Department Of Computer Science & Engineering

Kumaraguru College of Technology

Coimbatore -641 006

CERTIFICATE

This is to certifv that the project work entitlec

IMPLEMENTATION OF
MPLS FOR REAL TIME IP TRAFFIC

Done by

R.PATHMA, Reg No 9927K0147
S.PAVITHRA, Reg No 9927K0150
Submitted in partial fulfillment of the requirements for the award of the
degree of
BACHELOR OF ENGINEERING
OF BHARATHIAR UNIVERSITY, COIMBATORE

Professor and Head interna: Guiges

Submitted for University Examination hele on {8 == N

Internal Examiner External Examiner

YR oagi-a Ay ¢d fdaa = ELECTRONICS RESEARCH AND
(WRT BN I Weiiia 4y DEVELOPMENT CENTRE OF INDIA
H1 UG SIS GEan) (An Autonomous Scientific Society cf Ministry 27

m .q:ﬁ_a information Technology, Government of india}
.) Thiruvananthapuram Unit

TN, 6520, 9BUSTH PR No. 6520, Vellayambaiam
ﬁlﬁﬁﬁw 695 033, 9NRd Thiruvananthapuram 695 033, india

Phone: +91-471-320116 Fax: +91-471-331654, 332230 email: erdc@erdcitvrm.org Web: www erdciivim.org

CERTIFICATE

Certified that Ms. S Pavithra, Ms. R Pathma, Kumaraguru College o7
Technology, Coimbatore, have successfully completed the project istled,
“Implementation of MPLS for Real Time IP Traffic’ using Linux at ke

Centre during the period November 2002 to March 2003, towards the partial
fulfillment of the requirements for the award of B.E degree in Computer Science

and Engineering from Bharathiar University, Coimbatore.

W, o
e A

Saramma Chacko
Joint Director

N Krishpdn
Additional Director

{Project Guide -

Thiruvananthapuram
] N. KRISHNAN
10™ March 2003 ADDITIONAL BIRECTOR
CONTROL & INSTRUMENTATION
ELECTRONICS RESEARCH & DEV. CENTRE OF INDIA
MINISTRY OF INFORMATION TECHNOLOGY GOVT. OF INDIA
VELLAYAMBALAM, THIRUVANANTHAPURAM-695 033, INDIA

DECLARATION

We Ms.R.Pathma and S.Pavithra, hereby declare that the project entitlzd
“IMPLEMENTATION OF MPLS FOR REAL TIME IP TRAFFIC”
submitted to Bhararthiar University as the project work of Bachelor of
cngincering (COMPUTER SCIENCE AND ENGINEERING) Degree. is o
record of original work done by us under the supervision and guidance ot
Mrs.S.Devaki B.E.,M.S. Asst.Prof. Computer Science and Engineering
Department, Kumaragura College ol technology and this project work
has not found the basis for the award of any Degree/ Diploma
fAssociateship/Fellowship or similar e to any candidate of any

university,

Place : (i MREDEE

Date : (o0~ gppgcir src

W

(Ms.R.Pathma Reg No : 9027k0147)

(S™Pavithra) (Ms.S Pavithra Reg No: 9927k0150)

Countersigned by

Mrs.S.Devaki B.E. M.S.,
Asst.Prof
Dept.Of Computer Science & Engg.

Kumaraguru College of Tecnology

SYNOPSIS

The most widely used internet architecture offers a very straightforward pomnt tc
point delivery service, which is based on the best effort delivery model. In this
method, the highest pledge the network provides is the reliable data delivery. Tus
is adequate for traditional applications like ftp and telnet, which requires comec:

data delivery than prompt delivery.

But 1ssues in the current development of Internet seem to be its capability to scale
and to support new real-time or near real-time applications like video and audic
conferencing. These application experience quality degradation if the packets arc
delaved for that long. There are two factors that affect these qualities: one is tae

ability to distinguish which connections should be switched and the other is the

effective control over network resources. 7 ,
ED— 8 o 7

To classify and handle the huge number of applications, a network requires Quality
of Service in addition to Best effort service. Thus before these applications can be
widely used, the Intemet infrastructure must be modified to support real time QoS

and controlled end-to-end delays.

Label switching 1s a natural evolutionary step for the Internet. Over the last few
years many companies have proposed different techniques to implement label
switching. Notable ones for IP packet handling for real time applications are Cell
Switching Router (CSR) by Toshiba, IP switching by Ipsilon, Tag Switching by
Cisco and Aggregate Route —based [P Switching (SRIS) by IBM. Multi Protocol
Label Switching (MPLS) an improved version of the Tag Switching has emerged
as an industry-standard approach to switching and forwarding. MPLS reduces the
complexity of forwarding using encapsulated fixed-length labels for making high
speed forwarding decisions, thus eliminating conventional network-layer header
processing. It simplifies the routing of packets and {acilitates the selection of

optimal paths through the [nternet labyrinth.

MPLS also supports Quality of Service (QoS) by allowing bandwidth
reservations and traffic prioritization through the so-called “best effort”

Internet.

The main objective of this project is to build a MPLS framework model for netvork
infrastructure incorporating real time applications in addition to traditional

applications.

% o

n

CONTENTS

Introduction
1.1 Current Status of the problem

1.2 Relevance and Importance of the topic

Literature survey

System Requirements

3.1 Product Defimition

3.2 Functinnal Specification

3.3 Developing and Processing Environment
3.3.1 Software

3.3.2 Hardware

Line of Attack

4.1 Linux Kernel with MPLS support

4.2 Implementing MPLS over PPP

4.3 Implementing MPLS over Ethernet

4.4 Implementing MPLS over ATM

4.5 Providing different classes of service using MPLS
—enhanced Software Switch

Details of proposed methodology

5.1 MPLS - Introduction

5.2 MPLS - Functions

5.3 MPLS -Operational Overview

5.4 Proposed System Architecture

5.5 Implementation Details

Results

Conclusion and Future outlook

References

) Y 1.

17

14

1. INTRODUCTION
1.1 CURRENT STATUS OF THE PROBLEM

There are various limitations in legacy IP networking technologies which make
it impossible, predicting the bandwidth available on a link at any given time anc.
there are ample difficulties in controlling the ailocation of shared Bandwidth,
This also paved way for congestion in the network as the packels are routed
through a common path to the destination. Routing was perceived as proczsso-
oriented. Though early solutions developed across the globe address the neec
for wire-speed transfer of packets as they traversed the network, they did ao:
address the service requirements of the information contained in the packets.
Over the last few vyears, the new applications that have been developed
increased the demand for guaranteed bandwidth management in the backbone of
the network. Most of routing protocols deployed today are based on algorithms
designed to obtain shortest path in the network for packet traversal and do ne:
take nto account additional metric such as delay, jitter and traffic congestion.
which can further diminish network performance. MPLS 1is a lucid solution to
these problems which enable multiple network links to be sctup as requirad, and
not only the congestion problems are addressed but also load balancing acts are

done much efficiently.

IP forwarding is done based on longest prefix match of the destination adcress.
Either a longest match or a default route should be present in the forward table
Transit providers don’t do default routing and they necd full routing table ir:
every core router .In MPLS packets are forwarded based on the label value.
Packet forwarding is de-coupled from IP. This is the key benefit of MPLS.
Other paradigms may be used to forward traffic. There is no need to strictiv
follow unicast destination based routing, which enables MPLS applicasions

(VPN, Traffic Engineering etc...)

In a normally environment, frames pass from a source to destination in a hop by
hop basis. Transit routers evaluate each frame’s layer 3 headers and perform &
route table lookup to determine the next hop toward the destination. This tends
to reduce throughput in a network because of the intensive CPU requirements to
process each frame. Routing protocols have little, if’ any, visibility into the
Layer 2 characteristics of the network, particularly in regard to QoS. The
primary goal of QoS is to provide priority including dedicated bandwidth,
controlled jitter and improved loss characteristics. Also important is making
sure that providing priority for one or more flows does not make other fows

fail.

To meet these new demands MPLS changes the hop - by - hop paradigm by
enabling devices to specify path in the networks using a label, this path will be
based upon Quality of Service and bandwidths need of an application. MPLS
address performance issues related to emerging Intemnct applications such as
real-time voice and video streaming by giving such applications higher priority

and more bandwidth than data packets.

1.2 RELEVANCE AND IMPORTANCE OF THE TOPIC

Internet Protocol (IP) traffic on the Internet and enterprise networks has Seen
growing exponentially for some time. This growth is beginning to stress the
traditional processor based design of current-dayv routers. There have been i
recent years, many announcements of new technologies that promise to change
the way data is forwarded or switched in the Internet and other networks based
on the IP suite. Many techniques strive to use IP addresses and standard
Internet routing protocols such as OSPF and BGP, while maintaining the
control paradigm of the Internet. In many aspects, this approach combines the
simplicity, scalability, and robustness of IP with the speed, capacity, and
multi-service capabilities of ATM. In the past, routng functionality vas

notoriously difficult to evolve, and the reason for this is the close coupling

ot ket 1o g1t agm or e o] Lo e o T

This data-driven approach has a drawback in terms of performance becatse 1
1s difficult to predict performance since it depends so much on the detaiiec
characteristics ot offered traffic. A small change in the length or number o
flows passing through a point may cause a large change in the percentage o.
traffic that can be switched, resuliing in overload of the control processor. Ir
traditional 1P routing full 1P header analysis occurs at every node, unicast anc
multicast support requires multiple complex forwarding algorithms and routing
decisions is based only on address. Most service providers have implementec
connection-oriented ATM networks in the core. ATM provides performence.
bandwidth, and the ability to perform traffic engineering. However, an ATM
network does not scale well, becausc it rclies on virtual circuil state

information in the core.

The Internet has experienced remarkable growth. Label switching is a response
to this growth and these challenges. Label switching is an advanced form of
packet forwarding that replaces conventional longest address match forwarding
with a more efficient label swapping algorithm. Many of these technologies are
based on a set of common ideas which is the use of a label swapping techn!que
for forwarding data, the same technique that is used to forward data in ATM
switches. Development of the Label switching field not only stemmed from the
need for fast, cheap routers, but as well as other factors. As well as increased
speed, the networks need to deal with increased numbers of nodes, more
routes in routing tables, more flows passing through a given point and so

forth.

Label switching’s attraction is that the forwarding &lgorithm is fixed and that
new control paradigms can be deployed without making any changes to it. t is
possible to put the forwarding algorithm in hardware or to tune the fast path
software once without concern that it will need to be re-optimized cvery time a

new piece of routing functionality is requircd. Some believe that lrbe

switching (control driven) is likely o form the foundation for the nex:
generation of routing architecture. In Label switching full TP header analvsis
only once at the network edge when label is assigned, unicast and multicasi
support requires just one forwarding algorithm and is sufficient and the routing
decisions can be based on any number of parameters such as QoS, VPN
membership, etc, MPLS enhanced ATM scales well the provider must
configure only the edge device (provider edge) router, as opposed to all the

routers in the network.

2. LITERATURE SURVEY

Development of the Label switching field not only stemmed from the need for
fast, cheap routers, but as well as other factors. As mentioned z2bove, the
Internet has experienced remarkable growth. Label switching is a response to
this growth and these. Over the last few years many companies have attempted
to blend the high speed operation of ATM-bascd switching with the routing
processcs of the Internet’s [P-based network layer. Four of these arc

noteworthy:

Cell Switching Router (CSR)

CSR approach was developed by Toshiba and presented to the [ETE in 1994, 1
was one of the earliest public proposals for using IP protocols to control ar
ATM switching fabric. CSR is designed to function as a router for connecting
logical TP subnets in a classical ‘IP over ATM’ environment. Label switching
devices commuumicate over standard ATM virtual circuits. CSR labeling is data-
driven {i.e., labels are assigned on the basis of flows that are locally identified).
The Flow Attribute Notification Protocol (FANP) is used to identify the
dedicated VCs between CSR’s and to establish the association betweer
individual flows and individual dedicated VCs. The objective of the CSR is tc
allow ‘cut through’ forwarding of flows, i.e., to switch the ATM cell flow tha:
constitutes the packet rather than reassembling it and making an IP level
forwarding decision on it. CSRs have been deployed in commercial anc

academic networks in Japan.
IP Switching
It was developed by Ipsilon (who are now part of Nokia), was announced ‘n

carly 1996 and has been delivered in commercial products. 1P Swiiching

enables a device with the performance of an ATM cwiich e et ac o et

thereby overcoming the limited packet throughput of traditional routers. The
basic goal of IP Switching is to integrate ATM switches and [P routing n a
simple and efficient way (by climinating the ATM contrel plane). IP Switching
uses the presence of data traffic to drive the establishment of a label. A label
binding protoco! (called the Ipsilon Flow Management Protocol or GSMP) are
defined. GSMP is used solely to control an ATM switch and the virtual circuits

made across it.

Tag Switching

It is the label switching approach developed by Cisco Systems. In contrast to
CSR and IP Switching, Tag Switching i1s a control-driven technique that coes
not depend on the flow of data to stimulate setting up of label forwarding tables
in the router. A Tag Switching network consists of Tag Edge Routers and Tag
Switching Routers, with packet tagging being the responsibility of the edge
router. Standard IP routing protocols are used to determine the next hop for
traffic. Tags are *bound’ to routes in a routing table and distributed to peers via
a Tag Distribution Protocol. Tag switching is available on a number of products

from Cisco.
Aggregate Route-based IP Switching (ARIS),

IBM’s label switching approach is similar architecturally to Tag Switching.
ARIS binds labels to aggregate routes (groups of address prefixes) rather than to
flows (unlike CSR or IP Switching). Label bindings and label switched paths
are set up 1n response to control traffic (such as routing updates) rather than cata
flows, with the egress router generally the initiator. Routers that are ARIS-
capable are called Integrated Switch Routers. ARIS was designed with a focus
on ATM as the Data Link Layer of choice (it provides loop prevention

mechanisms that are not availabie in ATM). The ARIS Protocol is a peer-te-

peer protocol that runs between ISRs directly over [P and provides a means to
establish neighbors and to exchange label bindings. A key concept m ARIS is
the “egress identifier”. Label distribution begins at egress router and propagates

in an orderly fashion towards the mgress router.

3. SYSTEM REQUIREMENTS

3.1 Product definition

Traditional telecommunications services and more recent data services, such as
Intranets/Internet access, can be converged on a single nctwork; enterprises arc
increasingly looking for more advanced and specialized services tailored to “her
specific needs. This will enabie enterprises to dvnamically adjust their network
requirements based upon factors such as traffic loading per application

(bandwidth allocation) and application performance (QoS/CoS).

Current [P networks are a long way from meeting the requirements of service
providers and their customers. The capabilities embodied in MPLS are designec
to meet the unified transport requirements of large-scale [P networks and build

on the existing concepts of IP networking.
3.2 Functional specification

The aim of the project is to develop robust & reliable backbone which provides
an effective class of service environment. The system should be able to provide
3 classes of service viz gold, silver & bronze. Each service class is assigned to a

typical user on his priority 1.e.
Gold - high priority
Silver=> medium priority
Bronze - 1ow priority

Prioritization of client requests by this backbone should be able to provide
specific QoS parameters viz bandwidth, speed & time, fro different cliznts

based on priority.

3.3 Developing and Processing Environment:
3.3.1 Software
> Operating System
Red Hat Linux: version -7.2

Kernel Version - 2.4.19

Linux is a free, open-source, POSIX compliant, UNIX clone operating system:.
Its true preemptive multitasking, multi-user support, memory protection and
symmetric multiprocessing support characterisiics together with its networking,
graphical user interface, speed and stability make Linux a preferred tool for

research and development.

.

» Programming Language
C Programming in Linux Environment

It is a robust language whose rich set of built-in functions and operations can be
used to write any complex program. The C compiler combines the capabilitics
of an assembly language with features of high level language and therefore °t is
well-suited for writing both system software and business packages. Programs
written in C are efficient and fast. C is highlv portable. C language is wel-
suited for structured program. its important feature is its ability to extend itself
With its availability of large number of functions the programming task

becomes simple.
» GUI Interface

Ethereal Packet Analyser (available under Linux Platform)

3.3.2 Hardware
» RS-232 for serial communication (PPP)

» Network Interface Cards (NICs) with cross connect cables for Ethernet

Interface.
» ATM NICs for with cross-connect cables for ATM Interface
» 4 GB or more hard disk.

» 64 MB RAM

4. LINE OF ATTACK

The project aims at implementing MPLS framework m a 4 node domain
network in Linux .The primary goals are to assign different mterfaces for

various services based on the priority of the client.
4.1 Linux kernel with MPLS support

This module of the system is to ensure that 2 node in order to be a part o an
MPLS domain has its LINUX kernel with MPLS functionahity. There are 2
LER’s and 2 LSR’s. Ingress LER is used to add the MPLS label to an incoming
packet from a Non- MPLS domain, if its destination is within the MPLS
domain. Egress LER 1s used to remove the label from the packet and forward it
to the Non- MPLS domain. LSR’s are label switched routers which are used for

MPLS label look-up and forwarding to a node in MPLS domain.
4.2 Implementing MPLS over PPP

PPP(Point to Point Protocol) is a mechanism for creating and running (the
Internet Protocol) and other network prolocolé over a serial link- direet serial
connection (using nuil modem cable).This module involves enabling PPP
support for the MPLS kemel in each LSR, which performed routing arnd
forwarding in MPLS domain. The point-to-point protocol is designed for simple
links which transport packets between two peers. The PPP daemon (pppd),
negotiates with the peer to establish the link and set up the PPP network
interface. Thus the Bronze class of service can be provided for the respective

client.
4.3 Implementing MPLS over Ethernet

MPLS mmproves Ethernet not by changing what is good about Ethernet, but by
adding desired capabilities at a higher layer (Laver 2).This module involves
enabling Ethernet support for the MPLS kernel in cach LSR. which perfcrmied

routing and forwarding in MPLS domain. When MPLS und Ethernet are used

together, Ethernet is called to focus on only what it does besl- Transpor.
between point -to-point peers, MPLS meanwhile adds the connection -orientec
capabilities that are a tool for creating service level Agreement-backec.
services. By this phase the ‘Silver’ class of service l.e., mission crizcal,

guaranteed service is provided to the client.
4.4 Implementing MPLS over ATM

ATM is Asynchronous Transfer Mode. ATM allows for data, voice, and videc
all to share the same medium. ATM can connect to a variety of other network
types varying from a 25Mbps connections to a 455 Mbps backbone. This
module speeifics the MPLS encapsulation to be used when sending :abelec
packets from ATM - LSR. The specified encapsulation is to be usecC for
multicast or explicitly routed label packets as well. The goal is to provide High-

Priority, low latency, Premium -class Gold service for the typical user.

4.5 Providing different classes of service using MPLS - enhanced Software

Switch

One major difference between PPP, Ethernct and an ATM connection s o
course speed- a standard ATM connection operates at 155 Mbps, an Etherne:
connection operates at 10Mbps whereas an analogue modem: operates at speeds

up to 56 Kbps (maximum theoretical throughput).

The above mentioned configurations will act as a universal router/switca by
supporting any Layer 2 protocol (ATM, Ethernet, etc.) and by being abie tc
encapsulate any Layer 3 packets (IP, MPLS, etc). Thus the idea of selecting one
of the three interfaces (PPP, Ethernet, and ATM) and providing different Jeve!
of services is incorporated in one single switch. As the packets arrive to t, they
will be filtered and classified. The classification in this project is done based or:

the clients’ priority. Those classes of packets will ecach follow a different

interface for their requested services, purely based on their source and assigned

priority.

5. DETAILS OF THE PROPOSED METHODOLOGY

5.1 MPLS -- Introduction

MPLS is a switching method used by special routers to forward [P packets.
Those routers forward I[P traffic using a label (usually between Layer 2 and
Layer 3) to mstruct other routers where to forward packets based on pre-
established IP routing information. MPLS also supports the capability of the
network to provide better service and higher priority to some selected network
traffic. As the name suggests it is called multi-protocol because its techniques
are applicable to any network protocol. MPLS provides the ability to support
any type of traffic on a large IP network without having to subordinate the
design to the limitations of different routing protocols, transport layers anc

addressing schemes.

MPLS is an IETF (Internet Engineering Task Force) - specified frame work tha
addresses performance issues related to emerging internet applications such as
real-time voice and video streaming by giving such applications higher priority
and more bandwidth than data packets. for example using the same network.
Because routers switch the frame based upon the labels and without need (¢

perform usual routing operations, frames are usually handied more quickly.

Multi-Protocol Label Switching (MPLS) is a new technology that will be usec
by many future core networks, including converged data and voice networks.
MPLS does not replace IP routing, but will work alongside existing and future
routing technologies to provide very high-speed data forwarding betweer
Label-Switched Routers (LSRs) together with reservation of bandwidth Tor
traffic flows with differing Quality of Service (QoS) requirements. MPLS
enhances the services that can be provided by [P networks, offering scope for

Traffic Engineering, guaranteed QoS and Virtual Private Networks (VPNs).

5.2 MPLS- Functions

» Specifies mechanisms to manage traffic force of various granulazites,
such as flows between different hardware, machines or even flcws

between different applications.
» Remains independent of the layer-2 and Layer-3 protocols.

« Provides a mcans to map IP addresses to simple, {ixed length labels used

by different packet-forwarding and packet-switching technologies.

« Interfaces to existing routing protocols such as Resource Reservation

Protocol (RSVP) and Open Shortest Path First (OSPF).
o Supports the 1P, ATM and [rame-relay Laver-2 protocols.

5.3 MPLS- Operational Overview

Conventional wisdom in the data communications industry suggests that
“switching” is simple and that “routing” 1s complex. MPLS allows IP packets to
be “switched” through the Internet. To switch the packets, a short (4-byte) label
is inserted in the packet header. This label is then used to forward the packet
between MPLS routers throughout the Internet. This label 1s inserted =zt the
ingress to the MPLS domain and then removed at the egress. Hence, an [
packet 1s generated at the source (a workstation, for example) and an IP packet
is delivered to the destination (i.e., a remote file server). The fact that an MPLS
label temporarily exists between the source and destination is comp.etely
transparent to the users, the applications, and even the customer’s network ng

equipment.

| 1P
Layer 2 MPLS labe Header User Data

MPLS label format

As indicated above, the MPLS Label (often called a shim) is placed between the
Layer 2 (e.g., Ethemnet) and Layer 3 (IP) headers in the packet. Packets are tacn
switched based on the label values. The labels only have local significance
(similar to Frame Relay DLCIs or ATM VPI/VClIs) and will change from hop to
hop as the packet traverses the Internet. In Figure 7 on page 6, four MPLS
routers, also called Label Switching Routers (LSRs) are shovwn. These routers ail
reside in the Internet, or within the “cloud.” Thercfore, the terms “Ingress” and
“egress’ refer to the entry and exit points of the Internet. As a packet enters the
Internet, a label is inserted or “pushed” onto the packet header. This label s
then exchanged or “swapped” at each intermediate router hop. This ‘s
accomplished by mapping the incoming label to an outgoing label based on the
entries in a table contained inside the router. For example, 2 packet might arrive

via port six with a label value of 45.

The router’s label table may indicate that such a packet then needs o be
forwarded via port ten with a label of 61. In this case. the appropriate Laver 2
header will be built for the outbound link tayer protecol associated with port ¢n
and the incoming label value of 45 will be replaced with an outbound labei ¢f

61.

C"7W PUSH ["TR Swap [TR Swa [___@ POP [¥

! I ’

L2 Label

The label is eventually removed or “popped” from the packet at the egress of

the Internet and a traditional TP packet is delivered to the customer’s destina.ion
network. This packet can then be forwarded to its final destination via stancard
IP routing procedures. The MPLS label field will support over one mil.ion
unique labels. However, the creation and maintenance of massive label tables
will require considerable routing hardware resources. Therefore, it 1s highly
recommended that MPLS networks be designed based on limited quantities of
labels in the routers’ tables. A label table can be as simple as having one entrv
per physical port on the router. Hence, if a packet is received with a label veluc
of 22, the router will know to forward that particular packet to interface 22. The
fundamental axiom for label tables is that smail is better. This reduces the
latency, simplifies the routers’ lookup procedures, and zlso simplifies the
overall network. Simplicity is further realized based on the fact that MPLS s 2
connection-oriented service. This is the antithesis of the current connection-iess
Internet! Packets are routed through today’s Internet on a hop-by-hop basis.
Each individual router reads a packet’s destination [P address and then searches
its entire Internet routing table (which currently has approximately 120,000
entries) to determine the next router hop for that particuiar packet. This process

is repeated at every intermediate router hop, for every single 1P packet.

Packets with the same destination address do no: necessarily follow the same

path since independent decisions are made at each router hop. MPLS, on the

other hand, establishes a fixed path for communications based on the st
packet of a stream. Once the path is established, all subsequent packets w:ll
follow the same route (called a Label Switch Path or LSP). Routers will then
only need to switch the packets along a predefined LSP, thereby simplifving the

process and expediting delivery.
5.4 PROPOSED SYSTEM ARCHITECTURE
Our proposed architecture consists of four systems viz., Ingress LER (Chient),

Egress LER (Server), and 2 LSRs’ { performs the process of switching between

PPP, Ethernet, ATM services) as explained below.

Proposed System Model

LSR1 LSR

. n W — .
Request for Service g

....I..l.'llIIII-FISI.*.I...I-F

Ingress LER (Client) Foress LER {Server)

Module | : Linux Kernel with MPLS Support:

The goals of this module are to provide MPLS support for the Linux Keme:
This capability is enabled by patching the Linux-kemnel file with MPLS support
to the existing kemel. In order to perform the desired operations with the new
kernel, the following functions incorporated.
> Resolving the hostname on providing the IP address and vice-versa =
resolve it ()

> Parsing the command line arguments = parse nh_info()
> Label look up and forwarding, which involves swapping and pushing
label ~> fill_label()

» Generating and executing instructions such as POP, PUSH, PEEK, FWD
for debug messages = fill_instructions()

The command line argument options provided here are,
A - Add Modifier, instructs the above functions to add a label as specified.
D—=> Delete Modifier instructs the above functions to delete a labei as
Specified.
B = Bind Modifier instructs the above functions to bind the labe: with the
selected key.
d—> Toggle devug, change the status of the debug option
L-> Set Label Space instructs the above functions to create and set the lzbel
space for the specified interface.
[-> Create/ Delete an incoming label
O—> Generate label with a kev
0> To gencrate the opcodes. PUSH. POP. PEEK

V> Output the MPLS kemel version at the compile time

FLOWCHART

[START)

Y

Parse the command line arzuments

. OTHER ~ _ ™,

Switch on \\\- > D
opt -~

T / "\\M"/";

A Y D r B A Dy " ¥
P |
Add=1 Delete=1 Bind=1 Debug=1 | i Flusk=l —
P ‘
Y 3 3 3 y
Add the desired Lahel Delek Bind the incoming Toggle the Flusk the tree
and the Izhel debug contents
reneraie the kev with the kev

4
/

STOP |

V L 0
L L
/ Print Version / label space str = oub_str=opirg n e Ar s
/ / abel space_ W_sFopss ‘ in_label str=oparz
of MPLS / oparg cub_inst sir=
; optarg .
¥ s
3 . . Ve et
) i1l mstr() 18 Suiichon -
p \ Assign thg lavel invoked el gpe >
C space to the terface § -
metitioned . N
L c) |
\n__/"l ,!, |
: : / Display /
Include label Delete label ;e
A

ALGORITHM

The flow of the algorithm is as follows.

1) Start.

2) Get the parameters in command line as specified.

3) Parse the arguments thus obtained from command line and store eac:
token separately.

4) Analyze all the tokens and perform the differcnt functions associated wit”
it, display errors otherwise.

5) Output the debug messages at the appropriate instances

6) Stop

This implementation makes the MPLS router hot configurable. By example, a
Linux box running as an IP router becomes an MPLS router once we load the
MPLS module. If we unload the MPLS meodule (for debugging or
modifications) the system wili remain [P router. This recenfiguration can be

done without recompiling the kernel or restarting the system.

Module IT : PPP over MPLS

The goal of this module is to enable PPP support over MPLS. The actions
performed in the first module allocate memory space for the Point-to-Point
Protocol. The label is obtained amongst the tokens in the command line, then
the label is verified for correct values and if it is within the desired range. The

label is then copied to the space in memory corresponding to the PPP interfaces’

label space.

Once a PPP packet is received at the kernel, the label in the PPP interfac=’s

memory is encapsulated to the packet as shown in the figure below.

PFPFP Lahel Layer3

Header (Shim Header) Header
32 bits

Thus the label encapsulated packet follows the next-hop ertry according tc the
entries in Label Forwarding Information Base (LFIB) via. RS-232 cable. This

takes place only at the LSR’s.

Module 11 : Ethernet Over VIPLS

This module aims at encapsulating label{(s) with the packet amiving via Ethernet
interface. A node in the MPLS domain is configured by the first module of this
project, in such a way to allocate memory space for the Ethernet interface ir. the
Linux kemel. Once a label- add instruction 1s executed at that node, the label
assigned is stored in the memory space allocated for the Ethernet interface.
Thus when an Ethernet packet is picked up by the kernel, it is encapsulated with

the label in the following way.

MAC Label Layer3
Header (Shim Header) Header
32 bits

Thus the packet that arrives in the Ethernet interface is encapsulated with a labet
as specified in Label Forwarding Information Base (LFIB) in a particular node.

As per the instructions available for each label in LIB, the destiny of this label

encapsulated packet is determined.

Module IV: ATM over MPLS

In general there are three ways to encapsulate MPLS label over ATM. One
way isto place the label in the VCI field or in the VPI field. In this project
the second way is adopted where in the label is assigned in the place of VPI and
VCI fields combined. The third option is to integrate the tunneling and the

MPLS concepts.

ATM LSR constarined by the cell format imposed by existing ATM standards

‘ VP! VCl PT | CLP | HEC

!

Cption 1 [absl 1 Iabei_‘

Cption 2 combined label |

t

T
Option § ATMVR tunnel Label

ATM Over MPLS- Encapsulation

Module V: Providing different classes of service using MPLS - enhanced

Software Switch

There arc three different classes of services defined in the system. They are
provided upon request and authorization of the respective client. The atove
explained four modules are integrated in this step and the different classes of
service are provided. The following algorithm illustrates the function of this

module.

ALGORITHM:

1y
2)

3)

4)

5)

0)

7)

8)

9)

Start

Client (Ingress LER) sends request to the server (egress LER) for &
service.

The requested 1s gated via the LSR 1 and routed to the LSR 2 and its
destination as obvious is Egress-LLER

Once the LSRI1 receives the request packet, upon label look up avaiiable
in the packet, it determines the LSP to be followed and the class of
service to be provided. .(Gold, Silver, Bronze).

LSRI1 swaps the incoming label with another label, 1f the former s vahid
and that it contains a entry in the Label Forwarding Information Base
(LFTB).

The above 1s repeated at LSR2 which forwards the packets 1o Egress -
LER, thereby the request reaches the Server via MPLS switching anc
routing operations,

The Egress-LER in turn performs the aforeszid operations as defined in
1ts Label Forwarding Information Base (I.F1B) and proceeds as per the
instructions in LFIB.

The reply to the client is also sent via the LSR’s which are defined as
gateway for all the packets transferred between Ingress-LER and Egress-
LER.

Stop.

5.6 IMPLEMENTATION DETAILS

Our proposed system is implemented as given below.

The Linux kernel was added the MPLS capabilities using the Patch files.
The routes and the labels to be added were statically defined. PPP support
for the newlv formed Linux kernel was implemented. The above set up was
tested for MPLS label encapsulation in PPP packets usimg the RS-232 cables
connecting 2 LSR’s end to end. The next step involved enabling Ethernet
over MPLS. The newly formied kernel was analyzed and tested 1f 1t added
the MPLS 32 bit header information for the outgoing packets as defined n
the Label Forwarding Information Base (I FIB), through the cross-connect
Ethernet 10/100 Mbps cables. A sample filc was successfully downloaded
via both the PPP interface and the Ethermnet interface and a comparative
study was made. The next step was {o implement ATM over MPLS, wtich
was achieved by the options in the configurations file. Sample packets were
tested if MPLS encapsulation was taking place over the ATM interface.
Finally the setup was integrated for MPLS label- lookup and forwarding.
The end nodes in MPLS domam were the Edge Routers | Ingress LER
(Client) which requests for a service from the another edge router nameiy
the Egress LER (server). The 2 LSR’s in between the edge routers, acted as
switches providing 3 different classes of service, namely Gold, Silver,
Bronze (ATM,Ethernet,PPP) depending on the incoming clhients’ requas:,
The above setup was tested for various files of different sizes. The Speed,
Time and size of the files were recorded.

The comparative study adapts the following steps.

\

The number of files to be compared is specified.

Y/

The debug messages of MPLS were stored and analyzed.

Y

These messages were examined for the correct labels assigned tc

appropriate class of service.

Y

The speed, time and size of the files were recorded.

6. RESULTS

The four nodes mentioned in the proposed architecture werce configured with the

following routing tables.

NODE A

Kernel IP routing table (Ingress-LER); CLIENT

Ethernet 0 interface IP Address: 172.16.10.17 (Low priority User)

Ethernet 0 interface IP Address: 172.16.10.18 (Medium priority user)
Ethernet 0 interface IP Address: 172.16.10.16 (High Priority User)

Destination Gateway Genmask Flags Metric Ref Use Iface

172.16.10.23 172.16.10.20 255.255.255.255 LGH ¢ ¢ 0 ethO
172:16.10.24 172.16.10.20 255.255.255.255 UGH ¢ ¢ 0 eth0
172.16.10.25 172.16.10.20 255.255.255.255 UGH ¢ 0 eth0
192.168.34.35 172.16.10.20 255.255.255.255 UGH 6 0 eth0

G

0
192.168.34.34 172.16.10.20 255.255.255.255 UGH ¢ ¢ 0 eth(
172.16.0.0 0.0.0.9 255.255.0.0 Uu ¢ o0 {0 eth{
127.0.0.0 0.0.0.0 255.0.0.0 Uu ¢ © 0 1o
NODE B

Kernel IP routing table for LSR 1

Ethernet O interface IP Address :172.16.10.19
Ethernet 1 interface IP Address : 172.16.10.20
PPP Interface IP Address :172.16.10.21

ATM Interface IP Address

Destination

192.168.34.35
172.16.10.23
172.16.10.22
172.16.10.22
172.16.10.18
172.16.10.17
172.16.10.16
172.16.10.25
172.16.10.24
172.16.0.9
172.16.0.0
192.168.0.0
127.0.0.0
0.0.0.0

NODE C

Gateway

192.168.34.34
172.16.10.19
172.16.10.21
0.0.0.0
172.16.10.20
172.16.10.20
172.16.10.20
192.168.34.35
172.16.10.19
0.0.0.0

0.0.0.0

192.168.34.34
0.0.0.0
172.16.10.22

Genmask

1 192.168.34.34

255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.0.0 U
255.255.0.0 U
255.255.255.0 U
255.0.0.0 U
0.0.0.0 LG

| 3 S o

Kernel IP routing table for LSR 2

Ethernet 0 interface IP Address
Ethernet 1 interface IP Address

PPP Interface IP Address
ATM Interface 1P Address

:172.16.10.23
:172.16.10.24
1 172.16.10.22
:192.168.34.35

Flags Metric Ref

= 2 o o © o < O

oo o O o o

Lse lface

0 atm0
0 ¢thd

0 ppp0
0 pppl
0 ethl

0 ethl

0 ethl

0 atm0
0 etho

0 eth0

0 ethi

0 atm0
0lo

0 ppp0

Destination

192.168.34.34
172.16.10.21
172.16.10.21
172.16.10.20
172.16.10.19
172.16.10.18
172.16.10.17
172.16.10.16
172.16.10.25
172.16.0.0
172.16.0.0
152.168.0.0
127.0.0.0
0.0.0.0

NODE D

Gateway

Genmask

192.168.34.35 255.255.255.255 UGH

172.16.10.22
0.0.0.0
172.16.10.23
172.16.10.23
172.16.10.20
172.16.10.21
192.168.34.34
172.16.10.24
0.0.0.0
0.6.0.0
192.168.34.35
0.0.0.0
172.16.10.21

255.255.255.255 UGH
255.255.255.255 UR
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGIHI
255.255.255.255 UGH

255.255.0.0 U
255.255.0.0 U
255.255.255.0 U
255.0.0.0 U
0.0.0.0 uG

Kernel IP routing table (Egress-LER); SERVER

Ethernet 0 interface IP Address: 172.16.10.25

Destination
172.16.10.23
172.16.10.22
172.16.10.16
192.168.34.34
192.168.34.35
172.16.10.21
172.16.10.20

Gateway
172.16.10.24
172.16.10.24
172.16.10.24
172.16.10.24
172.16.10.24
172.16.10.24
172.16,10.24

Genmask

255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH
255.255.255.255 UGH

b

0

0
0
¢
0
0
0

<

o o @ o © oo 20 o © o O 9

0
0

[T B =

Flags Metric Ref

o

o O o o @ ©

oo o e o o

Flags Metric Rel

Use Iface

0 atmG

0 ppp0
0 ppp@
0 eth0
0 ethD
0 eth0
0 ppp0
0 atm0
0 ethl
0 eth0
0 ethl
¢ atm(
0lo

0 ppp0

Use Iface
0 eth0
0 eth(
0 eth0
0 etho
0 eth0
0 eth0
0 eth0

0 eth(
0 eth(

172.16.10.19 172.16.10.24 255.255255.255UGH 0 0
172.16.10.18 172.16.10.24 255.255.255.255UGH 0 0
172.16‘.10.17 172.16.10.24 255.255.255.255UGH 0 © 0 eth0
172.16.0.0 0.0.0.0 255.255.00 U O 0 0 eth0
127.0.0.0 0.0.0.0 255.6.0.0 u o6 0 0lo

MPL.S Settings sample for LSR1

[mpls-linux|: displaying MPLS settings for Linsys88 (1.SR 1)

mpls_in {

0x0001e005 100/8800/0 gen 30 1 1 POP FWD(0x00000002)
0x00032001 76/6688/0 gen 50 0 1 POP FWD((x00000004)
0x0003¢005 66/5808/0 gen 60 1 1 POP FWD(0x00000003)
(x00050009 22/1936/0 gen 80 2 1 POP FWD(0x00000005)
0x00060010 10/1000/0 gen 90 1 1 POP FWD(0x00000006)
0x00070009 23/2044/0 gen 110 3 1 POP FWD(0x00000007)

i

mpls_labelspace {

eth0 0 13

ethl 1 10

ppp0 2 11

atm(3 12

b

mpls_out {

0x00000002 1060/8400/0 2 PUSH(gen 35) SET(eth0,172.16.10.23)
0x00000003 66/5544/0 2 PUSH(gen 65) SET(ppp0,172.16.10.22)
0x000006004 76/6384/0 2 PUSH(gen 55) SET(eth1,172.16.10.18)

0x00000005 22/1848/0 2 PUSH(gen 85) SET(eth1,172.16.10.17)
0x00000006 33/1425/0 2 PUSH(gen 95) SET(atm0,192.168.34.35)
0x00000007 22/1320/0 2 PUSH(gen 115) SET(eth1,172.16.10.16)

b
mpls_version {
010107062

B

done

SAMPLE DEBUG MESSAGES AT THE INGRESS LER

Feb 24 17:25:46 Linsys89 kermel: mpis_send: GEN

Feb 24 17:25:46 Linsys89 kernel: mpls_send: using hh

Feb 24 17:25:46 Linsys89 kemel: mpls_skb_dump: from e¢thO with len 78 (345)
headroom==86 tailroom=28

Feb 24 17:25:46 Linsys&Y kerack:
(G6000000340000003480040834800408%c0000000c0000000050C0000040000¢

003000000£4010000f4800408f4800408130000001300000004000000010000:00
01000000000000000080040800800408863b0G1000000{000244119398000244"

193848847|0001e1404500003¢24cc40004006a982ac100a12#ac100a19040300
53795b25b00000000a00216c040400000020405000402080a000190b50000000

00103030008}

Feb 24 17:25:46 Linsys89 kernel: mpls_send: mpls send result O

Feb 24 17:25:46 Linsys89 kernel: mpls_output2: exit

Feb 24 17:25:46 Linsys89 kernel: mpls_output: exit

Feb 24 17:25:46 Linsys89 kernel: mpls_rcv: enter

Feb 24 17:25:46 Linsys89 kernel: mpls_skb_dump: from cth(with len 64 (2523

headroom=32 tailroom=0

Feb 24 17:25:46 Linsys89 kernel;
30343e4665622032342031373232353a3235%000244119384000244119398884
7 {#/0003713e4500003c000040004006ce70ac100a19ac100a12001 50403399bz23

003795b25¢a0121690b1 160000020405b00402080a0001b226000196b5010303

0001}
Feb 24 17:25:46 Linsys89 kemel: mpls_input: enter
Feb 24 17:25:46 Linsys8Y kernel: mpls_input:

labelspace=0.label=55.exp=0,B.0.8=1.TTL=62
Feb 24 17:25:46 Linsys89 kemnel: mpls_skb_dump: from ethO with len 64 (252)

headroom=32 tailroom=0

Feb 24 17:25:46 Linsys89
3¢343e4665622032342031373a3235323235%000244119384000244119398684
7 {#/0003713e4500003c000040004006¢ce70ac100al9ac100a12001 50403399ba3
003795b25¢a0121690b11b50000020405b00402080a0001b2a6000196b5010:203

kemel:

0001}

Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys&89 kernel:
Feb 24 17:25:46 Linsys89 kemel:
Feb 24 17:25:46 Linsys89 kemel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kemnel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys&9 kemel:
Feb 24 17:25:46 Linsys&9 kernel:
Feb 24 17:25:46 Linsys89 kemel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kernel:
Feb 24 17:25:46 Linsys89 kernel:

mpls_in_info hold: enter
mpls_in info hold: new count 2
mpls in nfo_hold: exit
mpls_input: opcode POP

mpls mput: opcode PEEK
mpls_In info release: enter
mpls_in_info_release: new count |
mpls in_info_release: cxit
mpls_input: delivering
mpls_finish: enter

mpls_finish: exit

mpls_dlv: setting tl 62
mpls_output: enter

enter

s opeode PUSH

mpls_output2:
mpls_output?

mpls push: enter

Feb 24 17:25:46 Linsys89 kernel: mpls_push: creating larger packet

Feb 24 17:25:46 Linsys89 kernel: mpls_push: dump old packet

Feb 24 17:25:46 Linsys89 kernel: mpls_skb_dump: from net stack with len 52
(316) headroom=108 tailroom=0

Feb 24 17:25:46 Linsysg9 kemme::
06000000340000003480040834800408*cOOOOOOOcOOOOOOOO50000000400000
003000000f4000000f4800408f480040813000000130000000400000001000000
010000000000000000800408008004088635010000000002441193 9800024411
938488470002140450000%{|4500003424ef4000400621989&01OOalZaciOOal9
#040300153795b25c399b3301801016cOdfacOOOOOl01080a000196b50001b2a6
01}

Feb 24 17:25:46 Linsys89 kernel: mpis_push: dump new packet

Feb 24 17:25:46 Linsys89 kernel: mpls_skb_dump: from net stack with lern 52
(284) headroom=32 tailroom=44

Feb 24 17:25:46 LinsyssY kerael:
3034364665622032342031373332353a3235206b65726c656c3a2()6d706c735f
£[4500003424cf40004006a989%ac100al 2ac100a1940403001 53795625¢399ba30
1801016¢0dfac00000101080a006196b50001b52a6069}

Feb 24 17:25:46 Linsys89 kemel: mpls_push: using taiiroom

Feb 24 17:25:46 Linsys89 kernel: mpls_push: done using taiiroom

Feb 24 17:25:46 Linsys89 kemel: mpls_push: exit

Feb 24 17:25:46 Linsys89 kemel: mpls_output2: opcode SET

Feb 24 17:25:46 Linsys89 kemnel: mpls_send: output device = ethd)

Feb 24 17:25:46 Linsys89 kernel: mpls_finish: enter

Feb 24 17:25:46 Linsys89 kernel: mpls_finish: exit

Feb 24 17:25:46 Linsys89 kernel: mpls_send: GEN

Feb 24 17:25:46 Linsys89 kernel: mpls_send: using hh

Feb 24 17:25:46 Linsys89 kernel: mpls skb_dump: from eth{ with len 7C (284}
headroom=18 tailrcom=40

Feb 24 17:25:46 Linsys89 kernel:
3¢343e4665622032342031373a32353200004000244110398000244119384&84

7/0001e1404500003424ef40004006a989ac100al 2#ac100a19040300153795225
c399ba301801016c0dfacO0000101080a000196H50001 524661

Feb 24 17:25:46 Linsys89 kernel: mpls_send: mp:s_send result 6

Feb 24 17:25:46 Linsys&89 kernel: mpls_output2: exit

Feb 24 17:25:46 Linsys89 kernel: mpls output: exit

COMPARISON BASED ON THE RESULTS OBTAINED

PPP Ethernet ATM
Interface Intertace Interface
!
FILE TIME TIME CTIME
SIZE TAKEN SPEED TAKEN SPEED ' TAKEN SPEED
(Seconds) (Kbytes/s) | (Seconds) (Kbytes/s) | (Seconds) {Kbyvtes/s)
1
3KB 0.097 30 0.00079 4500 0.000¢3 ¢00
1.24 MB 120 11 0.16 8100 0.1C1 16000
2.59 MB 250 11 0.4 H6H00 0.15 1000
3.25MB 360 11 0.35 i 9600 | 0.191 16000
4.8 MB 620 11 0.43 L1000 1 0.284 GO
|

As seen from the results above the idea of selecting one of the three different
interfaces PPP, Ethernet, ATM, defined in the system architecture provide their

typical class of service. These are incorporated in one single switch.

As the packets arrives at the switch they will be {iltered and classified based on
their priority; PPP interface is used for simple links which transport packets
between two peers, thus providing the bronze class of scrvice. For mission
critical, guaranteed services the Ethernet interface is used and thus the Silver
class of service is endowed with. High-Priority, low latency, Premium -class
Gold service is bestowed upon the typical user with the highest priority in the

network.

The results are thus compared above from the time taken for different files
obtained through the usage of file transfer protocol (FTP). The tabular column
clearly indicates the differences in class of services provided through the project

for different cHents.

7. CONCLUSION

The internet protoco} (IP) has cnabled a comprehensive network between a
never-ending variety of systems and communicalion, transmission media. From
the basic e-mail, web browsing; which have become part of the daily routing, to
the emerging video conferencing, phone radio and televisions, all indicate that

they congregate on 1P,

There is a clear need for relatively simple coarse method of providing different
classes of service for internet traffic, support various tvpes of applications, and

specific business requirements.

Multi Protocol Label Switching is an clegant solution to these tssues. MPLS s
destined to provide a new technical foundation for the next generation of mult:-
user, multi-service inter-networks. The promise 1s for higher performance,
another order of magnitude increase in scalabiiity. improved and expanded
functionality, and the flexibility to match the uscr’s quality of service
requirements more closely. While the expansion of the Intermet has been a
major driver for development of label switching, it is not the only, or even the

most important factor.

Label switching provides significant improvements in the packet forwarding
process by simplifying the processing, avoiding the need to duplicate header
processing at every step in the path, and creating an environment that zan
support controlled QoS. Several vendor-specific solutions exist today and IETF
MPLS standards are expected within a year. Deployment of MPLS allows a
closer integration of IP and ATM, supports service convergence, and offers rew

opportunities for traffic engineering and VPN support.

By adding fixed size labels to packet flows, the way we add ZIP codes to mail

to help with sortine. packet Drocessinge Perfor - mes cam e memeeied (el

controls can be more easily applied and very large global public networks can
be built. All of this results in better networks with more {unctions at lower cost.
MPLS is a new technology that is just beginning to be recognized as beneficial.
The basic standards will soon be completed and products will be delivered
quickly afterward. It is fully expected that MPLS will see wide-spread
deployment in both public and private IP networks, paving the way for true

convergence of telephony, video, and computing services.

FUTURE WORK

1.

MPLS is implemented in this project with static label assignments.
Instead the LDP (Label Distribution Protocol) can be implemented to
perform dynamic label assignments, upon request and requirements in

the given network.

The switching technology implemented here uses a software version of
MPLS. The performance of the same setup can be enhanced usirg a
hardware switch. This will enable better performance in terms of speed,

usage and cost.

8. REFERENCES

Journaly

1. Rekhter, Y.B., David E., Rosen, G. Swaliow, D. Farinacci, and D. Kaiz.
“Tag Switching Architecture Overview™. In Proceedings of the IEEE 32,
no.12, December 1997, 1973-1983.

2. Newman, Peter, Minshall, Greg, Lyon, Thomas. “IP Switching-A”M
IEEE/ACM Transactions on Networking. 1998. 6(2).

Websites

—

www.agilent.com
WWW.CISCO.COM

www . cnnovatenctworks.com
www.ethereal.com
wWww.icc.org

www.letf.org
WWW.marconi.com

www.mplsforum.org

Rl A o A et

www.mplssrc.com

—
[l

. www.netplane.com

—
—

. www.riverstonenet.com
12. www techguide.com

13. www trillium.com

1. L. Peterson and B. Davie, Computer Networks: A systems approact., n

163. Morean & Kaufmann, USA, 1996.

Andrew.S. Tanenbaum, Computer Networks, Third Edition, Prentice
Hall of India, 2001.

Biack, Ulysses. “ATM: Foundation for Broadband Networks™. Prentice
Hall, NJ. 1995.

Michael K.Johnson, Erik.W.Troan, L.nux Application Development,
Low priced Edition Pearson Education India.

Cary Lu, The Race for Bandwidth: Understanding Data Transmissiorn,
Prentice Hall Of India, 2001.

Sumitabha Das, Unix Concepts and Applications, 2™ edition, Tata-
McGraw Hill, 1997.

Mathias Hein, David Griffiths, Switching Technology in the Local Area
Network, from LAN to switched LAN to Virtuai LAN, Thomson

Computer Press, 1997,

MPLSADM.C

/¥ INCLUDING THE REQUIRED HEADER FILES */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#Finclude <netdb.h>

#include <sys/socket.h>
#include <n~tinet/inh>
#include <net/if h>
#include <arpa/inet.h>
#include <linux/mpls.h>
#include <sys/ioctl.h>
#include <linux/atm.h>

#include <asm/types.h>

int fd = 0;

char verbose = (;

unsigned int resolve_it(char *host);

int parse_nh_info(struct mpls_nexthop_into “muoi,char **arg,int start);
int fill_label(struct mpls_label *Ibl,char “Fargs,int start);

int fill_instructions(struct mpls_instruction_req *mir, char** arg,int start,

int num);

/* GENERATION OF ERROR MESSAGES 7/

void usage() {

fprintf(stderr,"usage: mplsadm [ADBUdhvT:L:LO:d@:0:2: A\ n");

fprintf(stde.r,"-A add modifier\n");

fprintf(stderr,"-B bind modifier\n");

fprintf(stderr,"-D delete modifier\n");

fprintf(stderr,"-U unbind modifier\n");

fprintf(stderr,"-d toggle debug\n");

fprintf(stderr,"-h this message\n");

fprintf(stderr,"-v verbose info\n");

fprintf(stderr,"-F flush all ILMs and NHLFEs\n");

fprintf(stderr,"-L <interface name>:<label space> sct the label spacce
for"

"an interface (-1 disables)\ n");
fprintf(stderr,"-I <gen | atm | fr>:<label>:<label space> create | delete an”
" incoming label\n"};

fprintf(stderr,"-O <key> (create with a key of 0)\n");

tprintf(stderr,"-o <opcode:opcode_data=+\n"};

fprintf(stderr,”-V output the MPLS kernel version used at compile
time\n");

fprintf(stderr,"\n\n");
)

/¥ FUNCTION TO GET THE NEXT HOP INFORMATION */

int parse_nh_info{struct mpls_nexthop_info *mni,char **arg,int start) {
struct ifreq ifr;

iﬁt result;

int fen;

inti=0

len = strlen(arg[start]);
1++;
if(len > 0 && len < 10) {
memset(&ifr,0,sizeof(struct ifreq));
strnepy(ifr.ifr_name,argfstart] len+1);
if((result = ioctl{fd SIOCGIFINDEX, &ifr)) == 0} {
Struct sockaddr_in sin;
memset{&sin,0,sizeof(sin));
mni->mni_if = ifr.ifr ifindex;
If(arg[start+1] && Istremp(arg[start+1],"ipv4")) |
i++;
if(verbose) fprintf(stderr,"Nexthop protocol: ipvd\n");
sin.sin_addr.s_addr = resolve_it(arg[start+2]);
sin.sin_family = AF_INET;
1+t
}
memcpy(&mni->mni_addr,&sin,sizeof(struct sockaddr));
} else {
fprintf(stderr,"Unable to resolve ifindex for %s\n"ifr.ifr_name);
J
)

irydr Ty 1

/* FUNCTION TO ADD THE LABEL AT THE DESIRED POSITON
OF THE IP PACKET */

int fill_label(struct mpls_label *Ibl,char **args,int start} {
int result =10,

if(verbose) fprintf(stderr,"Label type: %s\n"args[starti);

/* IDENTIFYING THE TYPE OF LABEL */

if(Istrncmp(args[start],"atm",3)) {
char *vpi_su,*vci_str;
int vpli,vei;
vpi_str = strtok(args[start+1],"/");
vei_str = strtok(NULL,"\ 0");
if(vpi_str && vci_str) {
vpi = atoi(vpi_str);
vel = atoi(vei_str);
if(vpi > -1 && vpi < ATM_MAX VPl && vci > -1 && vai <
ATM_MAX_VCI) {
Ibl->ml_type = MPLS_LABEL_ATM;
Ibl->uml_atm.mla_vpi = vpi;
ibl->uml_atm.mla_vci = vci;
J
}

result = 1;

!

else if(letrnembiarcalerart] "oan™ 2Y) f

Ibl->m]_type = MPLS_LABEL_GEN;
Ibl->u.ml_gen = atol(args[start+1});
result = 1;

} else if(Istrncmp(args[start],"fr",2)) {
Ibl->ml_type = MPLS_LABEL_FR;
1bl->u.ml_fr = atol(args[start+1]);
result = 1;

} else if(Istrncmp(args[start],"key",3)) {
Ibl->ml_type = MPLS_LABEL_KEY;
1bl->u.m!_key = striol{args[start+1], NULL,U);
result=1;

}

return result;

}

/* FUNCTION TO GIVE OUT THE SUITABLE INSTRUCTIONS */

int fill_instructions(struct mpls instruction_req *mir, char*® arg.int
start,

int num} {

struct ifreq ifr;

int length = 0;

int result;

inti;

for(i=start;i<(num-start);i++) |
if(verbose) fprintf(stderr,"Instruction: %s\n"arg[il};
if(Istrnemp("pop”,arg[i],3)) {

mir->mir_instructionflength].mir_opcode = MPLS OP_POD;

Velse if{lstrnemp("peek” arglil4)) {
mir->mir_instruction[length].mir_opcod e =MPLS OP PEEK,
} else if(Istrnemp("push",argli] 4)) {
1+
mir->mir_instruction[length].mir_opcode = MPLS OP PUSH;
if(!(result=fill_label(&(mir-
mir_instruction[length].mir_data.push),arg,i)})
{
fprintf(stderr, "Error while parsing label\n");
exit(-1);
)
| += result;
}
if(!(result = fill_label(&(mir->mir_instruction{length]. mir_data.fwc,),
arg,ij) {
fprintf(stderr,"Error while parsing label\ n"y;
exit(-1);
}
1 += result;

j

if(verbose) fprintf(stderr,"Length: %d\n" length);
return 0;

)

unsigned int resolve_it(char *host) {
unsigned int result = -1;

struct hostent *hp;

if(isdigit(host{0])) {
result = inet_addr(host);
}else {
if((hp = gethostbyname(host))) {

- memcpy({&result, hp->h_addr sizeof(unsigned int));

J
}

return result;

/* FUNCTION TO PARSE THE ARGUMENT IN THE COMMAND
LINE */

int parse_args(int argc,char **argv,char *args)
[l o] O/

inti=1,;

argv[0] = strtok(args,™");

while((argvli] = strtok(NULL,":")) {
i++;

if(i > (arge -) |
return -i;

}
i

return i;

/* MAIN ¥/

int main(int arge, char **argv} {

struct mpls _instruction_req mir_req;
struct mpls_tabelspace_req mls_req;
struct mpls_out_label_req mol_req;
struct mpls_in_label_req mil_red;

struct nlpls“xconnect“_req mx_req;

struct ifreq ifr;

char *in_instr_str = NULL;
char *out instr_str = NULL;
char *in_label str = NULL;
char *out_str = NULL;

char *proto_str = NULL;

char *mtu_str = NULL;

char *label_space_str = NULL;
char *larg[1024];

int result = -1;

int num = 0;

int opt;

char delete = 0;
char add = 0;
char bind = 0;
char unbind = 0;
char debug = 0;

char flush =0,

fd = socket{ AF INET SOCK DGRAM,M;

if(fd < 0){
perror("Socket");
exit(fd);

j

memset(&mil_req,O,sizeof(struct mpls__in#label_req)) ;
memset(&mls_req,0,sizeof(struct mpls_labelspace_redq));
memset(&mol_req,0,sizeof(struct mpls_out label_req));
memset(&mx_req,0,sizeof(struct mpls_xconnect_reg));

memset{&mir_req,0,sizeof(struct mpls_instruction__rcq_)) ;

while{{opt = getopt(argc,argv,”ADBUthFT:L:I:O:i:o:m:p:\/”)) I=LOR) {
switch(opt) {

case 'A": /¥ ADD MODIFIER ¥/
add = 1;
break;

case 'B'' /* BIND MODIFIER %/
bind = 1;
break;

case 'D": /* DELETE MODIFIER %/
delete = 1;
break;

case 'U" /* UNBIND MODIFIER #/
unbind = 1;
break;

case 'd": /* TOGGLE DEBUG */
debug =1;
break;

I S X TT TIPS O YRATY DA™ %)

verbose = 1;
break;
case 'F" /¥ FLUSH */
flush = 1;
break;
case 'L /* <interface name>:<label space> set the label space for
Vi
- label_space_str = optarg;
if(verbose) {printf(stderr, 'Label Space input: %s\n" label_space sir);
break;
case '0": /¥ <opcode:opcode_data> */
out_instr_str = optarg;
if(verbose) fprintf(stderr,"Out instr input: %s\n",out_instr_str);
break;
case 'O /* O <key> (create with a key of) %/
out_str = optarg;
if(verbose) fprintf(stderr,"Out segment input: %s\n",out_str);
break;
case 'V': /* PRINT THE VERSION */
fprintf(stdout, "\n\tMPLS version %d.%d%d%d\n\n",
(MPLS_LINUX_VERSION >> 24) & (0xFF,
(MPLS_LINUX_VERSION >> 16) & UxFT,
(MPLS_LINUX_VERSION >> 8) & OxEF,
MPLS_LINUX_VERSION & OxFF);
break;
case 'h'y/* THIS MESSAGE */
default:
usage();

exit(result);

breal;

/* TOGGLE DEBUG */
if(debug) {
result = ioctl(fd, SIOCMPLSDEBUG, &ifr):
perror("Debug");

)

/* FLUSH THE ENTIRE CONTENTS OF THE LABEL FORWARD
INFORMATION BASE */
if (flush) {
result = ioctl(fd, SIOCMPLSILMFLUSH, &ifr);
result = ioctl(fd, STOCMPLSNHLFEFLUSH &ifr);
perror("Flush");
}

/* ALLOCATE LABEL SPACE FOR THE INTERFACES”/

if(label space_str) {

int len;

num = parse_args(1024,larg label _space_str);

f(num == 2) {
len = strlen(larg[0]);
if(verbose) fprintf(stderr,"If: %s LS: %s\n" larg[0] larg[1]};
if(len > 0 && len < IFNAMSIZ) {

memset{ &ifr 0 sizeof(striict ifrea)):

strcpy(ifr.ifr_name,larg[0]);
if((result = ioctl(fd, SIOCGIFINDEX &ifr)) {= 0) {
perror("SIOCGIFINDEX");
exit(result);
J
mls_req.mls_ifindex = ifr.ifr_ifindex;
mls_req.mls_labelspace = atoi(larg[1]);

result = ioctl(fd,SIOCSLABELSPACEMPLS,&mls_req) ;

}
}
perror("Label Space");

}

if(tunnel_str} {
num = parseﬁargs(lO24,larg,tu1meLstr) ;
if(add && num ==1) {
strnepy(ifr.ifr_name,largf0],IFNAMSIZ);
result = ioctl{fd, SEIOCMPLSTUNNELADD &ifr);
if(bind) {
result = ioctl(fd, SIOCGIFINDEX, &ifr);
}
belse if({delete && num == 1) | | (bind &é& num == 1)) {
strepy(ifr.ifr_name larg[0]);
if(delete) {
result = ioctl(fd, SIOCMPLSTUNNELDEL &ifr);
} else |

result = ioctl{td,SIOCGIFINDEX, &ifr);

1

belse {
fprintf(stderr,"Tunnel: wrong number of paramters(%d)\n" numj;
fprintf(stderr,"Tunnel: -A -T <name>\n"};
fprintf(stderr,"Tunnel: -D -T <name>\n"};
fprintf(stderr, Tunnel: -B ... -T <name>\n");

tunnel str = NULL;

/* GET THE INCOMMING LABEL FROM DESIRED INTERFACE
AND ASSIGN TO THE CORRESPONDING LABEL SPACE */

if(in_label_str) {
num = parse_args(lO24,1arg,in_1abelﬂ_str) ;
if(num == 3} {
fill_label(&mil_req.mil_label larg,0);
if (mil_req.mil_label.ml_type == MPLS_LABEL_KEY) {
fprintf(stderr,'In labels cannot be specified via key");
exit(-1);
}
mil_req.mil_label.ml_index = atoi(larg[2]);
if(delete) {
result = joctl(fd, SIOCMPLSILMDEL,&mil_req);
perror("ln Label del");
}else if(add) {
result = ioctl(fd, SIOCMPLSILMADD, &mil_req);
perror("In Label add");
J

Velgse |

fprintf(stderr,"In Label: wrong number of paramters(%d)\n",num ;
in label_str = NULL;
}
}

/* GENERATE THE CORRESPONDING KEY FOR THE LABEL
GENERATED AND ACCEPTED ¥/
if(out_str) {
mol_req.mol_label.ml_type = MPLS LABEL_KEY;

mol_req.mol_label.uml_key = strtol(out_str, NULL,C};

if(delete) {
result = ioctl(fd,SIOCMPLSNHLFEDEL,&mol_req) ;
perror("Out Segment del");

} else if(add) {
result = ioctl(fd, SIOCMPLSNHLFEADD, &mol_req);
printf("Key: 0x%08x\n",mol_req.mol_label.u.mi_kev});
perror("Out Segment add");

}

)

if(in_label str && in_instr_str) {
num = parse_args(1024,larg,in_instr_str);
iffnum >= 1} {
mir_req.mir_direction = MPLS _IN;
if((result = fill_instructions{&mir_reg larg,0,numjj >= 0} |
memcpy(&mir_req.mir label,&mil req.mil labelsizeot(struct
mpls_label));

mir_req.mir_index = mil_req.mil_label.mi_index;

result = ioctl(fd,SlOCSMPLSININSTR,&U‘Jir,,,:eq};
}
perror('In Instr");
} else |
fprintf(stderr,"In Instr: wrong number of parameters{%d)\n",numy
}
)

if(out_str && out_instr_str) {
num = parse_args(l024,1arg,out_instr_str} ;
if(num >=1) {
mir_req.mir_direction = MPLS OQUT;
if((result = fill_instructions(&mir_reg larg,,numj) >= 0y 4
memcpy(&mir_req.mir_label,&mol_req.mol_label sizeof{struct
mpls_label));
result = ioctl(fd,SIOCSMPLSOUTINSTR, &mir_rec);
}
perror("Out Instr");

} else {

fprintf(stderr,"Out Instr: wrong number of para.meters(%d)\n",nunt) :

i
j

if(out_str && tunnel_str) {
if(ifr.ifr_ifindex == (0} {
fprintf(stderr,”%s: no such interface\ n", tunnel _str);
}else {

memcpy(&ifr.ifr_data,&mol_req.mol_labcl,sizeof(struct mpls_label’;

/* BIND AND UNBIND OPERATIONS */

if(bind && !delete) {
result = ioctl(fd,SIOCMPLSTUNNELADDOU'T,&zifr) ;
perror("Bind Tunnel20ut add");

} else if(unbind && ladd) {
result = ioctl(fd,SIOCMPLSTUNNELDELOUT,&ifr) ;
perror("Bind Tunnel20ut del");

} else {
fprintf(stderr,”Bind Tunnel20ut: No modifer specified\n");

}

1
}

if(out_str && in_label_str) {
if(in_instr_str | | out_instr_str) |
| fprintf(stderr,"Bind In20ut: not at same time as In or Out Instryn™);
| else |
memcpy(&mx_req.mx_in,&mil_req.miE___‘labei,sizeoE(struct
mpls_label));
memcpy(&mx_req.mx_out,&mol__req.mol__labcl,sizcof(s;'truct

mpls_label));

if(bind && !delete) {
result = ioctl(fd, SIOCMPLSXCADD,&mx_req);
perror("Bind In20ut add");

} else if(unbind &é& ladd) {

T e e N ET CTEY TRATT SO DETD Lras 1501} -

perror("Bind In20ut del");
} else {
fprintf(stderr,"Bind In20ut: No modifer specified\n");
}
}
)

if(proto_str && in_label_str && !delete) {
mil_req.mil_proto = strtol(proto_str, NULL,0);
result = ioctl(fu, SIOCMPLSILMSETPROTO, &mil req;
perror("Set ILM Proto");

J

if(mtu_str && out_str && Idelete) |
mol_req.mol_mtu = strtol(mtu_str, NULL,U;,
result = ioctl{fd SIOCMPLSNHLFEDEL,&mol reg);
perror("Set NHLFE MTU");

J

return result;

}

* END OF THE PROGRAM */

CONFIGURING MPLS AND LABEL FORWARD INFORMATIONM
BASE IN THE LSRS AND LERS

INGRESS LER

IP: 172.16.10.16 (ATM)

mplsadm -L eth0:0
mplsadm -A -0 0 -0 push:gen:90:setzethO:ipv4:172.16.10.20
iptables -A OUTPUT -t mangle -d 172.16.10.25 - MPLS --set-key Ox00000004

mplsadm -A -I gen:115:0

IP: 172.16.10.18 (SILVER)

mplsadm -L eth0:0

mplsadm -A -0 0 -0 push:gen:30:set:eth0:ipv4:172.16.10.20

iptables -A OUTPUT -t mangle 4 172161025 - MPLS --set-key
0x00000002

mplsadm -A -1 gen:535:0

IP: 172.16.10.17 (BRONZE)

mplsadm -L eth(:0

mplsadm -A -O 0 -o push:gen:60:set:eth0:ipv4:172.16.10.20

iptables -A OUTPUT -t mangle -d 172.16.10.25 -] MPLS --set-key Ox00C000032
mplsadm -A -t cen:85:0

varmloadma] et

mplsadm -L ethl:1
mplsadm -L ppp0:2

mplisadm -L atm0:3

mplsadm -A -1 gen:30:1

mplsadm -A -0 0 -0 push:gen:35:set:eth(iipvd:172.16.10.23
iptables -A OUTPUT -t mangle -d 172.1 0.10.25 -
0x00000002

mplsadm -B -1 gen:30:1 -O 0x00000002

mplsadm -A -1 gen:60:1

mplsadm -A -O 0 -o push:gen:65:set:pppUiipv4:1 72.16.10.22
iptables -A OUTPUT -t mangle -d 172, 16.10.25 -
0x00000003

mplsadm -B -[gen:60:1 -O 0x00000003

mplsadm -A -i gen:50:0

mplsadm -A -O 0 -0 push:gen:55:setethlipv4:] T210.H0008
iptables -A OUTPUT -t mangle -d 172101048 -
0x00000004

mplsadm -B -I gen:50:0 -O 0x00000004

mplsadm -A -1 gen:80:2

mplsadm -A -O 0 -o push:gen:85:set:eth1:ipv4:172.16.10.17
iptables -A OUTPUT -t mangle -d 172.16.1C.17 -
0x00000005

mplsadm -B -T gen:80:2 -O 0x00000005

mplsadm -A -1 gen:90:1
mplsadm -A -O 0 -0 push:gen:95:set:atm0:ipv4: 192.168.54.535

MPLS

MPLS

MPLS

MPLS

--set-Key

--set-<ev

--sot-key

--set-key

iptables -A OUTPUT -t mangle -d 172.16.16.25] MPLS --set-kev
0x 00000006
mplsadm -B -1 gen:90:1 -O 0x000000006

mplsadm -A -T gen:110:3

mplsadm -A -O 0 -o push:gen:] 15:setethl:ipv4:172.16.10.16

iptables -A OUTPUT -t mangle -d 172.16.10.16 - MPLS --set-key
0x00000007

mplsadm -B -I ger:110:3 -O 0x00000007

LSR2

mplsadm -L eth0:0
mplsadm -[. ethl:1
mplsadm -L ppp0:2

mplsadm -L atm0:3

mplsadm -A -1 gen:35:0

mplsadm -A -O 0 -0 push:gen:40:setrethl dpv4:172.16.10.25

iptables -A OUTPUT -t mangle -d 172.16.10.25 - MPLS --set-kev
0x00000002

mplsadm -B -I gen:35:0 -O 0x00000002

mplsadm -A -1 gen:65:2

mplsadm -A -O 0 -0 push:gen:70:set:ethl1pv4:172.16.10.25

iptables -A OUTPUT .-t mangle -d 172.16.10.23 -3 MPLS --set-key
0x00000003

mplsadm -B -1 gen:65:2 -O 0x00000003

mplsadm -A -1 gen:45:1

mplsadm -A -0 0 -o push:gen:50:set:ethO:ipv4:172.10.10.19

iptables -A OUTPUT -t mangle -d 172161018 - MPLS --sot-kev
Ox00000004

mplsadm -B -I gen:45:1 -O 0x00000004

mplsadm -A -1 gen:75:1

mplsadm -A -O 0 -0 push:gen:80:set:ppp0:ipv4:172.16.10.2°

iptables -A OUTPUT -t mangle -d 172.16.10.17 - MPLS --sat-kev
0x00000005

mplsadm -B -1 gen:75:1 -O 0x00000005

mplsadm -A -1 gen:95:3

Lh

mplsadm -A -O 0 -0 push:gen:100:setzethLpvd:172.16.10.2
iptables -A QUTPUT -t mangle -d 172.16.10.25 5 MPLS --sot-key
0x00000006

mplsadm -B -1 gen:95:3 -O 0x000000006

mplsadm -A -1 gen:105:1

mplsadm -A -O 0 -0 push:gen:110:setatmOnpv4:192.168.34.34

iptables ~-A OUTPUT -t mangle -d 172.16.10.16 - MPLS -—set-Koy
0x00000007

mplsadm -B -I gen:105:1 -O 0x00000007

EGRESS LER

mplsadm -L eth0:0

mplsadm -A -I gen:40:0

mplsadm -A -O 0 -0 push:gen:43:set:ethO:ipv4:172.10.10.24

iptables -A OUTPUT -t mangle -d 172.16.10.18 -) MPLS --set-kev 0x000000C2
mplsadm -A -1 gen:70:0

mplsadm -A -0 0 -0 push:gen:75:set:ethQ:1pv4:172.16.10.24

iptables -A OUTPUT -t mangle -d 172.16.10.17 -] MPLS --set-key 0x00000003
mplsadm -A -1 gen:100:0

mplsadm -A -O 0 -o push:gen: 105:set:ethO:ipv4:172.16.10.24

iptables -A QUTPUT -t mangle -d 172.16.10,16 -j MPLS --set-key 0x00000004

GLOSSARY

ATM Asynchronous Transfer Mode

ARIS Aggregate Route-based IP Switching.

BGP Border Gateway protocol

CSR__ Cell Switching Router T
FEC Forward Equivalence class o
IETF Internet Engineering Task Forcc.

Ip Internet Protocol.

ISP Internet Service Provider |
EAN L.ocal Area Network
LDP Label Distribution Protocol.
LER Label Edge Router
ISP Label Switched Path
LSR Label Switching Router. |
LIFB Label information forwarding base

MPLS Maultiple Protocol Label Switching.

OSPF Open Shortest Path First.

PPP Point to point protocol

TOS Type of Service.

TCP | Transmission Control Protocol.

Unicast Equivalent to point-to-peint transmission. A
YoD Video on Demand E

