DESIGN OF MANAGEMENT FRAMEWORK
FOR MPLS BASED NETWORKS

PROJECT REPORT

submitted in partial fulfillment of the requirements for the award
of the degree of BACHELOR OF ENGINEERING-
Information Technology of Bharathiar University, Coimbatore.
submitted by
V. Kavitha

S.Geetha

under the guidance of
Mrs.L.S. Jayashree , ME |
Department of Computer Science and Engineering
Kumaraguru College of Technology,

Coimbatore-641006.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Kumaraguru College of Technology

Coimbatore , Tamilnadu — 641 006.

MARCH 2003

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE, TAMILNADU-641 006.

Department of Computer Science and Engineering

CERTIFICATE
This is to certify that the Project Report entitled

DESIGN OF MANAGEMENT FRAMEWORK FOR
MPLS BASED NETWORKS

is a bonafide record of work done by
V.Kavitha(9927S0055)
S.Geetha(992750506)
in partial fulfillment of the requirements for the award of the degree of
BACHELOR OF ENGINEERING — INFORMATION TECHNOLOGY

of Bharathiar University , Coimbatore during the academic.year 2002-2003.

Certified that the candidate was examined by us in the project work
Viva Voce examination held on .ol.0.7. 2~ #coZand the
University Register Number is ... 0] ¢ /50055

(Internal Examiner) {External Examiner)

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We take this opportunity to express our gratitude to all those people without

whom this project would be incomplete.

We are extremely grateful to Dr.K.K.Padmanabhan, Principal , Kumaraguru
College of Technology for having given us a golden opportunity to embark on this

project.

We are deeply obliged to Prof.Dr.S.Thangasamy, Head of the Department of
Computer Science and Engineering for his valuable guidance and useful suggestions

during the course of this project.

We are indebted to our project guide Mrs. L.S.Jayashree., ME and our class
advisor Mrs.N .Chitra Devi .,ME Kumaraguru College of Technology for their helpful

guidance and valuable support given to us throughout the duration of this project.

We also extend our heartfelt thanks to Mr.K.R.Bhaskaran., M..S., Assistant
Professor, Kumaraguru College of Technology for providing us support which really

helped us make this project a success.

Above all we owe our gratitude to our parents for their support and God

Almighty for showering his abundant blessings on us.

SYNOPSIS

MPLS 1is a forwarding paradigm applicable to Internet Protocol {IP)
networks, which assigns packet flows to Label Switched Paths (LSPs) . Unlike
traditional hop-by-hop IP routing, packets are classified once at the network

edge and then transported over a switched virtual path.

Network Monitoring is an important tool in fault tracing and
elimination. It is used to monitor and control the network devices and evaluate the
performance of the network.

The main purpose of gathering data and statistics is the evaluation of

current network conditions.

Management Information Base is the database of network
management information that is used and maintained by a network management
protocol such as SNMP.The value of a MIB object can be changed or retricved by
means of SNMP commands, usually throﬁgh a network management system.MIB
objects are organized in a tree structure that include public(standarc) and

private{proprietary) branches.

The MPLS Label Switching Router MIB (MPLS-LSR-MIB) allows to
use the Simple Network Management Protocol (SNMP) to remotely monitor a label
switching router (LSR) that is using the Multiprotocol Label Switching (MPLS)
technology. The MPLS-LSR-MIB contains managed objects that support the retrieval

of label switching information from a router.

The objects which we implemented are the mplsVersion |,
mplsLspFrom, mplsLspTo and mplsPathBandwidth and the packet loss, departures
and arrivals at a particular node. Each object in the MIB Icorporates a
DESCRIPTION field that includes an explanation

of the object's meaning and usage, which together with the other characteristics of
the object (SYNTAX , MAX - ACCESS and INDEX) provides sufficient

information for management application development, as well as for documentation

and testing.

INDEX

TITLE
LIntroduction
1.1 MPLS Architecture
1.2 MPLS Path Establishment

1.3 Network Management Using SNMP

2. Platform Used
2.1 LINUX Operating System
2.2 TCL Script
2.3 NS 2 Simulator
3. MPLS LSR MIB Objects
4. Details of Implementation
5. Output
6. Conclusion
Future Enhancements
7. References
8. Appendices
A: Acronyms used

B: Source Code

1.INTRODUCTION

1.1 MPLS ARCHITECTURE - AN INTRODUCTION

Multi - Protocol Tabel Switching (MPLS) was originaily
presented as a way of improving the forwarding speed of routers but is now emerging
as a crucial standard technology that offers new capabilities for large scale IP networks.
The essence of MPLS is the generation of a short fixed-length label that acts as a

shorthand representation of an IP packet's header.

IP packets have a field in their 'hcader' that contains the address
to which the packet is to be routed. Traditional routed networks process this information

at every router in a packet’s path through the network (hop by hop routing).

fig 1 MPLS ARCHITECTURE

MPLS is an accclerated data transmission technology that

uses a method of label loalim A chort fivod Tamotle Talead 5o o1 dg

the packets that traverse through an MPLS domain. Once that packet reaches the
destination edge of the network, the label is stripped away. The MPLS protocol derives
its performance by simply switching labels on packets within the network. MPLS 1s an
efficient way of integrating IP and ATM networks because it allows high-volume IP
traffic to traverse core ATM infrastructures. A Label Edge Router (LER) is an LSR
placed at the edge of an MPLS domain and passes traffic into and out of the MPLS
domain . An ingress LER is responsible for classifying data and assigning it toa

suitable LSP.

When unlabelled packets need to traverse the same path
between an ingress and an egress LSR (packets from an aggregate of one or more
flows are said to belong to a stream) belonging to the same MPLS domain, a Label
Switched Path (LSP) —a LSP is similar to a unidirectional ATM Virtual Circuit (VC) -
needs to be set-up. This wiil allow the packet to be forwarded from one MPLS node to
another just by using the assigned label as an index to a forwarding table. The LSP set-
up can be traffic, request, or topology-driven . In the traffic-driven scheme the label
assignment is triggered by the arrival of data atan LSR, whereas with the request-
driven scheme the label is assigned in response to normal processing of request based
control traffic. In the case of a topology-driven scheme the labels are pre - assigned

according to existing routing protocol information.

In the MPLS forwarding paradigm, once a packet is assigned to a
FEC, no further header analysis is done by subsequent routers: all forwarding is driven

by the labels. This has a number of advantages over conventional network layer

forwarding.

. MPLS forwarding can be done by switches which are capable of doing label
lookup and replacement, but are either not capable of analyzing the network layer

headers, or are not capable of analyzing the network layer headers at adequate soeed.

. Since a packet is assigned to a FEC when it enters the network, the Ingress
router may use, in determining the assignment, any information it has about the

packet, even if that information cannot be gleaned from the network layer header.

. A packet that enters the network at a particular router can be labeled
differently than the same packet entering the network at a different router. and as a
result forwarding decisions that depend on the ingress router can be easily madec.
This cannot be done with conventional forwarding, since the identily of a packet's

ingress router does not travel with the packet.

. Sometimes it is desirable to force a packet to follow a particular route which
1s explicitly chosen at or before the time the packet enters the network, rather than
being chosen by the normal dynamic routing algorithm as the packet travels through
the network . This may be done as a matter of policy, or to support traffic
engineering. In conventional forwarding, this requires the packet to carry an
encoding of its route along with it ("source routing"). In MPLS, a label can be used
to represent the route, so that the identity of the explicit route need not be carried with

the packet.

Some routers analyze a packet's network layer header not merely to
choose the packet's next hop, but also to determine a packet's "precedence” or "class of
service”. They may then apply different discard thresholds or scheduling disciplines to
different packets. MPLS allows (but does not require) the precedence or class of service
to be fully or partially inferred from the label. In this case, one may say that the label

represents the combination of a FEC and a precedence or class of service.

MPLS network structure:

A typical structure of a MPLS network consists of several basic

elements.

Label Edge Router (Ingress & Egress):

Label Edge Routers are located at the boundaries of MPLS network
performing value added network services and assigning / removing labels to the packets

ie., Ingress LSR assign Labels to the packets and Egress LSR removes label from the
packet.

MPL S DOMAIN

INGRESHLSR LS EGRESS LS8R

OV

fig 2. MPLS NETWORK STRUCTURE

Label Switch Router:

With reference to the labels assigned to the packets and LIB, PFT &
ERB packets are forwarded through the established LSP (Label Switched Path) towards
the Egress LSR by swapping the incoming label with suitable out going label.

Label Distribution Protocol:

To ensure the capacity for the transmission in the reserved end-to-
end the LER uses a Label Distribution Protocol (LDP) such as Constrained-Based
Routing LDP (CR-LDP) or the RSVP-TE to distribute the necessary labels that direct
traffic along this reserved route and thus label switched path (LSP) is established.
Tables (LIB, PFT, ERB):

There are three tables to manage information related to LSP.

Partial Forwarding Table (PFT):

-a subset of Forwarding Table and consists of FEC, Per-Hop-
Behavior (PHB) and LIB pointer.

Label Information Base (LIB):

- has the information about the LSP such as incoming interface,

incoming label, outgoing interface, outgoing label and LIB pointer.
Explicit Routing Information Base (ERB):

- has information for the explicit routing path such as LSP-ID, FEC
and LIB pointer.

1.2 MPLS LSP Establishment

The following are three major processes in the MPLS functionality:
Path selection:

The best path determination through a network using either a hop-
by-hop or an explicit route methodology. The hop-by-hop method allows the path
selection to follow the normal underlying IGP best path. Each node in the path is
responsible for determining the best next hop on the link state database. Alternatively,
an explicit route is a path through is a path through the network that is specified by the
Instantiating router. The explicitly routed path has administratively configured criteria,
like constraints, to influence the path selection through the underlying network. It is
very possible an explicit route will deviate from a path that would have been sclected

using the hop-by-hop IGP method.
Path establishment:

Once the path has been determined, a signaling protocol is used to
inform all the routers in the path that a new label switch path, or LSP is required. The
signaling protocol is responsible for indicating the specifications of the path, including
the session 1id, resource reservations and the like, to all other routers in the path. This
process also includes the label-mapping request for all the data that will use the [abel
switched path. Following the successful establishment of the path the signaling is

responsible for ensuring the integrity of the peering session.

Packet forwarding:

At the very highest level the data flow toward an MPLS network

occurs at the ingress label switch router. The ingress LSR classifies a packet or a flow

to a specific path and pushes the applicable label on the packet. Routers along the label

switched path perform forwarding based on the top-level label.

1.3 Network Management using SNMP

This section explains the basic architecture of reading MIB

values of the ISP object in Isp path between agent and management station.

SNMP .
NETWORE REQUEST AGENT
ANAGEMENT= ————» [DEVICE] -~
'STATION _ ‘

RESPONSL
4_...____

Fig 3 SNMP Architecture

SNMP Architecture

The SNMP architecture is based on the very simple concept
of the Query/response model. The client, which sends out Queries, is generally
described as the Manager. The SNMP server is referred to as the ‘agent’ . The SNMP
protocol enables a network management station to read and to change an agent’s
parameters according to the rules of SNMP. SNMP also allows the agents to send an

unrequested mesaage to the management station.

The simplicity of the SNMP system reduces the complexity of
the overall range of functions and contributes significantly to the fulfillment of the

following goals :

1) Development costs for the implementation of the overali syatem are reduced.

2) The range of functions can be reached from every device via a system structure

thereby reducing acceptance of network management applications.

3) The simple protocol structure makes the network management very casy to

understand. It is cost efficient to run the network.

4) The entire architectural model was defined as simply as possible and is completely

independent of hardware and sofiware structures.
The SNMP architecture establishes the following fixed points :
1) The protocol and its range of functions
2) The information and data that can be transferred via the protocol.

3) The protocol mechanisms necessary for the transportation of management

functions.

4) The functions and tasks of the individual devices participating in the transfer

of management data.
SNMP Commands

SNMP supports five message types. The names of the

individual commands are given:
1) Get Request
2) Get Next

3) Set Request

4) (et Response
5) Event/Trap
Get Request

The Get Request command enables a management system (client)
to request a given variable in the MIB of an SNMP agent(server).An Object identifier is
set as an argument with this type of message. The client always receives a Get Response

message in reply to a Get Request.
Set Request

The Set Request command enables a management system (client)
to set certain specific variables in the MIB of an SNMP agent (server) .An object
identifier is sent as an argument with this type of message. If the Set Request command
can be processed with the specified value from the agent, a Get Response packet is sent
back . If there is an error,a Get Response is created and sent back to the requester

(management station) with the relevant error message.

Get Next Request

The Get Next Request command enables a management station
(client) to request a value for the next object in the MIB tree hierarchy . The
Get Next operation is ideally suited for traversing tables and for requesting consecutive
objects quickly.In response to a Get Next Request, the client always receives a message

of the type Get Response.

Get Response

The Get Response command enables an agent (server) to respond
to all Get Next Request, Set Request and Get request queries from a management
System (client). If the relevant command can be processed with the specified value
from the agent, a Get Response packet is returned and the operation is

positively confirmed.
Event/Trap

SNMPF is essentially based on a simple polling mechanism ,
according to which every network management station (chent) has to rmplement all
variable and status requests explicitly. If an agent determines a particular situation , it
sends a trap message to the management station .This method enables the network

management station to react immediately to the information sent.

PLATFORM USED

2. PLATFORM USED

2.1 LINUX OPERATING SYSTEM

This project works on the Red Hat LINUX operating systern,
Version 6 and above. Linux , a UNIX clone |, is an operating system that embodics the
concept of complete transparency .One of the most important aspects of Linux is that
it has been developed and supported by its users , making it relatively easy 1o get your
hands on one of the many free Linux distributions . But although Linux is growing in
popularity , there are stiil people who consider this operating system a toy or pet ;

something to play with , but not to be taken seriously.

Until recently , Linux was reserved for self avowed hackers and
enthusiasts. This was mainly because Linux was not very user- friendly . Now. with an
intuitive graphical user interface or GUI » Linux is as user friendly as Windows.You do
not need to be a rocket Scientist to use Linux with the GUI . In fact, a Linux Desktop
looks much like a Windows Desktop (with a few added features). Linux has at least a

dozen different higly configurable graphical interfaces, which runs on top of a Xfree86.
FEATURES OF LINUX :

L. Multitasking : several programs running at the same time.

2. Multiuser : several users on the same machine at the same time.

3. Multiplaiform : runs on many different CPU ‘s, not just Inte! .

4. Multiprocessor - SMP support is available on the Intel and SPARC platforms

{(with work currentiy in progress on other platforms)

5. Multithreading : has native kemnel support for multiple independent threads of

control within a single process mMemory space.

2.2 TCL Script (Tool Command Language)

This project works on Tcl . Tel was originally intended to be a
reusable command language. Its developers had been creating a number of interactive
tools, each requiring its own command language. Since they were more interested in the
tools themselves than the command languages they would employ, these command
languages were constructed quickly , without regard to proper design . After
implementing scveral such "quick-and-dirty" command languages and cxperieneing
problems with each one, they decided to concentrate on implementing a general-
purpose, robust command language that could casily be integrated into new
applications. Thus Tel (Tool Command Language) was bom. Since that time, Tcl has
been widely used as a scripting language. In most cascs, el is used in combination
with the Tk ("Tool Kit") library, a set of commands and procedures that make it

relatively easy to program graphical user interfaces in Tcl.

One of Tcl's most useful features is its extensibiiity If an
application requires some functionality not offered by standard Tel, new Tel commands
can be implemented using the C language, and integrated fairly easily. Since T¢l is so
casy to extend, many people have written extension packages for some common tasks,

and made these freely available on the internet.

The Tel seript is compiled with the (.tcl extension).

FEATURES OF TCL SCRIPTING LANGUAGE

The main difference between Tcl and languages such as C,
is that Tcl is an interpreted rather than a compiled language. Tel programs are simply
scripts consisting of Tl commands that are processed by a Tel interpreter at run time.

One advantage that this offers 1s that Tcl programs can themsclves generate Tol scripts

that can be evaluated at a later time. This can be useful, for example, when creating a

graphical user interface with a command button that needs to perform different actions

at different times.

2.3 NS2 SIMULATOR

ns is an object oriented simulator, written in C-++, with an OTcl
sterpreter as a frontend. The simulator supports a class hierarchy in C++ (also called
the compiled hierarchy in this document), and a similar class hierarchy within the OTcl
interpreter (also called the interpreted hierarchy in this document). The two hierarchies
are closely related to each other; from the user’s perspective, there is a one-to-one
correspondence between a class in the interpreted hierarchy and one in the compiled
hierarchy. The root of this hierarchy is the class TclObject. Users create new simulator
objects through the interpreter; these objects are instantiated within the interpreter, and
are closely mirrored by a comresponding object in the compiled hierarchy . The
interpreted class hierarchy is automatically established through methods defined in the
class TclClass. User instantiated objects are mirrored through methods defined in the
class TclObject. There are other hierarchies in the C++ code and Otcl seripts; these

other hierarchies are not mirrored in the manner of TclObject.

ns uses two languages because simulator has two different kinds
of things it needs to do.On one hand , detailed simulations of protocols requires
a systems programming language which can ctficiently manipulate bytes, packet
headers, and implement algorithms that run over large data sets.For these tasks run-time
speed is important and turn-around time (run simulation, find bug, fix bug, recompile,
re-run) is less important. On the other hand, a large part of network research involves
slightly varying parameters or configurations, or quickly exploring a number of
scenarios. In these cases, iteration time (change the model and re-run) s more
tmportant .Since configuration runs once (at the beginning of the simulation), -un-time
of this part of the task is less important. Ns mects both of these needs with two
languages, C++ and OTcl. C++ s fast to run but slower to change, making it suitable
for detailed protocol tmplementation. OTel runs much slower but ¢can be changed very
quickly (and interactively), making it ideal for simulation configuration. us (via telcl)

provides gluc to make objeets and variables appear on both langauges.

MPLS LSR MIB OBJECTS

3.MPLS LSR MIB OBJECTS

The MIB objects which arc present in the MPLS domain which

includes the following:

1) MPLS-TC-MIB

2) MPLS-TE-MIB

3) MPLS-LDP-MIB

4) MPLS-LSR-MIB

But here we deal with only MPLS-LSR-MIB objects.

The MPLS Label Switching Router MIB (MPLS-LSR-MIB)
allows to use the Stmple Network Management Protocol (SNM P) to remotely monitor
a label switching router (LSR) that is using the Multiprotocol Label Switching (MPLS)
technology.

The notation used in the MPLS - LSR - MIB follows the
conventions defined in Abstract Syntax Notation One (ASN.1). ASN.1 defines an
Open System Interconnection (OSI) language used to describe data types independent] Y
from particular computer structures and presentation techniques.Each object in the MIB
incorporates a DESCRIPTION field that includes an explanation of the object’s
meaning and usage, which, together with the other characteristics of the object
(SYNTAX , MAX-ACCESS, and INDEX) provides sufficient information for
management application development, as well as for documentation and lesting. The

MPLS-LSR-MIB represents an ASN.1 notation reflecting an idealized MPLS 1SR,

A metwork administrator can access the entries (objects) in the
MPLS-LSR-MIB by means of any SNMP-based network management system (NMS),
The network administrator can retrieve information in the MPLS-LSR-MIB using

standard SNMP get and getnext operations.

Typically, SNMP runs as a low-priority process. The response
time for the MPLS-LSR-MIR is expected to be similar to that for other MIBs. The stze
and structure of the MIB and other MIBs in the system influence response time when
you retrieve information from the management database. Traffic through the LSR also

affects SNMP performance.

MPLS-LSR-MIE Structure

MIB structure is represented by a tree hierarchy. Branches
along the tree have short text strings and integers to identify them. Text strings describe
object names, and integers allow computer software to encode compact representations
of the names. The MPLS-LSR-MIB falls on the experimental branch of the Internet
MIB hierarchy. The experimental branch of the Internet MIR hierarchy is reoresented
by object identifier 1.3.6.1.3. This branch can also be represented by tts object name
iso.org.dod.internet.experimental. The MPLS-LSR-MIB is identified by tie object
name mplslsrMIB, which is denoted by the number 96. Therefore, objects in the
MPLS-LSR-MIBMPLS-LSR-MIB can be identified by either of the following:

. The object identifier—1.3.6.1 .3 96.[MIB-variable]

. The object name—iso.org.dod.internet. experimental. mplsLsrMIB. [MiB-variable]

To display a MIB-variable, enter an SNMP get command
with an object identifier. Object identifiers are defined by the MPLS-LSR-MIB.

The MPLS LSR MIB objects arc

mplsLspName DisplayString,
mplsLspState INTEGER,
mplsi.spOctets Counter64,
mplsLspPackets Counter64,
mplsl.spAge TimeStamp,
mpisLspTimeUp TimeStamp,
mplsLspPri maryTimeUp TimeStamp,
mpisLspTransitions Counter32,
mplsLspLastTransition TimeStamp,
mplsLspPathChan ges Counter32,
mplsLspLastPathChange TimeStamp,
mplsLspConfiguredPaths Integer32,
mplsLspStandbyPaths Integer32.

mplsLspOperationaiPaths Integer3?2,

mplsLspFrom

mplsLspTo

mplsPathName

mplsPathType

mplsPathExplicitRoute

mplsPathRecordRoute

mplsPathBandwidth

mplsPathCOS

mplsPathlnclude

mplsPathExclude

mplsPathSctupPriorily :

mplsPathHoldPriori ty

mplsPathProperties

IpAddress,

IpAddress,

DisplayString,

INTEGER,

OCTET STRING,

OCTET STRING,

Integer32,

INTEGER,

Integer3?2,

Integer32,

INTEGER,

INTEGER,

INTEGER

4. DETAILS OF IMPLEMENTATION

LSR objects implemented
The MPLS LSR MIB objects we implemented are mplsVersion,
mplsLspFrom, mpisLspTo, mpisPathBandwidth . packet loss | arrivals and departures

al a particular LSP path.

These objects are queried by the user and the result is thus obtained.

The queried objects may then be retrieved or changed by the user.
MPLS LSR MIB object structure

1) mplsVersion

mplsVersion OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS rcad-only
STATUS current

DESCRIPTION

"MPLS version number. "

2) mplsLspFrom

mpisLspFrom OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Source IP address of this LSP."

3) mplsLspTo

mpisLspTo ‘OBJECT-TYPE
SYNTAX [pAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Destination IP address of this L.SP."

4) mplsPathBandwidth

mplsPathBandwidth OBJECT-TYPE
SYNTAX Integer3?2
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"T'he configured bandwidth for this LSP, in units of thousands of
bits per second (Kbps). This field is meaningless unless mplsPathName is not

cmpty"

Retrieval of objects

Fig 4. Path Establishment

SCI-SOURES ONE
SC2-SOURES TWO
SI1-SINK ONE
SI2-SINK TWO
memm LSP-
== LSP2

NETWORK ROUTE
LSP1 0-2-3.4.5¢4

LSP2 1-2.3.7.8.9

Configuration
Configuration menu provides the following options:

1. View a Isp object

2. Get a Isp object

3. Getnext lsp object

4. Evaluate a bandwidth

5. View the network structure

When the particular LSP path is activated then a] agent in that path are
monitored and the LSP MIB objects are generated. When the manager wants the object

by querying the agent the response is given to management station,

The network manager refers to the path selection, path establishment and
path forwarding are decided by ingress router | Before runnmg the application the

Management station should know the bandwidth is available for the application.

This frame work senses the link capacity between nodes ,from which node
LSP path starts, destination node, packets in quantity arrived, deparutured ~dropped is
calculated in bytes between nodes in LSP . In this frame work nam animator is used
which simulates the movement of packets between the nodes in network and also

displays if any drop has occurred,

5.0UTPUT

In this framework we used a nam animator which simulates
the packets between the ingress router to the cgiess router through the pre-
cstablished LSP path. The nam animator output shows the packets which has
been dropped during the transmission. 1t also shows where the 1.SP path starts,
the number of packets arrived at a particular node, the packets departured

and the packets dropped.

The ingress router decides the path cstablishment | scleetion
and the packet forwarding in a particular LSP path. The Bandwidth is caiculated

between the nodes in bytes.

SCREEN SHOTS

I Konsole - rOotElinux26:Ssekardeno - Konsole
File Sessians Setfings Halp

[root®linuxag rootId cd |, -
[root@l inuxag /1% oo sekar Do
[root@] ingx2s sekar]# cd deng H
[rootlinuxzg demol# ns demcl,tc] 'l
ENTER LR CHOICE

1.LRBLE-SHITCHED-PHTH-DNE*DBJECTS ool
2.LRBLE-SHITEHED-PRTH—SECDUND-UBJECTS vl
3.BHNDNIDTH-CHLEULGTIUN-IN-MEGQBITS e
4.VIEW THE GRAPH

1

ENTER QBJECT 1) Wy TC SEE IN LSPy
***********************i***********
a. MPLS VERSION Mo

b. LSP FROM

c. LSP 10

d. PACKETS ARRTVAL

=, PACKETS DROPEY

. PRCKET DEPARTURE

5. PRCKETS DROPED 1 BYTES

n, PACKETS ARRIVAL IN BYTZs

i, PRCKETS DEPARTURE IN BYTES

o

OBIECT-NAME = PACKETS ARRTvRL FROM SOURES Nope
CLRRENT-VALUES '} 1307 [Tk N1-3N2
CRRENT-VALLE & o | o Ne- N3

CURRENT-VALLE ¢ 315 1 i N3-3hg
CURRENT-VALLE '315 " | figc N4-3N5
CURRENT-VALLE 1313 T H5-2hG %

na UHANT 70 CONTINUE

g

LD [|
BT FETY

‘-~ Konsale - root Ninux26:/sekar/demo - Konsole
File Sessions Setlings Help

00 U WANT 7O CONTINUE y/n IF:[
5 o
IENTER OBJECT U WANT TQ SEE IN LSP1 i |

i‘lﬁ&ﬂ‘lﬂ-i!**liﬂ##*****i*!i!l*ﬂ*l '
2. HPLS VERSION NO I
b. LSP FROM '
c. LSP TO |
PACKETS ARRIVAL S
PACKETS DROPED

+ PACKET DEPARTURE |
- PACKETS DRGPED IM BYTES

~ PACKETS ARRIVAL IN BYTES

- PRCKETS DEPARTURE TN BYTES |

=
PEJECT-NAME : PACKETS DROPED BETWEEN L Ins
CURRENT -7 0E 3538 LI Moo~
CLRRENT-VALLE 10 LINK Ne-3n3 .
CURRENT-YALLE 10 LINK N3-5Ng

CURRENT-VALLE 10 LINK Na-sn5

CURRENT-VRLUE ;0 LINK N5-3Ng 21 |
D0 U WANT TO CONTINUE y/n
n

ENTER UR CHOICE 'r_i

+

I g o

1.LABLE-SHITCHED-PATH ~ONE-DBJECTS

<.LRBLE ~SWITCHED-Ph TH-SECOUND-DBJEC TS
3.BHNDHIDTH*CQLCULQTIUN-IN -MEGABITS |
i.‘-"IEH THE GRAPH !

L

8

Ly

LR L] I XYY o=

0351003

m—qm_%_wzuf S
B —— I —
-3

. . . OXM
- Beokmarks 5| 2) - 2
@Histary f— & B :jl Q

E fY+Home Directary Q . [ZI-~ Konsalg - rootr-j#linux.?s:!sekar.’denw - Konsale
1 @Network LY Fila Sessions Sattings Help

- B3Roat Directo NTER OBJECT U WANT TG SEE IN LSP1

=8 ",PSEI“ViCES * ﬂ*l-*i!q***‘Jﬂ!l***i**i*i******ﬂ-***i**

Ly
g i, WFE’SHRSIDN NO
5
7

k. Lep 10
d. PACKETS ARRIVAL

=, PACKETS

- PACKET DEPARTURE

E. PRCKETS DROPED IN BYTES

- PRCKETS aRRTVAL In ByTog
L. FROKETS DEPARTURE TN Bvres

DB.JEC T-NAME
3701 LINK Hi-3R3 |
; URRENT-VALUES 10 L1 N2->N3 ‘
URRENT-VALE 131 LINK N33t I
URRENT-VALLE ;314 | Tne N4->H5 |
URRENT-VALUE :313 [T NG- Mg f

00 U WANT TO CONTINUE y/n rﬁl‘
[root@linux2s demo]s d
[root@1inuos denog]# -l
BRI oot 81 imuxos demo]s J - -

%@@@@@@/”* B

=)
2| 4 (RijKonaote - root:

file:lroot - Konguergy ——
Location Euit Yiew Go Bookmarks Tools Settings Window Help

2R B0 N DBG QAT
B Lgcatign Tileyroot

ox N

7-%Buokmarks 7 =

2) S ‘
: N 5
-‘Q’Hisrory e @‘i’ [Sy b Q
‘-ﬁHume Direciory Q 5 [ZJ-* Konsple - Y00t SHinux 26 fsekaridema - Konsole
- Network % Fila Sesslons Saftings Heip
- 8Root Directory L

'.LRBLE—SHITCHED—PRTH-SECDUND-DBJECTS
g :.Bnunuzn?H-anCULRTION-IN—mzanszrs
G VIEW THE Grepn
[

&- 2 Services

TER OBJECT U WaNT 70 SEE in Lspz
i*ﬁ**’*ﬂiﬁ**li**i***'}***‘l#*i*
a. MPLS VERSION Ng
b, LSP FROM

. LSP 10
H. PACKETS ARRIVAL
2. PACKETS DROPED

PACKET DEPARTURE
. PACKETS DROPED 1N BYTES

- PACKETS ARRTVAL 1N BYTES
L. PACKETS DEFARTURE IN BYTES

DBJECT-NAME : PACKETS DRODED

B @ s

NT-VALUE 1560800 K M
RRENTVALUES 10 1 Ik N2~>Nz
URRENT -VAL UE 1287500 LIMNK N3-3N7
URRENT -vALUE 1353600 L INK N7->nB
RRENT -vALLE 1353600 |LINK NB->NY
NG U WANT 710 CONTINUE yes/rmg

e, [Broner]

£5- fite:/root - Kanqueror

LLocatinn Edit View Go Bookmarks Tools Seflings Windaw Heip

AR BT ¥

»e,

. B> Location §ﬂ|e:frout

X

53] QHEsmry

B} Home Directary
B | Network

& fJRoot Directory
--)Serw’:es

.

B

N et .
59 Bookmarks

X
A8
£

B & ®e

ns_dac pf

GE

TER OBJECT U WANT TO SEE in LSP2

2. MPLS VERSION NO
. LSP FROM

. PACKETS DROPED

If. PACKET DEPARTURE

. PACKETS DROPED IN BYTES

+ PACKETS ARRIVAL IN BYTES

i. PACKETS DEPARTURE IN BYTES

i

DBJECT-NAME 1 PRCKETS DEPARTURE AT THE DESTINATION

URRENT-VALUE :560800 LINK No-sHz ===~

L IMK HC->h

URRENT-VALUES :0 LINC N2-3N3

URRENT-VALUE :287500 LINK N3->N7
T-YALUE :353600 LINK N7-SN3
T-VALUE :353500 LINK NE-INg

U HANT TO CONTIMUE yes/no

s

TER OBJECT U WANT 10 SEE in LPD
£ 352 =
| O [
@. @ “{ By mectoot - Kon | 54 sereen Capture |
@3 | @iTKonsols - roate

BEE)

&1 file:root, - Kohiqueror
2otelon, it Yiew, G0 Bookvatts Tools Setings Window i

" REIRN B B A sk
[];B Lg;aﬁnn_ﬂ E fila:front
..

el

Bookmarks @
LHHistory - i -t : -
& {2¥Home Directory % rod i NuxZ6:/sekarfdemo ~ Konsole
B ENetwork File Sessions Settings Heip

i*il*“**H**“***i**i**#i***{-***

& B§Root Directory

B 2 Services + MPLS VERSION NO
LSP FROM

. L5P 10

+ PACKETS ARRIVAL
- PACKETS DpROPED
+ PACKET DEPARTLRE

PACKETS DROPED 1N BYTES
PRCKETS ARRIVAL IN BYTES
L. PACKETS DEPARTURE IN BYTES

U WANT 70 CONTINUE Yes/no |

__Bvemsee

TOOLElinux25 demo]# ng demﬂ.tcl Bt
NTER UR CHOICE o

L .LQBLE-SHITCHED—PH TH-ONE-OBJEC 15 L
LABLE-SWT TCHED-PA TH-SECUUND—CIEJEC 5 i
.BﬂNDHIDTH-CFlLCULQTIUN'-IN*'HEGRBITS Lo
NIEW THE GRAPH

()]
CY I 0 AHDHIDIH USED BY SoURCES: = 4 0.0 W
WIDTH USED By SOURCESZ = 4 0.0

- Flla want to tontinue wes or no

i 03 e[

S oot oo [

[@Konsols < roote:

Screen Capture

,S:n Tite:iroot - Konqueror ——— B

B N 3 L1 (-)]F
Location Edit Yiew Go Bockmarks Joals Seftings Window Help
- o By S (he R - o
BN ED K Al
" B Location @rau’mo!
o - O X
&R Bookmarks £7)]
BF-LPHistory — ; R \
-ﬁ)Home Directory Q lnux2E isekarfdemo - Konsolg
EHENetwork Fila Ssssions Settings Heip
= 8Root Directory & TOOLELinhE oot T8 oo
B P Services g roOotBlinux26 /1w cd sekar
LTOOtRLiux26 sekar] od demo
@ LrootBlinux2E demcl ns derol . tcl
TER UR CHOICE
5 £ .LABLE ST TCHED~PATH-OME -0BJECTS
? E .LQB!._E-SHITCHED-F’RTH-SECDUND-DEJECTS |
3 .BHNDHIDTH-EQLCULQTIDN-IN-—HEGRBITS :
1B -VIEW THE GRAPH _
. i
AL rootBlinux2e dema]e Cannot connest La existing nam nstance. Starting & mew one|

BN fée¥oot - Ko

BijKonsole - roote:

8§ Screen Copture

CONCLUSION

6.CONCLUSION

The sole purpose of this Project was to study the behaviour of MPLS
based networks and desiging the management framework which could be used
by a network administrator to more closely monitor the performance of their MPLS
domain during their operation. Since designing a complete management framework
is exhaustive and could not be completed within the stipulated period of 4 months,
this project work mainly focuses on MPLS-MIB-LSR, which is used in monitoring the

behaviour of LSP’s once they are established,

Using the NS2 simulator » querying and retrieving up of the objects
is successfully completed . The packet loss, departures and arrivals are calculated

between the established LSP paths.

Future Enhancements

The MPLS-LSR -MIB objects has been done only for a limited set
of objects. The objects which has been queried and retrieved are the mplsVersion,
mplsLspFrom , mplsLspTo and mplsPathBandwidth . There are some objects which

cannot be implemented namely MplsAdminGroup . MplsAdminGroupLis[, in the
MPLS-LSR-MIB.

These features can be implemented for other MPLS domain namely
MPLS-TC-MIB , MPLS — LDP- MIB , MPLS -TE-MIB .

7.REFERENCES

I) Feldman, et at., “Evolution of Multiprotocol Label Switching
[EEE Communications Magazine , Vol .36 , No. 5 May 1998.

2) David Greenfield , “MPLS in Brief - ,
Network magazine — Feb . 2002

3) E.Rosen, A.Viswanathan » R.Callon “MultiProtocol Label Switching
Architecture” , RFC 3031 , January 2001.

4) S.McCanne and S.Floyd.ns—NetworkSimulator.
http://\\-’W\wmash.cs.berkc]cy.cdu/’ns:‘.

5) www.iuniper.nct/lechpubs/sof'twaz'c/'f11[10553!3\\-’901]1'1u53-nc1-
memthiml/mib-mpls. (xt.

6) www.mpisrc.com/whilepapers/marconi.pd[‘

7) http:/"/www.trillium.C()m/asscts/broadhandImpIs:‘da[ashcclr'&?&l.@023.pd['.

APPENDICES

8. Appendices

AL Acronyms used:

ATM
FEC
IGP
P
LDP
LSP
LSR
MPLS
OSPF
QOS
TE

TTL

ASYNCHRONOUS TRANSIFER MODE
FORWARDING EQUIVALENCE CLASS
INTERIOR GATEWAY PROTOCOL
INTERNET PROTOCOL
LABEL DISTRIBUTION PROTOCOL
LABEL SWITCHED PATH
LABEL SWITCHING ROUTLER
MULTI PROTOCOL LABEL SWITCHING
OPEN SHORTEST PATIH FIRST
QUALITY OF SERVICE
TRAFFIC ENGINEERING

TIME TO LIVE

B. Source Code

The lollowing source of code is stored as Demol.tel. Its purpose
is to monitor the MPLS domain , to create nodes in the network and monitor the
packet loss from source to destination. The bandwidth used by the particular LSP path

is monitored.

The MPLS objects are queried and the results are obtained . It

also gives the results of the packet arrivals , packets dropped and packet departures.

/* Core portion of the Network monitoring source code

* Create the nodes from source to destination link

* Create links between the nodes

Set the packet size for each node and the interval to be transferred from each node.

Makes relevant calls to MPLS version number, MPLS {rom . MPLS 1o and the packet

departures , arrivals and loss between the nodes.

#Create a simulator object

set ns [new Simulator]

global bw

#Define different colors for data flows
$ns color 1 Blue

$ns color 2 Red

$ns color 3 Black

#0pen the nam trace file

set nf [open out.nam w]

$ns namtrace-al] $nf
#Define a 'finish’ procedure
proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file

close $nf

#Execute nam on the trace file

€XeC nam out.nam &

exit 0

#Create four node

set n0 [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set nS [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]

set n9 [$ns node]
#Create links between the nodes

$ns duplex-link $n0 $n2 1.5Mb Ims DropTail
$ns duplex-link $nl $n2 1.5Mb 1ms DropTail
$ns duplex-link $n3 $n2 1.5Mb 1ms DropTail
$ns duplex-link $n4 $n3 1.5Mb 2ms DropTail
$ns duplex-link $n4 $n5 1.5Mb 2ms DropTail
$ns duplex-link $n5 $n6 1.5Mb 2ms DropTail
$ns duplex-link $n6 $n9 1.5Mb 2ms DropTail
$ns duplex-link $n3 $n7 1.5Mb 2ms DropTail
$ns duplex-link $n7 $n8 1.5Mb 2ms DropTail
$ns duplex-link $n8 $n6 1.5Mb 2ms DropTail
$ns duplex-link $n8 $n9 1.5Mb 2ms DropTail

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $nl $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

$ns duplex-link-op $n4 $n3 orient right

$ns duplex-link-op $n4 $n5 onent right

$ns duplex-link-op $n5 $né orient right-down
$ns duplex-link-op $n6 $n9 orient right-down
$ns duplex-link-op $n3 $n7 orient right-down
$ns duplex-link-op $n7 $n8 orient right

$ns duplex-link-op $n8 $n6 orient right-up
$ns duplex-link-op $n8 $n9 orient right

set gmon [$ns monitor-queue $n0 $n2 stdout]
set qmonl [$ns monitor-queue $nl $n2 stdout
set qmon2 [$ns monitor-queue $n2 $n3 stdout
set gqmon3 [$ns monitor-queue $n3 $n4 stdout

set gmon4 [$ns monitor-queue $n4 $n3 stdout

set qmon6 [$ns monitor-queue $n6 $n9 stdout
set gqmon7 [$ns monitor-queue $n3 $n7 stdout
set gqmon8 [$ns monitor-queue $n7 $n8 stdout

set gqmon9

]

]

]

]

set gmon5 {$ns monitor-queue $n5 $n6 stdout)
|

]

]

$ns monitor-queue $n8 $n9 stdout]

]

(
[
[
set qmon2 [$ns monitor-queue $n8 $n6 stdout

#Monitor the queue for the link between node 2 and node 3

$ns duplex-link-op $n2 $n3 queuePos 0.5
$ns duplex-link-op $n6 $n9 queuePos 0.5

#Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]
SudpO set class_ 1

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0
set ¢br0 [new Application/Traffic/CBR]

Scbr0 set packetSize 800

$cbr0 set interval _ 0.005
$cbrd attach-agent $udp0

#Create a UDP agent and attach it to node nl

set udpl [new Agent/UDP]

Sudpl set class_ 2

$ns attach-agent $n1 Sudp!

Create a CBR traffic source and attach it to udp1
set cbrl [new Application/Traffic/CBR]

$ebrl set packetSize 1500

$cbrl set interval 0.005
$ebrl attach-agent Sudpl

#Create a Null agent (a traffic sink) and attach it to node n3

set nuil0 [new Agent/Null]
$ns attach-agent $n9 $null0

#Create a Null agent (a traffic sink) and attach it to node n6

set nulll [new Agent/Null}
$ns attach-agent $n6 $nulll

#Connect the traffic sources with the traffic sink

$ns connect $udp0 $nulld

$ns connect $udpl $nultl

set sink([new Agent/I.ossMonitor]

set sink] [new Agent/LossMonitor]

$ns attach-agent $n6 $sink0
$ns attach-agent $n9 $sink1

#mplsversion

proc abcl {} 4

puts "NAME OF OBJECT : mpls version"

puts "CURRENT VALUE : MPLSV2"

puts "DESCRIPTION : Tells which verion is used in this path"
;

#mplsversion

proc abl {} {

puts "NAME OF OBJECT : mpls version”

puts "CURRENT VALUE : MPLSV2"

puts "DESCRIPTION : Tells which verion is used in this path"

1
i)

#mpls from

proc abce2 {}

{
puts "NAME OF THE OBJECT :LSP FROM "

puts "

puts "CURRENT VALUE : 126.00.00.00"
puts "DESCRPTION : [T DESCRIBES FROM WHICH NODE THE LABELED
SWITCHED PATH STARTS"

1
i

#mpls from
proc ab2 {}
{
puts "NAME OF THE OBJECT :L.SP FROM "
puts " "
puts "CURRENT VALUE : 127.00.00.00"
puts "DESCRPTION ;T DESCRIBES FROM WHICH NODE THE LABELED
SWITCHED PATH STARTS" ‘
}

#mpls to

proc abc3 {}

{

puts "NAME OF THE OBJECT :LSP TO ™"

puts " "

puts "CURRENT VALUE - 128.00.100.00 "

puts "DESCRPTION :IT DESCRIBES TO WHICH NODE THE PATH DESTINES"
puts "ACTS AS SINK IN LABEL SWITCH PATH"

]
f

#mpls to

proc ab3 {}

{

puts "NAME OF THE OBJECT :LSP TO "

puts " "

puts "CURRENT VALUE : 128.00.100.00 "

puls "DESCRPTION STEDESCRIBES 10 WIHICH NODE THE PATH DESTINES”

puts "ACTS AS SINK IN LABEL SWITCH PATH"

1
¥

#packetsarrival
proc abc4 {}

{

global gmon1 qmon2 qmon3 gmon4 gmonS qmon6
puts "OBJECT-NAME PACKETS ARRIVED FROM SOURCE NODE"
puts " "
puts "CURRENT-VALUE - [$gmon! set parrivals] LINK N]1->N2"
puts "CURRENT-VALUE - [$cimon2 set parrivals_] LINK N2->N3*
puts "CURRENT-VALUE - [$qmon3 set parrivals_| LINK N3->N4"
puts "CURRENT-VALUE [$qmon4 set parrivals | LINK N4->N5”
puts "CURRENT-VALUE :[$qmon5 set parrivals | LINK N5->Ng"

1
H

#packetsarrival
proc ab4 {}
{
global gmon gmon2 qmon7 qmon8 gmon9
puts "OBJECT-NAME : PACKETS ARRIVED FROM SOURCE NODE"

puts " "
___‘—'—“'_‘—*—_ﬁh‘__%“‘ﬁ_;w__"_;ﬁ__u;‘_

puts "CURRENT-VALUFE [Sqmon sct parrivals_] LINK NO-=N2"

puts "CURRENT-VALUE :[$qmon2 set parrivals_] LINK N2->N3"
puts "CURRENT-VALUE :[$qmon7 set parrivals] LINK N3->N7"
puts "CURRENT-VALUE :[$qmon§ set parrivals_] LINK N7->Ng§"
puts "CURRENT-VALUE :[$gmon9 sct parrivals_] LINK N§->N¢9"
b

#tpacketdroped

proc abe5 {4 ¢

global gmonl gmon2 gmon3 qmon4 gmonS gmon6

puts "OBIECT-NAMLE : PACKETS DROPPED BIETWEEN LINKS"
puts " "

puts "CURRENT-VALUE :[3gmon1 set pdrops] LINK NO->N?2"
puts "CURRENT-VALUE [Sgmon2 set pdrops | LINK N2->N3"
puts "CURRENT-VALUE [$gmon3 set pdrops_] LINK N3->N4"
puts "CURRENT-VALUE :[Sqmon4 set pdrops] LINK N4->N5"
puts "CURRENT-VALUE :[$qmonS5 set pdrops] LINK N5->Ng"
h

#packetdroped
proc ab5 {} §
global gmon qmon2 gmon7 qmons8 qmon9

puts "OBJECT-NAME : PACKETS DROPPED BETWEEN LINKS"
puts " "

puts "CURRENT-VALUE {[Sqmon set pdrops_] LINK NO->N2"

puts "CURRENT-VALUES :[Sqmon2 set pdrops] LINK N2->N3"
puts "CURRENT-VALUE :[$qmon7 set pdrops] LINK N3-=N7"
puts "CURRENT-VALUE [$qmon§ set pdrops_j LINK N7->Ng"
puts "CURRENT-VALUE :[$qmon9 set pdrops_j LINK N8->No"

)
b

#packets departure

proc abc6 {} {

global gmon qmon2 gmon3 gmon4 qmon5

puts "OBJECT-NAME : PACKET DEPARTURE AT THE DESTINATION "
puts” "

puts "CURRENT-VALUE :[$qmon set pdepartures] LINK NI->N2"

puts "CURRENT-VALUL [$gmon2 sct pdepartures | FLINK N2- -N3"

puts "CURRENT-VALUE :[$qmon3 sct pdeparturcs] LINK N3->N4"

puts "CURRENT-VALUE :[$qmond4 set pdepartures | LINK N4->N35"

puts "CURRENT-VALUE :[$qmon5 sct pdepartures | LINK N5->Ng”

1
I

#packets departure

proc abs ! 4

global gmon qmon2 qmon7 gmon8 gmon9

puts "OBJECT-NAME : PACKETS DEPARTURE AT THE DESTINATION"
puts " "

puts "CURRENT-VALUE :[$qmon set pdepartures | LINK NO->N2"

puts "CURRENT-VALUES :[$qmon2 set pdepartures_] LINK N2->N3"
puts "CURRENT-VALUE :[$qmon7 set pdepartures | LINK N3->N7"
puts "CURRENT-VALUE :[$gmon§ set pdepartures_] LINK N7->N§"
puts "CURRENT-VALUE :[$qmon9 set pdepartures] LINK N8->N9"

1
!

proc abe8 {1 4
global gqmon qmon2 qmon3 qmon4 qmonS

puts "OBJECT-NAME : PACKETS ARRIVED FROM SOURCES"

puts " "

puts "CURRENT-VALUE :[$qmon set barrivals] LINK N1->N2"
puts "CURRENT-VALUES :[Sqmon2 set barrivals] LINK N2->N3"

puts "CURRENT-VALUE :[$qmon3 set barrivals_] LINK N3->N4"
puts "CURRENT-VALUE :[$qmon4 set barrivals] LINK N4->N35"
puts "CURRENT-VALUE :[$gmonS5 set barrivals_] LINK N5->N6"
}

proc ab8 {}

I
1

global gmon gmon2 qmon3 gmon7 qmon§&
puts "OBJECT-NAME : PACKETS ARRIVED FROM SOURCES"

puts " "

puts "CURRENT-VALUE :[$qmon set barrivals | LINK NO->N2"

puts "CURRENT-VALUES :[$qmon2 set barrivals_j LINK N2->N3"
puts "CURRENT-VALUE :{$gmon3 set barrivals | LINK N3->N7"
puts "CURRENT-VALUE :[$gmon7 set barrivals] LINK N7->N§"
puts "CURRENT-VALUE :[$qmon8 set barrivals] LINK N8->N9"

t
f

proc abc9 {}
{
global gmon gmon2 gmon3 qmon4 qmon5

puts "OBJECT-NAME : PACKETS DEPARTURE AT THE DESTINATION"

puts " "

puts "CURRENT-VALUE :[$qmon set bdepartures | LINK N|->N2”

puts "CURRENT-VALUES :[$qmon? set bdepartures] LINK N2->N3"
puts "CURRENT-VALUE :[$qmon3 set bdepartures] LINK N3->N4"
puts "CURRENT-VALUE :[$qmon4 set bdepartures] LINK N4->N35"
puts "CURRENT-VALUE :[$qmon5 set bdepartures_] LINK N5->Ng"

[
r

proc ab9 {} {

global gmon gmon2 gmon3 qmon7 gmon§

puts "OBJECT-NAME : PACKETS DEPARTURE AT THE DESTINATION "
puts " "
puts "CURRENT-VALUE :[$cim0n set bdepartures_] LINK NO->N2"
puts "CURRENT-VALUES :[$gmon2 set bdepartures] LINK N2->N3"
puts "CURRENT-VALUE :[$qmon3 set bdepartures 1 LINK N3->N7"
puts "CURRENT-VALUE :[$qmon7 sct bdepartures] LINK N7->N§"
puts "CURRENT-VALUE :[$qmons$ set bdepartures_j LINK N§->N9"

}

proc abc7 {}

{

global gmon]1 gmon2 qmon3 qmon4 gmon3

puts "OBJECT-NAME : PACKETS DROPPED "

puts " "
puts "CURRENT-VALUE :[$qmont set bdepartures] LINK N]->N2"
puts "CURRENT-VALUES [$qmon2 set bdepartures] LINK N2->N3"
puts "CURRENT-VALUE :[$gmon3 set bdepartures] LINK N3->N4"
puts "CURRENT-VALUE :[$qmond set bdepartures] LINK N4->N3"
puts "CURRENT-VALUFE :[$gmon3 set bdepartures] LINK N5--Ne”
}

proc ab7 {}
{

global gmon gmon2 qmon3 qmon7 gmon§
puts "OBJECT-NAME : PACKETS DROPPED "
puts " N

puts "CURRENT-VALUE :[Sqmon set bdepartures_] LINK N1->N2"
puts "CURRENT-VALUES [$gmon2 set bdepartures] LINK N2->N3"
puts "CURRENT-VALUE :[3gmon3 sct bdepartures | LINK N3->N7™

puts "CURRENT-VALUE :[$gmon7 set bdepartures] LINK N7->Ng&"
puts "CURRENT-VALUE :[$gqmon8 sct bdepartures 7 LINK N8->N9"

1
I

#Schedule events for the CBR agents

$ns at 0.5 "Scbr0 start"
$ns at 1.0 "$cbrl start"
$ns at 4.0 "$cbrl stop”
$ns at 4.5 "$cbr0 stop”

#Call the finish procedure after 5 seconds of simulation time
proc mainfunc {}

{
puts "ENTER UR CHOICE"
puts "1.LABEL-SWITCHED-PATH-ONE-OBJECTS"
puts "2.LABEL-SWITCHED-PATH-SECOND-OBJECTS"
puts "3.BANDWIDTH-CALCULATION-IN-MEGABITS"
puts "4 VIEW THE GRAPH"

gets stdin first

if { Sfirst==11}{
"callinglsp"
;

it { Sfirst==2} {
"startinglsp"

}
I

if {Sfirst==13} {
”Setup"

}

if { $first==41 ¢
"finish"

)
f

}

proc callinglsp {} {

global gmon gmon1 gmon?2

puts "ENTER OBJECT U WANT TO SEE IN LSP["
PULS "% 335 ke e o ok oo oo e o ok 5 oo o s 0
puts "a. MPLS VERSION NO"

puts "b. LSP FROM"

puts "c¢. LSP TO"

puts "d. PACKETS ARRIVAL"

puts "e. PACKETS DROPPED"

puts "f. PACKETS DEPARTURE"

puts "g. PACKETS DROPPED IN BY TLS"

puts "h. PACKETS ARRIVED IN BYTES"

puts "i. PACKETS DEPARTURED IN BYTES"

gets stdin objno
if { Sobjno == "a" } {
“abe "

i
H

if {Sobjno == "p" [
"abc2"

!
f

if {Sobjno == "¢"}
"abe3"
¥

if {Sobjno =="q"} {
"abc4"

i
)

if {$objno == "e" } {
"abcs"
}

if {Sobjno == "f" } {
llabc6!l
;

if {Sobjno == "g" } {
"abc7"

}

if {$Sobjno =="h"} {
"abc8"

1
f

if {$Sobjno =="i"} {
"abc9"

]
!

puts "DO U WANT TO CONTINUE ym"
gets stdin ch

if { $ch=="y"} {
"callinglsp"
}

if {Sch=="n"} {

"mainfunc”

1
f

}

proc startingisp {} 4

global gmon gmon! gmon2

puts "ENTER OBJECT U WANT TO SEE in LSP2"
UL "3 ko ke o e et o o o e o ko o o s oo o oo o 1
puts "a. MPLS VERSION NO"

puts "b. LSP FROM"

puts "¢, LSP TO"

puts "d. PACKETS ARRIVAL"

puts "e. PACKETS DROPED"

puts "f. PACKET DEPARTURE"

puts "g. PACKETS DROPED IN BYTLES"

puts "h. PACKETS ARRIVAL IN BYTES"

puts "i. PACKETS DEPARTURE IN BYTES"”

gets stdin objnol

if { Sobjnol =="a" } {
"abl"

h

if {$objnol == "p" 1 {
"ab2"

}

if {Sobjnol == "¢"} |
“ab3ll
}

if {Sobjnol == "d"} {
Nab4”
;

if {$objnol == "e" | ¢
||ab5"

1
{

if {$objnol == "f" } §
"ab6ll
}

if {Sobjnol =="g" } {
'l|ab7'l

1
H

if {Sobjnol =="h"} ¢
llab8"

1
il

if {Sobjnol == "j"} {
Ilab9|l
}

puts "DO U WANT TO CONTINUE yes/no "
gets stdin ch

if { Sch == "yes" } {

"startinglsp"

}

if { Sch=="no" } {

"mainfunc"

i
[
1
)

proc setup { } {
global sink0 sink1
#Get an instance of the simulator
set ns [Simulator instance]
#Set the time after which the procedure should be called again
set time 0.5
#How many bytes have been received by the traffic sinks?
set bw0 [$sink0 set bytes]
set bwl [Ssink] set bytes]

#Get the current time

set now [$ns now]

#Calculate the bandwidth (in MBIit/s) and write it to the files

puts "BANDWIDTH USED BY SOURCE] = Snow [expr $bw0/Stime*8/1 000000]"
puts "BANDWIDTH USED BY SOURCE2 = $now [expr Sbw 1/$time*8/1000000]"

puts "u want to continue yes or no "

gets stdin g2

if { $g2 =="yes" } {
“setup“

h
if {$g2=="no"} {

"mainfunc"

i
}

#3ns at 1000.0 "finish"

$ns at 4.0 "mainfunc"

#Run the simulation

$ns run

