AUTOMATED ACCIDENT
IDENTIFICATION SYSTEM

‘/P O, o2 Project Report

Submitted by

Bhavna. M
Gokila Priya.D
Arun Kumar.S

Naveed.N

Guided by

x x Mr. T. Vijayakumar, ML.E.,
* * Lecturer,
* Department of EEE.

2002 - 2003

In partial fulfillment of the requirement

for the award of Degree of
BACHELOR OF ENGINEERING in
ELECTRICAL AND ELECTRONICS ENGINEERING

Department of Electrical and Electronics Engineering

Kumaraguru College of Technology
Coimbatore — 641006.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ﬁ

Kum araguru College of Technology

180 9001:2000

COIMBATORE-641006.

CERTIFICATE

This is to certify that the project

AUTOMATED ACCIDENT IDENTIFICATION
SYSTEM

Has been submitted by

1. Bhavna.M 99EEE12
2. Gokila Priya.D 99EEE16
3. Arun Kumar. S 9IEEEQ7
4. Naveed.N 99EEE32

In partial fulfillment of the requirements for the award of degree of
Bachelor of Engineering in Electrical and Electronics Engineering branch of
the Bharathiar University, Coimbatore — 641006 during the academic year
2002 —2003.

¢ .
sy et

8uide Professor and Head

Certified that the candidates mentioned above were examined In
project work viva-voce heldon _20-03-200%

D o2 NVAZN A

“iternal Examiner External Examiner

ACKNOWLEDGEMENT

With deep sense of gratitude we express our heartfelt thanks to
our guide Mr.T.Vijayakumar, M.E., Lecturer in EEE for his guidance,
valuable suggestions and constant interest evinced by him throughout the

course of the project work.

We are very much indebted to our Head of the Department
Dr. T. M. Kameswaran, B.E., M.Sc., (Engg.), Ph.D., MISTE, St M.LEEE.E,,
FIE, for the encouragement and guidance he has given us. We are highly
grateful to both our assistant professors, Mr.V.Duraisamy, M.E., MISTE,
AMIE, MSSI, MLEEE. and Mr.K.Rajan, M.E.,MISTE., for their

remarkable support.

Our sincere thanks is due to our principal Dr.K.K.
Padmanabhan, B.Sc (Engg.), M. Tech., Ph. D., M.IS.T.E., FLE. for having

made available all the facilities to do this project.

We have no words to express our profound gratitude to our
class advisor Mrs.R.Mahalakshmi, M.E. for her valuable help in doing the

project.

We are indebted to the support, encouragement and help

rendered by all the faculty members and non-teaching staff of EEE

Department.

Last but not the least we thank our dear friends for helping us a

lot with their innovative ideas.

SYNOPSIS
’

SYNOPSIS

The never-ending saga of accidents happening due to vehicles in India has
led to the inevitable loss of life and property. The number of vehicles on road is
increasing very rapidly and the numbers of accidents are also on the rise. Though,
the requirements of safety is more, we can very much prevent the loss of life by
knowing where exactly the accident has occurred so that we can get the injured to
the hospital for treatment without any time delay. The project that we are
presenting is a miniature model of how the location of the vehicles can be

determined using infrared sensors.

Our project compromises these situations and provides suitable
identification of any vehicle, which has met with an accident, and its location of
accident with precision. The time at which the accident has taken place can also
be determined. Incase an accident takes place here simulated by tapping the
piezoelectric sensor; the signals given to the micro controller are sent to the PC
via RS232C which can be monitored and thereby being able to provide the critical

help required under such dire circumstances.

DEDICATED TO OUR BELOVED PARENTS AND FRIENDS

FOR THEIR ENCOURAGEMENT AND SUPPORT.

CONTENTS
;

CONTENTS

Chapter Page no.
CERTIFICATE

ACKNOWLEDGEMENT

SYNOPSIS

CHAPTER1 1
1.1 INTRODUCTION 2
1.2 NEED FOR THE PROJECT 3
CHAPTER 2 5
2.1 MICRO CONTROLLER BLOCK DIAGRAM 6
2.2 HARDWARE DETAILS 7
2.3 FUNCTIONAL ASPECTS 25
CHAPTER 3 26
3.1 MAIN BLOCK DIAGRAM 27
3.2 OVERALL OPERATION 28
CHAPTER 4 30
4.1 HARDWARE DESCRIPTION 31
4.2 INFRARED CIRCUIT 32

4.3 PIEZOELECTRIC SENSOR 38

4.4 ACCIDENT ANNOUNCEMENT CIRCUIT

4.5 POWER SUPPLY BOARD
CHAPTER 5

5.1 NEED FOR RS232

5.2 HARDWARE DETAILS
5.3 FUNCTIONAL ASPECTS
CHAPTER 6

6.1 MICRO CONTROLLER CODING
6.2 C PROGRAM
CONCLUSION

OUTPUT

REFERENCES

APPENDIX

40

44

47

48

50

53

55

56

70

80

83

84

86

CHAPTER 1
/

CHAPTER 1

1.1 INTRODUCTION

Our project titled Automated Accident Identification System
aims at providing a solution to reduce the number of lives lost due to
accidents going unnoticed. The vehicle may be a two-wheeler or four-
wheeler with a battery connection. The vehicle is simulated by means of two
wheels with infrared sensors fixed on either side to monitor direction of
movement of the vehicle. The direction is continuously fed into the micro
controller and that will be transmitted to PC through digital modulation
techniques. Also a vibration sensor is fixed and depending on the amplitude
of vibrations an alarm will be set off. On the PC the location of the vehicle

can be tracked based on the data being transmitted from the micro controller.

The micro controller that we are using is AT89CS1. It is
manufactured by ATMEL INC., USA. This micro controller is an advanced
version of INTEL8051 micro controller. The advantage of using this micro
controller is that it is cost effective, has low power consumption and a 4K

flash memory.

1.2 NEED FOR THIS PROJECT

The rise in number of vehicles on the road nears 12.5%

annually and human population is also steadily increasing. Life has become

a race against time without even realizing it. All these factors have lead to a

drastic increase in the number of life threatening accidents thereby

worsening the complications when lives are at stake. It was also analyzed

that most of the people killed in such fatal accidents died before they

received any basic medical treatment the main reason being the problem of

identifying where exactly the accident has occurred and the time delay in

taking the patient to the hospital.

STATISTICS TABLE

Nature During 1997, | During 1998 During 1999 During 2000 | During 2001

of Number of | Number of | Number of | Number of | Number of

Accidents | accidents and | accidents and | accidents and | accidents accidents
people people people and people | and people
involved involved involved involved involved

Fatal 7947, 8756 8510,9801 8734, 9653 8269, 9300 | 8579,9571

Grievous | 4542, 6557 6562, 8525 527§, 7287 5278,8496 | 5442, 8354

Non 8352 789 6845 6239 6994

Injured

A survey done by Government of TamilNadu State Transport
Authority has been shown above. It has realized some harsh facts. Thereby
this project aims at reducing the number of fatalities involved if not the
number of accidents. Our project will not only allow the personals to know
whether the accident has occurred or not but also the exact location of where
the accident has occurred. For this we have done Automated Accident

Identification System.

CHAPTER 2

/

CHAPTER 2

g
"

"
"

PROGRAM
ADCHESS
REGISTER
BUFFER
PC
NCREMENTER |

PROGAAM
COUNTER
OPTR

__HI___

1

1

1

1

H PUNEUY S P B SRS PR L L L Lot E
L. e e —— o 8 e e et 2

Jaly :

TINNG
AHD

—1—# CCATRCL
0sc

i

o0 m r m

AMn it ¥ >

< g 4--p = [o] 3= £y BS e

m m.Invm wg 25 m »
ol I ™, mm \".l”

5 18 b . 21
] ge —

m o e -1 il £ — >
~ m k& > m 1) Ll

M Sain Ele—nE - gl

- s e 3 ol 2B lep| B [#> 2

= s 1m 5 > 83 Tl e

. : 3 Arine

3 s

& " 8 mm

Z g Ba

Q % ~

@) B ’ nm

=) g

=4

@)

|}

=

-

«

SLEPROS d—

R { Ve

2.2 HARDWARE DETAILS

The AT89C51 is a low power, high performance CMOS 8 bit
microcomputer with 4k bytes of flash programmable and erasable read only
memory (PEROM). The device has been manufactured using Atmel’s high
density, nonvolatile memory technology and is compatible with the industry
standard MCS- 51 instruction set and pin out. The on-chip Flash allows the
program memory to be reprogrammed in-system or by a conventional non-
volatile memory programmer. By combining an 8-bit CPU with Flash on a
monolithic chip the Atmel AT89C51 is a powerful microcomputer, which
provides a highly flexible and cost-effective solution to many embedded

control applications.

SALIENT FEATURES:

1. 8- bit CPU optimized for control applications.
2. Extensive Boolean processing capabilities.

3. 64 k program memory address space.

4. 64 k program memory data space.

5. 4 k bytes of on- chip program memory.

6. 128 bytes of on- chip data RAM.

732 bi-directional and individually addressable input/output lines.

8. Two sixteen bit timers/counters.
9. Full duplex UART.
10. 6- source/5- vector interrupt structure with two priority levels.

11. On- chip clock oscillator.

MEMORY ORGANISATION:

The AT89C51 has separate program and data memory. There
are two types of memories available. One is read only memory (ROM) type
where in you can only read the data’s stored in it. Another type is Read
Write memory or Random Access Memory (RAM). The program memory
can only be read and not written into. The read strobe for external program
memory is the PSEN (Program Store Enable). The data memory allows up to
64 k bytes of external RAM to be addressed. The CPU generates RD and

WR signals as needed during external data memory access.

ACCESSING EXTERNAL MEMORY:
For fetching from the external program memory 16 /O lines
(port O and port 2) are dedicated for bus functions. The address size for

accessing the program memory is 16-bit and for accessing the data memory

it can be either16-bit or 8-bit depending on the instruction being used. The
external memory program is accessed under two conditions:

1. When the EA (active low) is active.

2. When the program counter contains a number larger than OFFFH
Port 0 provides the lower order 8 bits of the address and Port 2 provides the

higher order 8 bits.

PORT O:

It is an 8-bit open drain bi-directional /O port. As an output
port, each pin can sink 8 TTL inputs. If 1’s are written to port 0 pin, the pin
can be used as high impedance inputs. Port 0 can also be configured to act as
a lower order data/address bus during access to external program and data
memory. It also receives the code bytes during programming and outputs the

code bytes during verification.

PORT 1:

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups.
The port 1 output buffer can sink /source four TTL inputs. When 1’s are
written to port 1 pins they are pulled high by the internal pull-ups and can be

used as inputs. As inputs, port 1 pins that are externally being pulled low

will provide source current (lir) because of internal pull-ups. Port 1 also

receives the lower order bytes during flash programming and verification.

PORT 2:

It is an 8-bit bi-directional /O port with internal pull-ups. If 1’s
are written to port 2 they can be used as inputs. As inputs, port 2 pins that
are externally being pulled low will source current (I il) because of the
internal pull-ups. Port 2 emits the higher order address byte during fetch
cycle from external program memory and during accessing from external
data memory that also use 16 bit addresses. Port 2 also receives the higher
order address bits and some control signals during flash programming and

verification.

PORT 3:
It is an 8-bit bi-directional I/O port with internal pull-ups. The
port 3-output buffer can sink four TTL inputs. When 1’s are writ ten to port 3
pins they are pulled high by the internal pull-ups and can be used as inputs.
Special functions of Port 3 pins:
P3.0- RXD (Serial input port)

P3.1- TXD (Serial output port)

P3.2- INTO (Active low pin — External interrupt 0)
P3.3- INT1 (Active low pin — External interrupt 1)
P3.4- TO (Timer O external input)

P3.5- T1 (Timer 1 external input)

P3.6- WR (active low)

P3.7- RD (active low)

RST:

Reset Input. A high on this pin for two machine cycles while
the oscillator is running will reset the device.
ALE/PROG:

Address Latch Enable output pulse for latching the lower byte
of the address during accesses to external memory. This pin is also the
program pulse input during flash programming. In normal operation ALE is
emitted at a constant rate of 1/6™ the oscillator frequency, and may also be
used for external timing or clocking purpose. If desired, ALE operations can
be disabled by setting bit 0 of SFR location 8Eh. With the bit set ALE is

active only during MOV X instruction.

PSEN:

Program Store Enable is the read strobe to external program
memory. While AT89C51 is executing code from external program memory,
this pin is activated twice each machine cycle, except that two such

activations are skipped during each access to external data memory.

EA/VPP:

External Access Enable. It must be strapped to GND in order to
enable the device to fetch code from external program memory locations
starting from 0000H to FFFFH. EA should be strapped to Vcc for internal

program executions.

The AT89C51 also contains a number of special function registers. They are

ACCUMULATOR:
This a main register all data transfer instructions are carried out
using this register. Data can be written and stored into the accumulator. It is

a multipurpose register.

B REGISTER:
The B register is used during multiply and divide operations.
For other instructions it can be used as a scratch pad register. The B register

is used in most of the instructions and has almost equal importance.

PROGRAM STATUS WORD REGISTER:
This register contains program status information. It is an 8-bit

register containing the following bits.

CY AC FO RS1 RSO ov - P
(MSB) (LSB)
CY - Carry Flag

AC - Auxillary Carry
FO — Available to the user for general purposes
RS1 - Register bank control bits 1 and 0
RSO - Set/cleared by software to determine working register bank
OV - Overflow Flag
- - User defined flag

P- Parity Flag

STACK POINTER:

The stack pointer register is 8-bit wide. It is incremented before
data is stored during PUSH and CALL instructions. The stack can reside at

point in the RAM. The stack pointer is initialized to 07H.

DATA POINTER:
The data pointer (DPTR) consists of a high byte (DPH) and a
low byte (DPL). Its function is to hold a 16-bit address. It maybe

manipulated as a 16-bit register or as two 8-bit registers.

SERIAL DATA BUFFER:

The serial data buffer actually consists of two seperate registers
a receive buffer and a transmit buffer register. When data is moved to
SBUF, it goes to the transmit buffer, where it is held for serial transmission.

When data is moved from the SBUF it is from the receive buffer.

CONTROL REGISTERS:
There are a number of special function registers like TCON,
TMOD, SCON, IE, IP etc. These registers contain control and status bits for

the interrupt system, timers/counters and serial port.

TIMER REGISTERS:
Register pairs THO and TH1 & TLO and TL1 are the 16-bit

counter registers for the timers/counters 0 and 1 respectively.

TIMERS/COUNTERS:

The AT89C51 has two 16 bit timer/counter registers for Timer
0 and Timerl. They can be configured to work either as a timer or as a
counter. As a timer the register is incremented every machine cycle. Thus
the register counts machine cycles. Each machine cycle consists of 12
oscillator periods; the count rate is 1/12 of the oscillator frequency. As a
counter the register increments if there is a 1 to 0 transition in its
corresponding external input pin TO and T1. There are no restrictions on the
duty cycle of the external input signal but it should be held for at least one
machine cycle to ensure that a given level is sampled at least once before it
changes. Timer0 and Timerl have four operating modes (13-bit timer, 16-

bit timer, 8-bit auto-reload and split timer). The four modes are,

MODE 0:
Both the timers in mode 0 are 8-bit counters with a divide by 32

prescaler. The timer register acts as a 13-bit register. As the count rolls from

all 1’s to 0%, it sets the timer interrupt flag TF1.The counted input is
enabled to the timer when TR1=1 and GATE=0 or INT1=1. The 13bit
registers consists of all 8 bits of TH1 and lower 5 bits of TL1.Setting the
run flag TR1 does not clear the registers. Mode 0 operation is the same for
Timerl and Timer0. There are two different gate bits one for Timerl and

the other for TimerO.

MOPDE 1:

Mode 1 is the same as Mode 0 except that here all the 16 bits
are used. The clock is applied to the combined high and low timer registers
(TL1 and TH1). As clock pulses are received the timer counts up 0000H,
0001H etc. An overflow occurs on the FFFFH to 0000H flag. The timer

continues to count.

, TL1 THI TF1
Timer] 8bit 8 bit >
Clock

MODE 2:

Mode 2 configures the Timer register as an 8-bit counter with

automatic reload. Overflow from TL1 not only sets TF1, but also reloads

TL1 with the contents of TH1, which is preset by software. The reload

leaves TH1 unchanged. Mode 2 operation is the same for Timer/Counter 0.

TCON REGISTER:

TF1 TR1 TFO TRO IE1 IT1 IEQ ITO

TF1- Timer 1 overflow flag
TR1- Timer 1 run control bit
TFO- Timer 0 overflow flag
TRO- Timer O run control bit
IE1- Interrupt 1 edge flag

IT1- Interrupt 1 type control bit
IEO- Interrupt O edge flag

ITO- Interrupt O type control bit

MODE 3:

Timerl in mode 3 simply holds its count. The effect is the same
as setting TR1=0. Timer O in mode 3 establishes TLO and THO as two
separate counters. TLO uses the Timer0 control bits. THO is locked into

Timer function (counting machine cycles) over the use of TR1 and TF1 from

Timerl. THO now controls the Timerl interrupt. With Timer0 in mode 3 in
ATS89C51 can appear to have three Timer/Counters. When TimerO is 1n
mode3, Timerl can be turned on and off by switching it out of and into its
own mode3. In this case, the serial port as a baud rate generator or in any

application not requiring an interrupt can still use Timerl.

TMOD REGISTER:
MSB LSB
Gate C/T M1 MO Gate C/IT M1 MO
TIMER1 TIMERO

Gate-gating control when set Timer/Counter X is enabled only while INT X
pin is high and TRX control pin is set. When cleared, Timer X is enabled
whenever TRX control bit is set.

C/T (T being active low)-Timer or Counter selector cleared for Timer
operation (input from internal system clock). Set for Counter operation
(input from TX input pin).

M1-mode bit 1

MO-mode bit 0

SERIAL INTERFACE:

The serial port is full duplex which means it can transmit and
receive simultaneously. It is also receive-buffer which means it can begin
receiving a second byte before a previously received byte is read. Writing to
SBUF loads the transmit register and reading the SBUF accesses the

physically separate receive register. It operates in four modes,

MODE 0:
Serial data enters and exits through RXD. TXD outputs the shift
clock. Eight data bits are transmitted/received, with the LSB first. The baud

rate is fixed at 1/12 of the oscillator frequency.

MODEI:
10 bits are transmitted through TXD or received through RXD.
A start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive; the stop

bit goes RB8 in special function register SCON. The baud rate is variable.

MODE 2:
Here 11 bits are transmitted through TXD and received through

RXD:; a start bit (0), 8 data bits (LSB first) a programmable ninth data bit

(TB8 in SCON) can be assigned the value of 0 or 1. For example the parity
bit can be moved into TB8. On receive the ninth data bit goes into RB8 in
Special Function Register SCON, while the stop bit is ignored. The baud

rate is programmable to either 1/32 or 1/64 of the oscillator frequency.

MODE 3:

11 bits are transmitted (through TXD) or received (through
RXD); a start bit (0), 8 data bits (LSB first), a programmable ninth data bit
and a stop bit (1). In fact, mode 3 is the same as mode 2 in all respects
except baud rate, which is variable in mode 3. In all four modes transmission
is initiated by an instruction that uses SBUF as a destination register.
Reception is initiated in mode O by the condition R1=0 and
REN=1.Reception is initiated in the other modes by incoming start bit if

REN = 1.

SERIAL PORT CONTROL REGISTER:

SMO SM1 SM2 | REN TBS | RBS TI \ RI \

(MSB) (LSB)

SMO- Serial port mode bit 0

SM1- Serial port mode bit 1

SM2- Enables the multiprocessor communication in modes 2 and 3. In mode
2 or 3 if SM2 is set to 1 then R1 will not be activated if the received 9™ data
bit RBS is 0. In model if SM2 = 1, then R1 will not be activated if valid stop
bit was not received. In mode 0 SM2 should be zero.

REN- Enable serial reception.l Set by software to enable reception and
cleared by software to disable reception.

TB8— The 9™ data bit that will be transmitted in modes 2 and 3. Set or
cleared by the software.

RBS- In modes 2 and 3 the 9" data bit that was received. In mode 1 if
SM2=0, RB8 is the stop bit that was received in mode 0.

TI- Transmit Interrupt flag. Set by hardware at the end of the 8™ bit time in
mode O or at the beginning of the stop bits in the other modes, in any serial
transmission.

RI- Receive Interrupt flag. Set by hardware at the end of the 8" bit time in
mode 0 or halfway through the stop bit time in the other modes in any serial

reception.

INTERRUPTS:

The AT89C51 provides five interrupt sources, two external
interrupts, two timer interrupts and a serial port interrupt. The external
interrupts INTO and INT1 can each be either level activated or transition
activated, depending on bits ITO and IT1 in register TCON. The flag that
actually generates these interrupts are the IEQ and IE1 bits in TCON. When
the service routine is vectored hardware clears the flag that generated the

external interrupt only if the interrupt was transition activated.

The TimerO and the Timer] interrupts are generated by TFO and
TF1 which are set by a roll over in their respective Timer or Counter
register. When a Timer interrupt is generated, the on-chip hardware clears

the flag that generated it when the service routine is vectored.

The logical OR of RI and TI generate the serial port interrupt.
Neither of these flags is cleared by hardware when the service routine is
vectored. In fact the service routine must normally determine whether RI or

TI generated the interrupt, and the bit must be cleared in software.

INTERRUPT ENABLE REGISTER (IE):

(MSB)

(LSB)

EA ET2 ES ET1 EX1 ETO

EXO0

EA - Global Enable/Disable

__ =Undefined/ Reserved
ET2-Timer2 interrupt enable bit
ES -Serial port interrupt enable bit
ET1-Timer] interrupt enable bit
EX1-External interrupt 1 enable bit
ETO-Timer 0 interrupt enable bit

EXO0-External interrupt O enable bit.

INTERRUPT PRIORITY REGISTER (IP):

(MSB)

(LSB)

PT2 PS PT1 PX1 PTO

PX0

-Reserved

-Reserved
PT2 -Timer 2 interrupt priority bit
PS -Serial port interrupts priority bit
PT1 -Timer linterrupt priority bit
PX1 -Extemal interrupt 1 priority bit
PTO -Timer O interrupt priority bit

PXO0 - External interrupt O priority bit

2.3 FUNCTIONAL ASPECTS:

The micro controller receives the various data from the IR
sensors and the vibration sensor (piezo electric plate). The data concerning
the direction of rotation of the wheels is given to the port pins P1.0 (Right),
P1.1 (Left), P1.2 (Reverse) and P1.3 (Forward). The signal from the
vibration sensor is given to the interrupt pin P3.2 (INTO). The port pins P3.0
and P3.1 are used for interfacing with RS-232-C. A crystal clock is

connected to pins 18 (XTAL2) and 19(XTAL1) of the IC AT89C5I.

CHAPTER 3
f

CHAPTER 3

3.1 MAIN BLOCK DIAGRAM
IR
N TRANSMITTER/
" WHEEL RECIEVER
RWARD/
EVERSE
YVEMENT
' TECTION IR
ISING IR » TRANSMITTER/
ENSORS RECIEVER
IR
D WHEEL "1 TRANSMITTER/
GHT /LEFT RECIEVER
OVEMENT
CTECTION
JSING IR IR
SENSORS TRANSMITTER/
—_ RECIEVER
PIEZO ELECTRIC
VIBRATION
SENSOR
(INDICATION OF
ACCIDENT)

MICRO

CONTROLLER

———— > RS232C

COMPUTER

ACCIDENT
ANNOUNCEMENT
CIRCUIT

ﬂk

3.2 OVERALL DESCRIPTION

Our project titled Automated Accident Identification System
provides a means of detecting and determining the location of any accident
involving vehicles. Since there are practical difficulties in using an actual
vehicle to present our idea we have made use of two wheels to simulate the

required effect.

Infrared sensors are placed on either side of the wheels for
detection of movement. When the wheels are made to rotate due to the
hatching made on the wheel surface the following logical combinations of 0
0,10,11, 0 1. This logic is obtained as a result of the hatching, which is in
black and white. So when a black comes in between the sensors logic O 1s
obtained and a white causes logic 1. Four sensors are made use of here and
four directions can be determined forward, reverse, right and left. The
signals obtained from the IR sensors are sent to the IR transmitter and
receiver circuits which process the signals by comparing it to a particular
threshold level and switching it to 5 V thus the relevant data is obtained.
Based on these data’s the direction of movement of the vehicle can be
ascertained. These data’s are continuously being sent to the micro controller

through the port pins.

Forward logic—-00,10,11, 01
Reverse logic—00,01,11,10
Right logic-00,10,11,01

Leftlogic-00,01,11, 10

Generally any sudden jerks will cause an abrupt increase in
vibrations this concept is made use of here. A piezoelectric plate is made
use of here. By tapping the vibration sensor (piezo electric plate) an accident
can be simulated. The signal obtained from the piezoelectric plate is sent to
the accident announcement circuit where the signal is amplified and
compared. If the signal is above a particular level then indication of an
accident will result. This signal is sent to the interrupt pin of the micro
controller. If even after a particular period of time the vehicle does not move
it will indicate that an accident has taken place and an alert will be sent. An

RS232 is used for communication between the micro controller and the PC.

CHAPTER 4
/

CHAPTER 4

4.1 HARDWARE DESCRIPTION
The hardware basically consists of four important sections,
which perform the processes of obtaining the signals and regulating them.
The four sections are the,
1. IR Circuit
2. Piezo Electric Plate
3. Accident Announcement Circuit

4. Power Supply Board

5

Infra Red Sensor

+5V

+5U

~ o~

INFRARED DIODES:

Optoelectronics is the integration of optical principles and semi-
conductor electronics. Optoelectronic components are reliable, cost effective
sensors. Infrared emitting diodes are solid-state gallium arsenide devices that
emit a beam of radiant flux when forward biased. When the junction is
forward biased, electron from the N region will recombine with excess holes
of the P material in a specially designed recombination region sandwiched

between the P&N type materials.

During this recombination process, energy is radiated away
from the device in the form of photons. The generated photons will either be
reabsorbed by the structure or leave the surface of the device as radiant
energy. A few areas of application of such devices include card and paper

tape readers, shaft encoder, data transmission systems and intrusion alarms.

OVERALL DESCRIPTION:

At the transmitting side, when the IR emits a beam of radiant
flux, a voltage will be developed in one input of the comparator. Let that
voltage be Vi A reference voltage V is developed across the other input.

The comparator compares these two voltages (V; & V) and the output of

the comparator is positive and negative going pulses. These pulses are given
to the switching circuit to get logic 1 and logic 0.The circuit consists of the
following

1. Voltage Divider Circuit

2. Comparator

3. Switching Circuit

VOLTAGE DIVIDER:

A potential or voltage divider provides a convenient way of
getting a variable voltage from a fixed voltage supply. In general, if two
resistors with values R; and R, are connected in series across a supply
voltage V and the voltages developed across each are V; and V;

respectively, then, if I is the current flowing, we can say:

Vi=IXRs. (2)

V=V +V,=IR+Ry). 3)
Dividing (1) by (3) we obtain:

Vi/V = [*R)/(T*(R1#+R2))
Multiplying both sides by V gives:

Vi=R; * V)/(R1+Ry)

Similarly from (2) and (3) we get:

V, = (R * V)/(R14+R2)

COMPARATOR:

A comparator is a circuit, which compares a signal voltage
applied at one input of an op-amp with a known reference voltage at the
other input. It is basically an open loop op-amp with an output +Vi (= Vo).
It may be seen that the change in the output state takes place with an
increment in input V; of only 2 mV. This is the uncertainty region where
output cannot be directly defined. There are basically two types of

comparators:

1. Inverting comparator

2. Non-Inverting comparator

In case of inverting comparator a fixed reference voltage Vet 18
applied to (+) input and a time varying signal V; is applied to (-) input. The

output voltage is at +V, for Vi< Vgeand V, goes to - Vi for Vi > Vi,

In case of non-inverting comparator a fixed reference voltage
V¢ is applied to (-) input and a time varying signal V; is applied to (+) input.

The output voltage is at _V,, for Vi< Vi and V, goes to + Ve for Vi> Vi

SWITCHING CIRCUIT:

Many solid-state devices are also used in power control
applications, and the simplest of these is the discrete bipolar transistor,
which is usually used in the switching mode. In the case of the NPN
transistor the switch load is wired between collector and supply positive, and
in the case of PNP device it is wired between collector and the zero volt. In
both cases the switch-driving signal is applied to base via R, which has a

typical resistance about twenty times greater than the load resistance value.

In the NPN circuit Transistor Q1 is cut off (acting like an open
switch), with its output at the positive supply voltage value, with zero input
signal applied, but can be driven to saturation (so that it acts like a closed
switch and passes current from collector to emitter) by applying a large
positive input voltage, under which condition the output equals Ql’s
saturation voltage value (typically 200mV to 600 mV). The action of the

PNP circuit is the reverse of that described above, and Q1 is driven to

saturation (with its output a few hundred millivolts below the supply voltage
value) and passes current from emitter to collector with zero input drive
voltage applied, and is cut off (with its output at zero volts) when the input

equals the positive supply rail value.

4.3 PIEZO ELECTRIC SENSOR

The piezo electric material is one in which electric potential
appears across a certain surface of crystal if the dimensions of the crystal are
changed by applying a mechanical force. The potential developed is due to

the displacement of the charges. This effect is known as piezo electric effect.

The piezoelectric materials include quartz, ceramics A and B,
Rochelle salt, Ammonium dihydrogen phosphate, dipotassium tartarate,
lithium sulphate. Except for quartz and ceramics A and B the rest are man
made crystals grown from aqueous solution under carefully controlled
condition. The ceramic materials are polycrystalline in nature basically made
of barium titanate. They do not have piezo electric properties in their
original states but these properties are produced by special polarizing

treatment.

The piezo electric effect can be made to respond to mechanical
deformations of the material in many different modes. The modes are
thickness expansion, transverse expansion, thickness shear and face shear. A
piezo electric element used for converting mechanical motion to electrical

signals maybe thought as charge generator and capacitor. Mechanical

deformation generates a charge and this charge appears as voltage across the
terminals. Piezo electric effect is also direction sensitive. Tensile force
produces a voltage of one polarity while compressive force produces a

voltage of another polarity.

4.4 ACCIDENT ANNOUNCEMENT CIRCUIT

+12¥

330K o~

—AAA

0.1}IF 0K

Piezo Electric Plate

This accident announcement circuit is used to determine
whether an accident has occurred or not. The accident is simulated by means
of tapping the vibration sensor (piezo electric plate). Based on the intensity
of vibration a signal will be sent to the micro controller depending upon the

output of this circuit. It consists of the following sections.

1. Amplifier

2. Half wave rectifier
3. Comparator

4. Voltage divider

5. Switching circuit

AMPLIFIER:

The piezo electric plate will generate voltage in the range of 5
to 10 mV whenever a mechanical force is applied. This signal is given to the
amplifier circuit (non inverting operational amplifier) and gets amplified to

about 100 times the original value. The operational amplifier used here is

TLOS2.

HALFWAVE RECTIFIER:
The amplified signal is sent to the rectifier, which consists of a
diode in which the positive half of the ac signal is allowed to pass and the

remaining is cut off. To remove any further ripple content a filter is used.

COMPARATOR:

A comparator is a circuit, which compares a signal voltage
applied at one input of an op-amp with a known reference voltage at the
other input. It is basically an open loop op-amp with an output £V (= Veo).
It may be seen that the change in the output state takes place with an
increment in input V; of only 2 mV. This is the uncertainty region where
output cannot be directly defined. There are basically two types of
comparators:

1.Inverting comparator
2.Non - Inverting comparator

The operational amplifier used here also is TLO82 this 1is
actually a dual operational amplifier and so it performs the operation of both

amplifier and comparator in this accident announcement circuit.

SWITCHING CIRCUIT:

Many solid-state devices are also used in power control
applications, and the simplest of these is the discrete bipolar transistor,
which is usually used in the switching mode. In the case of the NPN
transistor the switch load is wired between collector and supply positive, and
in the case of PNP device it is wired between collector and the OV. In both
cases the switch-driving signal is applied to base via R;, which has a typical

resistance about twenty times greater than the load resistance value.

In the NPN circuit Transistor Q1 is cut off (acting like an open
switch), with its output at the positive supply voltage value, with zero input
signal applied, but can be driven to saturation (so that it acts like a closed
switch and passes current from collector to emitter) by applying a large
positive input voltage, under which condition the output equals Ql%s

saturation voltage value (typically 200mV to 600 mV).

4.5 POWER SUPPLY UNIT

Most electronic circuits work only with low DC voltages so we
need a power supply unit that will provide the appropriate voltage. This unit
consists of transformer, rectifier, filter and regulator. AC voltage typically
230V rms is given to the primary side of the transformer, which steps the
voltage down to the desired level of AC voltage. A diode rectifier is used to
obtain a full-wave rectified voltage that is initially filtered by a simple
capacitor filter to produce a DC voltage. This resulting DC voltage usually
has some ripple or AC voltage variations. A regulator circuit is used to
reduce the ripple content and also to maintain the output voltage value

constant in spite of variations in the input or at the load.

BLOCK DIAGRAM:

TRANSFORMER RECTIFIER FILTER REGULATOR

ACINPUT

REGULATED DC OUTPUT

TRANSFORMER:

A transformer is a static (or stationary) device for transforming
electrical energy from one alternating circuit to another, without changing
the frequency. It works with the principle of mutual induction. It can
increase or decrease the voltage with a corresponding increase or decrease in
current. A transformer can change low voltage to high voltage and high
voltage to low voltage but in both cases the frequency remains unchanged.
The transformer has no rotating parts hence it is often called a static
transformer. A step down transformer can be used for providing necessary
supply to the electronic circuits. In our project we are using a 15-0-15 center

tapped transformer.

RECTIFIER:

A rectifier is a device used to convert AC voltage to DC voltage.
The DC level obtained from a sinusoidal input can be improved 100% using
a process called full-wave rectification. The rectifier uses 4 diodes in a
bridge configuration. From the basic bridge configuration we see that during
the positive half cycle of the input two diodes (say D2 & D3) are conducting
while the other two diodes (D1 & D4) are in “off” state during the period t

—0 to T/2. Accordingly during the negative half cycle of the input the

conducting diodes are D1 & D4 and D2 and D3 are in the “off state”. Thus

the polarity across the load is the same.

FILTER:

The filter circuit used here is the capacitor filter circuit where a
capacitor is connected at the rectifier output, and a DC is obtained across it.
The filtered waveform is essentially a DC voltage with negligible ripples,

" which is ultimately fed to the load.

REGULATOR:

The output voltage from the capacitor filter will still have ripple
content, which has to be further regulated. The voltage regulator is a device,
which maintains the output voltage constant irrespective of the change in
supply variations, load variation and temperature changes. Here we use two
fixed voltage regulators namely LM 7812, LM 7805 and LM7912. The IC
7812 is a +12V regulator IC 7912 is a -12V regulator and IC 7805 is a +5V

regulator.

A7

CHAPTER 5
/

CHAPTER 35

5.1 NEED FOR RS-232-C:

The RS-232-C was originally set to standardize the
interconnections of terminals and host computers through public telephone
networks. Modems were used to translate the digital data signals from the
computer equipment to analog audio signals suitable for transmission on the

telephone network, and back to digital signals at the receiving end.

At that time, each manufacturer of equipment used a different
configuration for interfacing a DTE (Data Terminal Equipment) with a DCE
(Data Communications Equipment). In 1969, EIA with Bell Laboratories
and other parties established a recommended standard for interfacing
terminals and data communications equipment. The object of this standard
was to simplify the interconnection of equipment manufactured by different

firms.

The standard defines electrical, mechanical, and functional
characteristics. This standard shortly became RS-232-C (Recommended

Standard number 232, revision C from the Electronic Industry Association).

RS-232-C was widely adopted by manufacturers of terminals and computer

equipment.

In the 1980' s, therapidly growing microcomputer industry
found the RS-232-C standard cheap (compared to parallel connections) and
suitable for connecting peripheral equipment to microcomputers. RS-232-C
quickly became a standard for conmecting microcomputers to printers,
plotters, backup tape devices, terminals, programmed equipment and other
microcomputers. The RS-232-C is so widely available that it is certain to

stay with us for some time to come.

By using RS-232-C digital transmission of data is possible, that
is transmission of data in the form of 1’s and 0’s.These increases the speed
with which data is transmitted is highly improved thereby providing better

communication conditions.

The voltage levels for all RS-232-C signals are as follows. A
logic high, or mark, is a voltage between —3V and —15 V under load (-:25 V
no load). A logic low or space is a voltage between +3 V and +15 under load

(+25 V no load). Voltages such as 12 V are commonly used.

5.2 HARDWARE DETAILS:

PIN DIAGRAM
N
1 —! 16— Vi
v+ — 2 15 — GND
(1- — 3 14 — T10UT
2+ — 4 - 13 |— R1 1IN
HN232CP
C2- — 5 12— R10UT
V- — 6 11— T1IN
T20UT — 7 10 — T2 M
RZIN — 8 9 +— R20UT

The various pins in the IC H N232CP are

Ve - Power supply input to the IC 5V +/- 10%

V+ - Internally generated positive supply

V- - Internally generated negative supply

GND- Connected to OV.

C1+ - External capacitor (positive terminal) is connected to this lead
C1- - External capacitor (negative terminal) is connected to this lead
C2+ - External capacitor (positive terminal) is connected to this lead
C2- - External capacitor (negative terminal) is connected to this lead
T and T2wv— Transmitter inputs

Tiour and T2our— Transmitter outputs

Rinvand Rawv- Receiver inputs

Riour and Rzoutr- Receiver outputs

The salient features of RS-232-C are
1. Requires only a single 5V supply
2. High data rate of 120kbps
3. Low power consumption
4. Low power shutdown function

5. Multiple Drivers

6. Onboard Voltage/Doubler

7. Multiple Receivers these feature hysteresis to greatly improve noise
rejection. They can handle up to +/- 30V.

8. It can be used for any device that requires a communication port like
a. Computer — Mainframe, Laptop, Portable
b. Peripherals — Printers and Terminals
c. Instrumentation

d. Modems.

5.3 FUNCTIONAL ASPECTS:

In our project RS-232-C is used as communication medium
between micro controller and PC. A Max level translator is used within the
RS-232-C to convert the voltage level (5V) obtained from the micro
controller. The UART board in the PC receives the translated voltage (12V)
for it’s functioning. The pins T2 and Raour are used for interfacing between
the micro controller and RS232C.The pins Tzour and Row is used for

communication between RS-232-C and the PC.

The basic circuit is divided into three sections: The charge

pump, Transmitter and Receiver.

CHARGE PUMP:

The charge pump consists of two sections: the voltage doubler
and the voltage inverter sections. Each section is driven by a two-phase,
internally generated clock to generate +10V and —10V. The normal clock
frequency is 16KHz. Each of the capacitors get charged in sequence thereby
obtaining the required output. It accepts input voltages up to 5.5V. The

output impedance of voltage divider section (V+) is approximately 200

ohms and the output impedance voltage inverter section (V-) is

approximately is 450 ohms.

TRANSMITTER:

They are TTL/CMOS compatible inverters, which translate the
inputs to RS?232C inputs. The input logic threshold is about 26% of Vcc or
1.3V for Vee=5 V. A logic 1 at the input results in a voltage between -5V
and =V at output and a logic 0 results in a voltage between +5V and +V.
Fach transmitter input has an internal 400 Kohms pull up resistor so any
unused input can be left unconnected and its output remains in its low state.
The transmitters have an internally limited output slew rate, which is less

than 30V/microseconds. The outputs are short-circuited and can be shorted

to ground definitely.

RECIEVERS:

The receiver inputs accept up to +/- 30V while presenting the
required 3 Kohms t0 7 Kohms input impedance even if the power is off. The
output is OV to Vee. The output will be low whenever the input is greater
than 2.4V and high whenever the input is floating or driven between +0.8V

and —30V. The receivers feature 0.5V hysteresis to improve noise rejection.

{4

CHAPTER 6

‘

CHAPTER 6

6.1 MICRO CONTROLLER CODING

PO DATA 080H
Pl DATA 090H
P2 DATA OAOH
P3 DATA 0BOH
ToO BIT OBOH4
AC BIT ODOH.6
Tt BIT OBOH.S
EA BIT 0A8H7
JE DATAO0ASH
RD BIT 0BOH.7
ES BIT O0ASH4
IP DATAOBSH
RI BIT 098H.0
INTO BIT OBOH.2
CcYy BIT ODOH7
TI BIT 098H.1
INTI BIT O0BOH.3
PS BIT OBS8H4
SP DATA081H
OV BIT ODOH.2
WR BIT 0BOH.6
SBUF DATA 099H
PCON DATA 087H
SCON DATA 098H
TMODDATA 089H
TCON DATA 088H
[E0 BIT 088H.1
[El BIT 088H3
B DATAOFOH
ACC DATA OEOH
ETO BIT O0ASH.
ET1 BIT O0ASH.3
TFO BIT 088H.5
TF1 BIT 088H.7
RBS BIT 098H.2
THO DATA 08CH
EX0 BIT O0A8SH.O
IT0 BIT 088H.0
TH1 DATA 08DH
TBS BIT 098H.3

EX1
IT1

P
SMO
TLO
SM1
TL1
SM2
PTO
PT1
RSO
TRO
RS1
TR1
PX0
PX1
DPH
DPL
REN
RXD
TXD
FO
PSW

BIT O0A8H.2
BIT 088H.2
BIT ODOH.0
BIT 098H.7
DATA 08AH
BIT 098H.6
DATA 08BH
BIT 098H.5
BIT 0B8H.1
BIT OB8H.3
BIT ODOH.3
BIT 088H.4
BIT ODOHA4
BIT 088H.6
BIT O0B8H.0
BIT O0B8H.2
DATA 083H
DATA 082H
BIT 098H.4
BIT O0BOH.0
BIT OBOH.1
BIT ODOH.5
DATA 0DOH

9PR?main?TRACKING SEGMENT CODE

9PRIwheel2?TRACKING SEGMENT CODE

9PR2int0?TRACKING SEGMENT CODE

9PR7ser_init?TRACKING SEGMENT CODE

9PR?del?TRACKING SEGMENT CODE

7PR 7delay? TRACKING SEGMENT CODE

?C_INITSEG

SEGMENT CODE

IDT?TRACKING SEGMENT DATA
EXTRN CODE (?C_STARTUP)
PUBLIC

PUBLIC

PUBLIC
PUBLIC
PUBLIC arr

S

p

PUBLIC k
i

i

PUBLIC tx4
PUBLIC tx3
PUBLIC tx2
PUBLIC rx4
PUBLIC tx1
PUBLIC rx3
PUBLIC rx2
PUBLIC rx1
PUBLIC delay
PUBLIC del
PUBLIC ser_init
PUBLIC int0
PUBLIC wheel2
PUBLIC main

RSEG 7DT?TRACKING
rxl: DS
rx2: DS
rx3: DS
tx1: DS
rx4: DS
tx2: DS
tx3: DS
tx4: DS
arr; DS 4
i: DS 2
j: DS 2
k: DS 2
p: DS 1
s: DS 2

et e Pk ok

RSEG ?C_INITSEG
DB 002H

DB Kk

DW 00000H

DB 001H
DB rxl
DB 000H

DB 001H
DB p
DB 000H

; #pragma src;
. #include<reg51.h>

. void wheel2();

: void ser_init();

: unsigned int i,j.k=0;

- void ser_init();

. void ser_out();

: void delay();

- void del();

; unsigned char txl,tx2,tx3,tx4,rx1=0,rx2,rx3,rx4,arr[4] ,p=0;
- unsigned int s,;

- main()

RSEG ?PR?main?TRACKING

main:
USING 0
: SOURCE LINE # 12
i
: SOURCE LINE # 13
; P1=0xff;
: SOURCE LINE # 14
MOV P1,#0FFH
: EA=1;
: SOURCE LINE # 15
SETB EA
; EX0=1;
: SOURCE LINE # 16
SETB EXO0
- ser_init();
: SOURCE LINE # 17
LCALL ser_init
. while(1)
: SOURCE LINE # 18
3 {
: SOURCE LINE # 19
; 14:
: SOURCE LINE # 20
Imain?14:
. wheel2();
: SOURCE LINE # 21
LCALL wheel2
. tx1=P1&0x0c;
: SOURCE LINE # 22
MOV APl
ANL A#OCH
MOV tx1,A
. if(tx11=0)

: SOURCE LINE # 23

JNZ Imain?4

; {goto 14;}
: SOURCE LINE # 24
211
: SOURCE LINE # 25
Tmain?11:
. wheel2();
: SOURCE LINE # 26
LCALL wheel2
. tx2=P1&0x0c;
- SOURCE LINE # 27
MOV A,P1
ANL A#0CH
MOV tx2,A
- if(tx2==tx1)
: SOURCE LINE # 28
XRL A,xl
JZ ?main?1
; {goto 115}
: SOURCE LINE # 29
2128
: SOURCE LINE # 30
Tmain?12:
. wheel2();
: SOURCE LINE # 31
LCALL wheel2
. tx3=P1&0x0c;
: SOURCE LINE # 32
MOV APl
ANL A#OCH
MOV tx3,A
. if(tx3==tx2)
: SOURCE LINE # 33
XRL A,tx2
JZ Imain?12
; {goto12;}
: SOURCE LINE # 34
. 13:
: SOURCE LINE # 35
Tmain?3:
; wheel2();
: SOURCE LINE # 36
LCALL wheel2
. tx4=P1&0x0c;
: SOURCE LINE # 37

MOV APl

ANL A#OCH
MOV tx4,A
; if(tx4==tx3)
: SOURCE LINE # 38
XRL A,tx3
JZ 7main?13
; {goto13;}
: SOURCE LINE # 39
2C0010:
; if((tx2==0x04)&&(tx3==0x0c)&&(tx4==0x08))
: SOURCE LINE # 41
MOV A,tx2
CINE A #04H,7C0011
MOV A,tx3
CINE A #0CH,?2C0011
MOV A,tx4
CINE A #08H,?C0011

3 A

: SBUF=' F ;

- SOURCE LINE # 42

: SOURCE LINE #43
MOV SBUF,#046H
; delay();
: SOURCE LINE #44
LCALL delay
SCON=0x40;
: SOURCE LINE #45
; del();
: SOURCE LINE #46
LCALL L.20036
;)
: SOURCE LINE # 47
2C0011:
) if((tx2==0x08)&&(tx3==0x0c)&&(tx4==0x04))
: SOURCE LINE # 48
MOV A,tx2
CINE A #08H,?main?4
MOV A,x3
XRL A#0CH
JNZ “?main?4
MOV A,tx4
XRL A#04H
JNZ “?main?14

: SOURCE LINE # 49

; SBUF=' R' ;

: SOURCE LINE # 50
MOV SBUF#052H
; delayQ;
: SOURCE LINE # 51
LCALL delay
. SCON=0x40;
: SOURCE LINE # 52
. delQ);
: SOURCE LINE # 53
LCALL 1.20036
;)
: SOURCE LINE # 54
3}
- SOURCE LINE # 55
SIMP ?main?14
: END OF main
3)
: void wheel2()

RSEG 7PR?wheel2?TRACKING
wheel2:
USING 0
- SOURCE LINE # 58

3 {
; if(k==0)

: SOURCE LINE # 59

: SOURCE LINE # 60
MOV Ak+01H
ORL Ak
JNZ 7C0014

3 {

. rx1=P1&0x03;

; SOURCE LINE # 61

; SOURCE LINE # 62
MOV APl
ANL A #03H
MOV rx1,A
; if(rx1==0x00)
: SOURCE LINE # 63
INZ 7C0022

3

_ : SOURCE LINE # 64
; k=1

: SOURCE LINE #65
MOV kA
MOV k+01H#01H
; goto retr;
: SOURCE LINE # 66
RET
;)
: SOURCE LINE #67
; goto retr;
: SOURCE LINE #68

;

2C0014:
; if(k==1)

- SOURCE LINE # 69

- SOURCE LINE # 70
MOV Ak+01H
XRL A#OIH
ORL Ak
JNZ 7C0022

3 {

H x2=P1&0x03;

- SOURCE LINE # 71

: SOURCE LINE # 72
MOV APl
ANL A #03H
MOV 1x2,A
- if(rx2!=rx1)
: SOURCE LINE # 73
XRL Arxxl
17 2C0022
3 |
: SOURCE LINE #74
. arr[pl=rx2;
: SOURCE LINE # 75
MOV A #LOW (arr)
ADD Ap
MOV ROA
MOV @RO,rx2
. rxl=rx2;
: SOURCE LINE #76
MOV rx1,rx2
;o pts
: SOURCE LINE #77
INC p
; if(p==3)
: SOURCE LINE # 78

MOV A,p
XRL A#03H
INZ 2C0022

;|
: SOURCE LINE # 79
; if((arr[0]==0x01)&&(arr[1]==Ox03)&&(arr[2]==0x02))
: SOURCE LINE # 80
MOV A,arr
CINE A #01H,7C0020
MOV A,arr+01H
CINE A #03H,7C0020
MOV A,arr+02H
CINE A,#02H,7C0020

;o

: SOURCE LINE # 81
. SBUF=' A’ ;
: SOURCE LINE # 82
MOV SBUF#041H
; delay();
: SOURCE LINE # 83
LCALL delay
: SCON=0x40;
: SOURCE LINE # 84
MOV SCON.,#040H
; del();
; SOURCE LINE # 85
LCALL del
s}
: SOURCE LINE # 86
2C0020:
; if((arr[0]==0x02)&&(arr[1]==0x03)&&(arr[2]==0x01))
: SOURCE LINE # 87
MOV A,arr

CINE A #02H,7C0021

MOV A,arr+01H

CINE A #03H,7C0021

MOV A,arr+02H

CINE A #01H,7C0021
;|

: SOURCE LINE # 88
: SBUF=' B' ;
: SOURCE LINE # 89
MOV SBUF,#042H
; delay();
: SOURCE LINE # 90

LCALL delay

. SCON=0x40;

: SOURCE LINE # 91
MOV SCON., #040H
. delQ);
: SOURCE LINE # 92
LCALL del
;)
: SOURCE LINE # 93
2C0021:
; p=0;
: SOURCE LINE # 94
CLR A
MOV p.A
; k=0;
: SOURCE LINE # 95
MOV kA
MOV k+01HA
5}
: SOURCE LINE # 926
;)
: SOURCE LINE # 97
; goto retr;
: SOURCE LINE # 98
3)
: SOURCE LINE # 99
; retr:
: SOURCE LINE # 100
Iwheel2 7retr:
3}
: SOURCE LINE # 102
2C0022:
RET
: END OF wheel2

CSEG AT 00003H

LIMP int0

: void int0(void) interrupt O

int0:

RSEG 7PR?int0?TRACKING
USING 0

PUSH ACC
PUSH B

i

k4

3)

PUSH DPH

PUSH DPL
PUSH PSW
MOV PSW. #00H
PUSH ARO
PUSH ARI1
PUSH AR2
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
USING 0
: SOURCE LINE # 104
ser_init();
: SOURCE LINE # 106
LCALL ser_init
SBUF=' X'
: SOURCE LINE # 107
MOV SBUF#058H
delay();
: SOURCE LINE # 108
LCALL delay
SCON=0x40;
: SOURCE LINE # 109

MOV SCON,#040H
del();
: SOURCE LINE # 110
LCALL del

; SOURCE LINE # 111
POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POP AR2
POP ARl
POP ARO
POP PSW
POP DPL
POP DPH
POP B
POP ACC
RETI

: END OF int0
. void ser_init()

RSEG 9PR7ser_init?TRACKING
ser_init:

USING 0
: SOURCE LINE # 114
i
: SOURCE LINE # 1 15
+ TH1=0x72;
: SOURCE LINE # 116
MOV TH1,#072H
: TMOD=0x20;
: SOURCE LINE # 117
MOV TMOD,#020H
: TR1=1;
: SOURCE LINE # 118
SETB TR1
; delay();
: SOURCE LINE # 119
LCALL delay
: SCON=0x40;
: SOURCE LINE # 120

MOV SCON,#040H
3}
: SOURCE LINE # 121
RET
: END OF ser_init

- void del()

RSEG 9PR?del?TRACKING
1L.20036:
USING 0
MOV SCON, #040H
del:
: SOURCE LINE # 123

i
: SOURCE LINE # 124
; for(s=0;s<=8000;s++)
: SOURCE LINE # 125
CLR A

-

MOV s,A
MOV s+01HA
7C0025:
; {1}
: SOURCE LINE # 126
INC s+01H
MOV A,s+01H
JNZ 7C0033
INC s
2C0033:
CINE A, #041H,2C0025
MOV A
CINE A #01FH,?C0025

3}

2C0028:
RET
; END OF del

: SOURCE LINE # 127

. void delay()

RSEG 7PR?delay?TRACKING
delay:
: SOURCE LINE # 129
3
- SOURCE LINE # 130
: for(i=0;j<=120',j++)
- SOURCE LINE # 131
CLR A
MOV j,A
MOV j+01H,A
2C0029:
; {1}
- SOURCE LINE # 132
INC j+01H
MOV A, j+01H
INZ 2C0035
INC j
2C0035:
XRL A#079H
ORL Aj
INZ 2C0029
3)

2C0032:

- SOURCE LINE # 133

RET
: END OF delay

END

P

6.2 C PROGRAM

#include <stdlib.h>

#include<stdio.h>

#include<conio.h>

#include<dos.h>

#include<process.h>

#include<ctype.h>

#include <graphics.h>

void screen(void);

void map(void);

void main()

{
struct time t;
int a,ah,al,result,in=1 ,mode=2,flag=0,t1,t2;
int gdriver = DETECT, gmode;
void *one;
unsigned int sizel;
int key,x1=50,x2,y2,y1=50, maxx, maxy,style=0,userpat;
initgraph(&gdriver, &gmode, "WTC\BGI");
maxx = getmaxx() + 1;
maxy = getmaxy() + 1;
x2=x1=276;//maxx/2;

y2=y1=298;//maxy/2;

setcolor(12);
circle(40,40,3);
setfillstyle(1,5);
floodfill(41,41,12);
sizel=imagesize(36,36,44,44);
one=malloc(sizel);
getimage(36,36,44,44,0n¢);
cleardevice();
userpat = 100;
setlinestyle(style, userpat,3);
rectangle(10,10,maxx- 10,maxy-10);
screen();
setlinestyle(style, userpat,1);
map();
while('kbhit())

{

setcolor(15);

_AH=0x03;

_DX=0x00;

geninterrupt(0x 14);

ah=_AH;

al=_AL;

gettime(&t);

t1=t.ti_sec;

if(flag==0)

{

t2=t1;

flag=1;

}

if(abs(t1-12)>20 && t1<50 && 2<50 && a=4)

if((ah & 0x01) == 0x01)

{

gettime(&t);

t2=t.ti_sec;

result = inportb(0x3f8);
=result;

switch (a)

{

case 65:

key=54;

break;

case 66:

key=52;

break;

case 70:

key=50;

break;

case 82:

key=56;

break;

case 88:

key=0;

break;

//default:
/lprintf("%d",a);

}

switch (key)

{

case O:
gotoxy(35,12);
printf("Problem");
break;

case 56:

if(yl>=1)
yl=yl-in;
/putpixel(x1 ,y1,15);
//putimage(x1,y1,one,mode);
line(x2,y2,x1,y1);

break;

case 54:

if(x1<maxx)

x1=x1+in;
/lputpixel(x1,y1,15);
//putimage(x1,y1 ,one,mode);
line(x2,y2,x1,y1);

break;

case 50:

if(yl<maxy)

yl=yl+in;
/Iputpixel(x1,y1,15);
//putimage(x1,y1,one,mode);
line(x2,y2,x1,y1);

break;

case 52:

if(x1>=1)

x1=x1-in;
//putpixel(x1,y1,15);
//putimage(xl ,yl,one,mode);
line(x2,y2,x1,y1);

break;

case 55:

if(x1>=1)

x1=x1-in;

if(y1>=1)

yl=yl-in;
/Iputpixel(x1,y1,15);
/fputimage(x1,y1 ,one,mode);
line(x2,y2,x1,y1);
break;

case 57:

if(x 1<maxx)
x1=x1+in;

if(yl>=1)

yl=yl-in;
/Iputpixel(x1,y1,15);
//putimage(x1,y1,one,mode);
line(x2,y2,x1,y1);
break;

case 49:

if(x1>=1)

x1=x1-in;
if(y1<maxy)
yl=yl+in;
//putpixel(x1,y1 ,15);

//putimage(x1,y1 ,one,mode);

p—

line(x2,y2,x1,y1);
break;

case 51:
if(x1<maxx)
x1=x1+in;
if(yl<maxy)
yl=yl+in;
//putimage(x1,y1 ,one,mode);
/Iputpixel(x1,y1,15);
line(x2,y2,x1,y1);
break;

default:

break;

}

x2=x1;

y2=yl;

getch();

void screen(void)

//setfillstyle(1,1);

//floodfill(100,100,12);

setcolor(13);

settextstyle(1,0,2);

outtextxy(546,50,"N");

setcolor(11);

settextstyle(1,0,3);

outtextxy(170,50,"VEHICLE TRACKING SYSTEM");
setcolor(13);

outtextxy(172,48,"VEHICLE TRACKING SYSTEM");
setcolor(3);

1ine(520,100,580,100);

1ine(550,70,550,170);

void map(void)

{
int r=5;
setcolor(2);
circle(20,450,1);

setfillstyle(1,10);

floodfill(21,453,2);
setcolor(14);
settextstyle(1,0,1);
outtextxy(21,448,"CRTSR);
setcolor(2);

circle(80,350,1);
setfillstyle(1,10);
floodfill(81,353,2);
setcolor(14);
outtextxy(81,348,"Erode");
setcolor(2);
circle(280,300,1);
setfillstyle(1,10);
floodfili(281,303,2);
setcolor(14);
outtextxy(281,308,"Namakkal");
setcolor(2);
circle(230,130,r);
setfillstyle(1,10);
floodfill(232,133,2);
setcolor(14);
outtextxy(231,138,"Dharmapuri”);

setcolor(2);

circle(280,230,r);
setfillstyle(1,10);
floodfill(281,233,2);
setcolor(14);
outtextxy(281,238,"Salem");
setcolor(2);
circle(420,300,r);
setfillstyle(1,10);
floodfill(421,303,2);
setcolor(14);
outtextxy(421,308,"AMSEC");
setcolor(2);
circle(550,450,r);
setfillstyle(1,10);
floodfill(551,453,2);
setcolor(14);

outtextxy(551 ,448,"Trichy");
setcolor(2);
circle(530,250,r);
setfillstyle(1,10);
floodfill(531,253,2);
setcolor(14);

outtextxy(531,248,"Thuraiyur"); }

CONCLUSION

e

CONCLUSION

The concepts and the software and hardware logic used in this
project have been successfully implemented. All the circuits have been
tested and the results were satisfactory. Thus by using an embedded system
| all the initial difficulties faced by the authorities like
e Determining whether an accident has taken place.

e Determining the location of the accident.

e Determining the time of the accident

e Not being able to give the required emergency medical help, which is
a must in most accident cases.

can be overcome.

SCOPE FOR DEVELOPMENTS:

The project that we have implemented is a wired version a
further development on that would be to make the communication between
the vibration sensor and the micro controller wireless thereby giving a better
perspective. Implementing GPS for determining the location of the vehicle

could be a future development for our method of automation. We have used

only one vibration sensor in our project but in real time applications more
than one sensor will have to be placed at strategic and vulnerable locations
of the vehicle and this depends on the make and design of the vehicle. To
conclude the implementation of this concept will be very beneficial to
mankind and will be revolutionary in alleviating a lot of undue suffering. We

as novices have taken sincere efforts to make this project a successful one.

OUTPUT

_______+__'—__

RV

REFERENCES
/

REFERENCES

_ The 8051 Micro Controller Architecture and Applications,
Kenneth. J. Ayala.

. Handbook of 8 bit micro controller, Intel Corporation

1989 USA.

. Linear Integrated Circuits, D. Roy Choudhury & Shail
Jain, New Age International P. Ltd, 1991.

. Microprocessors and Microcomputer Based System Design,

Mohamed Rafiquzzman, UBS Publisher’s Distributors Ltd.

. www.atmel.com

. WWW. Iweil.com/micro/8051/8951atmel.com

. Statistics on road accidents-TamilNadu state transport

authority.htm

—~ o~

APPENDIX

e

PIN OUT

ATMEL 89C51
—\
P10 1 40 BB vCC
PiiO 2 ag [P0.0{ADO)
P12l 3 a4 3BP PO (A0
P13 4 37 O P0.2 (AD2)
P1.405 a6 [P0.2 (AD3)
pisC]e 1 35[0 P04 (AD4)
PieC] 7 a4 b1 P05 (ADS)
P17le 8§ 23| Pos6(ADSE)
RST] 9 12 B P0O.7 (ADT)
(ARXDy P30 10 o 31 H EANPP
(TXD) P3.1 O 11 a0 O ALE/PROG
(INTO) P3.2 4 12 29 0 PSEN
(TNT7) P3.3 0 18 C 95 B P27 (al5)
(TO) P3.4] 14 27 |0 P2.6 (A14)
(Ti) P35 15 5§ 26 [0 P25 (A13)
(WR) P3.6] 16 25 11 P2.4 (A12)
'('FTEI} P37 17 24 [P2.3 (A1)
XTaL2] 18 24 [P2.2 (A10)
XTAL1] 19 22 [P21 (AB)
GND O 20 21 |1 P2.0 {(AB)

/

controller Instruction Set
rrupt response time information, refer to the hardware description chapter.

ctions that Affect Flag Settings'!)
tion) Flag J Instruction Flag
[ov | Ac C | ov | AC
— T
St
| ANL C,/bit
ORL C,bit

- |
l
\
\ ORL C,/bit
|
|

—

MOV C,bit
CJNE

|
|
|
|
|
|

Instruction Set

salx|x|xjo|Oo|x|>x|X

C l
1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or
bits in the PSW) also affect flag settings.

Instruction Set and Addressin Modes
Register R7-R0 of the currently selected Register Bank.

ot 8-bit internal data location’s address. This could be an Internal Data RAM
location (0-127) ora SFR [i.e., IJO port, control register, status register, etc.
(128-255)].
8-bit internal data RAM location (0-255) addressed indirectly through register
R1or RO.

ta \ 8-bit constant included in instruction.

ta 16 16-bit constant included in instruction.

r16 16-bit destination address. Used by LCALL and LJMP. A branch can be
anywhere within the 64K byte Program Memory address space.

Ir 11 11-bit destination address. Used by ACALL and AJMP. The branch will be

within the same 2K byte page of program memory as the first byte of the
following instruction.

Signed (two’s complement) 8-bit offset byte. Used by SJMP and all
conditional jumps. Range is -1 28 to +127 bytes relative to first byte of the
following instruction.

Direct Addressed bit in Internal Data RAM or Special Function Register.

0509B-B—12/97

2-7

stion Set Summary

1 o | 1 \ 2 3 4 5 6 7
NOP JBC JB JNB JC JNC Jz JNZ
bit,rel bit, rel bit, rel rel rel rel rel
[3B, 2C] [3B, 2C) [3B, 2C] 28, 2C} [2B, 2C} 2B, 2C] [2B, 2C]
AJMP ACALL
(PO) (P3)
2B, 2C] [2B, 2C]
LIMP LCALL RET RETI ORL ANL XRL ORL
addr16 addr16 [2C1 [2C) dir, A dir, A dir, a C, bit
[38B, 2C] [3B, 2C] [28] [28] 2B] 2B, 2C]
RR RRC RL RLC ORL ANL XRL JMP
A A A A dir, #data dir, #data dir, #data @A + DPTR
[3B, 2C] [3B, 2C] [3B, 2C] [2C]
INC DEC ADD ADDC ORL MOV
A A A, #data A, #idata A, #data A, #data
[28B] [28B] [28]
INC DEC ADD ORL XRL MOV
dir dir A, dir A, dir A, dir dir, #data
[2B] [2B] [2B] [2B] [2B] 38, 2C]
INC DEC ADD ADDC ORL ANL XRL MOV
@RO @RO A, @RO A, @RO A, @RO A, @RO A, @RO @RO, @data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
@RrR1 @R1 A, @R1 A, @R1 A, @R1 A, @R1 A, @R1 @R1, #data
[2B]
} INC DEC ADD ADDC ORL ANL XRL MOV
RO RO A, RO A, RO A, RO A, RO A, RO RO, #data
[2B]
) INC DEC ADD ADDC ORL ANL XRL MOV
R1 R1 A, R1 A, R1 A, R1 A R1 A, R1 R1, #data
[2B]
A INC DEC ADD ADDC ORL ANL XRL MOV
R2 R2 A, R2 A, R2 A, R2 A, R2 A, R2 R2, #data
[2B]
B INC DEC ADD ADDC ORL ANL XRL MOV
R3 R3 A, R3 A, R3 A, R3 A, R3 A, R3 R3, #data
(2B]
(o} INC DEC ADD ADDC ORL ANL XRL MOV
R4 R4 A, R4 A, R4 A, R4 A, R4 A, R4 R4, #data
[2B]
D INC DEC ADD ADDC ORL ANL XRL MOV
R5 RS A, R5 A, RS A, R5 A, R5 A, R5 R5, #data
[2B]
E INC DEC ADD ADDC ORL ANL XRL MOV
R6 R6 A, R6 A, R6 A, R6 A, R6 A, R6 R6, #data
[2B]
F INC DEC ADD ADDC ORL ANL XRL MOV
R7 R7 A, R7 A, R7 A R7 A, R7 A, R7 R7, #data

[28B]

Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

e Instruction Set

stion Set Summary (Continued)

8 9 A B c | D E 1 F
SJMP MOV ORL ANL PUSH POP MOVX A l MOVX
REL DPTR# C, /bit C, Ivit dir dir @DPTR l @DPTR, A
[2B, 2C] data 16 2B, 2C] [2B, 2C) [2B, 2C] [2B, 2C] [2C} ! [2C]
[3B, 2C] \
|]
AJMP ACALL AJMP ACALL AIMP ACALL AJMP ACALL

(P4) (P4) (P5) (P5) (P6) (P6) (P7) (P7)
2B, 2C] [2B, 2C) [2B, 2C] [2B, 2C] [28B, 2C} 2B, 2C] 2B, 2C] 2B, 2C]

ANL MOV MOV CPL CLR SETB MOVX MOVX

C, bit bit, C C, bit bit bit bit A, @RO wRO, A
2B, 2C) (2B, 2C] (2B] [2B) [2B} [2B] [2C] [2C]
MOVC A, MOVC A, INC CPL CLR SETB MOVX MOVX
@A +PC @A + DPTR DPTR C o C A, @RI @RI, A

[2C] [2C) [2C] [2C] 2C]

T DIV SUBB MUL CINEA, SWAP DA CLR CPL
AB A, #data AB #data, rel A A A A
[28B, 4C] [2B] [4C] [3B, 2C]

MOV SuUBB CJNE XCH DJINZ MOV MOV

dir, dir A, dir A, dir, rel A, dir dir, rel A, dir dir, A
[3B, 2C} [2B] [3B, 2C] [2B}] [38B, 2C] [2B] [2B]

MOV SUBB MOV CJNE XCH XCHD MoV MOV
dir, @RO A, @RO @RO, dir @RO, #data, rel A, @RO A, @RO A, @RO @RO, A
[2B, 2C] [2B, 2C] [3B, 2C]

MOV SuUBB MOV CJINE XCH XCHD MOV MOV
dir, @R1 A, @R1 @R1, dir @R1, #data, rel A, @R1 A, @R1 A, @R1 @R1, A
[2B, 2C} 2B, 2C] [3B, 2C]

MOV SUBB MOV CJNE XCH DJNZ MOV MOV

dir, RO A, RO RO, dir RO, #data, rel A, RO RO, rel A, RO RO, A
[2B, 2C] [2B, 2C} 3B, 2C}] 2B, 2C}

MOV SUBB MOV CJNE XCH DJINZ MOV MOV
dir, R1 A R1 R1, dir R1, #data, rel A R1 R1, rel A R1 R1,A
[2B, 2C] [2B, 2C} [3B, 2C] [2B, 2C]

MOV SUBB MOV CJNE XCH DJINZ MOV MOV
dir, R2 A, R2 R2, dir R2, #data, rel A, R2 R2, rel A, R2 R2, A
[2B, 2C] 2B, 2C] [3B, 2C] 2B, 2C)

MOV SUBB MOV CJNE XCH DJNZ MOV MOV

dir, R3 A, R3 R3, dir R3, #data, rel A, R3 R3, rel A, R3 R3, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CJNE XCH DJNZ MOV MOV

dir, R4 A, R4 R4, dir R4, #data, rel A, R4 R4, rel A, R4 R4, A
{28, 2C] [2B, 2C] [3B, 2C] [2B, 2C}

MOV SUBB MOV CJNE XCH DJNZ MOV MOV

dir, RS A, RS R5, dir RS, #data, rei A, R5 R5, rel A, R5 R5, A
[2B, 2C] [2B, 2C] [38B, 2C) [2B, 2C]

MOV SUBB MOV CJINE XCH DJNZ MOV MOV

dir, R6 A, R6 R6, dir R6, #data, rel A, R6 R, rei A, R6 R6. A
[28, 2C] [2B, 2C] {38, 2C] [2B, 2C)

MOV SUBB MOV CJNE XCH DJNZ MOV MOV

dir, R7 A, R7 R7, dir R7, #data, rel A, R7 R7, rel A, R7 R7,A
[2B, 2C] [2B, 2C] [3B, 2C) 2B, 2Cj}

Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

2.73

ATmEL

AT89 Instruction Set Summary(")

ic Description Byte | Oscillator Mnemonic Description Byte | Oscillator
Period Period
ETIC OPERATIONS LOGICAL OPERATIONS
AR, Add register to 1 12 ANL AR, AND Register to
Accumulator Accumulator
A direct Add direct byte to 2 12 ANL A.direct AND direct byte to
Accumulator Accumulator
A @R; Add indirect RAM to 1 12 ANL A @R; AND indirect RAM to
Accumulator Accumulator
A#data Add immediate data to 2 12 ANL A #data AND immediate data to
Accumulator Accumuiator
AR, Add register to 1 12 ANL | directA AND Accumulator to
Accumulator with Carry dlrect byte
Adirect Add direct byte to 2 12 ANL rdirect,#data AND immediate data to 3 24
Accumulator with Carry direct byte
A@R Add indirect RAM to 1 12 ORL |AR, OR register to 1 12
Accumulator with Carry Accumulator
A t#data Add immediate data to 2 12 ORL |Adirect OR direct byte to 2 12
Acc with Carry Accumulator
ARy Subtract Register from 1 12 ORL |A@R; OR indirect RAM to 1 12
Acc with borrow Accumulator
A direct Subtract direct byte from 2 12 ORL |A#data OR immediate data to 2) 12
Acc with borrow Accumuiator |
K@Ri Subtract indirect RAM 1 12 ORL |direct,A OR Accumulator to direct 2 ‘ 12
from ACC with borrow byte \
A #data Subtract immediate data 2 12 ORL | direct#data OR immediate data to 3 \ 24
from Acc with borrow direct byte l
A Increment Accumulator 1 12 XRL |AR, Exclusive-OR register to 1 12
] I T Accumulator
Rqp Increment register 1 12
! ; XRL A direct Exclusive-OR direct byte 2 12
direct Increment direct byte 2 12 to Accumulator
@R Increment direct RAM 1 12) |xRL |A@R; Exclusive-OR indirect 1 12
A Decrement Accumulator 1 12 RAM to Accumulator
Rn Decrement Register 1 12 XRL - |A#data Exclusive-OR immediate 2 12
data to Accumulator
direct Decrement direct byte 2 12
— XRL direct,A Exclusive-OR 2 12
@R; Decrement indirect RAM 1 12 Accumulator to direct
DPTR Increment Data Pointer 1 24 byte
AB Multiply A & B 1 48 XRL direct #data Exclusive-OR immediate 3 24
_ S S data to direct byte
AB Divide Aby B 1 48 — 7 T - T
CLR A Clear Accumulator 1 12
A Decimal Adjust 1 12
Accumulator CPL A Compliement 1 12
Accumulator .
1. All mnemonics copyrighted © Intel Corp., 1980. Rotate Accumulator Left 1 12
RLC Rotate Accumulator Left 1 12
through the Carry
LOGICAL OPERATIONS (contmued) J

B e Instruction Set

ic Description Byte | Oscillator Mnemonic Description Byte | Oscillator
Period Period
A Rotate Accumulator 1 12 MOVX | A@DPTR Move Exernal RAM (16- 1 24
Right bit addr) to Acc
Rotate Accumulator MOVX | @R;A Move Acc to External 24

Right through the Carry

Swap nibbles within the
Accumulator

l

RANSFER
AR, Move register to
Accumulator
A, dlrect Move direct byte to

Accumu|ator

A@R; Move indirect RAM to
Accumulator

Move immediate data to
Accumulator

A fdata

Move Accumulator to
register

Rp.direct Move direct byte to
register
R, fidata Move immediate data to

register

Move Accumulator to
direct byte

Move register to direct
byte

direct,direct M

ove direct byte to direct

1
2
2

N

direct, @R; Move indirect RAM to
direct byte

direct,#data Move immediate data to

direct byte

- @RA Move Accumulator to
indirect RAM

| @R;.direct Move direct byte to
indirect RAM

/ | @R#data Move immediate data to

indirect RAM

/ | DPTR#data16 | Load Data Pointer with a
16-bit constant

vC | A, @A+DPTR | Move Code byte relative

to DPTR to Acc

VC | A,@A+PC Move Code byte relative

to PC to Acc

VX | A@R,; Move External RAM (8-

bit addr) to Acc
TA TRANSFER (continued)

ﬂ

12

12

12

12

12

24

12

12

24

24
24

24

12

24

12

24

24

24

24

RAM (8-bit addr)

Move Acc to External
RAM (16-bit addr)

MOVX | @DPTR.A

PUSH | direct Push direct byte onto
stack

POP |direct Pop direct byte from
stack

XCH Exchange register with
Accumulator

XCH | A.direct Exchange direct byte
with Accumuilator

XCH |A@R; Exchange indirect RAM
with Accumulator

XCHD |A@R; Exchange low-order

Digit indirect RAM with
Acc

BOOLEAN VARIABLE MANIPULATION

o o oo [1] %

CLR _ Clear direct bit - 12

SETB _ Set direct bit

CPL - Complement Carry

CPL _ Complement direct bit 2

ANL C,bit AND direct bit to CARRY 2
direct bit to Carry

ORL |C,bit OR direct bit to Carry 2

ORL | C./bit OR complement of direct 2
bit to Carry

MOV | C,bit Move direct bit to Carry 2

MOV Move Carry to direct bit -

JC _ ump if Carry is set _

JB m Jump if direct Bit is set 3 24

JNB Jump if direct Bit is Not 24

JBC bit,rel

Jump if direct Bit is set & 24
clear bit

PROGRAM BRANCHING

»
-J

ic Description Byte | Oscillator
Period
addri1 Absolute Subroutine Call 2 ‘ 24
addr16 Long Subroutine Call 3 ‘ 24
\ Return from Subroutine 1 24

Return from 1 24
interrupt

addri1 Absolute Jump 2 24

addr16 Long Jump l 3 ‘ 24

rei Short Jump (relative 2 24
addr)

@A+DPTR Jump indirect relative to 1 24
the DPTR

rel Jump if Accumulator is 2 24
Zero

rel Jump if Accumulator is 2 24
Not Zero

A.direct,rel Compare direct byte to 3 24
Acc and Jump if Not
Equal

Ajdatarel - |Compare immediate to 3 24
Acc and Jump if Not
Equal

R, #data,rel Compare immediate to 3 24
register and Jump if Not
Equal

@R #data,rel | Compare immediate to 3 24
indirect and Jump if Not
Equal

R.rel Decrement register and 2 24
Jump if Not Zero

direct,rel Decrement direct byte 3 24
and Jump if Not Zero
No Operation 1 12

S Instruction Set

Instruction Opcodes in Hexadecimal Order

B Number | Mnemonic Operands Hex Number | Mnemonic Operands
of Bytes Code of Bytes
1 NOP 26 1 ADD A@RO
2 AJMP codeaddr 27 1 ADD A@R1
"Tkl LJMI: o code addr 28 1 ADD ARO
[1 RR A 29 1 ADD AR1
1 INC A 2A 1 ADD AR2
B %# 2 —ch data addr 2B 1 ADD AR3
i 1 INC @RO 2C 1 ADD AR4
—\ 1 INC o |e~] 2D 1 ADD AR5
S 1N RO 2E 1 ADD ARG
1 INC R1 2F 1 ADD AR7
1 INC | R] 30 3 JNB bit addr,code addr
B 1 INC R3 31 2 ACALL code addr
1 INC R4 32 1 RETI
1 INC #_,I_Ri_#ﬁ_.] 33 1 RLC A
- 1 INC R6 34 2 ADDC A #data
1 INC R7 35 2 ADDC A.data addr
3 JBC bit addr,code addr_“ | 36 1 ADDC A@RO
) 2 ACALL R code addr 37 1 ADDC A @R1
3 LCALL code addr 38 1 ADDC A,RO
1 RRC A] 39 1 ADDC AR1
: 1 DEC A 3A 1 ADDC AR2
2 DEC data addr 3B 1 ADDC AR3
1 DEC @o | 3C 1 ADDC AR4
1 DEC @R1 3D 1 ADDC AR5
1 DEC RO 3E 1 ADDC ARB
1 DEC |] 3F 1 ADDC AR7
) 1 DEC R2 40 2 Jc code addr
1 DEC R3 41 2 AJMP code addr
1 DEC (R 42 2 ORL data addr,A
N 1 DEC R5 43 3 ORL data addr,#data
1 DEC R6 44 2 ORL At#data
1 DEC 4-;37 77777777777 45 2 ORL A.,data addr
- 3 JB » bit addr,code addr 46 1 ORL A@RO
2 AJMP code addr 47 1 ORL A@R1
o 1 RET] 48 1 ORL ARO
1 RL A 49 1 ORL ‘ AR1
2 ADD Atidata 4A 1 ORL | AR J
2 ADD A,data addr

2-77

ATMEL

Number | Mnemonic Operands Hex Number | Mnemonic Operands

of Bytes Code of Bytes
1 ORL AR3 71 2 ACALL code addr
1 ORL A R4 72 2 ORL C,bit addr
1 ORL AR5 73 1 JMP @A+DPTR
1 ORL ARG 74 2 MOV A #data
1 ORL AR7 75 3 MOV data addr#data
2 JNC code addr 76 2 MOV @RO #data
2 ACALL code addr 77 2 MOV @R1 #data
2 ANL data addr,A 78 2 MOV RO, #data
3 ANL data addr #data 79 2 MOV R1 #data
2 ANL A #data 7A 2 MOV R2 #data
2 ANL A,data addr 7B 2 MoV R3, #data
1 ANL A@RO 7C 2 MOV R4 #data
1 ANL A.@R1 7D 2 MOV R5, #data
1 ANL A,RO 7E 2 MoV R6, #data
1 ANL AR1 7F 2 MOV R7 #data
1 ANL AR2 80 2 SJMP code addr
1 ANL AR3 81 2 AJMP code addr
1 ANL AR4 82 2 ANL C,bit addr
1 ANL AR5 83 1 MOVC A,@A+PC
1 ANL ARG 84 1 DIV AB
1 ANL AR7 85 3 Mov data addr,data addr
2 N4 code addr 86 2 MoV data addr,@RO
2 AJMP code addr 87 2 MOV data addr,@R1
2 XRL data addr,A 88 2 MoV data addr,RO
3 XRL data addr.#data 89 2 MoV data addr,R1
2 XRL Aj#data 8A 2 MOV data addr,R2
2 XRL A,data addr 8B 2 MOV data addr,R3
1 XRL A@RO 8C 2 MoV data addr,R4
1 XRL A,@R1 8D 2 MOV data addr,R5
1 XRL ARO 8E 2 MOV data addr,R6
1 XRL AR1 » 8F 2 MOV data addr,R7
1 XRL AR2 90 3 MOV DPTR #data
1 XRL AR3 91 2 ACALL code addr
1 XRL AR4 92 2 MOV bit addr,C
1 XRL AR5 93 1 MOVC A,@A+DPTR
1 XRL ARG 94 2 SUBB A #data
1 XRL AR7 95 2 SuBB A,data addr
2 JNZ code addr 96 1 SuBB A,@RO

[PP . IA‘:A“

l - P R]

B e Instruction Set

T Number | Mnemonic Operands Hex Number | Mnemonic Operands
of Bytes Code of Bytes
1 SuUBB A@R1 BD 3 CJNE R5,#data,code addr
1 SUBB (A,RO BE 3 CJNE R6,#data,code addr
1 SUBB T AR1 BF 3 CJNE R7 #data,code addr
1 ' SUBB ‘ AR2 Cco 2 PUSH data addr
—_(1 l SUBB ‘ AR3 C1 2 AJMP code addr
—r 1 \ SUBB ‘ AR4 Cc2 2 CLR bit addr
T 1 ‘ susB \ AR5 C3 1 CLR o
T 1 \ SUBB \ ARG c4 1 SWAP A
—T 1 \ SuBB AR7 C5 2 XCH A.data addr
\ 2 ORL C,/bit addr Cc6 1 XCH A@RO
2 AJMP code addr Cc7 ‘ 1 F(CH A@R1
2 MOV C,bit addr c8 ﬁ 1 XCH ARO
1 INC DPTR co ! 1 XCH | AR1
1 MUL AB CA l 1 XCH AR2
reserved CB ‘ 1 XCH AR3
2 MOV @RO,data addr cC ’] 1 ’ XCH AR4
2 MOV @R1,data addr CcD T 1 j XCH AR5
2 MOV RO,data addr CE 1 1 XCH A,R6
2 MOV R1,data addr CF 1 1 XCH AR7
2 MOV R2,data addr DO 2 POP data addr
2 MOV R3,data addr D1 2 ACALL code addr
2 MOV R4,data addr D2 2 SETB bit addr
2 MOV R5,data addr D3 1 SETB c
2 MoV R6,data addr D4 1 DA A
2 MOV R7,data addr D5 3 DJINZ data addr,code addr
2 ANL C./bit addr D6 1 XCHD A,@RO
2 ACALL code addr D7 ' 1 XCHD —[A@R1
2 CPL bit addr D8 T 2 DJNZ { RO,code addr
1 CPL C D9 2 DJNZ)FR1 ,code addr
3 CJINE A #data,code addr DA 2 DJNZ R2,code addr
3 CJNE A.data addr,code addr DB 2 DJNZ R3,code addr
3 CJINE @RO,#data,code addr DC 2 DJINZ R4,code addr
3 CJINE @R1,#data,code addr DD \ 2 l DJINZ ‘ R5,code addr
3 CJNE RO,#data,code addr DE ’ 2 DJNZ j R6,code addr
3 CJINE R1,#data,code addr DF ‘ 2 DJNZ l R7,code addr
3 CJINE R2 #data,code addr EO ‘ 1 ‘ MOVX A@DPTR
3 CJNE R3,#data,code addr E1 ‘ 2‘7 AJMP code addr
3 CJINE R4 #data,code addr E2 \ 1 1 MOVX l A,@RO

2-79

ATmEL

Number | Mnemonic Operands
of Bytes
1 MOVX A@R1
1 CLR A
2 MOV A, data addr
1 MOV A@RO
1 MoV A@R1
1 Mov ARO
1 MOV AR1
1 MOV AR2
1 MOV A,R3
1 MOV A,R4
1 MOV AR5
1 MOV AR6
1 MOV AR7
1 MOVX @DPTRA
2 ACALL code addr
1 MOVX @RO,A
1 MOVX @R1A
1 CPL A
2 MOV data addr,A
1 MoV @RO.A
1 MoV @R1,A
1 MOV ROA
1 MoV R1,A
1 MoV R2,A
1 MOV R3,A
1 MoV R4,A
1 MoV R5,A
1 MOV R6,A
1 Mov R7,A

