C/C++ API SPECIFICATION TOOL

PROJECT REPORT
P-32z2
Submitted in partial fulfillment of the requirements for
award of degree

M.Sc.,[Applied Science| Software Engineering

Submitted By
M. Ranjith

983750060

UNDER THE GUIDANCE OF,

* External Guide Internal Gude

) ¢ Mr. Rajesh Kumar Ms. S.Devaki,
* General Manager, Asst Professor

Tata Elxsi CSE Department

Department Of Computer Science and Engineering

Kumaraguru College Of Technology

(Affiliated to Bharathiar University)
Coimbatore-641006.

CERTIFICATE

Department of Computer Science and Engineering
Kumaraguru College of Technology
Coimbatore-641006.

This is to certify that the project work entitled “C/C++ API Specification Too!”
Has been submitted by

Mr. M.Ranjith

In partial fulfilment of the award of the degree of
Master of Science in Applied Science- Software Engineering of
Bharathiar University, Coimbatore
during the academic year 2002-2003.

X Ao S
7 1\

LY

Guide Head of the Department

Certified that the candidate was examined by us in the Project Work Viva Voce

. . s /oy . 07
Examination held on —-= 4TS

was 9837S0060.

and the University Register Number

A/o@uwm | N

Internal Examiner External Examiner

G

A
AL
T

EQR

March 20. 2003

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr. Ranjith M, a Final Year M.S¢ Softwa - TrgTiesTing shde
Kumnaraguru College of Technology, undertook a three months project and worked s
project titlea C/C++ API Specification Too! starting from December 9. 2207 - March o
2003

We wish him all the best in his future endeavors

For Tata Elxsi Lid

. |\ :_
W \\\“@Wé/

bl N
\Giyan

Associate Manager - Human Resources

DECLARATION

| hereby declare that this project work titled < C/C++ API Specification Tool' is &
record of original project work done by me under the guidance of Mr. Rajesh
Kumar as external guide and Ms. S. Devaki, Asst Professor as internal guide,
and this project work has not formed the basis for the award of any Degreei
Diploma / Associate ship/ Fellowship on similar titles to any other candidates cf

any university.

Date | M. Ranjith
‘l.ls A / ,T L
/ Aol
/
Internal Guide, External Guide,
Ms. S. Devaki, B.E, M.S Mr. Rajesh Kumar
Dept CSE, Tata Eixsi Limited
Kumaraguru College of Technology, Bangalore.

Coimbatore,

@o[)cxmw/f@aﬂmml

“Nothing concrete can be achieved without an optimal combination

of inspiration & perspiration”

I thank the almighty; he has been very generous and kind to me. My parents
have been my source of inspiration. They have sacrificed almost every thing ic
provide me with an excellent foundation. | will never be able to translate my

gratitude in the form of words.

I am sincerely thankful to Mr. Vijay KrishnaMurthy Chief Finance Officer, & 4
Krishna Bhagavan General Manager, Operations. Tata Elxsi, Bangalore fo-

allowing me to undertake the project in the organization.

Special thanks to Mr. Rajesh Kumar, General Manager, & Mr. Ajax Thomas,
Project Leader, TATA ELXSI, Bangalore for their constant encouragement
technical inputs, and valuable suggestions and support despite their busy
schedule. For the inspiration part of my tasks, | owe my deepest gratitude to the
individuals who directly or indirectly came into contact during the compietion ¢*
my project and without the help and guidance of whom, the successfc

completion of this project would have not been possible.

Kumaraguru College of Technology was the best thing that could have happenec
to me. My sincere gratitude to its principal Dr.K.K Padmanaban B.Sc, M.Tech.
Ph.D.

| extend my gratitude to Dr. S.Thangaswamy, our beloved HOD of CSE, & our
course coordinator Ms. S. Devaki for their constant support, encouragement and

valuable internal guidance.

Last but not the least, | thank all my lecturers, friends and colleagues who made
life much easier for me.

botract

ABSTRACT

The idea of C/C++ API Specification Tool is to provide a tool that supporis the
programmer for writing high quality documentation (Headers) while keeping
concentration on the program development. In order to do so, it is important, that
the programmer can add the headers right into the source code he/she deveiops.
Only with such an approach, a programmer would really write some
documentation to his/her functions, classes, methods etc. and keep them up {oc
date with upcoming changes of code. Hence, the only place where tc put
headers are as comments.

This is exactly what C/C++ AP! Specification Tool is used for, generating
headers. However, headers are comments describing classes, functions,
methods, reserved words and system calls etc. such that he/she or someone

else wouid be able to use the code later on.

Now, let's consider what ““high quality" documentation means. Many
programmers like to understand the previous implementation before he/she couid
make any enhancements. Thus C/C++ API Specification Tool has been designec
to produce formatted headers of functions, classes reserved words, sysiem cails

in a structured way.

For the output format, it is important that the headers are well structured. C/C++
AP| Specification Tool inserts headers into the source code developed by the
programmer. The headers are placed in such a way that the body foilows the

comment header.

Tool : C, C++ and Gee Compiler.

Techniques : Scanner, Parsing and Code Generation.

CONTENTS

1. ABOUT THE COMPANY.
- INTRODUCTION.

2.1 Organization of Writing.

3. OVERVIEW.
4. NEED FOR C/C++ API SPECIFICATION Tool.

4.1 Purpose.
4.2 Document Conventions.
4.3 Product Scope.
. SYSTEM REQUIREMENT SPECIFICATION.
5.1 Purpose.
5.2 Scope.
5.3 Definitions, Acronyms, Abbreviations.
5.4 References.
5.5 General Description.
5.5.1 Product Perspective.
5.5.2 Product Function.
5.5.3 User Characteristics.
5.5.3.1 Use Case Diagram.
5.6 Operating Environment.
5.7 User Interface.
5.8 Design Constraints.
5.8.1 Hardware Limitations.
5.9 General Constraints.
5.10 Functional Requirements.
5.11 List Of Inputs.
5.12 Performance Requirements.
5.13 Safety Requirements.
5.14 Software Quality Attributes.
5.15 Business Rules.

adh

o © o

18.
18.
18.
20.
21.
21.
21.
21,
22.
22.
22,
22.
23.
24,
24.
24,
24.
24.
24,
24.
25.
25,
25.
25.

5.16 Other Requirements.
5.17 Risk Analysis.

. HIGH LEVEL DESIGN

6.1 Introduction.

6.2 Purpose.

6.3 Scope.

6.4 Conventions.

6.5 Document Status.

6.6 System Description.
6.6.1 System Requirements.
6.6.2 System Context.

6.6.2.1 Target Environment.

6.6.3 External Architecture.
6.7 Architecture Goals.
6.8 General specifications.
6.9 Scope of Implementation.
6.9.1 Limitations.
6.10 Design Trade-off Decisions.
6.11 Test & Debug Requirements.
6.12 Internal Architecture.
6.13 Interconnectivity.
6.14 Input/ Output.
6.14.1 /O Diagram.

6.14.2 /0 Diagram Representations.

6.15 Functional Specifications.

6.16 Requirements (From rest of the system).

6.17 Performance Specifications.

6.18 Timing/Sequencing/Synchronization/Buffering.

6.18 System Specifications.
6.19.1 OS Calls.
6.19.2 Dependencies.

6.19.3 Initialization.

6.19.4 Termination.

6.19.5 Error Messages

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31

Other Specifications.
Compile Time Configuration.
Tools Specifications.

Resource Specifications.

MIPS/Task Priority Requirements.

Memory Requirements.
Register Usage.
Device Usage.

Other Resources.
Hardware Interfaces.
Activity Diagram.

Sequence Diagram.,

6.31.1 Sequence Diagram 1.

6.31.2 Sequence Diagram - 2.

7. ALGORITHMS FOR SCANNER AND PARSER.

8. CONCLUSION.
9. TOOLS.

9.1 C Qverview.

9.2 C++ Overview

9.3 LINUX.

9.4 GCC 3.2.1 Compiler.

9.5 Windows NT Overview.
10 FUTURE PROSPECTS

11 FUTURE ENHANCEMENTS AND RECOMMENDATIONS.

12 REFERENCES.

1. ABOUT THE COMPANY

About Tata Elxsi

Design is at the core of our business. We adhere to high quality product design
processes to offer cost-effective, time-to-market solutions. A highly motivatec
skilled workforce driven by strong design principles and ethicai business
practices not only ensure quality products and services time and again but alsc

guarantee maximum returns for all our stakeholiders.

Vision
Our Visionis to achieve global leadership in designing, by providing

pioneering products, content and solutions for our customers

Business Area

Product Design Design And Mulftimedia Integration Services
Services Engineering Services

Team Profile

The company's backbone comprising a 900 strong team of highiy
talented engineers, provide expertise inProduct Designing, Design &
Engineering and Systems Integration which spans multiple disciplines of VLS:
design, Embedded software, Network Telecom, Multimedia, Storage, Visuai

Computing and High Performance Computing

Technology Focus

Automotive
¢ Embedded Automotive Controls
® Telematics/Infotainment
* Electronic Control Modeling
° Layered Competencies

Consumer & Office Products

° Services
¢ Success at work
° Layered Competencies

Network Telecom

° Broadband Infrastructure

° IP Networks

° Wireless Communications

® Convergence

® Layered Competencies
Semiconductors

¢ ASIC/SoC design

° FPGA design

¢ Chip Support Tools

° Board design
¢ Layered Competencies

Media

¢ Content Creation

° Content Distribution

° Content Hosting and Delivery

° Content Consumption

° Layered Competencies
Storage

° Storage Devices

° Storage Networking

¢ Storage Management
Scientific Applications

® Test & Measurement
® Medical Imaging
° Scientific Simulation

° Layered Competencies

Projects

Software Development

¢ Requirement Analysis.

» Architecture & Design.

« Code development & Testing.
* Project Management.

« Development Support such as Process,

Management.

System Integration

e System Analysis and Design.
¢ Network Planning.

+ Implementation, Customization, and Migration.

Tools

e Deployment, Integration, and End-to-End Testing.

& Configuration

« Network Optimization and Monitoring.

« {P (VolP-H.323, SIP, MGCP), PSTN (SS7, TDM), ATM, Frame Relay,
» LANANAN.

System Enhancement And Maintenance (Legacy)

¢ Feature development/support to enhance installed base.

» Quick turnaround for client problems and client required features.
e Global Tier 3 and Regional Tier 2 support.

« Migration support.

2. INTRODUCTION

Commenting, C and C++ programs that will help the developer keep track
of what he is trying to do. Proper indentation allows the developer to step through
the code more easily. “I tend to err on the side of commenting less, rather than
more”. There appears to be a school of thought that has taken this one step
further, and believes that comments are at best a necessary evil, and that good
code should be selfevident enough to obviate the need for comments.
Everybody should be writing code that's clean enough that you don't need to
explain what it does. But the code only tells you what the code does; it doesn™
tell you what the code was intended to do, what it ought to do, what it doesn't do.

or why it looks the way it does.

Until now the developer writes the comments manuaily. The document
generating tools like (Javadoc, Cocoon, doc++ etc) generates HTML documents
with respect to the comments given by the developer in the source file. These
document-generaﬁng tools do have certain specific way of 'commenting
conventions. e.g. Every phrase in the comments and dacumentation should start
with a capital letter and end with a dot and 2 spaces. GNU Coding Standards
(the Emacs sentence commands will work), Documentation in javadoc/doc++

style: /***/, {// Example:

I*l’

* Search a string in a buffer.

* @param buffer the buffer in which to search.
* @param string the string to look for.

* @return the index of the first occurrence.
*f

int findString(Buffer& buffer, String& string):
This allows the automatic generation of HTML documentation for the interface

using doc++, comment everything in headers, this is where the interface is, and

where people usually look for help, leave two empty lines between functions in
the *.cc files. It makes it clearer where the body of a function starts/ends. The

developer has to follow these conventions during development.

To make the work easier and efficient, The C/C++ API Specification Tool
Is being developed; the developer need not follow any conventions. It is not
necessary for him to manually type in the comments. The developed code will be
compiled using Gee compiler. The C/C++ specification tool is embedded into the
cade of the Gee compiler. This tool will parse for Classes, functions, variables,
reserved words, macros, Enums, Unions, Structs, Typedefs and system calls,
Including the Parameters, Called functions, Global Data, Return Value and
Exceptions, after parsing is done it searches for these data in the fie being
compiled. Then it places the header just above the Classes, functions, variables.
reserved words, macros, Enums, Unions, Structs, Typedefs and system calls.
The headers will aiso depend on the Parameters, Called functions, Global Daia
Return Value and Exceptions. This tool follows the basic conventions being usec

for commenting in C and C++ languages.

2.1 ORGANISATION OF WRITING

For the clarity of presentation and the project report is organized as foliows.
Section 3 deals with the overview of the C/C++ APl Specification Toci
Architecture with special emphasis on Context in which the system will be used
and the problem(s) that it solves, The services, i.e. Functionality, that the system
provides, and the qualitative characteristics of these services. Section 4 gives
the need for c/c++ API specification tool. Section 5 this section looks into the
interconnectivity issues involved in the architectural design. This section also
provides an insight into the functional requirement of the different components of
the system and the design trade off being made for system performance
optimization. Section 6 Explains the working of the architecture in a systematic
manner. Section 7 illustrates the various algorithms being used for parsing.
Section 8 Conclusion. Section 9 The tools used for implementation. Section 10
discusses the future scope of the proposed architecture. Section 11 the
enhancements possible in the future releases of the tool. Finally the Section 12
contains the References, which is a collection of materials referred by e at the

development stage of the project.

3. Overview

Introducticon

So far information about the program functionality to the user were based
on manual typing of the headers in the source file, where the user traverses
through the code and receives the information from the headers. It was the
manual approach, which involves typing of headers into the source file irom the
developer’s side. C/C++ API Specification tool adopts a different approach, a
new era of generating headers into the source file. Using this tool the deveioper
can put in the comments into his code with out much difficulty. There are various

ways in which the document-generating tools are defined.

The automatic generation of document to developers source file; Headers
defined by a developer organize documents and users receive information from

these headers.

The C/C++ AP Specification Tool can also be called as a document-generating
tool with a small difference in the definition.

The automatic generation of headers to developers source file; The
Classes, functions, variables, reserved words, macros, Enums, Unions, Structs,
Typedefs and system calls being used by a developer organize the headers and
users receive information from these headers.

Three elements thus integrate a would-be complete definition:
o Structured headers.

e Automatic header generation.

* High end formatting.

Basic idea

The basic idea is the same: users inquire a “~“Header” for information
about the code, traverse through the code according to information from the
headers i.e. the process of header generation from developer initiated manual
typing to automatic generation. Instead of developer manual typing the headers
into the code, the compiler generating the headers into the code had been
introduced, the developer compiles the code once and sees that the headers are

placed in the appropriate places. (e.g.- functions}

include<stdio.h>

void main()

{
int length(Char String [])

{ inti=0:len;
while(Stringfi] 1=70")

++

if (i==0)

len=0;
else
fen=i:
print(“length="1en); return(len);

}

(Save this code and compile using GCC compiler

with the tool embedded into the compiler)

After compilation .

¥ Funcion Name

Description : To find the length
Parameters : String[]
Called function
Global Data : none
Return value :len
Exception : none
*f

include<stdio. h>

void main()

{
int length(Char String [])

{ inti=0len;
while(Stringfi] 1=70’)
++;
if (i==0)
len=0;

else

len=i;

print(“length="len); return(fen);

Locating

Currently locating control flow in the code is a major problem for users.
Even though good document generation tools exist, the quality of informaticn
found still depends on the developers comments. C/C++ API specification too!
promises to remedy this by the concepts of automatic generation of headers and

formatting and by shifting the active role to the compiler.

Focusing

The developer is required to compile the code using the compiler with
which the C/C++ API specification tool is being embedded for the automatic
generation of headers, and also place the headers into the source file, af

appropriate places.

Customization

With C/C++ API specification tool the developer is required to instali
his/fher preferences of GCC compiler version with respect to the aperating

system hefshe uses.

Available documentation tools

This section is provided with a list of various documentation tool available fo-

documenting code developed on C/C++ language:

Current tools

Tools Output Languages Comments]
Before declaration. Claims tc be |
ABC+ HTML & RTF CiC++ capable of understanding a
large number of commenting |
styles.
C, C++, Apparently this tool has beer !
Assembly, and | around for quite a while but is not |
Autoduck HTML & RTF Basic used much these days. 5
cZ2man Produces C only Strict and unique to this tool.
LinuxDoc, SGML
HTML (like old C++ Javadoc
CcDoc Javadoc)
HTML, RTF, (also "
CC-RIDER wali-sized charts) C/C++ '
Before object with section name
Cocoon HTML C++ with various conventions unigue
to this tool.
LaTeX, HTML, :
Cxref ! RTF, and SGML Claor?sls;‘ol:lgﬂ Unique to this tool.
(Linuxdoc DTD) | P -
Co2HTML | HTML g;;’)(Header Unique to this tool,
) . HTML, HTMLHelp, | C/C++ and flexible, claims to support
Doc-o-Matic WinHelp, others? | Pascal Javadoc style
Similar to Javadoc, though some
Doc++ | HTML, LaTeX C/ C**‘t’a"a/ 'D | special Doc++ markup is
necessary.
Flexible, includes support for
DocBuilder | HTML, LaTeX C/C++', Pascal, | Javadoc and Doc+f style ‘
Delphi comments,but has its own styie
too.
C/C++, IDL, Flexible, supports Javadoc,
DocJet W%LQTGI%THFTML' Visual Basic, thought some preprocessing
P Java | required.
' Configurable (some special
Doxygen HTMLHelp C/C++ _"regular expressions” required?)
WinHelp, HTML :) .
: . ¢ Configurable (some speciali
George gﬁ.s:d help, mif, C/C++ - "regular expressions" required?)
DocBook
- 2
gtk-doc (Apparently) C 7
Imagix 4D | Text, RTF, HTML C/C++ 97
C++, IDL '
Kdoc | HTML. LaTeX, | f G eKkDE Javadoe
Man" pages lib's" j
| -
MkHelp for | HTML or RTF (and |
C++ | soon DHTML C++ ”?

HTML, RTF, MIF,

I\(J:i):rﬁ(:l and"man' C++ <avadoc
(nroffitroff)" K
Object HTML, RTF, and . ,
Ougtine WinHelp CiC++ fiexile E
Perceps | flexible CiC++ ;;"q“e to PERCEPS (e.g. /- or
Assembler, C,
C++, Java,
HTML, ASCII, Perl, LISP,
AmigaGuide, Occam, Tcl/Tk, | Complicated and unique tc
ROBODoC | | aTex, or RTF | Pascal, ROBODoc
format Fortran, shell
scripts, and
COBOL,
HTML but
Scandoc configurable with a C++ superset of Javadoc
template file.
C, C++
Objective C,
Pascal,
Lout, LaTeX, Modula,
Sdoc HTML, and plain Oberon, Peri, ' Unigue to Sdoc
text : Tel/Tk, !
Objective
Caml, Pike,
Python :
Surveyor | HTML and RTF CIC++ ? More of a code-analysis tool than
| @ doc tool.
The ’
Automatic C and SQL | Code must contain specially
Documentati | HTML scripts # formatted comments
on System i
Weasel DocBook C/C++ 27

Need for C/C++ @PS Specification Jaof
%

4. NEED FOR C/C++ API SPECIFICATION TOOL

4.1 Purpose

To design the C/C++ API Specification tool as a part of GNU projects. It alsc
includes the designing of existing documenting tools. The whole architecture is
based on the parsing technique, which involves the automatic generation cf
headers into the source code of the developer (Languages — C & C++). The
automatic generation of headers is done based on the Classes, functions,
variables, reserved words, macros, Enums, Unions, Structs, Typedefs and
system calls being used by a developer and also the commenting conventiors
being used in C & C++ languages. The scanner tracks the token from the source
file. Parsing, which is a technique used to identify the category of the token
depending upon the developer's implementation, Headers of each categorv
provided by the Tool and Compiler, finds the relevant category and places the
headers into the source file. The whole process saves the developer effort of

providing headers to his code.
4.2 Document Conventions
GNU (GCC) standards are used

4.3 Product Scope

The dominant paradigm of generating documents and headers for the
source file is the developer typing the headers and generating a LaTeX, HTML,
RTF, and SGML file with respect to the headers. In this mode!l of generating
documents, a user actively gets information from the LaTeX, HTML, RTF, or
SGML documents. so in this model the availability of the relevant header
information totally depends upon how efficiently developer frames the headers.

The way technology is growing, writing headers manually has become a very

cumber some task. Keeping this,limitation of existing document genér.a'-:ing toc.,
in mind | have proposed a C/C++ AP! Specification Tool for automatic
generation of header into the sorce file. In this model the parser announces the
availability of certain category, and the C/C++ API| specification tool generates

the headers, and places the headers systematically in the source file.

The whole architecture has been designed to achive the following goals:
» To act as a bridge between the developer and user.

* To provide automatic generation of headers to the code
being developed .

» To generate headers in a systematic and a conventiona
manner.

The whole objective of the C/C++ API Specification Tool is to save time anc
effort of the developer and user understanding the code developed.The C/C++
APl Specification Tool generates headers while in synchronization with the

standard commenting conventions of C/C++ languages.

Thus the C/C++ API Specification Tool result in following .beneﬁts:.
1. customized headers.
2. automatic header generation.
3. Generation of headers into the source file.

4. Formated headers.

5. SYSTEM REQIUREMENT SPECIFICATION

This project has been done for TATA ELXSI an SEI-CMM Level 5 company. This

document describes about the function headers generated as comments.

5.1 Purpose

This project deals with generating headers for code being developed and relies
on the compiler to do its job. It calls a part of the compiler to compile the
declarations, ignoring the member implementation. it builds a rich interna:
representation of the functions and "use" relationships, then generates the
headers and also picks up user-supplied documentation from documentation
comments in the source code. Which helps the third party to understand the code
developed.

5.2 Scope

The scope of the project is that it parses the declarations and documentatior:
comments and produces a corresponding set of commented lines describing (by
default) the Classes, functions, variables, reserved words, macros, Enums,
Unions, Structs, Typedefs and system calls, Inciuding the Parameters, Cailec
functions, Global Data, Return Vaiue and Exceptions. This generation of headers
to the code being developed is not specific to one platform. It can be generatec
on platforms like Linux and Solaris.

5.3 Definitions, Acronyms, Abbreviations
-None-
5.4 References

a) For reference books
Alfred V. Aho, “Compilers: Principles, Techniques, and Toois

Hardcover, 1980

b) For Web sites
http:/lwww._java.sun.com

http://lwww.epaperpress.com/

5.5 General Description

5.5.1 Product Perspective

This will be more in similar to the JavaDoc, which is used in generating
comments when a java code is compiled. This tool will be generating headers.

which will be kept in the source file. Generating in the form of comments.

5.5.2 Product Function

The tool being developed helps the user to trace out the Classes, functions.
variables, reserved words, macros, Enums, Unions, Structs, Typedefs anc
system calls being used. The tool will also iist out the parameters, callec
functions, global value, return value, and exceptions. The tool will place these

information’s in the required places in an orderly manner as comments.

5.5.3 User Characteristics

The user should be specifying a ¢ / cpp file. The user may compile the file on any
platform he/she is comfortable with.

The use case diagram indicates the various use cases in the system:

5.5.3.1 Use Case Diagram

T

st

Output file

Headers added
to source file

5.6 Operating Environment

Linux and Solaris

5.7 User Interface
Command line interface.

5.8 Design Constraints

5.8.1 Hardware Limitations

RAM 128MB
HD 4 GB
Processor Pl

5.9 General Constraints

There should be files and tables generated by the scanner containing all the
information, for identifying the Ciasses, Functions, Variables, Reserved words.
Macrds, Enums, Unions, Structs, Typedefs, System calis, Parameters, Callec
functions, Global Data, Return Value and Exceptions. Identification would be

done using sorting and searching algorithms.

5.10 Functional Requirements

The system developed with regards to the client’s request to generate headers
which would help the third party to trace out why the Classes, functions,
variables, reserved words, macros, Enums, Unions, Structs, Typedefs anc
system calls is being used, what are the parameters used, which function is
being called, what value does it return and also to trace out the exceptions used
inside the function.

5.11 List Of Inputs

A .c /.cpp file developed by the user will be used as the input for the tool.

5.12 Performance Requirements

The performance of the tool depends on the length of the file being inpuited fcr
compilation. The headers will be generated as and when the file is being
compiled.

5.13 sSafety Requirements

Not Applicable

5.14 Software Quality Attributes
Not Applicable

5.15 Business Rules

Not Applicable

5.16 Other Requirements
Not Applicable

5.17 Risk Analysis
Not Applicable

6. HIGH LEVEL DESIGN

6.1 Introduction

This template describes the C/C++ API| Specification Tool. It also includes the
designing of the Tool, This tempiate provides an excellent high-level design
document for the development team. The whole architecture is based on the
GCC compiler, which generates headers for Classes, functions, variables,
reserved words, macros, Enums, Unions, Structs, Typedefs and system calls.
The automatic generation of headers is based on the programming languages,
C and C++. The tool tracks the Classes, functions, variables, reserved words,
macros, Enums, Unions, Structs, Typedefs and system calls by the parsing and
generates the headers when the user compiles the program. Ths whoie

process helps the third party user to understand the code developed.

6.2 Purpose

The purpose of this document is to provide the developers a basic framework to
understand the C/C++ API specification tool architecture and the working of the
tool; The tool modeled in the lines of the GCC compiler. This document also put
light on issues of data flow and the inputs and outputs of the C/C++ AP
specification tool. It also incorporates the algorithm used by the C/C++ APi

specification tool.

6.3 Scope

This template talks about the C/C++ API specification tool architecture. It also
covers the porting of the C/C++ API specification tool into the GCC compiler.
These templates also throw light on the algorithm used by the C/C++ AP

specification tool.

6.4 Conventions

Referred GNU Project standards (GNU is a recursive acronym for “"GNU's Nox
Unix"; it is pronounced "guh-NEW").

6.5 Document Status

This section is created after finalizing the specification tool arcnitecture
and its portability with the GCC compiler. The algorithms to be used by the
C/C++ API specification tool are also finalized. All the other sections like data
flow diagram, activity diagram and, sequence diagram, flow chart are also
finished and included in the template. This section elaborates the working of
C/C++ API specification tool; it's algorithm and provides a clear picture of data

flow.

6.6 System Description
6.6.1 System Requirements

The various requirements of C/C++ API Specification Tool are as follows:

a) The first and the foremost requirement of the C/C++ API specification
tool is the GCC 3.2.1 compiler.

b) The C/C++ API specification tool requires a C/C++ code developed by
the developer.

c) To compile the code the tool requires an operating system or otherwise

the developer shouid specify the environment.

6.6.2 System Context

6.6.2.1 Target Environment

The C/IC++ API specification tool is designed to service both the third party user
and the developer. So the requirement and the limitations are kept in mind while
designing the architecture. The compiler should be configured with respect to the
operating system being used by the user. The input is the C/C++ code
developed by the user. The code is compiled with the ported C/C++ API
specification tool. The tool helps the user to trace out the Classes, functions.
variables, reserved words, macros, Enums, Unions, Structs, Typedefs and
system calls being used. The tool will also list out the parameters, called
functions, global value, return value, and exceptions. The tool will place this

information’s in the required places in an orderly manner as comments.

6.6.3 External Architecture

SOURCE

|
TEXT el INPUT CONVERTER —}f
|
|

Pass 1

TOKEN STREAM

Pass 2

/ } 44— | coDE OPTIMIZER |

~———-————Jp! CODE GENERATOR | OBJECT CODE

Scanner (Lexical Analysis)

This module has the task of separating the continuous string of characters intc
distinctive groups that make sense. Such a group is called a token. A token may
be composed of a single character or a sequence of characters. Examples of
tokens are identifiers or words that have a special meaning in the language like
begin, end, etc. numbers and special character sequences. The Scanner aisc
eliminates from the text source the comments that may exist in the program and
white space. The output of the scanner gives the Input to the next module that is

the parser, or the Syntactical Analyzer.
Parser

It was the scanner's duty to recognize individual words, or tokens of the
language. The scanner does not, however recognize if these words have been
used correctly. The main task of the parser is to group the tokens into sentences.
that is, to determine if the sequences of tokens that have been extracted by the
scanner are in the correct order or not. In other words, until the parser is reachec
the tokens have been collected with no regard to the whole contex: of the
program as a whole. The parser analyzes the context of each token anc groups
the tokens in declarations, statements, and contro! statements. In the process cf

analyzing each sentence, the parser builds abstract tree structures,

C/C++ API specification tool

The parser groups the tokens. The C/C++ API specification tool helps the user ta
trace out the Classes, functions, variables, reserved words, macros, Enums,
Unions, Structs, Typedefs and system calls from the group of tokens. The tool
will also list out the parameters, called functions, global value, return value, and
exceptions. The tool will place these information’s in the required places ir: an
orderly manner as comments.

6.7 Architecture Goals

Architecture of the proposed C/C++ API specification tool is as folows:

a) Human Communication
If a program cannot be understood by third party user. It is difficult to
verify and it cannot be maintained or modified Even if the program is stili
clear to the author. Programmers dislike writing exclusive comments and
tend to avoid them. To help the programmers and the users the
comments are automatically generated when the programmed s

compiled.

b) Efficiency
Efficiency has been the most exclusively overemphasized topic in the
history of programming. Is the justification of producing a program that
executes twenty times as fast as the competition, but fails in the haif the

runs? Efficiency is important after, not before, reliability .

c) Machine Independent.
The designed system is C/C++ AP| specification tool and is not biased to
a particular platform. So it can sits on any platform(Restricted ic

Windows and Mac).

6.8 General specifications

The whole C/C++ API specification tool revolves around the centralized entity
called Parser. The parser makes sure that the user gets the relevant tokens.
Parser has a sub component called Symbol Table. Though the parser
determined the correct usage of tokens, and whether or not they appeared in the
correct order, it still did not determine whether or not the program said anything
that made sense. This type of checking occurs at the semantic level. In arder to
perform this task, the compiler makes use of a detailed system of lists, known as

the symbol tables

6.9 Scope of Implementation
6.9.1 Limitations

The implementation of the proposed C/C++ API specification tool involves
following Limitations:
a) The user is expected to specify a C/C++ code for
compilation and execution.
b) The user is expected to choose the operating system.
¢t The GCC compiler should be installed and checked before

specifying the C/C++ code.

6.10 Design Trade-off Decisions

a) During the installation phase each user will select the operating
system he wants. If in case user doesn’t do that then a default
operating system of LINUX will be selected.

b) The compilation time depends upon the size of the file specifiec by
the user.

c) The headers will be generated for Classes, functions, variabies
reserved words, macros, Enums, Unions, Structs, Typedefs anc
system calls

d) The generated headers will also contain Parameters, Called

functions, Global Data, Return Vaiue and Exceptions.

6.11 Test & Debug Requirements

« Tools

+ Test case ‘=mplate

6.12 Internal

Architecture

c/C++
Source file

LEXICATL. ANATYSIS

Token Name |[Class [jAdditional

Data

TOKEN

PARSING

SYMBOL TAELE

Classes,

Functions,

Variables,
Reserved words,

System calls.

macros, Enums,
Unions, Structs,

Typedefs.

C/C++ API SPECIFICATION TOOL

OBJECT CODE
GENERATED WITH THE
HEADERS

6.13 Interconnectivity

The interactions between the modules shown in /O Diagram.

6.14 Input /

Output

6.14.1 I/0 DIAGRAM

LEXICAL ANALYSIS

TOKENS
Classes,
Functions,
Variables,
Reserved words,
PARSING e 2

Macros, Enums,
Unions, Structs,

C/IC+

ZOoOHAAYPOQHMHQMTOD®

HO O«

OBJECT CODE

Typedefs,
System calls
SYNTAX | TREE
CODE
OPTIMISATION
REDUCED TRFE
i’

CODE GENERATION

F Y

6.14.2 I/0 Diagram Representations

Tokens

Description

Separating the continuous string of characters into

group that make sense.

Functions

Collection of user defined and system defined

function names.

Reserved Words

Words that can’t be used as identifiers.

Predefined stmt's that are used to interact with the

System calls _
hardware device.
A user Defined data type which holds both the data
Classes
and functions.
) An object that may take on values of the specified
Variables
type.
Macros A substitution string that is placed in a program.
Enums Enumeration data types.
] Similar to structures, differs in the way data is stored
Unions
and retrieved.
Heterogeneous data types can be grouped to form a
Structs
structure.
New data items which are equivalent to the existing
Typedefs ‘

data types.

6.15 FPunctional Specifications

The system developed with regards to the client's request to generate headers.
Would help the third party to trace out why the Classes, functions, variables.
reserved words, macros, Enums, Unions, Structs, Typedefs and system calls are
being used, what are the parameters used, which function is being called what

value does it return and aiso to trace out the exceptions used inside the function.

6.16 Requirements (From rest of the system)

a) A C/C++fileis needed as input to the system.
b) The Gee compiler should be installed.

c) The parsed text of token should be passed on to the C/C++ API

specification tool.

d) The tool takes the functions, reserved words, system calls as input

from the parsed text.

6.17 Performance Specifications

The performance of the tool depends on the length of the file being inputted for
compilation. The number of Classes, functions, variables, reserved words,
macros, Enums, Unions, Structs, Typedefs and system calls used in the

program. The headers will be generated as and when the file is being compiled.
6.18 Timing/Sequencing/Synchronization/Buffering
Not Applicable

6.19 System Specifications
6.19.1 OS Calls

Not Applicable

6.19.2 Dependencies

The output of the C/C++ API specification tool depends upon the parsing done by
the GCC compiler

6.19.3 Initialization

Not Applicable

6.19.4 Termination

Not Applicable

6.19.5 Error Messages

Scanner errors, Some of the most common types here consist of illegai or
unrecognized characters, mainly caused by typing errors. A common way for this
to happen is for the programmer to type a character that is illegal in any instance
in the language, and is never used. Anather way for this type of error to happer:
is to mistype an operator, like accidentally typing ";=" instead of ".=". Firally anc
quite commonly, another type of error that the scanner may detect is an
unterminated character or string constant. This happens whenever the
programmer types something in quotes, and forgets the trailing quote. Again.
these are mostly typing errors.

The second class of errors is syntactic in nature, and is caught by the parser.
These errors are among the most common. The really difficult part is to decide
from where to continue the syntactical analysis after an error has been found.
What happens if the parser is not carefully written, or if the error detection and
recovery scheme is sloppy, the parser will hit one error and "mess up” after that,
and cascade spurious error messages all throughout the rest of the program. in
the case of an error what one would like to see happening, is to have the
compiler skip any improper tokens, and continue to detect errors without
generating error messages that are not really an error but a consequence of the

first error. This aspect is so important that some compilers are categorized basec

on how good their error detection system is. Anyone familiar to prog'rénﬁming nas
certainly encountered this problem before in his or her own experience.

The third type of error is semantic in nature. The semantics that are usec in
computer languages are by far simpler than the semantics that are Jsed in
spoken languages. This is the case because in computer languages everything is
very exactly defined, there are no nuances implied or used. The semantic errors
that may occur in a program are related to the fact that some statements may be
correct from the syntactical point of view, but they make no sense, and there is

no code that can be generated to carry out the meaning of the statement.

6.20 Other Specifications
Not Applicable

6.21 Configuration Information

6.21.1 Compile Time Configuration
Not Applicable

6.21.2 Runtime Configuration
Not Applicable

6.22 Tools Specifications
Not Applicable

6.23 Resource Specifications

Not Applicable
6.24 MIPS/Task Priority Requirements
Not Applicable

6.25 Memory Requirements
Not Applicable

6.26 Register Usage
Not Applicable

6.27 Device Usage

Not Applicable

6.28 Other Resocurces

Not Applicable
6.29 Hardware Interfaces

Not Applicable

6.30. Activity Diagram

P e

'

Select the

operating system

‘

I

Select tThe
file

'

v

Pass the file to the
Scanner to generate
tokens

v

Pass the Tokens to
be parsed by the
Parserxr

v

Check for

NC

function names

Pass the function names
to the C/C++ API
Specification tool

YES

Check for
Reserved words

YES

Check for

—Pi—

v

Generate headers
as comments in
the socurce code

System calls

NG

6.31 Sequence Diagram
6.32 Sequence Diagram 1

GCC C/C++ API
SOURCE FILE COMPILER SPECIFICATION
TOCL

C/C++ source file

Parsed text

Headers

6.33 Sequence Diagram - 2

LEXTCAL
ANALYSIS

C/C++ API
PARSING SPECIFICATION
TOOL

OTIMISATION

[+

GENERATION

.c /.cpp File

>

Tokens

Headers

Functions,
Reserved words,
and system calls

—>

Tree

7. ALGORITHMS FOR SCANNER AND PARSER

A compiler accepts a sequence of characters in some alphabet, and parses or
recognizes the sequence as defining a valid program in the compiler's source
language. in general, parsing involves recognizing which sub-sequences of the
input form recognizable units in the language, like assignment statements. or
expressions. The first step in the recognition process is usually the replacement
of long strings of characters with objects, called fokens, which are fixed-sized
codes for the corresponding input string. The rest of the compiler then processes
the sequence of tokens, and need not examine the individual characters making

up each token's string.

Lexical analysis is the name given to the part of the compiler that divides the
input sequence of characters into meaningful token strings, and translates each
token string to its encoded for, the corresponding token. Tokens are fairly simple
in structure, allowing the recognition process to be done by a simple algorithm.

Examples of tokens might be:

« A C name -- a sequence of letters and digits beginning with a letter

« A Cinteger constant -- a sequence of digits

LaRN} LI N

« A string -- a sequence of characters other than
characters

surrounded by

« A comment — a sequence of characters surrounded by the sequences ™
and l*lli

« An operator — a single symbolic character from the set: +-*/&%|[I{}{)<>

During lexical analysis, the source program is treated as a sequence of tokens.
separated by optional whitespace. Lexical analysis ignores the sequence of
tokens, leaving the decision as to whether tokens occur in a meaningfu:

sequence up to the rest of the parsing portion of the compiler.

Lexical analysis replaces each token string with its encoded form:

« NUMBER <integer values>

« NAME <sequence number unique to this name> (every occurrence of this

name should get this same number)

» STRING <number for this occurrence of this string>
« op (The internal code for this operataor)

Here, the first column represents the value of a single byte (the "token type") in
the output sequence, where NUMBER, NAME, STRING, and each value of "op”
are chosen to be different. The designation <description> describes the value of
a single integer which follows the token type byte, while parenthesized materiai is
just commentary, not represented in the output of Lex. Note that comments are

simply discarded — they do not give rise to any token in the output.

Algorithm: Scanner

The algorithm for lexical analysis is based on the concept of a Finite State
Machine, a mathematical model of a simplified computer. An FSM maintains an
internal state, and performs actions as it moves from one internal state to
another. These moves, called fransitions, take place when the machine in state X
reads a character C from the input. The combination (X,C) selects a particular
transition, to a target state T. During the transition, the machine may perform an
action A. The entire machine is defined by giving the function d(X,C) = (T A), and
specifying which state the thing STARTs in. As a special case, we wili also ailow
a transition that reads no character, but performs an action, and moves to a new
state. The character | will be used to represent the absence of a character. if it
appears in a table defining the d() function, its transition will be performed only if
the next input character does NOT match any character explicitly shown ir di}
entries for the same state. The d() table can be stored as a pair of arrays indexed
by State and Character. Actions can be encoded, by giving each possibie action

a unique number, and performing

switch (Action[State][Character] { case 1. <first action>; break; case 2: ... }

The program can now execute

State = Next[State][Character];
and repeat these steps, until there is no more input. Action code can:

« Convert the digits which form an integer, one by one: num = num*10 +

val[Character},

where vall] is a pre-initialized array which maps digits to their numeric values.

.« Record the characters, which form a string or name, and enter the
complete item into a data structure from which their sequence number can

be determined.

« Record the val [Character] of an operator symbol.

When the end of a token string is recognized, the associated actior:
routine usually produces the required output. This may involve
recording the final form of the token string in an internal data
structure, and producing the required token-type byte, and
accompanying' "alue" information. In most languages, the
recognition of "end-of-token" is triggered only by the observation of
an input character that can't be incorporated into the current token.
The | transition can be used, to perform the end of token action,
and then proceed to process the input character that triggered that

transition.

A lexical analyzer must be prepared to process any possible character, in any
state. In the ASCIl code, there are some 256 possible characters, and i
becomes tedious to fill in the table entries for all 256 for each of perhaps 1C
states. A simplification can ease this burden: As each character is read, =
reference to an array, indexed by character, can retrieve the character's
"character class code", Class=Cl[Character]. The other tables can then be

referenced, using Class instead of Character.

ALGORITHM : Parser
Construction of LALR parser requires the basic understanding of constructing an
LR parser. LR parser gets its name because it scans the input from left-to-right

and constructs a rightmost derivation in reverse.

A parser generates a parsing table for a grammar. The parsing table consists of
two parts, a parsing action function ACTION and a goto function GOTO.

An LR parser has an input, a stack, and a parsing table. The input is read from
left to right, one symbol at a time. The stack contains a string of the form
SoX151... XmSm Where sy, is on top. Each X is a grammar symbol and each s; is &
symbol called a state. Each state symbol summarizes the information containec

in the stack below it and is used to guide the shift-reduce decision.

The function ACTION stores values for sp, that is topmost stack element and a;
‘that is the current input symbol. The entry ACTION[sm, a] can have one of four

values:

1. shifts

2. reduce A->B
3. accept
4. error

The function GOTO takes a state and grammar symbol as arguments and
produces a state. Somewhat analogous to the transition table of a deterministic
finite automaton whose input symbols are the terminals and nonterminals of the
grammar.

A configuration of an LR parser is a pair whose first component is the stack

contents and whose second component is the unexpended input:

(So X1 81 .. . Xm Sm, @i &1 . . . @n$)

The next move of the parser is determined by reading &, the current input

cvmbal and s the state on top of the stack. and then consulting the action tabie

entry ACTION[sn, a. The four vaiue mentioned above for action table entry wil.

produce four different configurations as follows:

1. If ACTION[sm, a] = shift s, the parser executes a shift move, entering the

configuration

(SoX1S1... XmSma@iS, @s1. . . @)
Here the configuration has shifted the current input symbol a and the next

state s = GOTO[sm, & onto the stack; ai.x becomes the new current input

symbol.

2. If ACTION[sm, aj) = reduce A - > B then the parser executes a reduce

move, entering the configuration

(S0 X1 81 ... Xnr Smr A S, @ 8wt . .. and)

where s = GOTO[sm+ A] and r is the length of B, the right side of the
production. Here the first popped 2r symbols off the stack (r state symbols
and r grammar symbols), exposing state sm.. The parser then pushed
both A, the left side of the production, and s, the entry for ACTION[Sm., A],
onto the stack. The current input symbol is not changed in a reduce move.
Specifically, Xm+1 - . . Xm, the sequence of grammar symbols are popped
off the stack and will always match B, the right side of the “educing

production.

3. If ACTION[sm, aj] = accept, parsing is completed.

4. If ACTION(sy, aj] = error, the parser has discovered an error and calls an
error recovery routine.

The LR parsing algorithm is simple. Initially the LR parser is in the configuration
(So, @132...an$) where sp is a designated intial state and a;as...a, is the string to be
parsed. Then the parser executes moves until an accept or error action s

encountered.

| mentioned earlier that the GOTO function is essentially the transition table df a
deterministic finite automaton whose input symbois (terminals and nonterminals)
and a state when taken as arguments produce another state. Hence the GOTO
function can be represented by a graph (directed) like scheme, where each node
or state will be a set of items with elements that are productions in the grammar.
The elements comprise the core of the items. The edges representing the
transition will be labeled with the symbol for which the transition from one state to

another is predetermined.

In the LALR (lookahead-LR) technique, LR items with common core are
coalesced, and the parsing actions are determined on the basis of the new
GOTO function generated. The tables obtained are considerably smaller than the
LR tables, yet most common syntactic constructs of programming languages car.

be expressed conveniently by LALR grammar.

8. CONCLUSION

The architecture implemented is an excellent framework ‘or the
development of a tool based on generation of headers for the source code being
developed. Though generic in nature the system addresses the issues of
automatic generation of headers and written into the source file. The earlier
versions of Document generation tools were lacking in few aspects specifically
issues like generating headers into the source file, Generation of headers from
the code, rather than from the comments of the developer. The prototype based
on C/IC++ API Specification Tool is not only free from the above mentionec
problems but it also incorporates the additional features which makes this
prototype an excellent tool for document and header generation. To avoic
unformatted header generation, the C/C++ AP| Specification Tool uses the C &

C++ language commenting conventions.

To incorporate customized header generation to the developer, parsing of
the required category from the available tokens is performed. Over a period ol
time, different parsing techniques were proposed to parse from the token, bu:
only LALR parsing technique has been used for parsing the category from the
tokens generated by the scanner. Parsing the token is made easy Dy the

implementation of tree structure to maintain the different token categories.

The tool developed is embedded into the GCC 3.2.1 compiler. Sc the
header generation is done as and when the developer compiles the developed
code. GCC 3.2.1 compiler is available for operating systems like LINUX, and
SOLARIS. Which makes the C/C++ Api Specification Tool also available oniy for
these operating systems.

Saols

9. TOOLS

9.1 C Overview

C is a programming language designed for a wide variety of programming tasks.
It is used for system-level code, text processing, graphics, and in many other

application areas.

The C language described here is consistent with the Systems Applicatior
Architecture Common Programming Interface (also known as the SAA C Level 2
interface), and with the international Standard C {ANSI/ISO-IEC 989%-
1990[1992]). SAA Level 2 is an IBM definition of the C language that aliows
programmers to develop applications that can be easily transported across
different SAA environments. It specifies several features of the C language tha:

the ANSI C standard designates as implementation-defined.

On the Inte!l platform, the IBM C and C++ Compilers conforms to changes
adopted into the International Standard C by ISO/IEC 9899:1990/Amendment
1:1994.

C supports several data types, including characters, integers, fioating-point
numbers, and pointers -- each in a variety of forms. In addition, C also supports

arrays, structures (records), unions, and enumerations.

The C language contains a concise set of statements, with functionality aaded
through its library. This division enables C to be both flexible and efficient. A~
additional benefit is that the language is highly consistent across different

systems.

The C library contains functions for input and output, mathematics, exception
handling, string and character manipulation, dynamic memory managemeni, as
well as date and time manipulation. Use of this library helps to maintain program
portability, because the underlying implementation details for the various

operations need not concern the programmer.

8.2 C++ Overview

C++ is a language derived from C, developed by Bjarne Stroustrup in the eariy
1980s at Bell Laboratories.. C++ provides a number of features that "spruce
up" the C language, but more importantly, it provides capabilities for objec:-

oriented programming.

It was developed as a fast and efficient language to be used to produce any
kind of software. C++ was developed significantly after its first release ir
particular, "ARM C++" added exceptions and templates, and ISO C++ added

RTT!, namespaces, and a standard library.

C++ was designed for the UNIX system environment. C++ is a general ourpose

programming language with a bias towards systems programming that
» IsabetterC
« Supports data abstraction
« Supports object-oriented programming
« Supports generic programming.
Speed and Efficiency

When a compiler runs through your source files it changes all of the high-leve!
C/C++ instructions and function calls into processor-dependent assembly
language. This means that your programs run directly on top of the processor
and can pull as much performance from the machine as need be, which

speeds up the execution of programs significantly.

Dividing code into self-contained classes means that if a certain change needs
to be made to the behavior of an object, that change only has to be made
once in the object's code whereas, in procedural languages, such changes

may have to be made in several places in the code.

Access to Operating System-Dependent Functions

Most operating systems are written in C or C++ (or a mixture of both) anc
therefore expose their function calls in C/C++. With C++, your program has the
operating system at its fingertips, telling it exactly what to do with your
program, whether it be manipulating windows, accessing a network, hardiing

input, or reading and writing files.

Advantages

« New programs would be developed in less time because old code can be

reused.
« Creating and using new data types wouid be easier than in C.

« The memory management under C++ would be easier and more

transparent.

« Programs would be less bug-prone, as C++ uses a stricter syntax anc

type checking.

“Data hiding', the usage of data by one program part while other orograr
parts cannot access the data, would be easier to implement with C++.

Disadvantages

C++ is portable to the extent that the language itself is the same across
platforms (this too is disputable). If your program uses any platform dependent
code, which it almost certainly will, you will have to change it considerably tc
work on a different platform.

C/C++ has no runtime error checking. If you try to access memory that doesn't
exist (reading past the bounds of an array, overwriting parts of the operating

system, etc...), you will probably end up in a crash. In many cases, such crashes

are extremely difficult to debug.

9.3 LINUX

Linux was developed by Linux Torvalds at the University of Helsinki ir Finiand.
He started his work in 1991. The effort expanded with volunteers contributirg
code and documentation over the internet. It is currently developed under tre

GNU public license and is freely available in source and binary form.

Some of its features include:

1. Virtual memory, allowing the system to use disk room the same as RAM

memory.

2. Networking with TCP/IP and other protocols.

3. Multiple user capability.

4. Protected mode so programs or users can't access unauthorized areas.
5. Shared libraries

6. True muititasking

7. X - A graphical user interface similar to windows, but supports remote

sessions over a network.
8. Advanced server functionality
o FTP server
o Telnet server
o BOOTP server
o DHCP server
o Samba server

o DNS server

9.

o SNMP services

o Mail services

o Network file sharing
o much, much more...

Support of filesystems that other operating systems use such as DOS
(FAT), Windows85,98 (FAT32), Windows NT, 2000 (NTFS), Appie, minix,
and others

Reasons to use:

1.

2.

Free

Runs on various machine architectures

. Works well on machines that are not "modern”. Recommended 8MB RAM,

with 16MB swap drive space. It will run in hard drives as small as 500MB

or less.
Linux is stable and even if a program crashes, it won't bring the CS down.

Source code is available.

9.4 GCC 3.2.1 Compiler

Several versions of the compiler (C, C++, Objective-C, Ada, Fortran, and vavg;
are integrated; this is why we use the name "GNU Compiler Collection”. GCC
can compile programs written in any of these languages. The Ada, Fortran. arc

Java compilers are described in separate manuals.

"GCC" is a common shorthand term for the GNU Compiler Collection. This is
both the most general name for the compiler, and the name used when the
emphasis is on compiling C programs (as the abbreviation formerly stood fcr
"GNU C Compiler").

When referring to C++ compilation, it is usual to call the compiler "G++". Since
there is only one compiler, it is also accurate to call it "GCC" no matter what the
language context; however, the term "G++" is more useful when the emphasis is

on compiling C++ programs.

Similarly, when we talk about Ada compilation, we usually call the compiler

"GNAT", for the same reasons.

We use the name "GCC" to refer to the compilation system as a whole, and more
specifically to the language-independent part of the compiler. For example, we
refer to the optimization options as affecting the behavior of "GCC" or sometimes

just "the compiler”.

Front ends for other languages, such as Mercury and Pascal exist but have not
yet been integrated into GCC. These front ends, like that for C++, are built in
subdirectories of GCC and link to it. The result is an integrated compiler that can
compile programs written in C, C++, Objective-C, or any of the languages fo-

which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C+~
compilers and those of the GCC core. Consult the documentation of the other
front ends for the options to use when compiling programs written in other

languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code direbtly
from your C++ program source. There is no intermediate C version of e
program. (By contrast, for example, some other implementations use a progrars
that generates a C program from your C++ source.) Avoiding an intermediate C
representation of the program means that you get better object code, and better
debugging information. The GNU debugger, GDB, works with this information i

the object code to give you comprehensive C++ source-level editing capabilities .

GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly
and linking. The "overall options" allow you to stop this process &t an
intermediate stage. For example, the -c option says not to run the linker. “hen

the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control
the preprocessor and others the compiler itself. Yet other options contro: tre
assembler and linker; most of these are not documented here, since you rarev

need fo use any of them.

Most of the command line options that you can use with GCC are useful for C
programs; when an option is only useful with another language (usually C++), tre
explanation says so explicitly. If the description for a particular option does nct
mention a source language, you can use that option with all supported

languages.

The gcc program accepts options and file names as operands. Many options
have multi-letter names; therefore multiple single-letter options may not be
grouped: -dr is very different from -d -r.

You can mix options and other arguments. For the most part, the order you use

doesn't matter. Order does matter when you use several options of the sams

kind; for example, if you specify -L more than once, the directories are searchec

in the order specified.

Many options have long names starting with -f or with -W-for example, -ficree-
mem, -fstrength-reduce, -Wformat and so on. Most of these have both positive
and negative forms; the negative form of -ffoo would be -fno-foo. This manua:

documents only one of these two forms, whichever one is not the default.

9.5 Windows NT Qverview

The "NT" in Windows NT stands for "New Technology". Originally developed as a
project called "OS/2 NT" by Microsoft and IBM, "OS/2 NT" was designed from the
ground up to be the operating system of the future. The goal was to create a
enterprise OS with the power of Unix, the ease of use found in the Windows, and
networking functionality found in Novell NetWare... Then combine all that with
new ideas such as "Zero Administration", and a wide array of other innovations

that were secretly in development by Microsoft and IBM at the time.

The result is a faster, more reliable, and better overall OS than the previous DGCS
ancestors (DOS, Win1.0-3.11, and Win39x). Windows NT was built from the
ground up. It does not run on top of DOS (like Win3.x), nor does it get a kick star:
from DOS (like Win9x). Windows NT does not have a COMMAND.COM
CONF!G.SYS, AUTOEXEC . BAT, 10.8YS, MSDOS.SYS, etc. Even the WIN.IN]
and SYSTEM.INI files are empty after you first install NT, only to be used ¥ you
install a older 16-bit Win3.x application.

Widows NT technology will be used in all future Windows operating
systems. Windows 2000 will be built on Windows NT technology (Windows 2000
was previously known as Windows NT 5.0). Windows 98 was the last
DOS/Windows OS.

Multi-processing

Windows NT supports more then one processor. This means you are not limited
to only one processor like you are with WIiNnS5/Win98, or with a G3 power
Macintosh (note that 604e based Mac's can use multiple processors, bui your
applications must be written to do so). Currently, Windows NT supports up o 32
processors, and is a true symmetric processing operating system. Without any
additional tweaking, NT supports up to 4 Pentium Pro processors, 2 Pentium 'l

processors, 8 Pentium Xeon processors, or 16 Katami processors.

Pre-emptive multitasking

Windows NT is a true pre-emptive multitasking operating system. Roughiy
speaking, this means that you can run more tasks simultaneously with iess
overhead, better overall performance, and more responsiveness. Windows S5
and Windows 98 only support pre-emptive multitasking with 32-bit applications,
and is not supported "while" ANY 16-bit applications or device drivers are
running. Mac OS does not support pre-emptive multitasking at all. NT suppor's

pre-emptive multitasking with ALL applications and device drivers.
32-bit

Windows NT is a true 32-bit operating system, unlike Windows 95 and
Windows 98 which are only semi 32-bit operating systems. The result of a true
32-bit operating system is better overall performance, as well as a better
multitasking experience. The Win32 (Windows 32-bit) application structure was

originally developed for NT.

Lack of conventional memory

Windows 3.1, 95, and 98 users are all too familiar with the memory
resource problem. Windows 95/98 uses what's known as conventional memary
(left over from the days of DOS) which is kind of like a 640k cache for fcons.
pointers, and other small tid-bits stored in memory whenever you open a window.
application, etc. After some time these resources diminish rapidly. To see your
system resources, open any system explorer window (try opening the Recycis
Bin), and choose "About Windows" from the "Help" menu.

Windows NT does not use conventional memory, as everything allocated
to memory goes in "Physical Memory". The result is consistent performance
when running multiple applications, a better overall multitasking experience, as
well as better system reliabitity.

Reliability
Protected Memory

Protected memory means that your system will be more reliable. By preventing
applications to write over each other (or the OS) in memory. both you
applications and OS are less likely to go down. One of the most common
reasons for application and system crashes in Win9x or Mac OS are applications
writing over each other, or the system, in memory. Neither Windows S5,

Windows 98, Mac OS 8.0, or Mac OS 8.5 support protected memory.

Hardware Abstraction Layer

Windows NT prevents applications from accessing your hardware directiy,
greatly reducing the risk of a system crash. In the past it is was common for
applications (especially DOS games) to access your hardware directly (most
commonly: your memory, or video card), which would put your systems stabiiity
on the line. NT does prevents this type of activity, and will greatly reduce the risk

of system crashes and serious virus problems as a result.

Lack of conventional memory

Just as mentioned in the performance section, NT does not use conventional
memory. This will not only increase performance, but wili also reduce the number
of system crashes compared to Windows 95, and Windows 98. Conventional
memory (left over from the days of DOS) is kind of like a 840k cache for icors,
pointers, and other small tid-bits stored in memory whenever you open a window,
application, etc. After time these resources diminish rapidly. To see your system
resources, open any system explorer window (try opening the Recycle Bin), and
choose"About Windows" from the "Help" menu. Windows NT does not use
conventional memory, as everything allocated to memory goes in "Physical
Memory". The result is consistent performance when running multiple
applications, a better overall multitasking experience, as well as better system
reliability.

10 FUTURE PROSPECTS

* Supported platforms — Native

o HP-UX10.20 (PA 1.1), HP-UX 11.0 (PA 1.1)
o Windows NT 4.0 , Windows 9x/2k.
o AIX 433

* Supported platforms — Embedded

o PowerPC
o Intel XScale

o Pentium Il & il

o Easily migrate from native development to embedded.
» Improved exception handling and extensive template support.

e Enhanced support for Windows developers.

¢ Open Source.

Fukure Onhancemento

11. FUTURE ENHANCEMENTS AND RECOMMENDATIONS

This work can be extended in several directions in the future thai
addresses issues concerning operating system and languages. Following are the
future enhancements, which can be, incorporated in the future extensions of the

push architecture design.

A, Porting:

The tool developed is ported into GCC compiler, which makes the toot
availabie for a few specific operating systems (LINUX, SOLARIS). Breaking this
barrier of porting only into the GCC compiler can make the tool platform
independent. Porting the tool into other compilers like TURBO, BORLAND etc

can make the tool available for WINDOWS operating system.

B. Languages Support:

The tool is specific to C and C++ languages. This tool can be extended to
languages like Visual C++, JAVA, PERL, COBOL, PASCAL, FORTRAN, and
Visual Basic. Extending the tool to these languages the compiler should be abie
to parse more data for the code. For E.g. Visual C++ has a source browser
information in a function. The tool should be able to parse this informatior: and
add it into the header. More over VC++ have MACROS that are not available in
C and C++. The tools should be able to parse those MACROS.

C. Optimization:

Enhancements can be made on the performance of the tool. Enhancements can
be made on memory management (Faster Memory Allocation and Garbage
Collection). The tool is flexible; in the sense that changes in the target

architecture can be quickly accommodated.

A major use of the tools is as follows:

Architectural features, which have been considered, include;

List of optimization that can be improved:

Propose an architectural change,

Add an optimization to exploit/work around that feature;

Address compare buffers.

Combining dependent operations.

Procedure Integration.
Dead Code elimination.
Loop unrolling.

Live variable analysis.
L.eaf routine optimizations.
Local register allocation.
Global register allocation.

Instruction scheduling.

Unreachable code elimination.

Code straightening.

If expression simplifications.

Measure the performance impact and thus accept/reject the change.

12. REFERENCES

For Web sites:

#R1
#R2
#R3
#R4
#RS
#R6
#R7
#R8
#R9

For Books:

#R10

www. java.sun.com/j2sefjavadoc/

www. zib.de/Visual/software/doc++/

www. doxygen.org/
www.cs.bris.ac.uk/~ian/formal/index.html
www. topaz.cs.byu.edu/text/himl/Textbook/
WWW. epaperpress.com

www. gce.gnu.org/onlinedocs/gee-3.2.1

www. interactivetools.com/products/docbuilder/

www. freeware. sgi.com/installable/gce-3.2.1_htmi

Theory And Paractice Of Compiler Writing.

Jean. Paul Tremblay,

McGraw — Hill International Editions.

#R11 Software Engineering

Rodger. S. Pressman.
Mc GRAW — HILL International Edition 1997

