P- &3k

LOAD BALANCING IN DYNAMIC
MULTICAST NETWORKS

Thesis submitted in partial fulfillment of the requirements
for the award of the degree of

AND ENGINEERING
OF BHARATHIAR UNIVERSITY
By
Ms.LIYA JOHN (Reg.No.9927K0135)

Ms. MAHALAKSHMI .R (Reg.No.9927K0136)
Ms. NITHYA PRABHA .v (Reg.No.9927K0146)
Ms.THILLAIKARASI R (Reg.No.9927K0169)

Under the guidance of

Mrs.J.CYN THIA,M.E.Senior Lecturer,
Department of Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University)
COIMBATORE-641 006
2002-2003

CERTIFICATE

KUMARAGURU COLLEGE OF TECHN OLOGY
COIMBATORE, TAMILNADU-641 006

Department Of Computer Science and Engineering

Certified that this is a bonafide report of thesis work done by

Ms.LIYA JOHN (Reg.N0.9927K0135)
Ms. MAHALAKSHMI .R (Reg.No.9927K0136)
Ms. NITHYA PRABHA .V (Reg.N0.9927K0146)
Ms. THILLAIKARASI .R (Reg.N0.9927K0169)

During the Year 2002-2003

/ (Guid{? (Head of the department)
]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHN OLOGY
COIMBATORE-641 006

Place: Coimbatore
Date: |5.c5-c3

Submitted for viva-voce €xamination held at e
Kumaraguru College of Technology on Pg-

.............................

(Intevnal Examiner) (External Examiner)

P

IS0 9001:2000

ﬁc’inOWIédgement

ACKN OWLEDGEMENT:

appreciation to all of them.

We would like to €Xpress our profound fespect to our beloved Principal
Dr.K.K.Padmanabhan, B.Sc(Engg), M.Tech., Ph.D., for having provided the necessary

facilities to complete this project.

We are greatly indebted to our beloved Head of the Department,

Dr.S.Thangasamy, B.E(Hons), Ph.D., Computer Science and Engineering, Kumaragury

We are gratefu] to express our gratitude and sincere thanks to our guide
Mrs.J.Cynthia M.E and our class advisor Mr.M.N.Gupta, B.E , Department of
Computer Science and Engineering, Wwho has been g constant source of encouragement

for our project.

Synopsis

network, the excess traffic received, traffic concentration and optimality of the

forwarding Our aim is to provide scalable, reliabje multicast routing on an

The project deals with two main problems of multicast routing

Contents

CONTENTS:
l.INTRODUCTION
1.1 CURRENT STATUS OF THE PROBLEM
1.1.1 PROBLEM DEFINITION
1.2 RELEVANCE AND IMPORTANCE

2.LITERATURE SURVEY

3.SOFTWARE REQUIREMEN TS
3.1 PROGRAMMING ENVIRONMENT
3.1.1 LINUX
3.1.2 ABouUT C
32 MODULE-|
32.1F UNCTIONAL REQUIREMENTS
3.2.1.1 PHASE-]
3.2.1.2 PHASE-
33 MODULE.j1
34 EXCEPTION HANDLING

4.1 MODULE.]

4.2 MODULE-j1
4.2.1 SENDER
422 RECEIVER
4.2.3ROUTER

L

14
14

16

17
18

19
20
21

S.DESIGN DETAILS 22

5.IMULTICAST PACKING

5.1.1 PHASE-| 23
5.1.2 ALGORITHMS USED
5.1.2.1 DIJKSTRA’S ALGORITHM 25
5.1.2.2 BRANCH AND BOUND ALGORITHM 26
5.1.2.3 CUTTING PLANE ALGORITHM 28
5.1.3 PHASE-I] 28
5.2 MODULE-J1 29
5.2.1ALGORITHM’S USED 30

(98]
—

5.3 DATA STRUCTURES USED
5.4 TOPOLOGY OF THE NETWORK

78]
b

6.IMPLEMEN TATION DETAILS 33
6.IMODULE-]

6.1.1 PLATFORM’s USED 34

6.1.2 IMPLEMENTATION DETAILS 34
6.2MODULE-1

6.2.1 PLATFORM’S USED 25

6.2.2 IMPLEMENTATION DETAILS 35

7.TESTING 38

7.1 UNIT TESTING 36

7.2 INTEGRATION TESTING 40

8.CONCLUSION AND FUTURE OUTLOOK

9.REFERENCES

10.APPENDIX
10.1 MODULE-]

10.1.1 SAMPLE SOURCE CODE

10.1.2 SAMPLE OUTPUT
10.2 MODULE-1

10.2.1 SAMPLE SOURCE CODE
10.2.2 SAMPLE OUTPUT

41

43

45

46
52

54
69

Introduction

1. INTRODUCTION :

network, Jow end-to-end delays, reliable ang bulk data transport js of great

consideration to increase the utility of the network resources.

traffic equally among network nodes, As such, flow control can redyce message
delays and prevent one part of the network from becoming overloaded by another

part of the network

1.1 CURRENT STATUS OF THE PROBLEM:

1.1.1 PROBLEM DEFINITION:

COmmunication. Thege tasks mainly include connection Management, error

degrade heavily, if there isa crying baby —3 receiver that loses packets frequently.
Performance degrades because the repair Tequests are multicast to the group and

many members may retransmit the repair to the entijre group.

L2 RELEVANCE AND IMPORTANCE:

packets.

3.RECEIVER BASED APPROACH:

The receiver is necessary for identifying the error ip the packet

packets in the right order can retransmit them. This approach hence avoids the
overheads that are involved with the centra] source. This approach also ayojds the
bottleneck, that occurs only the sender transmits, detects €rrors and alsg performs

retransmissijon.

Literature Survey

2. LITERATURE SURVEY:;

which designated receivers at g certain Jeve] supply repairs to lower-leve]
designated receivers or loggers. The problem of placing thege designated
receivers and determining their processing and Storage requirements g still being
Studied.

“repair service “remain open questions. Here the focus is made on error recovery

only form the sender.

(FEC). This is because FEC techniques allow recovery of multiple |ost packets
with the help of single FEC packet. FEC based loss recovery; using end-to-end
means only, will not perform well in the presence of heterogeneous Joss. Even if

only a few receivers experience very high loss, large number of FEC packet will

support for implementing multiple channels to enhance our work.

In an approach based on IP time-to-live (TTL) has been proposed for
scoping retransmissions, There are two problems with TTL-based scoping. First,
TTL based scoping limits the packets within a radiys and is not suitable for tree

structure as in the case of multicast. Second, it is hard to approximate a good TTL

It is proposed to use multiple multicast groups for flow and congestion
control, but not for error recovery. The possibility of using separate multicast
groups for defining “local groups™ for local recovery has been suggested.
Holbrook proposes the use of SCparate retransmissjon channel, for recovery as

future work.,

specific positive acknowledgment—based point-to-multipoint protocols is also
proposed. They Suggested that the receivers could be divided into groups based on
their capabilities and that the sender would carry oyt as many simultaneous
independent conversations as the number of groups. The two proposed system
mentioned above differ in three significant ways. First we do not group the

receivers based on there capabilities. Rather we group packet such that

our analyses,

ZET
/(x:/ T N+

| & zpagy

Bor~— v
‘\\‘\@/f?rn T

10

Software Requirements

11

12

FEATURES OF LIN UX:
Here are some reasons why LINUX could be the best Operating system.

A Linux distribution has thousands of dollars worth of software for no

cost. Linux is a complete operating system that is

2) RELIABLE-Linux Servers are offered to run up for hundreds of day
compared with the regular reboots required with a windows system.

3) Extremely powerfy].

2.1.2 ABOUT C:
The language selected for this project is «“C» efficient for network-oriented

project. This language is efficient, powerfy] and compact,

which can be yseq for developing programs.

13

3.2 MODULE-I:
In module-I the project actually deals with the establishment of the

routing graph with minimized congestion.

3.2.1) FUNCTIONAL REQUIREMENTS:
3.2.1.2) PHASE-I:
INPUT:
The set of nodes and the links connecting them on the network
under consideration.
OUTPUT:
Multicast routing graph for each of the groups [each group for a
different application and each identified by a common multicast
Address.
FUNCTIONS PERFORMED:
Solve for the optimization problem, which results in a solution that
connects all the multicast nodes, Each routing graph connects the source
node or the sender with all receivers, based on the weight of the Jink. The

solution assures that it connects the nodes with the minimum load,

3.2.1.2) PHASE-II:

INPUT:
Set of multicast trees each for a group.

OUTPUT:
Refined multicast tree.

FUNCTIONS PERFORMED:
Each tree constructed is embedded on the physical network. The
links that are common to two or more links are the ones with the
greater risk of congestion. The link with the maximum congestion
is identified. The congestion value is checked if it is well below the

allowable load on the link, the path is left unaltered. Else the

14

Here we implement ap approach that ajjows one to overcome this

retransmission-scopmg problem in a multicast Scenario. The approach consists of

3.4 EXCEPTION HANDLING

Exception handling, including the actions the actions to be taken and the

messages to be displayed in response to undesired situations or events is briefly

outline here,

1.

The user interface is wel] defined. Validation of the user input is
performed and corresponding message specifying the corrective
actions to be taken are displayed on the screen.

For e.g.: the user’s input regarding the node number s verified to
check, if it specifies the number indicates the node under test, else an
error message is displayed on the screen and the user is directed to

give a valid input.

message

16

Froposed Approack; 7. The
Problem

4 PROPOSED APPROACH TO THE PROBLEM:

4.1 MODULE-T:

network. The load of the edge is the total traffic demand Summed over the

multicast 8roups using that edge.

18

PROBLEM FORMULATION:

In the formulation we define the traffic load for a multicast group k is t*
The objective function is
Minimize A
Where A=max. {Ze}
Ze=Yyex t*
A > Denotes the maximum congestion on the link e
Ze-> denotes the total traffic demand summed on the link e due to
the multicast group k.
The objective function takes the congestion on the link as the main
parameter and this objective is under the major consideration to remove
congestion on the links.
Subject to the constraints
x*eST* for all keK
ST* ={ x* e {0,1 WF: x¥ induces a Steiner tree spanning M}
We use integer-programming formulations, which uses Steiner-cut
inequalities to construct such trees. Given the optimum multicast tree for each
step the preprocessing step computes the congestion value on each link. Starting
from the most congested link and the tree that uses this link is identified .the
approach searches for an alternate path if this link is disconnected temporarily. If

one is found it updates the new routing path as per the new one.

4.2 MODULE-II:

The project aims to implement the concept of Scalable reliable multicast

using multiple multicast channels by the following ways.

4.2.1 SENDER:
The sender is responsible for sending data from a specific file by framing

it into packets. The sender is identified by the IP address and uses a specific port

19

for the transmission of data. All the receivers and routers have information about

the sender in a header file, which has defined in it the IP address of the sender

Sender keeps track of the number of packets sent and displays the
sequence number of packets after sending each packet. Sender is also responsible
for the retransmission of data packet incase of the receiver not receiving packets
due to loss or timeout. Sender consists of two processes, which control
transmission and retransmission of packets through a designated channel.

The sender may refuse to transmit data packets incase the socket creation
is out of bound. Usually port numbers are 16-bit unsigned binary numbers, each
one in the range | to 65535(0 is reserved). Certain applications have default port
numbers assigned to them. For example port number 24 has been assigned to the
File Transfer Protocol .we have used port numbers above 1024 for transmission
and retransmission of data packets.

The retransmission process listens to the default port number for requests
from the receiver reporting data loss and requesting retransmits. The sender

usually initiates the transaction by sending the data packets to the router.

4.2.2 RECEIVERS:

The receivers are usually connected to g router, which forwards the packet
to them. Receivers usually timeout after a few seconds and then request sender for
a retransmit of the particular data packet through a separate channel which is
designated by a different port number.

The receiver usually performs the following:

1) It sends a NACK to the sender on receiving a packet, which is not in

sequence.

2) It sends a NACK to the sender requesting retransmission of data

packet in case of a time out.

20

The receiver usually sends the NACK and waits for a while and after
timeout sends a NACK. This process is usually tried certain number of times. The
receiver is usually bound to a port number so that it can receive packets

from the router.

4.2.3 ROUTERS:

A computer network usually consists of machines interconnected by
communication channels. We call these machines hosts and routers. Hosts are
computers that run applications such as web browsers; the application programs
that are running in hosts are the users of the network. Routers are machines whose
job is to relay or forward information from one communication channel to
another.

Routers are important simply because it is not practical to connect every
host directly to every other host. Instead, a few hosts connect to a router, which
connects to other routers and so on to form the network. This arrangement lets
each machine get by with a relatively small number of communication channels;
Programs that exchange information over the network, however do rot interact
directly with routers and are generally unaware of their existence.

Three routers are used for the implementation. These include a source
router and two routers connected to this source router. The sender is connected to
the source router. The receivers are connected to the routers. The router usually
operates by reading a file to obtain the IP address of the receivers to which it must

forward the packets.

The routers are also responsible for forwarding the NACK from the

receivers to the sender if such a situation arises due to packet loss or timeout.

21

22

Design Detaifs

5. DESIGN DETAILS:

According to Webster the process of the design involves “conceiving and
planning out in the mind” & “making a drawing, pattern or sketch of “ and here is
a brief sketch of our solution to the problem we have discussed.

As briefed out so far, the project has two major modules

1.Multicast Packing

2.Multicast Retransmission Scoping

Modular system that we intend to develop has well defined, manageable
units with well-defined interfaces among the units. The functions that are used in

the subsystem have 3 single and a well-defined purpose.

5.1 MULTICAST PACKIN G:
In module-1 our goal is to find an efficient, less congested routing graph.

The module is further subdivided into two phases.

3.1.1 PHASE-1:
Here the input to the processing is the set V which is of all nodes
of the network and set of edges E that connects two nodes of V.The input also

gives a list of set of multicast nodes M for each network.

The following are the Steps involved in processing

1.Construct a complete graph (M, E') such that E={i, j: i! 5 and i,
J €M} and w, e E' = d; (Distance between I, j computed using
dijkstra’s algorithm)

2.Find the minimum Spanning tree of (M, E’) using branch and
bound algorithm,

3.For every pair of nodes in the Spanning tree, identify a path on
the actual network.

4.If that node is not present in final group of multicast nodes add

on to the final vertex ljst Vmand update edge list.

23

SET REPRESEN TATION:
V- SETOF VERTICES = M1, M2, M3, ...

Where each M is the set of vertic
E 9 SET OF EDGES ={El, E2, E3, ..

}

Fig (i)

For each (Mi, Ei) draw 5 Complete graph

For e.g. for M1 ={1,2,3, 4,5}, the Complete graph

Fig (iii)

24

5.1.2. ALGORITHM’S USED:

5.1.2.1. DIJKSTRA’S ALGORITHM:

This algorithm is used to estimate the weight of the link connecting
two nodes. This mainly takes into account the number of hopes required to reach
the destination and also the initial weight that is assigned to each link can take
into care the link capacity between the two nodes. The algorithm can be basically
explained as follows.

We define two sets of nodes P and T (P stands for
permanent and T stands for temporary). Set P is the set of nodes to which the
shortest has been found and set T is the set of nodes to which we are considering
shortest paths. We start by initializing P to the current node, and T to null. The
algorithm repeats the following steps.

1.For the node P just added to P, add each of its neighbors n to T such
that

a)Ifnisnotin T, add annotating it with the cost to each it

through P and P',

b) If n is already in T and the path to n through P has a lower cost,

then remove the earlier instance of n and add the new instance

annotated with the cost to reach jt through P and P’

2.pick the node n that has the smallest cost in T and if not already in P add

it to P use it annotation to determine the router P to use to reach n. If T is empty

we are done.

25

5.1.1.2) BRANCH AND BOUND ALGORITHM:

Relax Integrality
Generate Initial
sub problem

Choose a
sub problem

Solve IP

Generate Cuts

Integral?

Branch (Refine
Division)

Update Upper
bound

Fig (iv)

26

BRANCH AND BOUND ALGORITHM:

In practice, using a technique of branch and bound solves most integer

programming problems. Branch and bound methods find the optimal solutions to

an IP by efficiently enumerating the points in a sub problems feasible region and

the fig(iv) describes an outline of the algorithm.

The procedure starts by solving the LP relaxation of the IP. Our next step

is to partition the feasible region for the LP relaxation in an attempt to find out

more about the location of the IP’s optimal solutions. We create sub problems by

branching on the variables. A tree like structured as shown in fig(v) is created.

X1=1

SUB PROBLEM-]

SUB
PROBLEM-II
Xz =1

INTIAL
SOLUTION
SUB PROBLEM-]
Xl =
SUB SUB . SUB
PROBLEM-I] PROBLEM.-I] . PROBLEM-I]
X2= 0 X3 =1 f X3 =0
Fig (v)

The constraints associated with any node of the tree are the constraints for

the LP relaxation on plus the constraints associated with the arcs leading from the

sub problem 1 to the node. When further branching on a sub problem does not

yield any useful information, we say that sub problem is fathomed.

27

5.1.1.3 CUTTING PLANE ALGORITHM:

To apply cutting plane algorithm, we begin by choosing
any constraint in the LP relaxation’s optimal solution in which a basic variable is
functional. We can choose any constraint arbitrarily. The cutting plane algorithm
then proceeds by adding the new constraint to already existing formulation. The
newly generated constraint s called a cut. The cut will satisfy any feasible point
for the IP and the current optimal solution to the LP relaxation will not satisfy the

cut and proceed until we get an optimal solution.

5.1.3. PHASE-II:

Here our input is set of individual multicast trees Troo . T, for
cach of the nodes and a bound on the tree is OPT * where o can be any
arbitrarily value depending upon the application. In this we obtain revised
multicast trees T,

The processing steps can be outlined as follows
1.Sort all edges of a tree by the value of congestion.
2.Choose an edge ¢ with maximum congestion.
3.Locate the trees with the edge e
4.Update the tree by avoiding the link ¢’ by calling the procedure
rebuild.

5.Update the new Z.values.

28

5.1.3.1. PROCEDURE REBUILD:

the node and two situations as below may result.
()Congestion of the link is less than MAXCONGESTION, the link
has got no congestion and the link jg efficiently used. The procedures
rebuild returns control with the message “efficient routing graph”.
(ii)Congestion of the link is above MAXCONGESTION. In such a

is checked for the size it is less than o OPT X s updated else it cannot be

updated. The user s informed about the congested link and he s to take

the alternative steps.

5.2 MODULE-IT:

29

5.2.1 ALGORITHMS USED:
The sender, router and the receivers work as per the respective algorithms.
Retransmission requests usually arise whenever the receiver timeout or receives a

packet which is not in sequence.

5.2.1.1. SENDER ALGORITHM:
It consists of two processes these include the transmission process and the
retransmission process
The flow of the algorithm for the transmission process is as follows:
1) Data is read from the file and framed into packets.
2) Packets are sent to the source router using a sendto() call.
The Retransmission process does the following:
1) Listens to NACK in the retransmission channel.

2) Retransmits packets from an array based on the NACK.

5.2.1.2. RECEIVER ALGORITHM:

The receivers are usually connected to any 1 of the routers. The flow of
the algorithm for the receiver is as follows:

1) The receiver usually binds to a particular port using the bind () call.

2) It listens to the port for any incoming packet using a recvfrom () call.

3) If there are no incoming packets then a NACK is sent to the sender

after a timeout.

4) Step 3 is usually tried out for a certain number of times after which it is

given up.

30

5.2.1.3. ROUTER ALGORITHM:

The routers €xecute a socket program that which receives a data packet
and forwards it on its entire outgoing links.

The flow of the router algorithm is as follows:

1) Get the IP address of all jts nodes,

with value of the array [i, jl=1,if the link exists else array [i, j] =0,if no link exists.

The other basijc structure in use js the arrays

31

5.4 TOPOLOGY OF THE NETWORK:

Ro1l

Ro2 Ro3

S > Sender
R > Receiver
Ro > Router

The topology used for testing included a source and another
system. The multicast tree is formed by the inter connection of three routers

Rol, Ro2, Ro3 and the designated receivers are R1, R2, R3, R4.

32

Implementation Details

33

6. IMPLEMENTATION DETAILS:

This part of the project is concerned with the translation of the design

specifications into source code.

6.1 MODULE-I:
In module-1, we have developed the simulator to test the efficiency of
the approach specified. The simulator was designed to test all aspects of the

approach specified.

6.1.1 PLATFORMS USED:
Operating system: Windows

Programming language: C

6.1.2 IMPLEMENTATION DETAILS:

6.1.2.1 PHASE-I:
In PHASE-I, dijkstra’s algorithm is implemented using a link list
and iterative procedures are used to perform the operations until the weight is

calculated for each of the edges.

6.1.2.2 PHASE-II:
Initially we define the Steiner part ion P= { S§;S, ... Sn}
where each S; is a singleton set containing a single node starting with this we
generate the multicasts and proceed by branching on the solution using integrity

constraintsl > X, >(

34

6.2 MODULE-II:

6.2.1 PLATFORMS USED:
Operating system: LINUX

Programming language: C

6.2.2 IMPLEMENTATION DETAILS:

6.2.2.1 SENDER:
The sender performs the following functions:

D Opening a socket:

port number in the loca] socket field of the created socket

from the operating system, the sender issues the send to calls to

send the packets to the router.

* Receiving: The sender issues the Recvfrom to receive NACK from

the receivers.

35

6.2.2.2 ROUTER:
The router performs the following functions:
1) Reading IP address from the file:
The rbuter opens a file, which contains the IP address of its node
and reads the IP address to which it must forward the packets.
2) Opening the sockets:
The router issues the socket call to ask the operating system to

Create a socket for the normal transmission of the packet .The operating

channel.
3) Bind the socket:

The router issues the bind call to prevent other programs entering
in the same port.
4) Receiving packets:

The router issues a Recvfrom to recejve packets from the sender
5) Send packets to nodes:

The router issye a send to () call to forward the packets to al] it’s
associated nodes and to the other two routers incase it is the source router.
6) Send NACK to the receiver:

The sender issues g recvfrom call to listen to the retransmission
channel for NACK to be forwarded to the sender and also for packets,

which need to be retransmitted to the receiver.

36

6.2.2.3, RECEIVER:
1) Opening a socket:

Port number in the Jocg) socket field of the cre

ated socket.
2) Bind the socket;

entering in the same port.

3) Recvfrom 0:

37

38

Testz'ng

7. TESTING:

Verification is performed at each of the phases to ensure that only the
error free products are passed on to subsequent products. Validation is performed
at the end to check if the product conforms to the user requirements or not. The

following are the testing performed in the project.

7.1UNIT TESTING:
Unit testing comprises the set of tests performed by an individual
programmer prior to integration of the unit into a larger system.
Each of the algorithms described so for are considered as single program
unit. Functions are implemented to perform the operations of the algorithm.
Functional tests are conducted to check for the reliability, correctness of
the code and data input to the function are verified and the transactions are also

validated.

reliable and they are also found to be more efficient.

Debugging the execution path for a wide range of the input value performs

structure tests

39

7.2 INTEGRATION TESTING:

by the sub System testing, followed by the testing of the entire System. The fig (vi)

gives an overview of the testing involved in module-]|

40

Conclusion And Future
Outlook

41

8. CONCLUSIONS AND FUTURE OUTLOOK:

Our proposed approach will result in an efficient and a
congestion-less network.

The future scope of the project is to implement the concepts so far
discussed on a multicast networks on the Internet backbone. The approach takes
into care the congestion and also the maximum group size. It is expected to more
efficient and has got a good performance due to the use of branch and bound
algorithm. The algorithm rebuilds works only incrementally and not
monolithically and hence other parts of the network are not affected.

SRM is a framework for reliable multicast that is still in progress, with
areas such as local recovery, congestion control, and ADU naming still under
investigation. This project has mainly explained the working of SRM in the
application layer. Further studies on how to implement SRM in the network layer
by configuring IP address and configuring each LINUX box as a m-router might
be undertaken. Reliable multicast schemes often cannot scale to large receiver sets
due to the problems of state explosion and message implosion.

Current work in SRM includes the Erasure Correcting Scalable Reljable
Multicast, ECSRM. ECSRM is based on the SRM framework proposed by Floyd
et. al., which utilizes NACK suppression to reduce message implosion. ECSRM
makes a number of modifications to SRM to addressed enhanced scalability and
rate control. Most notably, instead of re-sending lost packets, erasure-correcting

encoded packets are sent in response to NACK messages.

42

43

References

REFERENCES:

1.M.Grotche] A. Martin and R.Weismante]

Mathematicaj Programming
2.Andrew S.Tanenbaum

“Computer Networks”

Prentice —Hajj of India Private Limited, 2001

3.Ralph Witt man and Martina Zitterbart

“ Multicast Communication.- Protocols and Applications”

Morgan Kaufman Publishers, 2001
4.Vijay Ahuja

“Design and analysis of computer communication networks”
McGraw-Hjj Internationa| editions.

5. www.aciri.org/ﬂoyd/srm.html

6. research.microsoft.com/barc/mbo

ne/ecsrm.htm
7. Www.ieee.org

44

45

Appendix

10.APPENDIX:
10.1 MODULE-|:
10.1.1 SAMPLE SOURCE CODE:

10.1.1.1 Code for dijkstra’s algorithm

whi le(src<=no_of_nodes+ 1)

{ |
for(i=

{

O;i<no_of_nodes;i++)

dist[i]=a[src- H[i];
}
for(i

{

=0;i<no_of_nodes;i++)

if(dist[i])
{

dir~edge[src- H[i]=1;
dir_weight[src- H[il]=1;
path[src-1 Iil=sre-1;

else
if((src-1 ==i)
{

dir_edge[src-l][i]=0;

46

dir_weight[src-1][i]=0;
path[src-1][i]=-1;

b
}
3
for(i=0;i<no_of_n0des;i++)
{
if(dist[i])
{
for(j=0; J<no_of_nodes;j++)
{
if(afi][j])
{
if(dir_edge[src-1 11==0)
{
dir_edge[src-1][j]=1;
dir_weight[src-1 Ij1=dir_weight[src-1 Ji]+1;
dist[j]=1;
if(dir_edge[src-1 1]1'=0)
path[src-1][j]=i;
}
}
b
b
¥
Srct++;

10.1.1.2 Code for spanning tree generation:

first=(node *)malloc(sizeof(node));

47

data=1];
create(first);

noVertex=no_of~multi_nodes;
span_vertex[0]=multicast_member[O];

noEdges=ed ge_count(edge);

noSEd ges=edge_count(span_tree);
While((noEdges!=O)&&(nOSEdges!=(no_0f_multi_nodes- 1))
{

for(n=0;n<=k;n++)

{
I=span_vertex [n];
tnode=first;
do
{
m=tnode->data;
if(edge[l][m])
{
if{weight[]] [m]<less weij ght)
{
less_weight=wej ght[1][m];
less I=;
less_m=m;
b
J
tnode=tnode->next;
}while(tnode!=NULL);
J
k+-+;

span_vertex[k]=less_m;
first=] ink_del(ﬁrst,less_m);

edge[less_l] [less_m]=0;

48

span_tree[less_[][less_m]=1;
less_weight=335;
noEdges=edge _count(ed ge);
noSEd ges=edge_count(span_tree);
}
noSEdges=ed ge_count(span_tree);
cleardevice();
if(noSEdges==(noVertex-1)
sprintf(output,"Correct Spanning\n\t\tTree");
else

sprintf(output,"No Spanning Tree Can Be found");

10.1.1.3 Code for congestion computation and checking link removal:

for(i=0;i<no_of_nodes;i++)

{
for(i=0;j<no_of_nodes; J++)
{
if(span_tree[i] =D
{
final_edge[i][j]=1:
ﬁnal*weight[i][j]+=1 ;
temp I=weight[i][j] *traffic[mn];
congestion[mn] [i][j]+=temp]1;
}
j
}
fflush(stdin);
}
If{max_val==0)
{

sprintf(final_str,"There s no Alternate Path.The Multicast Path is");

49

else
{
if(max_val<MAXCONGESTION)
{
sprintf(final_str,"There s No Congestion In The Network");
)
else
{
sprintf(final_str,"The Updated Final Multicast Path Is");
decision=1;
}
}
if(decision== 1)
{
ﬁnal_edge[maxx][maxy]=0;
for(i=0;i<count;i++)
ﬁnal_edge[i][i+l]=l;
}

10.1.1.4 Code for identifying maximum congestion:
int max()
{
int Lj,k,temp;
Static int maximum=0;
for(i=0;i<no_of_groups;i++)
{
for(j=0; j<no_of~nodes; j++)
{

for(k=0;k<no_of_nodes;k++)

50

if(final_edge[j][k]==1)

{
{

}
test_edge[maxx][maxy]=0;
temp=maxx;

path[0]=temp;

count=0;
for(j=0;j<no_of_nodes;j++)

{

if(maximum<congesti0n[i][j][k])
maximum=congestion[i][j][k];
maxgroup=i;

maxx=j;

maxy=k;}

k=j;
while(test_ed ge[temp][k]==1)
{
++count;
path[count]=k;
temp=Kk;
k++;
3
if(tk==maxy)
return maximum;
}
maximum=0;

return maximum;

51

10.1.2 SAMPLE OUTPUT:

SNG

®

®
®

Input Nodes Space To Continue. .. Esc To Abort

=

Press any key To Continue. . .

52

Multicast Group-I:

Tree with the given edges and vertices:

Multicast Tree:

53

The spanning tree is generated for each of the groups and finally embedded into
the network. The final network may look like

Final Network With Embedded Multicast Tree:

(-
()

54

10.2 MODULE-II:
10.2.1 SAMPLE SOURCE CODE

HEADER FILE FOR RECEIVER
#ifndef REC H

#define_REC_H
#define TIMEOUT _SECS 5 /* seconds between retransmits */
#define MAXTRIES 10
void myHandler(int i gnored);
void prepareNACK(PACKET *, int);
#endif

HEADER FILE FOR SENDER
#ifndef SENDER_H

#define_ SENDER _H

#define PACKMAX 1030 /* The maximum size of the packet to be sent */
#define NORMAL 0

#define MAX_PACKETS 20

#include "common.h"

#endif

HEADER FILE FOR ROUTER
#ifndef _ROUTER H

#define _ROUTER H

#define MAX_NEIGHBOURS 10
#define MAX_LEN 20

#define NUM_SOCKETS 2
#define NUM_PORTS 2

55

#include "common.h"
int isNack(char *, char ** int);

#endif

COMMON.H FOR THE SENDER:
#ifndef _COMMON H
#define _COMMON H
#define TX_PORT 2000 /* The normal transmission channel */
#define RX_PORT 3000 /* The retransmission channel */
#define PACKSIZE 1008
#define SOURCE_ROUTER "90.0.0.94" /*The IP address of the source

router */
#define ROUTER_ONE "90.0.0.96" /* The IP address of the other two routers */
#define ROUTER_TWO "90.0.0.97"
#define MY _|p "90.0.0.82" /* The [P address of this machine */
#define NACK 0
#define DATA |
typedef struct packet
{

int seqno; /* Sequence number */

int type; /* Packet type */

char data[PACKSIZE]; /* The actual data payload */
} PACKET;
#endif

CODE FOR SENDER PROGRAM:;

#include<stdio.h>
#include<sys/socket.h>
#include<arpa/inet.h>

#include<stdlib.h>

56

#include<string.h>
#include<unistd.h>

#include "sender.h" /* Constants for the sender */

main()

{

int sock;

char packbuffer[PACKMAX];

char packetArray[MAXﬁPACKETS][PACKMAX];
PACKET pkt;

struct sockaddr_in destaddr;

struct sockaddr_in fromaddr;

FILE *fp;

int i;

int notover;

int numPackets;

printf("******************************\n");

printf("PROGRAM FOR THE SENDER \n");
printf("******************************\n");
/* Read from file and put into data array */

fp = fopen("input", "r'");

i=0;

notover=1;
while (notover == 1)

{

if (fread(packetArray[i], 1,DATASIZE, fp) < DATASIZE)

{
printf("End of file reached\n");

notover = 0;

}

else

57

++i;

E

}

numPackets = i;

/* creation */
if((sock=socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP))<O)
printf("socket() failed ");

/* server address structure */
memset(&destaddr,O,sizeof(destaddr));

destaddr.sin_family = AF_INET;

destaddr.sin_addr.s_addr = inet_addr(SOURCE_ROUTER);
destaddr.sin_port = htons(TX_PORT);

/* send packet */
/* TBD: while not end of data */
/* Keep reading from array and sending it to the socket after some delay */
for(i=0; i < numPackets; ++i)
{
pkt.type = DATA;
pkt.seqno = i;
memcpy(pkt.data,packetArray[i],DATASIZE);
if(sendto(sock, (char *) &pkt,PACKSIZE,0,(struct sockaddr *)
&destaddr,sizeof(destaddr)) = PACKSIZE)
printf("Error: In sending data\n");
printf("Sent one packet\n");
sleep(10);
}

close(sock);

}

58

CODE FOR ROUTER PROGRAM:
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/* Includes for select call */
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#include "router.h"

/* Check if the IP address should be given the retransmission */
int isNACK(char * ipAddress, char ** nackArray, int max)
{
int i;
int retval=0;
for(i=0; i < max && retval==0; ++i)
if (strcmp(ipAddress,nackArray[i]) == 0)
retval=1;
return retval;
3
main()

{
FILE * fp;

59

fd_set sockSet;

char ipAddress[MAX _NEIGHBOURS][MAX _LENJ;
char buffer[PACKSIZE]

PACKET * pptr;

int neighbours;

int i=0;

int tx,rx;

struct sockaddr_in myAddress,rAddress;

int rLen,recvLength;

int maxDescriptor;

char nackArray[MAX NEIGHBOURS][MAX _LENJ;
int numNacks;

char * ip_address;

fp= fopen("ipaddress" "r'");

while (fscanf(fp, "%s", ipAddress[i]) = EOF) ++i;
neighbours = j;

prmtf("******************************\n");

printf("PROGRAM FOR THE ROUTER \n");

printf(”******************************\nn);

/*Testing if the reading is correct */
for(i=0; i < neighbours; ++i)
printf("The IP Address of node is %s \n", ipAddress][i]);
numNacks = (;
if ((tx= socket(PF_INET, SOCK _DGRAM,IPPROTO _UDP)) < 0)
printf("Error: Unable to Create socket for normal channel\n");
if((rx= socket(PF_INET, SOCK _DGRAM,IPPROTO _UDP)) < 0)

printf("Error: Unable to create socket for normal channel\n");

/* Bind to port TX_PORT on socket tx */
memset(&myAddress,O,Sizeof(myAddress));

60

myAddress.sin_family = AF_INET;
myAddress.sin_addr.s_addr = htonl(INADDR_ANY);
myAddress.sin_port = htons(TX_PORT);

if (bind(tx, (struct sockaddr *) & myAddress, sizeof(myAddress)) < 0)
printf("Error: Unable to bind to port %d\n", TX_PORT);

/* Bind to port RX_PORT on socket rx */
memset(&myAddress,O,sizeof(myAddress));
myAddress.sin_family = AF _INET;
myAddress.sin_addr.s_addr = htonl(INADDR_ANY);
myAddress.sin_port = htons(RX_PORT);
if (bind(rx, (struct sockaddr *) & myAddress, sizeof(myAddress)) < 0)
printf("Error: Unable to bind to port %d\n", TX_PORT);
if (tx > rx)
maxDescriptor = tx;
else
maxDescriptor = rx;
while (1)
{
FD_ZERO(&sockSet);
FD_SET(tx, &sockSet);
FD_SET(rx, &sockSet);
if (select(maxDescriptor+], &sockSet, NULL, NULL,0) == 0)
printf("Message:No activity on either ports\n");

else
{
if (FD_ISSET(tx, &sockSet))

{
/* TBD: Do something */;

rLen = sizeof(rAddress);

61

if ((recvLength = recvfrom(tx,buffer,PACKSIZE,0,(struct sockaddr *) &
rAddress, &rLen)) < 0)

printf("Error: In receiving data \n");

/* Send data to all normal nodes associated with this router */
for(i=0; i < neighbours; ++i)
{
memset(&rAddress,0,sizeof(rAddress));
rAddress.sin_family = AF_INET;
rAddress.sin_addr.s_addr = inet_addr(ipAddress[i]);
rAddress.sin_port = htons(TX_PORT);
if (sendto(tx,buffer,recvLength,0,(struct sockaddr *) &rAddress, rLen) !=
recvLength)
printf("Error: In sending data to address %s\n", ipAddress[i]);

}

if (stremp(MY_IP, SOURCE_ROUTER) == 0)

{

memset(&rAddress,0,sizeof(rAddress));
rAddress.sin_family = AF_INET;
rAddress.sin_addr.s_addr = inet_addr(ROUTER_ONE);
rAddress.sin_port = htons(TX_PORT);
if (sendto(tx,buffer,recvLength,0,(struct sockaddr *) &rAddress, rLen) !=
recvLength)
printf("Error: In sending data to address %s\n", ROUTER_ONE);
memset(&rAddress,0,sizeof(rAddress));
rAddress.sin_family = AF_INET;
rAddress.sin_addr.s_addr = inet_addr(ROUTER_TWO);
rAddress.sin_port = htons(TX_PORT);
if (sendto(tx,buffer,recvLength,0,(struct sockaddr *) &rAddress, rLen) =
recvLength)

62

printf("Error: In sending data to address %s\n", ROUTER_TWO);
}

if (FD_ISSET(rx, &sockSet))

/* TBD: Do something */

{
rLen = sizeof(rAddress);
if ((recvLength = recvfrom(rx,buffer, PACKSIZE,0,(struct sockaddr *) &
rAddress, &rLen)) < 0)

printf("Error: In receiving data \n");

/* Figure out the IP address of the source of this packet */
strepy(ip_address,inet_ntoa(rAddress.sin_addr));
pptr = (PACKET *)buffer;
if (pptr->type == NACK)
{
/* Add an entry to the nackArray */
++ numNacks;
strcpy(nackArray[numNacks],ip_address);
if (stremp(MY_IP,SOURCE ROUTER) != 0)
{
/* Forward it to the source router */
memset(&rAddress,0,sizeof(rAddress));
rAddress.sin_family = AF_INET;
rAddress.sin_addr.s_addr = inet_addr(SOURCE_ROUTER):
rAddress.sin_port = htons(RX_PORT);
if (sendto(rx,buffer,rechength,O,(struct sockaddr *) &rAddress, rLen) !=
recvLength)

printf("Error: In sending NACK to address %s\n", SOURCE_ROUTER);

63

}

else
{
/* Forward the NACK to the source machine */
memset(&rAddress,O,sizeof(rAddress));
rAddress.sin_family = AF_INET;
rAddress.sin_addr.s_addr = inet_addr(SENDER);
rAddress.sin_port = htons(RX_PORT);
if (sendto(rx,buffer,rechength,O,(struct sockaddr *) &rAddress, rLen)
!=recvLength)
printf("Error: In sending NACK to address %s\n", SENDER);

else
{
/* Send it to all those who missed it */
/* And remove it from the NACK array */
for(i=0; i< numNacks; ++i)
{
memset(&rAddress,O, sizeof(rAddress));

/* Check if the IP address should be given the retransmission */
rAddress.sin_family = AF_INET;

rAddress.sin_addr.s_addr = inet_addr(nackArray[i]);
rAddress.sin_port = htons(RX_PORT);

if (sendto(rx,buffer,rechength,O,(struct sockaddr *) &rAddress,
rLen) != recvLength)

printf("Error: In sending retransmission to address %s\n",
nackArray[i]);

}

numNacks=0;

64

33
CODE FOR RECEIVER PROGRAM:

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <signal .h>
#include "common.h"
int tries=0; /* Global variable shared between procedures */
#include "rec.h"
void myHandler(int ignored)
{
tries += 1;
)
void prepareNACK(PACKET * p, int seqno)
{
p->type = NACK;
p->seqno = seqno;
)
int main()
{
int sock;
int sno;
int recvMsgSize,fromaddrlen;

int packetlen;

65

unsigned int tosize;

unsigned int fromsize;

struct sigaction timerAction;

struct sockaddr_in fromaddr;

struct sockaddr_in toaddr;

PACKET * pptr; /* NACKs to be sent */

PACKET * rptr; /* Data received */

char packbuffer[PACKSIZE];

/* Setup signal handler */

timerAction.sa_handler = myHandler;

if (sigfillset(&timerAction.sa_mask) < 0)
printf("Unable to set signals\n");

timerAction.sa_flags = 0;

if (sigaction(SIGALRM, &timerAction, 0) < 0)
printf("Error: Unable to initialize handler\n");

pptr = (PACKET *) malloc(sizeof(PACKET));

memset(pptr,0,sizeof(PACKET));

if((sock=socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP))<O) /* socket creation */
printf("socket() failed\n");

/* server address structure */
memset(&toaddr,0,sizeof(toaddr));
toaddr.sin_family = AF_INET;
toaddr.sin_addr.s_addr = INADDR_ANY;
toaddr.sin_port = htons(TX_PORT);

printf("******************************\n");

printf("PROGRAM FOR THE RECEIVER \n");

printf("******************************\n”);

if (bind(sock, (struct sockaddr *) & toaddr, sizeof(toaddr)) < 0)
printf("Error: Unable to bind. Port maybe in use\n");
while(1)

66

{

fromsize = sizeof(fromaddr);
alarm(TIMEOUT _SECS);

while ((recvMsgSize = recvfrom(sock,packbuffer,PACKSIZE,0,(struct sockaddr *)

&fromaddr, &fromsize)) < 0)

if (errno == EINTR) /* THE ALARM WENT OFF */

{
printf("Timeout\n");

if (tries < MAXTRIES)
{

printf("Timed out,%d more tries..\n", MAXTRIES-tries)

prepareNACK(pptr,sno+1);

if (sendto(sock,(char*)pptr,PACKSlZE,O,(struct
&toaddr,sizeof(toaddr)) I= PACKSIZE)

printf("send() does not function\n");

alarm(TIMEOUT _SECS);
}

else

printf("no response\n");

}

else

printf("recvfrom() failed\n");

/* if recvfrom() works cancel the time */
alarm(0);
rptr = (PACKET *)packbuffer;

printf("packet received is \n");

67

sockaddr *)

tries=0;

/* Check if we got a packet which was wrong */
if (rptr->seqno == sno+1)
{
sno =sno+l;
printf("In sequence packet received\n");

}

else
{
prepareNACK(pptr,sno+1);
memset(&toaddr,0,sizeof(toaddr));
toaddr.sin_family = AF_INET;
toaddr.sin_addr.s_addr = inet_addr(SOURCE_ROUTER);
toaddr.sin_port = htons(RX_PORT);
tosize = sizeof(toaddr);
if (sendto(sock, (char *) pptr, PACKSIZE, 0, (struct sockaddr *) &toaddr,tosize)
!= tosize)
printf("Error: In sendto\n");
}
i

close(sock);

}

10.2.2 SAMPLE OUTPUT:

OUTPUT FOR THE SENDER PROGRAM:

68

10.2.2 SAMPLE OUTPUT:

OUTPUT FOR THE SENDER PROGRAM:

T e 0t Lina y s 1 Y 25~ il - Shall - Kousote
i Seealon’. Edit View.: Satings. Heip

¢ packet
e packet
e poacket
one packet

OUTPUT FOR THE ROUTER PROGRAM:

I rooteiLins yst 12 ~flinad - Shelf - Komsule

Sosslon Edit view Settirigs Hefp.. e : ; ;
[root@linsys82 rootlfl .7a.out)

PROGRAM FOR THE ROUTER

The IP Address of node is 90.0.0.84
The IP Address of node is 98.8.0.85

- Sy [e

B vt thiinays 112 Mimed = Sttt |
57 SRE Tt -V G26298 Powsis b |]

69

