a denoted By a° represents
the off-response where a=1-a

The complement coded input I to the field F1 is the 2M dimensional vector:
I=(a,a’)=(as.... A, Bm )
|1]=\a,ac[=M
So inputs preprocessed into complement coding form are automatically
Normalized. Where complement coding is used, the initial condition is Replaced by

Wji(0)=. . .szM(O)-:l

The weight vector Wj can be written in complement coding form

Wi= (U Vi)



.4 FUZZY ART ALGORITHM

Stepl — Preprocessing: Proliferation of categories is avoided in Fuzzy ART if inputs are
normalized. A normalization procedure coding leads to a systematic theory in which the
AND operator(r) and OR operator(v) of fuzzy logic play complement roles.
Complement coding I=a/|a], uses on cells and off cells to represent the input pattern, and
preserves individual feature amplitudes while normalizing, the total on cell-off cell
vector. Normalization can be achieved by preprocessing each incoming vector

|l =21=1l|aiai (0,1} forall 1.
Step 2- Category Choice : For each input 1 and F2 node j, the choice Function Tj1is
defined by
T, (D=1 AW/ (o + [Wi)
Wherte the fuzzy AND operator A is defined by

(PAQ)zmin(Pia/\Qi)

and the norm |.| is defined by
ipl = Zlpil

For any M-dimensional vectors p and q,

And [wj| = T (waai) + Z[3- (vjva i)

=M-| va - nal

where (p v @) = max (pi,qi)

a.>=0.001



The system is t0 make a category choice when at most one F2 node can become

ive at a given time. The category choice is indexed by J, where

act
Tj=max{Tj:j= 1,..N}

ategory j with the smallest index is chosen.

e order j=1,2,3,... When the Jth category

oice system, the Fl activity vector obeys

If more than one Tj 1s maximal, the ¢

In Particular , nodes become committed in th

is chosen Yy =1 and Y =Qforj!=J. Inach

the equation :

I i F2 is inactive

X
i

10\ W of Jth node
B2 is chosen

ent winning prototype Wj is measured

Step 3 — Match: The similarity of input I and curr
ance occurs if the match function,

by the degree of 1 being a fuzzy subset of Wj. Reson

ITAW] /(L= p
That is, when the Jth category is chosen.

Mismatch reset occurs if
ITAWj/T1>=p

Then the value of Tj is set 10 0 for the duration of the input presentation 10

at selection of the same category during search.

earch process continues until the chosen J satisfi

A new index J is then

prevent the Persiste
es eqn.

chosen by eqn. The s



step 4 — Adaptation : Once the search ends, the weight vector Wj is updated according

o the equation

w; = BIAW;) + (- BIW;

Fast learning corresponds to setting p = 1. In contrast lower learning rates lead to a slow

learning mode.

Fast-commit Slow Recode Option : For efficient coding of noisy input sets, it is useful
to set p = 1 when J is an uncommitted node, and then to set p<1 after the category 1s
active. Proliferation problem can occur in certain analog ART systems when a large

number of inputs erode the norm of weight vectors. Complement coding solves the

problem.



CHAPTER V111
EXPERIMENTATION AND RESULTS

8.1 INPUT PATTERNS PRESENTED :

ut patterns were presented for training

The following inp

(1) Numerals

(i1) Alphabets

(ii1) Tamil Characters

Fig. 8.1 Training Pattern (Numerals)
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Fig. 8.1 Training Patterns of Fig. 8.1(continued)

y

Fig 8.2 Test Patterns with noise



EFGH

b4 ' 10

Fig 8.3 Training Patterns(alphabets)

Fig 8.4 Test Patterns with noise



Fig 8.6 Test patterns with noise



.2 PERFORMANCE ANALYSIS:

ance of ART-1 and ART-2A for numerals 1s tabulated in

The clustering perform
d Fuzzy ART in Table 8.2.

Table 8.1 and that of ART-2A an

ART-2A for numerals

Table 8.1 Comparison of ART-1 and




omparison of ART-2A and Fuzzy ART for Numerals

Table 8.2 C




The clustering performance of ART-1 and ART-2A for alphabet is tabulated

n Table 8.3 and that of Fuzzy ART and ART-2A in Table 8.4

Table 8.3 Comparison of ART-1 and ART-2A for alphabet

ﬁATTERN p=0.85 p=0.92 p=0.95
NUMBER
ART-1 | ART-2A | ART-1 | ART-2A | ART-1
1 1 1 1 1
2 2 1 | 2 3 2 3
3 3 2 E 5 3 5
4 4 2 4 5 4 5
5 6 2 6 5 9 5
6 5 3 5 3 | 5 3
7 6 2 6 2 | 6 2
I 8 7 4 7 6 | 7 6
P 9 9 2 9 2 110 2
10 8 4 8 4 | 8 4
[PERFORMANCE | 90% a0% | 90% |60% | 100% 60%




4 Comparison of ART-2A and Fuzzy ART for alphabet

Table 8.




The clustering performance of ART-1 and ART-2A for Tamil characters is

tabulated in Table 8.5 and that of ART-2A and F-ART in Table 3.6.

Table 8.5 Comparison of ART-1 and ART-2A for Tamil Characters

32

[ART-1 | ART-2A mmm-m
R 1 -—--—
2 1 2 T 2 1112 |
ER 3 > |3 12 |23
N 4 ml_-I_
= 7 5 I-I-“_

4 6 l-_nl-
E 2 I-_“_
8 6 5 E-_l-_
[PERFORMANCE | 87.5% | 75% 75% | 15% 100%| 87.5%




Table 8.6 Comparison of ART

2A and Fuzzy ART for Tamil characters

PATTERN p=0.85 p=0.95

NUMBER

— [ART2A FARL ART2A F-ART | ART-2A| F-ARI
S 1 1 (1 it !
2 1 2 |2 12 2
3 |3 1 3 |2 3 3 ]
I 1 5 11 14 |\ |
5 15 2 l-l_l-_
R 2 ml_l-_
A __l_l-_
-_E-l-ﬁ-l_ﬁ-_
E_ 87.5%



.3 RESULT

On comparing the clustering performance of the different iypes of ART

architectures:

A, Fuzzy ART from the tables, it is found that clustering in

ART-1, ART-2
ary input vectors.

ART-1 is better than that of ART-2A with respect to bin:

Further, the clustering performance of ART-2A is better than that of Fuzzy

ART for real valued input vectors.



CHAPTER IX

CONCLUSION

9.1 CONCLUSION

Leaving aside the biologically motivated aspects, ART tumns out to be an
effective, transparent clustering algorithm. Three different types of ART networks, ART-
1,ART-2A, Fuzzy ART were inspected. Each variant 1s characterized by its

preprocessing-, choice- match- and adaptation rule.

Arbitrary dimensional pattern sets illustrated the geometric nature of ART
clusters. Fuzzy ART uses the degree of an input pattern being fuzzy subset of a stored
prototype to measure the similarity between two patterns When using complement
encoded input patterns, prototypes converge towards the common MIN and MAX values
of all patterns assigned to the according cluster. Properties of ART networks depend on
two main parameters p and n. Vigilance p defines the minimum similarity between
patierns in one cluster in terms of the applied distance metric. Higher vigilance increase
the total number of clusters set upon a static pattern set. If geometric preferences are
given for a specific pattern set, as in our project, the number of clusters does not depend
on the order of pattern presentation. Learning rate v regulates adaptation of stored
prototypes towards input patterns. Fuzzy ART networks reach a state of temporarily

stable prototypes, indicating the end of a training cycle ona fixed set of patterns.

All network weights are fixed, when all training Patterns are enclosed by the
MIN- and MAX- bounds defined by the prototypes. The extension of the prototypes is
limited by the vigilance parameter p. Once the maximum extension of a prototype has
reached, no further patterns are assigned to the according cluster not lying completely
within the MIN- and MAX bounds. This makes fuzzy ART highly sensitive to additional

noise on trained input patterns and its output is unpredictable.



In most applications, where pure self-organized clustering is required, ART-11s
nore appropriate when the binary input vectors in real world applications, where the

nput is real valued, ART-2A is more appropriate.

9.2 FUTURE EXTENSION

This Project can be extended by comparing the clustering performance of same
architectures for higher dimensional input vectors and also for other architectures such as
ART-3, Fuzzy ARTMAP, ARTMAP, Distributed ART, SMART etc. Clustering
performances can also be tested with images, hand-written characters, face recognition ,

etc.



CHAPTER X
SOURCE CODE

*IMPLEMENTATION OF ART-1%*/
#include <conio.h>

#include <dir.n>

#include <ctype.h>

#include <dos.h>

#include <stdarg.h>

#include <stdio.b>

#include <stdlib.h>

#include <string.h>

#include <values.h>

#define BUFSIZE 2048

enum BOOL { FALSE =0, TRUE = 1};

struct F2

{
float T, *up, *dn;

3

struct VEC
char *name;
int *v;

¥

int breed, hoog, ser_width, veclen, n_vec = 0, max_vec =0,nf2=0, max_f2 = 0,

n_used =0, input_line;



float A1, B1,C1, DL, L, tho = 0, *S, *V;

struct VEC *vec = NULL;

struct F2 *£2 =NULL;

char *programnamc, buffer [BUFSIZE + 1], *no_mem_buffer, *infile = "patt.inp”,
kno_mem_buffer, Out_of memory [} = "Out of memory";

void show(int v), get _programname (char const *argv(), process_args (int arge, char
*argv [1). setup(void), make f2_unit (void), read file (void), syntax (void), errit (char
const *format, ...), *s_malloc (size_t size), *s_realloc (void *block, size t size);

char *s_strdup (char const *g), *getline (FILE *fp, enum BOOL required, char const
*filenamey,

char const *get_arg (int argc, char *argv(]. int *index);

float *alloc_vector_float (int i1, float value);

int main(int argc, char *argv [1)

{
int i,j,v,coded,f2win;
float max,sum,nwup,nwdn,S_mag,IFmag;
no_mem_buffer = (char *) malloc (1024);
get_programname (argvi0l);
process_args (argc, argv);
read_file ();
setup ();
coded = 0;
v=-1;
while (coded++ < n_vec) {
if (++v ==n_vec)
v =0
printf ("%s:", vee {v].name);
if (n_used == n_f2)
make f2_umit ();
I _mag = 0.0;



for (i = 0; 1 < veclen; i++) {
[ip+BH+CH> 0.0)?

S[i] =(((float) vec [vl.v [iD/ (10 + AL * (((float) vec [vl.v
0:00;
I_mag += vec [v].v(i}?1.0: 0.0;
¥
for G = 0; j<n_{2; ) {
sum = 0.0;
for(i=0;1< veclen; i++)
sum += S [i] * £2 [j1.up Ui};
£2 [3].T = sum;
}

for (3} {
max = -MAXFLOAT;

for (i=0; i <n_f2; i++) {
if (£2 {i].T > max) {
max = {2 [i].T;
f2win =1i;
}
}

if (max <= 0.0)

errit ("Really weird!"):

S mag= 0.0;

for (i = 0; 1 < veclen; i++) {

V[i] =12 [f2win].dn [i};

S_mag += ( S[i} = (({(float) vec [v}.v [i]) + D1 * Vii] - B}/ (1.0 + Al * (((float) vec
[vivip+D1* Vi) +C1)>0.0)? 1.0:0.0);

}

printf ( "%i", f2win + 1);

if (S_mag /1 mag< rho)
2 [f2win].T = MAXFLOAT;



else
break;

yrintf (M\n");
f (f2win >= n_used)
n_used = f2win + 1;
for(i=0;1< veclen; i++) {
if (S [i1=1.0){
nwup=L/(L-1.0+ S_mag);
nwdn = 1.0;
1 else
nwup = nwdn = 0.0;
if (nwup 1= 12 [f2win}.up [ip
coded = 0;
£2 [f2win].up [1] = pWup;
}
if (owdn != 12 [f2win].dn [i]) {
coded =0;
£2 [f2win].dn [i] = nwdn;
i
}
if (coded == 0)
show (V)
3
printf ("\n rho: %f\n\n", tho);
getch();
return 0;

}

void show (int nr)

{



nt i,j.k,line,v,lines,v - per_line;
;_per_line = (scr_width - breed - 5) / (breed + 2);
ines =n_used / v_per_line;
if (lines * v_per_line < n_used)
lines++; |
for(line = 0; line < lines; line++) {
for (j = 0; j <hoog; i+ {
if (line == 0)
{
for (k = 0; k < breed; k++)
printf (vec [nr].v [j * breed + k} ? "@" ")
printf (" = ");
lelse
printf ( "%*s " breed,"");
for (i=0; 1< v_per_line; i++) {
v =line * v_per_line +i;
if (v <n_used) {
for(k=0;k< breed; k++)
printf ((f2 [v].dn [k + breed * j} > 0.5?2"@":".")
sleep(2);
printf (" ");
3
h
printf ("\n");
¥
printf ("\n");
3
}

void setup ()
{



truct text_info ti;
rettextinfo ( &ti);

ser_width = ti.screenwidth;

Al =10

B1=1.5;

C1=5.0;
D1=0.9;

L =3.0;

if (tho <= 0.0)
tho=0.5;

S = alloc_vector_float (veclen, 0.0);

V = alloc_vector_{float (veclen, 0.0);

}

void make_f2_unit(}
{
while (n_f2 >= max_{2) {
max_f2 += 64;
£ = (struct F2 *) s_realloc (f2, max_f2 ¥ sizeof(struct )
}
2 {n_f2}up= alloc_vector_ﬂoat(veclen, 08*(L/(L-10+ (float) veclen)));
£2 [n_f2++].dn= alloc_vector__ﬂoat(veclen, 1.4 * ((B1 -1.0)/ D)),

}
void read_file O

{

int i,j,k;

char const *file_error = "File does not exist\"%os\", %i1", *illegal = "lllega "
FILE *ip;

if( ! infile)

errit ("Tilegal file name™);



» = fopen (infile, "t");
f(! fp)

errit ("Cannot open \"04s\" file does not exist", infile);
nput_line = 0;
getline (fp, TRUE, infile);
if (sscanf (bufier, nosi 041", &breed, &hoog) 1=2)
errit(file_error, infile, input_line);
if (breed < 1)
errit (illegal, "breedte");
if (hoog < 1)
errit (illegal, "hoogte");
veclen = breed * hoog;
while (getline (fp; FALSE, NULL)) {
while (n_vec >= max_vec) {
max_vec += 64;
vec = (struct VEC *)

s_realloc (vec, max_vec * sizeof (struct VEC));

}

vec [n_vec].name = s _strdup (buffer);

vec [n_vec].v = (int *) s_malloc (veclen * sizeof(int)):

for (i=0;1<hoog; i++) {
getline (fp, TRUE, infile);
i=0;
k=-1;
while (j < breed) {
switch (buffer [++kD {
case ' "
case "\t':
break;

case -



ase '0":

vec [n_vec].v[i* breed + j++]1 =05
break;

sase '

case '1":

vec [n_vec].v[i * breed + j++] =1;

break;
default:
errit (file_error, infile, input_line);
}
}
}
n_vec++;
}
fclose (fp);
}
char *getline (FILE *fp, enum BOOL required, char const *filename)
{
int 1;
for(;;) {
if (fgets (bufter, BUFSIZE, fp) == NULL) {
if (required)
errit ("Unexpected end of file in %s", filename);
else
return NULL;
¥

input_line-++;

i = strlen (buffer);

while (i && isspace (buffer [i-11))
buffer [--1] = "0%



i=0;
while (buffer [i] && isspace (buffer [i]))
i+t
if (buffer [i] == "#)
continue;
if (buffer [i]) {
memmove (buffer, buffer+, strlen (buffer) + 1);

return buffer;

}
}

void syntax ()

{
fprintf (stderr, "nAdaptive Resonance Theory l\n\n" "Syntax: %s -i string [T

float]\n\n" "1 : inputfile\n" "-r vigilance: 0.0 <rho <= 1.0\n
exit (1);

3

", programname);

void process_args (int arge, char *argv [])

{

int i;

tho=.85;
if (arge == 1)
syntax ();
for (i=1;i<2;i+H) {
if (argv [i][0) ="' && argv [{}[0] = )
errit ("Illegal argument”);
switch (argv [11{1]) {



case '1':
infile = s_strdup (get_arg (arge, argy, &i));
break;

case 't
rho = atof {get_arg (arge, argy, &1));
if (tho <= 0.0 |} tho > 1.0)
errit ("Illegal value for tho");
break;
default:
errit ("Tllegal option 08", argv [11);
¥
}
}

char const *get_arg (int arge, char *argv [}, int *index)

{
if (argv [*index] 2h
return argv [*index] + 2;
if (*index == arge - 1)
errit ("Argument not enough '%s™, argy [*index]);
return argv [++*index);
}

void get_programname (char const *argv()

{
char name [MAXFILE};

fsplit (argv0, NULL, NULL, name, NULL);
programname = s _strdup (name);

3

float *alloc_vector_float (int i1, float value)

{



int i;
float *f;
f = (float *) s_malloc (i1 * sizeof (float));
for (i=0;i<il; i++)
f [i] = value;
return f;

}

void *s_malloc (size_t size)
{
void *p;
p = malloc (size);
if (1p) ¢
free (no_mem._buffer);
errit (Out_of_memory);
}
return p;
3
void *s_realloc (void *block, size_t size)
{
void *p;
p = realloc (block, size);
if (! p) {
free (no_mem_buffer);
errit (Out_of_memory);
3
return p;
3
char *s_strdup (char const *s)
{
char *sl;

if (s) {



s1 = (char *) s_malloc (strlen (s) + 1)
strepy (s1,8);

} else{

s1 = (char *) s_malloc (1);
s1 [0]1="0%

}

return si;

}

void errit(char const *format, ...)

{

va_list list;

fprintf (stderr, mpError %s: ", programname);
va_start (list, format);

viprintf (stdert, format, list);

fprintf (stderr, "\n\n");

exit (1);
}

// End of ART1



«IMPLEMENTATION OF ART-2A*/
Hinclude<stdio.h>

tinclude<conio.h>

#include<dos.b>

#include<math.h>

int N,M;

double *X, *Xp, *W, *Wp, *U, *Up, *P, *Pp, *y_*Vp, ¥Q, *Qp, *R, *Y | *mis;
double **zij, ¥**zji;

double *old1M, *old2M;

int n_mis=0;

double tho=0.9, a=5.0, b=5.0, ¢=0.225,d=0.8, theta=0.3, acﬂdif=0.001, z_dif=0.01;
FILE *fout, *flog;

char fname[80], out_name[80}, log_name[80];
double h=0.1;

int nsteps=100;

double mag_X;

int F2_on;

int 1_flag;

int rsnc=0;

double rect();

double HVS();

double £();

double fab();

double L2_norm();

double vee_diff();

double RungeKutta();

FILE *datain, *fopen();

int p_dim,p_num,*IL;

double **1, *p_mag;

int ppe, *c_p;



id get_inputs(l;
id select_one();
»id select_cycle();
oid init_all(};
oid BU reset();
oid TD_reset();
/0id new_learning();
soid free_all();
void p_normalize();
void p_display();
void get_inputs()
{

int 1,j;

char in_name[80C];
if (fnamef0] == "0 {
fprintf(stderr, "Please enter input file name (no extension) --> ")

scanf("%s" fname};

3

sprintf(in_name,"%s.inp",fname);

if((datain=fopen(in_name, ")) == NULL) {

fprintf(stderr,"Fatal Error: Cannot open %s\n" ,in_name);

exit(1);

}

fprintf(stderr, “\n* *******#******** ke e o ok e 3 o kol ek reading O/OS\n\n", in._name);
fscanf(datain,"%ed %ed", &p_dim,&p_num);

fprintf(stderr, " Allocating and reading d %d-D vectors\n” p_num,p_dim);

if ((I=(double **) calloc(p_num,sizeof(double *))) = NULL) {

fprintf(stderr, "Error: could not allocate 4d %d-D patterns’\n”, p_num,p_dim);
exit();

}



or (i=0; i<p_num; i++)

f (1[i]=(double *)

calloc(p_dim,sizeof(double))) ==NULL) {

fprintf(stderr, "Error: could not allocate %d %dD patterns!\n", p__num,p_dim);
exit();

)

if((p_mag=(double *) calloc(p_num, sizeof(double}))) == NULL) {
fprintf(stderr, "Error: could not allocate o,d %d-D patternst\n’”, p_num,p_dirn);
exit();

h

new_learning();

for (i=0; i<p_num; i++)

{
p_magli] = 0.0;
for (j=0; j<p_dim; jH)
if (fscanf(datain, no1f 1[i}+) = EOF) {
fprintf(stderr,“Error: Unexpected End-of-file in %os\n", in_name);
exit(1);
3
p_mag[i] = L2_norm(I{i] p_dim);
if (p_magli] <= 0.0)
{
fprintf(stderr, “"(Warning: pattern 94d has mag=0.0)".1);
p_mag[i] = 1.0;
¥
printf(". ");
3
if (fscanf(datain,"%d o,d", &M,&N) 1= EOF) {
if(M < p_dim)
fprintf(stderr, "Warning: Too few FO-1 nodes: changed M t0 %d\n" (M=p_dim));



(N <=M)

fprintf(stdert, "Warning, requested only %d total nodes. Assigning %d\n”, N,

=M-+p_num);
}
else {
M=p_dim;
=M-+p_num;
Assigning M=%d and

fprintf(stderr, "o values for M and N found.

N=%d\n" ,M,N);
}
fclose(datain);
printf("done An");
}
void select_one(i)
int i;
{
do

{

fprintf(stderr, "select pattern for cycle %d -->".1);
scanf("%d", &c _plihs
if (c_pli] >= p_num | c_pliJ < 0)

fprintf(stderr, "Invalid choice. try again.\n");

y while (c_p[i} >= p_oum | c¢_plil <0%
}
void select_cycle(num)

short num;

{
int i;
if (num< 1)

{



fprintf(stderr, "How many patterns per cycle?");
scanf("%d", &ppe);

}

else

ppc = num;

if (c_p !=NULL)

free(c_p);

if ((c_p=(int *) calloc(ppc,sizeof(int))) ==NULL)
{

fprintf(stderr,"Error: could not allocate %od integers.\n",ppc);
exit();

}

for (i=0; i<ppe; i)

select_one(i);

}

void init_all(}

{

int i,);

void free_all(), get_inputs();

free_all(:

BU _reset();

TD reset();

get_inputs();

¥

void new_learning()

{

inti;

for(i=0; 1<p_num, i++)
L[ =-1;
}



void free_all()
{
int 1;
for(i=0; 1<p_num; it++)
free(I[i});
free(l);
free(IL);
free(p_mag);
if(c_p '=NULL)
free(c_p);
3

void p_display(p_n)
intp_n;
{
int i,j;
fprintf(stderr, "pattern %d (%d-D): " p_n,p_dim);
for (i=0; i<p_dim; i++)
{ B
fprintf(stderr, noga 31" 1p_n}fil)
}
fprintf(stderr,"\n“);
¥
double RungeKutta(func,i,x,h)
double (*func) 0,x.h;
int i;
{
double deltal, delta2, delta3, deltad;
dettal = h * (*func) (1,X);
delta2 = h * (*func) (Lx + deltal/2.0);
delta3 = h * (*func) (X + delta2/2.0);



delta4 = h * (*func) (,x * delta3);
return (x+(deltal +2.0*delta2+2.0*delta3 +deltad)/6.0);
¥
double f(x,sigma)
double x, sigma;
{
return((x > sigma) ? X : 0.0);

}
double fab(x,a,b)

double x,a,b;
{
x=(x>b)?7b:X;
return ((x > a) 7 x-a: 0.0);
}
double L2_norm(vec.dim)
double *vec;
short dim;
{
int 1;
double t_sum=0.0;
for(i=0; i<dim; i+t+)
t_sum += vec[i]*vec[i];
return(sqrt(t_sum});
¥
double vec_diff(vl v2,dim)
double *v1,*v2;
int dim;
{
int 1;

double d_mag=0.0;



BU _reset();

for(i=0;i<dim;i++)
d mag +=fabs(v1[i}-v2[iD;
return(d_mag/ (double)dim);
}
void main(arge,argv)
int argc;

char **argv;

int i,choice;
void do_cycle(),alloc _pops().free _pops();
void par__modify(),show_setup(),init_weights();
char tname{20};
char tmp[10};
if (arge > 1)
strepy(fname,* ++argv),
else
strcpy(fname,"“);
get_inputs();
alloc_pops();
if(arge<3)
{
fprintf(stderr,"Enter output filename(no extension) -> ")
scanf("%s" tname});
}
else
strepy(tname,* ++argv),
sprintf(out_name,“%s.dat",tname);
sprintf(log_name,"“/os.log" ,iname);
fout= fopen(out_name,"w");

flog = fopen(log_name,“w");



D_reset();
printf(ﬂog,"“‘*****> %s\n" Jog_name);
printf(flog,"Input file is Yes.inp\n” fname};
lo
{
fprintf(stderr, "“p*¥\nSelect one option:\n");
fprintf(stderr," 1) Select input pattern\n");
fprintf(stderr,"2) Select a series of patterns\n”);
fprintf(stderr,"3) Cycle input pattern ( fast learning)\n");
fprintf(stderr,"4) Cycle input pattern ( slow learning)\n");
fprintf(stderr,“S) Modify a parameter\n”);
fprintf(stderr,"6) Initialize weights\n");
fprintf(stderr,"7) Reset Learning flagn);
fprintf(stderr,“S) Show setup\n");
fprintf(stderr,"9) Reset everything\n");
fprintf(stderr,"Other) Quit\n\n");
fprintf(stderr,“Enter aumber of your choice -->");
scanf("%d", &choice);
switch (choice) {
case 1 : select_cycle(l);
break,
case 2 : select_cycle(0);
break;
case 3 : 1 flag=0;
do_cycle();
break;
case 4 :
1 flag=1;
do_cycle();
break;
case 5 : par_modify(};



break;
case 6 : init__weights();
break;
case 7 : new_leaming();
break;
case 8 : show_setup();
break;
case 9 : init_all(;
break;
default :
fprintf(stderr, Do you really want to exit (y/m)?")
scanf("%s", tmp);
if (tmp[0] =="y' || tmp(0] == YY)
choice = 0;
else
choice = -1;
break;
}
} while (choice 1=0);
free_all();
fclose(fout);
fclose(flog);
}
void do_cycle()
{
int 1,3
void update_F0O, update_F10, update_F20), print_weightsO;
double update_R(;
if (1_flag)
forintf(flog, "\nStarting a learning cycle\n");

else



fprintf(flog, mnStarting a cycle with no learning.\n");
for (7=0; j<N-M; j++)
mis{j}=0;
n_mis=0;
for (i=0; 1<ppc; i++)
{
for (7=0; j<M; i+ {
WPU]=XPU]=UPD]=VPU]=PPU]=QPU]=0-0;
WU]=PU]=XU]=QU]=V[j]=U[j]=0.0-,
}
F2_on=-1;

fprintf(stderr,"***\nNo.%d (of %d) in cycle is input pattern vd\n”, i,ppe.c_plil);
fprintf(ﬂog,"***\nNo.%d (of %d)in cycle is input paticmn o,d\n”, i.ppe.c_pll;
update_FO(c_p s

update_F1(c ol

}

for (i=0; i<ppc; i+ {

fprintf(stderr,"pattern v%d is coded at F2 node %d\n",c_pli), IL{c plill
fprintf(flog, "pattern 9,d is coded at F2 node o%dn".c_plil, ILIc plilh;

sleep(2);

}

fprintf(stderr, "\n"},

fprintf(flog, "\n");
if (1_flag)
print_weights();

}

void update_FO(p)
int p;
{



nt i,cntr=0;
double *old_W = old1M;
double ptmp,wtmp,vimp;
double v_d=1.0;
do
{
for (i=0; i<M; i++)
{
old_Wil=Wplil;
wolij=llplfil+a*Uplik;
Pplil=Uplil;
}
ptmp=L2_norm(Pp,M);
wtmp=L2_n0rm(Wp,M ;
ptmp = (ptmp > 0.1) 7 ptmp : 1.0;
wtmp = (wtmp ~ 0.1) 72 wimp : 1.0
for (i=0; i<M; i+)

Qplij=Ppli)/pump;
Xplil=Wplil/wtmp;
vplil=f(Xplil ,ﬂleta)+b*f(Qp[i] ;theta);
}

vtmp=L2_norm(Vp,M);

vimp = (vimp =~ 0.1) ? vtmp : 1.0;

for (i=0; i<M; i++) {
Upli}=Vpliyvtmp;
¥

cntr++;

v d= (vec_diff(old_W,Wp,M));

¥ while ((v_d> ac_dif && cntr < nsteps) || entr < 2)



clrser();
fprintf(flog,"F0 activity (W') has stabilized within ,5.41f after %d cycles.\n\n".
d,cntr);
fprintf(flog," Wp Pp Xp Qp Vp UP\n");
for(i=0; i<M; i++)
fprintf(ﬂog,"%4.31f 0,a31f Y%d3lf %431 %4.31f %4.31fn"
vplil,Pplil.Xplil.Qplil,Ve(il Uplil);
fprintf(flog, "\n");
}
void update_F1(p)
int p;
{
int i,cntr=0;
int pf;
double ptmp, wtmp,vtmp;
double *old_W=old1M, *old_P=0ld2M;
double v_d=1.0;
double z_d=0.0;
double update_R(). update_Zs();
void update_F2(), reset_F2();
do
{
pf= (cntr%10==0);
for (i=0; i<M; i++)
{
old Wl=WQ);
old_Pli]=P[i};
wlil=Qpfil+a*Ulil;
ptmp=F2_on< 07 0.0 : d*zji[F2_on]lil;

P{i]=Ufi}+ptmp;



¥
ptmp=L2_norm(P,M);
wtmp:L2_norm(W,M);
ptmp = (ptmp =~ 0.1) ? ptmwp : 1.0;
wtmp = (Wtnp ~ 0.1) ? wimp : 1.0;
for (i=0; i<M; 1++)
{
Qil=P[i}/ptmp;
X[i=W{i}/wimp;
V[i]=f(X[i],theta)+b*f(Q[i],theta);
}
vtmp=L2_norm(V,M);
vtmp = (vtmp > 0.1} ? vtmp * 1.0;
for (i=0; i<M; it++)
{
Ulil=Viiyvtmp;
¥
v_dzvecﬂdiff(old__W,W,M)+vec__diff(old_P,P,M);
z_d=0.0;
if (rsnc)
update__FZ(cntr);
else {
if (entr <3) {
sleep(2);
fprintf(stderr,"%d) 94d is resonating on F2 node od\n" cntr,P,F2_on);
fprintf(ﬂog,"%d) %d is resonating on F2 node o,d\n" cntr,PF2_on);
3
IL{p|=F2_on;
¥
if(update_R(cntr) < tho) {
reset_F2(P,cntr);



cntr=0;

rsnc=0;

}

else {

if (1_flag>0 && F2 on>-1)

z_d=updateﬂZs(cntr);

}

if (n_mis == N-M) {

fprintf(stderr,"%d)All F2 nodes have been reset by input oed\n", entr,P):
fprintf(ﬂog,"%d) All F2 nodes have been reset by input Yed!\n", cntr,P);

break; }

cnir++;

3 while ((v_d> ac_dif && cntr < nsteps) || entr <2 | z_d >z dib);

rsnc=0; ‘

sleep(2);

fprintf(flog,"F1 activity has stabilized within %1f after %d cycles.\n”,

ac_dif,entr);

fprintf(stderr,"Fl activity has stabilized within op1f after %d cycles.\n”,

ac_dif.entr);

sleep(2);

fprintf(stderr," w P X QV U Rw")

fprintf(flog." w P X Q VUR ")

for (i=0; i<M; i++) {

fprintf(stderr,"%4.31f %431f %4311 %4.31f %4.31f %4 311

0,4 31 fn” Wi, PLLX[ELQLL VI ULD:

fprintf(ﬂog,"%4.3lf %4.31f %4311 obd31f %431 %d. 31

%4.31f\n",wm,P[i],X[i],Q[i]N[i],U[i]);

}
fprintf(stderr,"*** F1 diff = o1finn,v_d);

forintf(flog,"™*** F1 diff = o1 fn\n",v_d);



}
void updatefF2(cntr)
int cntr;
{
int 1,3
double ymax;
int pf = (cntr%10==0);
ymax=0.0;
for (=0; j<N-M; j++) {
Y{i}=0.0;
if (misfi} > -1)
for (i=0; i<M; i+F)
Y(j] += zg D61 PhL
ymax = (ymax < Y{i] ? Y[j] : ymax);
¥
if (ymax == 0.0) {
fprintf(stderr, no5d) All F2 nodes are inactive! No category chosen.\n", cnir);
fprintf(ﬂog,“\n%d) All F2 nodes are inactive! No category chosen.\n", cntr);
F2 on=-1;

return;

}

for (i=0; i<N-M && Y[i}<ymax; )
F2 on=1;
rsnc = 1;
.
double update_R(cntr)
int cntr;
{
int i;

double ptmp=L2_norm(P,M), qtmp=L2fnorm(Qp,M),utmp=L2;norm(U,M);



double L2_R;
intpf = (cntr%10==0 ?21:0)
if (gtmp < 0.1 || ptmp < 0.1 | utmp < 0.1) {
fprintf(stderr,“%d Warning:  (Qp) 7 %5.41f
U)=%5.41f\n“,cntr,qtmp,ptmp,utmp);
fprintf(ﬂog,“%d Warning: (Qp) = %5.41f
‘_u)=%5.41f\n",cntr,qtmp,ptmp,utmp);
}
for(i=0; i<M; i++)
{
R[i]=(Qp[i]+c*P[i])/(c*ptmp+qtmp);
}
L2_R=L2_norm(R,M);
if(L2_R <rho) {
sleep(1);

fprintf(stderr,“\n‘yod) L2_norm(R)=%4.3 1f\n" cotr,L2_R);
fprintf(ﬂog,“\n%d) L2_norm(R)=%4.3 1fn" cntr,L2_R);

3

else
if(cntr < 10) {
sleep(1);

p) = (%5Alf

@ =  sAlf

fprintf(stderr, "\n%d) L2_norm(R)=%4.3 1f\n" cntr,L2_R);

forintf(flog,"\n%d) L2 norm(R)=%4.31fw"cntr,L2_R):

¥
return{l.2_R);
}
void reset_F2(p,cntr)
int p,cntr;
{

int i;



fprintf(stderr,““/od) input %d caused a reset of node %d\n" cnir,p,F2_on);
fprintf(ﬂog,"%d) input %d caused a reset of node o,d\n",cntr,p,F2_on);
Y[F2_on}=0.0;
mis[F2_on]=-1;
n_mist+;
rsnc = 0;
F2_on=-1;
IL{p}=-1;
for(7=0; j<M; j++)
WU]=PU]=XU]=QU]=VU]=UU]=0-0;
}
void resonate(p,i)
int p.i;
{
fprintf(stderr,“*** Pattern %od resonates with node %d\n".p.1);
fprintf(ﬂog,“* *+* Pattern Yod resonates with node %d\n",p.1);
¥
void par_modify()
{
int which;
fprintf(ﬂog,“]ust called par_modify: "),
do {
fprintf(stderr,“ 1) vigilance (tho)n");
fprintf(stderr,“Z) threshold (theta) ")
fprintf(stderr,“3) RK4 step size (h)\n");
fprintf(stderr,"4) Number of integration steps(nsteps)\n");
fprintf(stderr,“S) stability criterion(ac_dif)n");
fprintf(stderr,“6) LTM stability criterion(z_dif)n"};
fprintf(stderr,"Which parameter ™Y,
scanf("%ed", Swhich);
switch (which) {



case 1 :

,tho);
case 2 :
->" theta);
case 3 :
>l|,h);
case 4 :
>"_ nsteps);

case 5

value -->",ac_dif);

fprintf(stderr,"Present value for rho is %6.31f\nEnter new value --

fprintf(ﬂog,"changed tho from %5.41f",rho);
scanf("%o1f" ,&rho);

fprintf(ﬂog," 10 %5.41f\n",tho);

break;

fprintf(stderr,"Present value for theta is 0,6.31f\nEnter new value

fprintf(ﬂog,“changed theta from 9,5.411" theta);
scanf("%!1{",&theta);

fprintf(flog," to 9%%5.41f\n" theta);

break;

fprintf(stderr,"Present value for h is %6.31f\nEnter new value --

fprintf(ﬂog,"changed h from %5.41f",h);
scanf("%1f",&h);

fprintf(flog,"to %3.41f\n" h);

break;

fprintf(stderr,"Present value for nsteps 1s o4sd\nEnter new value --

fprintf(ﬂog,“changed nsteps from od" nsteps);
scanf(“%d",&nsteps);

fprintf(flog,"to %d\n",nsteps);

break;

: fprintf(stderr,"Present value for ac dif is %6.31f\nEnter DEW

fprintf(ﬂog,"changed ac_dif from %5.411",ac_dif);
scanf("%lf",&ac*diﬂ;

fprintf(flog."to %5.41f\n",ac_dif);

break;



case 6 : fprintf(stderr,"Present value for z_dif is 046.31f\nEnter new value
> 7 dif);
fprintf(ﬂog,"changed z_dif from 045 411"z _dif);
scanf("%lf‘,&zddif);
fprintf(flo g,"to %5 A41f\n",z_dif);
break;
default : which=0;
break;
}
fprintf(flog," to change case o4d\n", which);
} while (which !=0);
3
void show_setup()
{
mti;
fprintf(stderr,“\nINPUT PATTERNS:\n");
for(i=0; 1<p_num; it+)
p_display();
if(ppe > 0) {
fprintf(stderr,“\nSELECTED PATTERNS:\n");
fprintf(ﬂog,“\nSELECTED PATTERNS:\n");
for(i=0; 1<ppc; i++) {
fprintf(stderr,"No.%d in cycle is input pattern %d, coded at F2 node
%d\n" i,c_plilILle plill;
fprintf(ﬂog,"No.%d in cycle is input pattern %od coded at F2 node
%%d\n",ic_plil.ILic_piiD;
}

}
fprintf(stderr,“\nPARAMETERS An");

fprintf(stderr,“rho= %5.411 theta=%3 .41 h="%4.31f\nnsteps="od
ac_dif=%b 51fz dif=%5 41fn" tho ,theta,h,nsteps,acfdif .z dif);



fprintf(ﬂog,“rho=%5 Alf theta=%5.411 h-Y%4.3 1 finnsteps=Yed
- dif=%6.51f z_dif=%5.41 f\n" ,rho,theta,h,nsteps,ac__dif,z_dif);
}
void init_weightsQ
{
int i,j,choice=1;
void BU_set1(}, TD_sEtl 0. show_weights(), print_weights(), zero_all(};
fprintf(stderr,"Initializing weights.\n");
do {
fprintf(stderr,"1) Initialize BU weights\n");
fprintf(stderr,"Z) Initialize TD weights\n™);
fprintf(stderr,“S) Initialize all weights\n™);
fprintf(stderr,"4) Manually set one BU weightn");
fprintf(stderr,“S) Manually set one TD weight\n");
fprintf(stderr,"ﬁ) Show all weights\n™);
fprintf(stderr,“’l) Print weights\n");
fprintf(stderr,"S) Zero all weights\n");
fprintf(stderr,“Other) Return to main menu\n\n");
fprintf(stderr,"--- Select a number --->");
scanf(“%d",&choice);
switch (choice) {
case 1 : BU_reset();
break;
case 2 : TD_reset();
break;
case 3 : BU_reset();
TD reset();
break;
case 4 : BU_setl(};
break;
case 5 : TD_set1(};



break;
case 6 : show_weights();

break;
case 7 printﬂweights();
break;
case 8 : zero_all();
break;
default : choice = 0;
¥
} while (choice != 0),
}
void BU_reset()
{
intij;

fprintf(flog," Just reset all TD weights\n");
for(i=0; i<M; i++)

for(j=0; j<N-M; )
zijfil(1=1.0/((1 .O-d)*sqrt((double)M));

}
void BU_set1{()

{
int 1,j;
fprintf(stderr,"Enter i e—->");
scanf("%d",&1);
ifi<0ji>=M)
{
fprintf(stderr,"lnvalid weight index vpdin".1);

return;

h
fprintf(ﬂog,"Resetting zij[%d] to : ".1);

for(5=0; j < N-M; j+1)



{
fprintf(stdert,

scanf("%lf",&zij[i][]]);

fprintf(flog,"%4.3 1z l1G 1

¥

fprintf(ﬂog,"\n");
}
void TD__reset()

{

int 1,5

fprintf(flog,"Just reset all TD weights.\n");

"Enter zij|%d][¥ed) (%43 1£)-->",1,3,21) [uns

for(G=0; J<N-M; j+t)
for(i=0; 1<M; 1++)
7ji[§1{i}=0.0;
}
void TD_setl()
{
int i,j;
fprintf(stderr,“Enter j->";
scanf("%d". &)
ifG<0lj>=N-M)

{
fprintf(stderr,"lnvalid weight index %d\n");

returm,

.

fprintf(ﬂog,"Setting zji[%d] to: "§)
for (i=0; i<M; i+t+)

{
forintf(stderr, "Enter Zjil%d][%d] (%64.31)->"] A ZAGIED;

scanf("%1 £, &ZiGD:
forintf(flog,"%4.311" AL



}
fprintf(ﬂog,"\n");
¥
void show_weights()
{
int 1,33
fprintf(stderr,“\nBU WEIGHTS:\n");
fprintf(ﬂog,“\nBU V\{EIGHTS:\n")',
for(i=0; i<M; i++)
{
for(=0; j<N-M; j*+)
{
fprintf(stderr,"“/o6.41i“,zij [iah:
fprintf(ﬂog,“6.41?‘,zij[i][']]);
}
fprintf(stderr,"\n");
fprintf(ﬂog,"\n“);
}
fprintf(stderr,"\nTD WEIGHTS:\n");
fprintf(ﬂog,"\nTD WEIGHTS:\n");
for(j7=0; J<N-M; )
{
for(i=0; i<M; i++)
{
fprintf(stderr,"°/06.4li“,zji[j][i]);
fprintf(ﬂog,"6.4lf‘ Zin:
¥
fprintf(stderr,"\n");
fprintf(ﬂog,"\n");
¥
}



void zero_all()
{
int 1,);
for(i=0; i<M; i)
for(j=0; j<N-M; j++)
Zij{il[1=zili=0.0;
fprintf(stderr,"Warning: ART2 will not work with all weights at
ero.\n");
fprintf(ﬂog,“Reset all weights t0 zero\n");
}
double zt1,zt2;
double dzij(i,z)
int i;
double z;
{
return(zt1*(zt2-2));
¥
double dzji(i.z)
int 1;
double z;
{
return(zt1*(zt2-2));
}
double update_Zs(cntr)
int cntr;
{
int i;
int pf = (cntr%] 0==0);
double *ozij=old1M, *gzji=old2M;
double BUdiff=0.0;
double TDdiff;



for(i=0; i<M; i++)
{
ozij[i]=zij[i][F2_on];
ozji[i]=zji[F2_on][i];
zt1=d*(1.0-d);
22=U[i}/(1.0-d);
zt1=d;
zt2=P[i];
zij['1][F2__on]=RungeKutta(dzij,i,zij[i][FZfon],h);
zji[FZ_on][i]=RungeKutta(dzji,i,zji[F2_on]['1],h);
BUdiff += fabs(0zi] [i}-zi) (i](F2_onl);
¥
TDdiffT'—vec_diff(zji[FZ_on],ozji,M);
if(pf
)
fprintf(stderr,"%d) (BU,TD) vector LTM changes are
(%5.41£,%05.4 1)\n" _cntr,BUdifE TDdiff);
fprintf(ﬂog,"%d) (BU,TD)  vector LTM changes are
(%5.41f,%5.41f)\n",cntr,BUdiff,TDdiff);
}
return(BUdiff+TDdifﬂ;
¥
void print__weights()
{
int 1,5
fprintf(fout,"\t\t Bottom-up weights:i\n\n");
for (i=0; i<M; i) {
for (7=0; J<N-M; j*+1)
fprintf(fout,“%S.41f“,zij[i][j]);
fprintf(fout,“\n");
}



fprintf(fout,"\n\t\t Top-down weights:\in\n");

for(j=0; j<N-M; j+ )

for(i=0; 1<M; 1++)
fprintf(fout,"%S.41f",zji[j][i]);
fprintf(fout,"\n“);

¥

fprintf(fout,“\n");

¥

void alloc_pops() {

int 1;

X=(double *)calloc(M,sizeof(double));
Xp=(double *)calloc(M,sizeof(double));
w=(double *)calloc(M,sizeof(double));
Wp=(double *)calloc(M,sizeof(double));
U=(double *)calloc(M,sizeof(double));
Up=(double *)calloc(M,sizeof(double));
P=(double *)calloc(M,sizeof(dOuble));
Pp=(double *)calloc(M,sizeof(double));
V=(double *)calloc(M,sizeof(double));
Vp=(double "‘)calloc(M,sizeof(double));
Q=(double *)calloc(M,sizeof(double));
Qp=(double *)calloc(M,sizeof(double));
R=(double *)calloc(M,sizeof(double));
Y=(double #)calloc(N M sizeof(double));
mis=(double *)calloc(N -M,sizeof(double));
zij=(double **) calloc(M,sizeof(double *);
for(i=0; i<M; i++)

Zi) [i}=(double *) calloc(N -M,sizeof(double));
zji=(double **) calloc(N-M,sizeof(double *3);
for(i=0; i<N-M; it+)

zjifi}=(double *) ca‘lloc(M,sizeof(double));



oldiM=(double *) calloc(M,sizeof(double));
old2M=(double *) calloc(M,sizeof(double));
}
void free_pops() {
int i;
free (X);
free (Xp);
free (W),
free (Wp);
free (U);
free (Up);
free (P);
free (PP);
free (V);
free (Vp);
free (Q);
free (Qp);
free (R);
free (Y):
free (mis);
for (i=0; i<M; i++)
free (zij[1]):
free (z1j);
for(i=0; i<N-M; i++)
free (il
free (zjh);
free (old1M);
free (01d2M);
1 // End of ART-2



VIPLEMENTATION OF FUZZY ART*/
clude<stdio.h>
clude<math.h>
\clude<conio.h>
efine N 5
jefine PATT 10
oat rho,norm} ,alpha=0.001 norm3 eta;
ouble norm2,minimum[2*N],nonn4;
nt p,j,cluster[PATT] ;noc=1 ,i,index[PATT],windex,ﬂag;
loat a[PATT][Z*N],net[l 01;
loat b[2*N],w[lO][Z*N],1norm[2“‘N],t[Z*N],s[Z*N];
char fname[50];
void initwts(};
void writewts();
void normalize();
void computation();
void winner(};
void vigilance();
void update();
void swap(int *x,int *v);
float min(float *y,float *v);
float max(float *u,float *v),
FILE *fp.*fpl;
void main(int argc, char *argv(])
{
clrser();
printf("Enter the vigilance value™);
scanf("%f" ,&rho);
initwts();
fp=fopen(argv[1],“r");
if(fp)



intf("\n Error!! Could not open the file"),
it(1);

3r(p=0;p<PATT;p++)

or(=05<N;j+ 1)

{
fscanf(fp,"%f“,&a[p][j]);
blij=alp]lik;

¥

normalize();
computation();

winner();

vigilance();

¥

fclose(fp);
printf(“\nVigilance threshold:%f" tho);

printf("\nTraining patternit Cluster");
for(j=0;j<PATT )
{
printf("\n“/od\t\t\t %d" ,j+1,cluster[j]+1);
}
}

void initwts()

{
for(j=0;j<2*N;jt++)
{

winoc-11{j1=1 0;



oid normalize()

orm1=0.0;

for(j=0:<N:j++)

d

norm1+=b[};

¥

for(j=0F<N:j++)

{

1n0rm[j]=b[j]/=norm1 ;
b[j+5]=1.0-b0};

¥

)

void computation()

{

for(i=0;i<noc;i++)

{

norm?2=0.0;
for(j=0;<2*Nij++)

{

if(j<5)
t[j]=m'1n(&1norm[i],&w[i][i]);
else
t[j]=1-max(&lnorm[j],&w[i][j]);
norm2+=t[i};
minimum[j]=min(&b[j],&w[i][j]);
}

norm3=0.0;

forG=0;j<2*N;j++)



rm3+=minimum|j};

:t[i]=norm3/(a1pha+norm2);

dex[il=1;

loat min(float *u,float *v)
L

f(*u<=*v)

return(*u);
clse
return{*v),

}

float max(float *u.float *v)
{

if(*u>=*v)

return(*u);

else

return(*v);

}

void winner()

{

for(i=0;i<noc;i++)

{

for(j=0;j<noec-1;j++)

{
if(net[index[j]]<net[index[j+1]])
swap(&index[j],&index[j+1]);
b3

}



id swap(int *x,int *y)

t temp="X;
(:‘*y;

y=temp;

oid vigilance()
{
for(i=0;i<noc;i++)
{
windex=index[i];
flag=0;
norm4=0.0;
for(j=0;j<2*N;j++)
{
s[j]=min(&bﬁ],&w[windex] Gs
norm4+=s[jl;

}
if((norm4/N)>=tho)
{

flag=1;
cluster{p]=windex;
eta=1.0;

update();
writewts();

break;

}

}

if('flag)

{

noctt;



mitwts();

windex=noc-1;

cluster[p]=noc-1;

eta=1.0;

update();

writewts();

Y

void update()

{

for(j=0;j<2*N;j++)
w[windex][j]=eta*(min(&b[j],&w[windex][j]))+(1 -eta)*w[windex][j];
}

void writewts()

{

fpl=fopen("weight.dat","w");

if(!fpl)

{

printf("Error, Could not open the file");
exit(1);

}

for(i=0;i<noc;i++)

{

for(j=0;j<2*N;j++)
fprintf(fpl,"%.21" , w[i][3}]);

}

fclose(fpl); } /* End of Fuzzy ART*/
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